
Universität Stuttgart
Fakultät Informatik

System Mechanisms for
Partial Rollback of

Mobile Agent Execution

M. Straßer, K. Rothermel

Bericht 1999/10
Juni 1999

System Mechanisms for
Partial Rollback of Mobile Agent Execution

Authors:
Dipl.-Inform. M. Straßer
Prof. Dr. rer. nat. K. Rothermel

Institut für Parallele und Verteilte
Höchstleistungsrechner (IPVR)
Fakultät Informatik
Universität Stuttgart
Breitwiesenstr. 20 - 22
D-70565 Stuttgart

1 Introduction 2

System Mechanisms for Partial Rollback
of Mobile Agent Execution

Markus Strasser and Kurt Rothermel

Institute of Parallel and Distributed High-Performance Systems
University of Stuttgart, Breitwiesenstr. 20-22, D-70565 Stuttgart, Germany

markus.strasser@informatik.uni-stuttgart.de

Abstract: Mobile agent technology has been proposed for various fault-sensitive application areas, in-
cluding electronic commerce, systems management and active messaging. Recently proposed protocols
providing the exactly-once execution of mobile agents allow the usage of mobile agents in these appli-
cation areas. Based on these protocols, a mechanism for the application-initiated partial rollback of the
agent execution is presented in this paper. The rollback mechanism uses compensating operations to roll
back the effects of the agent execution on the resources and uses a mixture of physical logging and com-
pensating operations to rollback the state of the agent. The introduction of different types of compensat-
ing operations and the integration of an itinerary concept with the rollback mechanism allows perform-
ance improvements during the agent rollback as well as during the normal agent execution.

Keywords: mobile agents partial rollback fault-tolerance compensation itineraries

Technical areas most relevant to this paper:

- Distributed Fault-Tolerant Systems

- Multi-Agent Systems

1 Introduction
Throughout the past years, the concept of mobile agents has drawn a lot of attention in both academia and industry.

However, only few “real” applications based on mobile agents exist today. The rather early stage of currently available
agent platforms might be one reason for that. Functions critical for applications, such as security mechanisms, are often
incomplete or missing entirely. Moreover, only little work has been done so far to integrate agent technology with leg-
acy systems, such as TP-Monitors and transactional resource managers. In [11], the integration of mobile agent tech-
nology with transactional technology to provide fault-tolerant exactly-once execution of a mobile agent has been pre-
sented. Based on these results, this paper provides a mechanism for the application-invoked partial rollback of the
mobile agent execution.

Agents are autonomous objects which may move from node to node to access services provided there. Agent exe-
cution proceeds insteps, where a new step is initiated whenever an agent migrates to the next node. When an agent
decides to migrate to another node, the agent’s code, data and execution state is captured and transferred to the next
node, where it is initiated after arrival.

The use of mobile agents has been proposed for many application areas, including electronic commerce, systems
management, or active messaging. But only the use of protocols like the exactly-once execution protocols presented
in [11] allows the usage of mobile agent technology in these application areas. However, the strict forward recovery of
these protocols contradicts the autonomy of mobile agents. For situations where an abort and restart of the step trans-
action is not sufficient to deal with an error situation (e.g. if the agent lacks the permission to access a resource) or
where the program logic of the agent detects that the current strategy does not lead to the agent’s goal, the agent needs
the ability to initiate a partial rollback of its execution.

In this paper, we will first investigate which types of operations a mobile agent performs can be rolled back. Then,
we will propose a rollback mechanism which uses compensating operations to rollback the effects of an agent on the

2 Mobile Agent Model and Execution Model 3

resources used and which uses a mixture of physical logging and compensating operations to rollback the state of the
agent. This mechanism ensures, that the partial rollback will be executed eventually even in the presence of non-lasting
node and network crashes. To increase the performance, an extension of the mechanism is presented which allows to
prevent unnecessary agent transfers during the rollback. Integrating itineraries with the rollback mechanism provides
a structured way to automatically define agent savepoints and provides the possibility to reduce the size of the log nec-
essary for the rollback mechanism. The rollback mechanism is currently implemented in Mole [1][9], a mobile agent
system developed at Stuttgart University.

The remainder of the paper is structured as follows. In the next section, we will describe our mobile agent model and
execution model. Section 3 investigates the different types of compensation. Section 4 is dedicated to the mechanism
for partial rollback. Section 4.1 introduces two different types of private agent data allowing to roll back the private
agent data belonging to one type using an image of the data while the data belonging to the other type has to be com-
pensated using compensating operations. Section 4.2 presents the logging mechanism necessary for the partial roll-
back. Section 4.3 introduces a first version of the rollback mechanism which is extended in Section 4.4 to increase the
performance of the algorithm. Related work is discussed in Section 5 before the paper concludes with a brief summary.

2 Mobile Agent Model and Execution Model
This section describes our model of mobile agents and their execution. Mobile agents are autonomous objects, which

perform a job on behalf of their owner. While performing a job, an agent often has to visit several network nodes to
access local resources by invoking operations on these resources. The set of actions an agent has to perform on a single
node is called astepand is implemented as a single method of the agent object. Which step the agent has to perform
on which node and the order in which the steps have to be performed is described by anitinerary, which may be adapt-
ed during the execution of the agent [15]. If an agent migrates to another node, the agent object with code and all private
data belonging to the object is captured and transferred to the next node. There, it is re-instantiated and the step (i.e.
the method implementing this step) to be performed on this node is executed.

To provide reliable agent execution, the agent is executed using one of the protocols for providing the exactly-once
property of mobile agents presented in [11]. The basic idea of these protocols is to store the agent in stable storage
between steps and execute each step of an agent inside a transaction, thestep transaction. After the start of the step
transaction, the agent object with all its data and code is read from the agent input queue of the node which resides on
stable storage, the agent is re-instantiated and then the method implementing the step is invoked. At the end of the step,
the agent object with all its data and code is captured and transferred to the next node where it is stored in the nodes’
agent input queue on stable storage. Then the (distributed) step transaction is committed. It is important to note that all
accesses to local resources are performed within the step transaction. Therefore, if the execution of a step aborts, all
changes to resources during the step transaction are undone automatically and the agent still resides in the input queue
of the node that executed the aborted step. In the case where a step transaction commits, our model is very similar to
the saga transaction model [4] with the addition, that a temporary (stable) savepoint of the program execution (the
agent state) is written after every step, allowing to abort and restart a step. For situations where an abort and restart of
the step transaction is not sufficient to deal with an error situation (e.g. if the agent lacks the permission to access a
resource) or where the program logic of the agent detects that the current strategy does not lead to the agent’s goal, the
agent has the ability to initiate a partial rollback of its execution. The points to which an agent can be rolled back are
calledagent savepoints, and have to be constituted by the agent program logic. Due to the fact that most transaction
management systems do not support resource savepoints, agent savepoints can only be constituted at the end of a step.

Let us illustrate this: Figure 1 shows the execution of stepsi throughi+3 of an agent. The agent constituted a save-
point after stepi-1 and is currently executing stepi+3. If the agent commits this step, the agent is written into stable
memory (Ai+4 in the figure). However, if the agent decides to roll back its execution to the last savepoint, only the ef-
fects of step transactionTi+3 can be undone by the transaction management. The effects of stepsi throughi+2 on the
resources accessed during those steps have to be undone by using compensating transactions [8]. We will show in
Section 3.2, that the private data state of the agent cannot be rolled back by usingAi to resume the execution of the
agent. Therefore, in contrast to common approaches (e.g. [4]), in our approach the private agent state is rolled back as
well during the compensation transactions.

3 Classification of Compensation Types 4

3 Classification of Compensation Types
The compensation of an operation aims at undoing the semantic effects of this operation. However, there are differ-

ent operation types and not all types can be compensated to the same degree. After the introduction of some notations,
this section introduces different types of compensation operations.

3.1 Notations and Definitions

The formal notations and definitions given in this sub-section are adopted from [8]. In order to be able to describe
the rollback of the private data of an agent as well as the rollback of the resources accessed by it, we use the notion of
theaugmented state. The augmented state space is the state space of the resources accessed by the agent merged with
the private data space of the agent object. This enables us to describe the execution of a step as a sequence of operations
on this augmented state. Rolling back several steps of an agent execution requires the compensation of the operations
executed during these steps. This compensation can also be described as a sequence of (compensating) operations on
the augmented state.

We use the symbolS to denote a state and the symbolf to denote an operation. In contrast to [8], operations in our
context may read and write any number of entities in the augmented state space. Ahistory is a sequence of operations
which defines a total order among the operations as well as a function mapping augmented states to augmented states.
The notionX=< f1, f2,..., fn > describes a history in whichfi precedesfi+1, 1≤ i < n, the notionX=f1•f2•...•fn denotes the
function mapping augmented states to augmented states defined by the same historyX. Upper case letters from the end
of the alphabet will be used to denote the sequence as well as the function a history defines. Two historiesX andYare
equal (denoted asX≡Y), iff for all augmented statesS, X(S)=Y(S). Two historiesX andY of operationscommute, if
(X•Y)≡(Y•X) holds.

We use the symbolT for step transactions. The compensating operations for a transactionT are carried out inside a
compensation transaction, denoted byCT. A transactionT2 is dependent of a transactionT1 if it reads data updated by
T1. The set of transactions dependent of T is denoted asdep(T).

3.2 Types of Compensation

The idea behind compensation is to semantically undo the effects of already committed transactions. Unfortunately,
compensation of operations is not always possible. Whether compensation is possible depends not only on the opera-
tion itself, but also on the application. In this section, different types of compensation are introduced.

Ai+4Ni+3

Ri+3

read write

execute

access

Ri+3
’

Ai+3Ni+2

Ri+2

read write

execute

access

Ri+2
’

Ai+2Ni+1

Ri+1

read write

execute

access

Ri+1
’

Ai Ai+1Ni

Ri

read write

execute

access

Ri
’

Ai: agent state before step i

Ni: node executing step i

Ri: resource state of node i

Ri
’ : Ri after step i

Figure 1: Execution of an agent

savepoint Ti Ti+1 Ti+2 Ti+3

Ti: step transaction i

4 Rollback of the Agent Execution 5

The most comfortable type of compensation operations are those which createsoundhistories. A history issoundiff
X(S)=Y(S) with X being the history ofT, CT anddep(T), Ybeing the history ofdep(T) andSbeing the initial state [8].
In this case, the outcome ofdep(T) is not influenced by the compensation. If the compensation operations ofCTcom-
mute with each of the operations contained indep(T), then the historyX of T, CTanddep(T) is sound. As an example,
we consider a bank account with the operationsdeposit(x) andwithdraw(x). If the account may be overdrawn, these
two operations commute and therefore, as long asT, CT anddep(T) only use those operations, the histories produced
are sound. However, this type of compensation rarely occurs in real applications. Let us assume that one of the trans-
actions indep(T) uses the current account balance to decide which actions to perform (“if I have enough money,
then....”). Now we have created a very simple transaction that does not commute withdeposit(x) andwithdraw(x).
Please note that the definition of soundness implies thatT•CT≡I (with I as the identity operation).

For most applications it is acceptable, that an execution of only the dependent transactionsdep(T) withoutT andCT
produces different results than those produced byT, CTanddep(T) or even that (T•CT)(S)≠S. If, for example, a trans-
actionT1 tries to buy some goods from a shop and the desired good is out of stock because another transactionT2 just
bought these goods,T1 - as in real life - buys the good from another shop. This transactionT1 - buying from the other
shop - is not affected ifT2 is compensated a short time later, even if the first shop would now be able to deliver the
desired good. The reasons for accepting that the consecutive execution of the transaction and the compensating trans-
action does not result in the initial state are twofold. First, there are compensation operations which only produce a
state equivalent to the initial state. If an agent uses digital cash [2] contained in its private data to buy some goods and
compensates this operation, it (hopefully) gets back the same amount of cash. However, the representation of this dig-
ital cash is only an equivalent representation - the digital coins have different serial numbers. Second, if, in the same
example, the seller of the goods charges a small fee for the compensation transaction or only agrees to give a credit
note to the customer, the agent contains other information than before the purchase. In a more complicated scenario,
the amount of reimbursement may vary with the time passed between purchase and compensation. The following pol-
icy is but one example: until x hours after the purchase, the seller returns cash but charges a small fee, after that, the
customer only gets a credit note. In these cases, the agent must be able to deal with the changed situation.

Until now, it has been assumed implicitly that a compensation transaction has to be accomplished successfully even-
tually. But there are cases where a compensation operation might be impossible to execute. For example, if transaction
T1 deposits 20USD on an account, thenCT1 has to withdraw 20USD. If the account cannot be overdrawn, there have
to be at least 20USD on the account forCT1 to be successful. If there are less than 20USD (e.g. because another trans-
actionT2 withdrew all money in the meantime), the compensation transaction fails. Solutions to this problem are dis-
cussed in [4] and [10].

Finally, there are operations which cannot be compensated. If, for example, a transaction deletes a considerable
amount of data in a database, it would be necessary to log all this data to be able to compensate the deletion. Therefore,
if a step contains an operation which cannot be compensated, the step cannot be rolled back after its commit.

4 Rollback of the Agent Execution

Rollback in our model requires the compensation of actions performed on resources as well as the compensation of
the agent’s private data space. To support the rollback on the agent’s private data space, we first identify two different
types of agent data, which allows to rollback a part of the agent’s data space without compensating operations. Then,
we introduce the mechanism we use for logging and present the rollback mechanism. Introducing different types of
compensation operations will allow the presentation of an optimized rollback mechanism.

4.1 Rollback of the Private Agent Data Space

The data objects contained in the private data space of the agent can be classified in two categories. The first category
are data objects which can be compensated by means of an image of the objects. If a savepoint is established, animage
of these data objects (before-image[6]) is written into theagent rollback log(see next section). If an agent has to be
rolled back to a savepoint, these objects can be restored using the image stored in the log. For example, if an agent

4 Rollback of the Agent Execution 6

collects information and stores this information into a vector, then this information can be rolled back to a savepoint
without the need of a compensating operation. In this case, the vector can be restored using the original content con-
tained in the vector at the time the savepoint has been taken. We call this type of objectsstrongly reversible objects.
Strongly reversible objects (which have to be declared by the developer as such) will be restored by the system without
the need for a compensating operation.

As described in Section 3.2, there are applications which accept augmented states produced by the compensation
which differ from the augmented state produced without the execution of the step and the compensation of this step.
The second category of data objects contains those objects in the private data space of the agent which may contain
different data after the compensation, i.e. which cannot be compensated using before-images. The reason for not being
able to use a before-image for rollback is that during the agent rollback, information originally not contained in the
agent’s private data space is produced (usually by the rollback of the state space of the resources). This new informa-
tion has to be integrated into the private agent data. An example showing that electronic cash belongs into this category
of data is the scenario presented in Section 3.2 where an agent orders some (digital) good using electronic cash. We
call the objects contained in this second categoryweakly reversible objects. These objects cannot be compensated us-
ing a before-image of the objects, i.e. the agent developer has to provide code for the compensation.

4.2 Logging

The data necessary for the rollback of previous, committed steps of an agent is contained in theagent rollback log.
It contains all information for the rollback of the private data space of the agent as well as for the rollback of the re-
source state space. The log is attached to the agent and hence migrates with the agent from node to node. Because the
log only contains data for the compensation of already committed steps (backward recovery), this log is made persist-
ent at transaction commit (i.e. at the end of step transactions or end of compensating transactions).

The advantages of attaching the log to the agent are twofold. Firstly, at the end of the agent execution, no global
actions are necessary to delete the log. Secondly, the log is always available as long as the agent is available, enabling
the agent to roll back its execution as long as the resources necessary for the rollback are available. The problem of
this approach is, that the amount of data which has to be transferred to migrate the agent increases. A solution to this
problem is introduced in Section 4.4.2.

The type of logging used in our approach is a mixture of physical logging and logical logging [6]. The images of the
strongly reversible objects are logged using physical logging. This can be done either by writing a complete image of
the objects into the log (state logging) or by writing differences of the object states between adjacent savepoints (tran-
sition logging). These informations to restore the strongly reversible objects are written to the log as part of asavepoint
entry (SP). A savepoint entry is written to the log when an agent savepoint is constituted. Besides the image of the
strongly reversible objects a savepoint entry contains a (unique) identifier for the savepoint. For reasons of simplicity,
we further assume that state logging is used unless mentioned otherwise.

For the compensation of the weakly reversible objects as well as the state space of the resources, logical logging is
used by writing the compensating operations and their parameters into the log. These entries will be calledoperation
entries. An operation entry contains the code of one compensating operation and the parameters for this operation. As
has already been mentioned in Section 3.1, the compensation of a step can be described as a sequence of operations
on the augmented state. The compensating operations can be arbitrarily complex. Therefore, the number of compen-
sating operations contained in the log which are associated to a step may vary from one (complex) operation, which
compensates all the effects of the step on the weakly reversible objects and the state space of the resources, to several
times the number of operations performed by the step if some of those operations need several compensating opera-
tions.

In addition to the savepoint and operation entries, the log contains entries to log the begin and the end of a step (be-
gin-of-step(BOS),end-of-step(EOS)) These entries contain the identifier of the node on which the step has been ex-
ecuted. Figure 2 shows an extract of a rollback log. It contains the entries of the k-th agent savepoint which is located
before step n and for the compensation of the n-th step. To rollback to this k-th agent savepoint, the log has to be exe-
cuted beginning from the end of the log up to the savepoint entry. To compensate a step, all operation entries associated
with this step are executed within a transaction in the reverse order they appear in the log. For example, to compensate

4 Rollback of the Agent Execution 7

step n, the compensation operations are executed in the order OEn,p, OEn,p-1, ..., OEn,2, OEn,1. The next sections will
present the details of the rollback process.

4.3 The Rollback Mechanism

The idea of the rollback mechanism is to perform all compensating operations associated with a step on the node
where the step has been executed. The steps are compensated in the reverse order of their execution. Similar to the
execution of steps, the compensation operations associated with a step are executed within a compensation transaction.
This ensures that other transactions see either a resource state affected by the step which has to be compensated or the
resource state after the compensation has taken place (isolation of the compensation). The state of an agent between
two compensation transactions is stored in stable storage. Until the savepoint is reached to which the agent has to be
rolled back, only the changes to the weakly reversible objects of the agent and the changes to the state space of the
resources accessed by the agent are compensated. The state of the strongly reversible objects is restored when the save-
point is reached using the information contained in the savepoint entry in the log. Hence, accessing the strongly re-
versible objects during the execution of the compensating operations is not allowed.

Figure 3 shows the execution of steps i through i+3 of an agent and the rollback initiated in step i+3 to the savepoint
established before step i. After the abort, the transaction management undoes the changes performed during step i+3
to the resource state space and the agent space. Then the compensation transactions are executed on the nodes in the
reverse order of the step execution. It is important to note that the strongly reversible objects are not restored until the
savepoint is reached. If a compensating operation e.g. on node Ni+1 accessed the strongly reversible objects it would
read the (“old”) state established by step i+3.

Figure 4 shows the rollback algorithm. In Figure 4a, the part of the algorithm executed on the node where the roll-
back has been initiated (current node) is shown. This algorithm gets the identifier of the savepoint (spID) to which
the agent has to be rolled back as parameter. After the abortion of a step transaction (hereafter called the aborting step
transaction), a new transaction is initiated and the agent and the agent rollback log are read (and deleted) from stable
storage. Please note that the state of the agent and the rollback log read from stable storage is the state before the exe-
cution of the aborting step transaction. Now two cases have to be distinguished. The first case is that the desired save-
point was set directly before the aborting step transaction. In this case, the rollback is already finished and the next step
transaction has to be initiated. In the second case, the first compensation transaction has to be initiated. This is done
by writing the agent, the agent rollback log and the savepoint identifierspID to the input queue of the node where the
first compensation transaction has to be executed. This node can be determined by examining the last end-of-step entry
contained in the agent rollback log (which is the last entry if no savepoint entry has been written after the last end-of-
step entry). Then the transaction is committed. If this transaction commits successfully, then the second part of the al-
gorithm given in Figure 4b is executed (or the next step transaction is initiated). If the transaction fails (e.g. due to a
node failure), the agent and the log still resides in the input queue of the current node. In this case, the step which ini-
tiated the abort is restarted on the current node or, if the fault tolerant protocol for the execution of steps [11] is used,

... SPk BOSn OEn,1 OEn,2 ... OEn,p EOSn BOSn+1 ...

Eq Eq+1 Eq+2 Eq+3 Eq+p+1 Eq+p+2 Eq+p+3

Ex - log entry

SPx - savepoint entry

BOSx - begin-of-step entry

OEx - operation entry

Figure 2: Example Log

EOSx - end-of-step entry

4 Rollback of the Agent Execution 8

it may be even restarted on another node. This is still a correct execution since it has the same result as if the step trans-
action was aborted before the initiation of the rollback.

Figure 4b shows the part of the rollback algorithm executed on the nodes where the compensation transactions have
to be executed. After the start of the compensation transaction, the agent, the agent rollback log and the savepoint iden-
tifier (spID) of the savepoint to which the agent has to be rolled back are read (and deleted) from stable storage. First,
the end-of-step entry of the step which has to be compensated and, if existent, a savepoint entry are deleted from the
log (LOG.pop() reads and removes the last entry from the agent rollback log). This savepoint entry can be deleted be-
cause it cannot be the savepoint to which the agent has to be rolled back (this is tested before the agent is written to
stable storage). Then, all operation entries are read from the log and the compensating operations contained in those
entries are executed until the begin-of-step entry is reached (which is also deleted from the log). It has to be mentioned,
that a savepoint can only be written after the execution of a step (see Section 2) and therefore, no savepoint entries can
be found between an BOS entry and an EOS entry. Now, two cases have to be distinguished. If the last entry now con-
tained in the log is the savepoint to which the agent has to be rolled back, the states of the strongly reversible objects
have to be restored using the information contained in the savepoint entry (without deleting the savepoint entry from
the log) and the next step transaction has to be initiated. If the last entry is another savepoint or the end-of-step entry

’’

Ni+1

Ri+1

write read

compensate

compensate

Ri+1’’’

Ni+3

Ri+3

read

execute/rollback

access

Ri+3
’

Ai+3Ni+2

Ri+2

read write

execute

access

Ri+2
’

Ai+2Ni+1

Ri+1

read write

execute

access

Ri+1
’

Ai Ai+1Ni

Ri

read write

execute

access

Ri
’

Ai WROi

SROi

Ri+3

Ti Ti+1 Ti+2 Ti+3

abort
’’

Ai+3Ni+2

Ri+2

write read

compensate

compensate

Ri+2’’’

WROi+3

SROi+3

Ai+2

WROi+2

SROi+3

’

’

Ai+3Ai+2
’

’’

Ni

Ri

write read

compensate

compensate

Ri’’’

Ai+1

WROi+1

SROi+3

’

’

Ai+1
’

Ai

WROi

SROi

’

’

Ai
’

CTi+2CTi+1CTi

Ai: agent state before step i

Ni: node executing step i

Ti: step transaction i

Ri : resource state of node i
before compensation

Ri : resource state of node i
after compensation

WROi: state of weakly reversible
objects before step i

WROi: state of weakly reversible objects
after compensation of step i

SROi: state of strongly reversible objects

’’’

’’

’

’CTi: compensation transaction
for step i

Ri: resource state of node i
before step i

Ri: Ri after step i

Figure 3: Partial Rollback of an Agent with the Rollback Mechanism

savepoint

Ai: agent state after compensation
of step i

’

4 Rollback of the Agent Execution 9

of the next step which has to be compensated, the agent, the agent rollback log and the savepoint identifierspID are
written to the input queue of the node where the next compensation transaction has to be executed (determined from
the end-of-step entry contained in the log). Finally, the compensation transaction is committed. If the commit is suc-
cessful, the effects of the compensating operations invoked on the resources are permanent and the new agent state
(reflecting the compensating operations performed on the weakly reversible objects) is contained in the input queue of
the node where the next compensation transaction has to be executed or, if the desired agent savepoint is reached, the
next step transaction is initiated. If the compensation transaction aborts (node failures, deadlocks,...), the effects of
compensating operations invoked on the resources are undone by the transaction management and the agent (including
log and savepoint identifier) still resides in the input queue of the node enabling the algorithm to restart this compen-
sation transaction.

Discussion:The algorithm presented in this subsection rolls back an agent to an agent savepoint by moving the agent
back along the way it moved during the execution of the steps which have to be rolled back. On each node, the com-
pensating operations to compensate the resource state of the node as well as the state of the weakly reversible objects
are executed within a compensation transaction. Assuming that node crashes and network crashes are only temporary
and further assuming, that the network provides reliable data transfer, the algorithm ensures that all steps which have
to be rolled back are eventually rolled back and finally, the state of the strongly reversible objects is restored as well.
If, instead of state logging, transition logging is used, the state of the strongly reversible objects has to be updated every
time an agent savepoint entry is read during the rollback process.

The algorithm as presented above has two problems. The first problem is, that if a node on which a compensation
transaction has to be executed is permanently unreachable, the rollback cannot proceed and the agent is blocked. A
solution to this problem is to provide the information, on which nodes the rollback of a step can be performed alterna-
tively (if there are any) e.g. in the end-of-step entry. Then a fault-tolerant execution of the rollback similar to the fault-
tolerant step execution described in [11] can be realised.

rollback(spID){

abort-transaction();

begin-transaction();

read(agent,LOG) from
stable storage;

if savepoint spID reached{

start next step transaction;

}else{

write(spID,agent,LOG) to
input queue of next node

}

commit-transaction();

}

Figure 4a: Start of the Rollback Algorithm

begin-transaction();

read (spID, agent, LOG) from
node input queue;

if (last log entry is savepoint)

LOG.pop(); // remove savepoint

LOG.pop(); // read end-of-step

entry=LOG.pop(); // next entry

while (entry<>begin-of-step){

execute entry;

entry = LOG.pop();

}

if savepoint spID reached{

restore strongly reversible
objects;

start next step transaction;

}else{

write(spID,agent,LOG) to
input queue of next node;

}

commit-transaction();

Figure 4b: Rollback Algorithm Executed on each Node

4 Rollback of the Agent Execution 10

The second problem of the algorithm is, that the agent is transferred to a node during the rollback process although
maybe no resource compensation has to be performed on this node. If, for example, the agent only gathered some in-
formation during a step and stored this information in strongly reversible objects, no compensating operations at all
are necessary to roll back this step. A solution to this performance problem is introduced in the following subsection.

4.4 Optimizing the Partial Agent Rollback

Two possibilities for optimizations regarding the partial agent rollback are to avoid unnecessary agent transfers dur-
ing the rollback on the one hand and to reduce the transfer size of an agent by reducing the size of the agent rollback
log on the other hand. This section introduces mechanisms for these optimizations.

4.4.1 Optimizing the Number of Agent transfers

To be able to decide if the compensation transaction of a step has to be executed on the node where the step was
executed, the agent rollback log has to contain the appropriate information. To allow a flexible and efficient rollback,
we define three different types of operation entries.

Types of Operation Entries

The first type of operation entries contains a compensating operation which rolls back only resource state space and
which needs no access to the private agent state space. All information necessary for this compensating operation has
to be contained in the operation entry as parameters; the compensating operation must not access the private agent state
space. For example, if an agent invoked a fund transfer between two accounts of a bank, all information necessary to
compensate this fund transfer is the two bank accounts and the amount of money transferred between these two ac-
counts. This type of operation entry is called aresource compensation entry. Resource compensation entries have to
be executed on the node on which the resource resides (i.e. on the node where the step was executed). Because the
compensating operation contained in a resource compensation entry is not allowed to access the agent, it is possible to
send only the operation entry (without the agent) to the node where the compensating operation has to be executed
(within the compensation transaction)

The second type of operation entries contains a compensating operation which rolls back only weakly reversible ob-
jects (i.e. private agent state space) and which needs no access to the resource state space. All information necessary
for this compensating operation has to be contained in the operation entry as parameters and in the weakly reversible
objects of the private agent state space. As described in Section 4.3, the compensating operation may not access the
strongly reversible objects. We call this type of operation entryagent compensation entry. An agent compensation en-
try always has to be performed on the node where the agent resides. Because no resource access is allowed, this may
be an arbitrary node.

The third type of operation entries contains a compensating operation which needs access to the private agent state
space (only weakly reversible objects, see above) and to the resource state space. An example scenario is a step, where
the agent changes digital cash from one currency into another (e.g. from USD into Euro) at the bank. To compensate
this (i.e. to change the money back from Euro to USD), the compensating operation needs access to the weakly revers-
ible object containing the cash in Euro (it cannot be contained in the rollback log, see Section 4.1), to the object where
the received USD have to be stored (it is not possible to restore the digital cash in USD by using a copy of the original
cash, see Section 4.1 also) and to the resource which changes the money. We call this type of operation entrymixed
compensation entry. To execute a mixed compensation entry, the agent has to reside on the node where the step to
which the mixed compensation entry belongs was executed.

Optimization

As can be seen from the description of the operation entry types above, the agent has to be transferred to a node dur-
ing the rollback only if a compensation transaction has to execute a mixed compensation entry there. If the operation
entries associated to a step are only agent compensation entries or resource compensation entries, it is not necessary
to transfer the agent to the node on which the step was executed for the compensation. In this case, the agent compen-

4 Rollback of the Agent Execution 11

sation entries are executed on the node where the agent currently resides and the resource compensation entries are
sent to the node where the step was executed for execution.

To decide whether an agent has to be transferred to another node to perform the next compensation transaction, the
agent rollback log must be examined. One possibility is to read all entries for the next step (i.e. the step which has to
be compensated next). The other possibility is to include a flag in the end-of-step entry indicating whether a mixed
compensation entry is contained in the step. In this case, only this end-of-step entry has to be examined. To integrate
this optimization, the changes shown in Figure 5 have to be made to the algorithm.
Instead of always writing the agent to the “next” node, the agent has to be transferred only if the flag in the end-of-step
entry indicates that one of the operation entries which has to be executed in the next compensation transaction is a
mixed compensation entry.

The loop of the original algorithm executing the operation entries has to be replaced completely. If the compensation
transaction has to execute a mixed compensation entry, all operation entries are executed locally in the order defined
by the rollback log. In the other case, the agent compensation entries can be executed concurrently to the resource com-
pensation entries because the definition of those operation entry types ensure that they operate on disjoint data. There-
fore, the log is read and two lists are made - one containing the agent compensation entries and the other containing
the resource compensation entries (always in the order in which the entries have to be executed). Now the list contain-
ing the resource compensation entries and the identifier of the compensation transaction is sent to the resource node.
Then, the agent compensation entries contained in the other list are executed (in the order in which they are contained
in the list). On the resource node, the resource compensation entries are executed in the order in which they are con-
tained in the list. All the operations performed on the resource node are performed inside the compensation transaction
(by using the transaction identifier obtained along with the list). After the last resource compensation entry is executed,
an acknowledgement is sent back to the node where the agent resides. Only then, the compensation transaction can be
committed.

Discussion:The optimization described in this subsection avoids agent transfers for compensation transactions in
which no mixed compensation entries have to be performed. This reduces the network load during the agent rollback,
because only the resource compensation entries have to be transferred to the node on which the step being compensated
was executed. Additionally, the resource compensation entries can be executed concurrently to the agent compensation
entries which may save execution time.

Further optimizations are possible, if the access to resources within the mixed compensation entries and the resource
compensation entries may be performed using RPC. In this case, a performance model similar to that introduced in
[16] can be used to determine if the agent or the resource compensation objects should be transferred to the node where
the resources reside or if RPC should be used to access the resources.

4.4.2 Reducing the Log Size by Integrating Itineraries and Rollback

Attaching the rollback log to the agent introduces some overhead to the migration because the log has to be trans-
ferred additionally to the agent state. This subsection introduces solutions for reducing the rollback log size.

There are two possibilities to reduce the size of the log. The first possibility is to reduce the number of savepoint
entries contained in the log. As described above, savepoint entries are written when an agent savepoint is established.
This can be influenced by the application developer by giving up the possibility to roll back an arbitrary number of
steps i.e. by not establishing an agent savepoint before each step. The second possibility is to discard rollback infor-
mation which is not needed any more. The information which rollback information can be discarded has also to be
provided by the application developer. In this subsection, we will present an itinerary concept which allows the appli-
cation developer to define in a structured way to which points an agent can be rolled back and when rollback informa-
tion can be discarded.

The basic idea is, that an application can be structured into sub-tasks. If a rollback is necessary, always the complete
sub-task currently executed has to be rolled back. To provide enhanced flexibility, each (sub-)task may be partitioned
into further sub-tasks, allowing hierarchies of sub-tasks. In this case, the application developer may specify whether
only the nested sub-task currently executed has to be rolled back or (one of) the surrounding sub-tasks that contains
the current sub-task. To describe such a hierarchy of sub-tasks, an itinerary concept similar to that described in [14]

4 Rollback of the Agent Execution 12

can be used. An itinerary, which describes a (sub-)task, is a set which contains itinerary entries and specifies in which
order those itinerary entries have to be executed. An entry of an itinerary is either a nested sub-itinerary or astep entry.
A step entry in an itinerary is a tuple (meth() /loc) which describes that the agent has to execute the step specified

rollback(spID){

abort-transaction();

begin-transaction();

read(agent,LOG) from
stable storage;

if savepoint spID reached{

start next step transaction;

}else{

if (next EOS entry indicates
mixed compensation entry){

write(spID,agent,LOG) to input
queue of next node;

}else{

write(spID,agent,LOG) to input
queue of current node;

}

}

commit-transaction();

}

Figure 5a: Start of the optimized rollback algorithm

begin-transaction();

read (spID, agent, LOG) from
node input queue;

if (last log entry is savepoint)

LOG.pop(); // remove savepoint

EOSEntry = LOG.pop() // read end-of-step

entry=LOG.pop(); // next entry

if (EOSEntry indicates mixed compensat.
entry){ // execution on agent node

while (entry<>begin-of-step){

execute entry;

entry = LOG.pop();

}

}else{ // group operation entries

resourceNode = EOSEntry.execNode();

ACEList = {}; // empty list of agent
// compensation entries

RCEList = {}; // empty list of resource
// compensation entries

while (entry<>begin-of-step){

if (entry is agent compensation
entry){

ACEList.add(entry);

}else{ // res. compensation entry

RCEList.add(entry);

}

entry = LOG.pop();

}

send (TransactionID, RCEList) to
resourceNode; // only if not empty

execute the entries in ACEList in
the order they appear in the list;

wait for ACK from resourceNode;

}

if savepoint spID reached{

restore strongly reversible
objects;

start next step transaction;

}else{

if (next EOS entry indicates
mixed compensation entry){

write(spID,agent,LOG) to input
queue of next node;

}else{

write(spID,agent,LOG) to input
queue of current node;

}

}

commit-transaction();

Figure 5b: Optimized rollback algorithm executed on each node

4 Rollback of the Agent Execution 13

by the methodmeth() on the node specified byloc . The term “execute an entrye” describes the execution of the
step if the entrye is a step entry or the (recursive) execution of all entries contained ine if e is a sub-itinerary. The order
defined between the entries of a (sub-)itinerary may be partial, allowing the system to choose which entry to execute
as the next entry. It is even possible to allow the application to specify entries which have to be executed alternatively,
or to define complex rules which specify under which conditions an entry has to be executed. An approach using pre-
conditions for the entries to decide whether and when an entry can be executed is presented in [14].

An example of an itinerary (without the definition of the order between entries) is given in Figure 6. This itineraryI
contains three sub-itinerariesSI1, SI2 andSI3. The sub-itinerariesSI1 andSI2 contain only step entries,SI3 contains,
besides the step entrys6, two additional sub-itinerariesSI4 andSI5.

To illustrate the integration of rollback and itineraries, we assume the following scenario: an agent begins its execu-
tion with sub-itinerarySI3. It executes the step entrys6 and continues with sub-itinerarySI4 by executing step entries
s5 ands4 (in this order). If it decides to roll back during the execution ofs4, it can either roll back only sub-itinerary
SI4 (by aborting step transactions4 and compensatings5) or it can also roll back the enclosing sub-itinerarySI3 (by
additionally compensatings6).

In this scenario, only two savepoint entries are necessary - one containing the state of the strongly reversible objects
before the execution ofSI3 starts and one before the execution ofSI4 starts. Those savepoints can be written automat-
ically by the system. If we change our scenario slightly and omit the execution of entrys6, i.e. the agent begins with
the execution ofSI3 and immediately continues with the execution ofSI4, only one agent savepoint is really necessary.
In this case, the rollback mechanism has to read the savepoint entry, but must not delete it from the log as long as only
SI4 is rolled back (because the savepoint entry is necessary for a possible rollback ofSI3). To make this visible in the
log, a special savepoint entry may be inserted (without data for the strongly reversible objects) for the “savepoint” writ-
ten forSI4. Due to reasons explained later in this section, savepoints are never needed for the main itineraryI.

On closer examination it shows, that it is not necessary to have one savepoint for each sub-itinerary in the log but
only one savepoint for the sub-itinerary currently executed and one for each sub-itinerary which (directly or indirectly)
contains the currently executed itinerary (i.e. for each sub-itinerary currently being executed). If, in our first scenario
from above (agent begins withSI3 by executings6 and continuing withSI4), the sub-itinerarySI4 has been executed
and the agent now executes the sub-itinerarySI5, it can either rollbackSI5 or it can rollbackSI3, but the rollback ofSI5
andSI4 without the compensation ofs6 is not possible (per definition). The savepoint entry written forSI4 is no longer
needed. Therefore, the savepoint written for a sub-itinerary (but not the operation entries) can be removed from the
rollback log as soon as the sub-itinerary has been executed completely. However, this may be a non-trivial task if tran-
sition logging is used for the strongly reversible objects.

sub-itinerary

step

I

SI3

s4

s6

SI2SI1

s5

s7

s1

s8

s2

s3

SI5

s9

s10

itinerary

Figure 6: Sample Itinerary

SI4

5 Related Work 14

Further reductions of the size of the rollback log may be reached by discarding rollback information which is no
longer needed. Discarding rollback information is a far-reaching event in the “life” of an agent which can only be done,
if it is sure that the results achieved do not have to be rolled back. Achieving such results very likely corresponds with
the completion of one of the agents main sub-tasks, i.e. with the completion of a sub-itinerary directly contained in the
main itinerary. Therefore, sub-itineraries directly contained in the main itinerary have the additional semantics, that,
upon their completion, all information contained in the rollback log is deleted. To provide a clear semantics, no step
entries are allowed in the main itinerary. So, if the main itinerary of an agent containsn sub-itineraries, the execution
of the agent is split inton parts, where each of this parts cannot be rolled back as soon as that part is completed. It is
important to note, that an abort of the agent by performing a complete rollback of the agent is possible only during the
execution of the “first” sub-itinerary of the main itinerary.

Discussion:The itinerary concept introduced in this subsection provides a structured way to automatically constitute
agent savepoints and provides the possibility to remove an agent savepoint associated with a sub-itinerary from the log
as soon as the sub-itinerary is finished. This reduces the log size without losing the possibility to roll back the agent.
Additionally, discarding the complete rollback log if a point in the agent execution is reached where it is sure that the
agent will not rolled back beyond this point reduces the log size considerably.

5 Related Work
In the field of mobile agents, only few research groups have considered aspects of transaction management and fault-

tolerance so far. Most of those groups provide mechanisms to increase the fault-tolerance of mobile agent execution
[3][7][12][17] but offer no mechanisms to (partially) roll back the agent’s execution.

In [13], an agent-based transaction model is presented. Similar to our model, the use of compensation to roll back
the effects of already committed transactions is proposed. However, this paper purely concentrates on modelling trans-
actional aspects, protocols or algorithms are not given.

In addition, there has been related work in the field of transaction processing. Our model is based on [4], wheresagas
as a transaction model for long-living activities are introduced. In a saga, a long-living activity is partitioned into sev-
eral steps. Each step is executed within an ACID transaction. The commit of a step automatically begins the next step
transaction. For each step, a compensation step has to specified. The runtime system of a saga guarantees, that even-
tually, either all steps of the saga are committed, or, if the saga has to be aborted, for all committed steps the compen-
sation step has been executed. To allow backward/forward recovery, savepoints of the program state of the transaction
program can be taken. However, savepoints are only used when a transaction aborts e.g. due to a deadlock or a system
crash. A partial rollback initiated by the transaction program is not supported. Additionally, the use of a savepoint to
restore the complete execution state of the saga prevents the usage of sagas in applications where the execution state
of the saga also has to be compensated. Extensions of sagas likenested sagasandnon vital sub-sagasas presented in
[5] can be realized in our model by using flexible itineraries as described in [14] and Section 4.4.2.

The ConTract model [10] certainly comes closest to our approach. It also aims at the exactly-once execution of a
task and similar to our approach allows the partial rollback of an execution of a task using compensation. The main
difference to our approach lies in the underlying system mechanisms. A ConTract, which is defined by a script is given
to a ConTract manager, controlling the entire execution of the ConTract. In other words, ConTract scripts are not mo-
bile so far.

6 Conclusions and Future Work
We have investigated how the partial rollback of mobile agents which are executed using one of the exactly-once

protocols presented in [11] can be realized. Due to the fact that these protocols use transactions to realize the exactly-
once property of mobile agents, compensation is necessary to partially roll back an agent’s execution. The classifica-
tion of types of compensations showed, that - besides the operations performed on resources - the private state of the
agent also has to be rolled back using compensating operations. Introducing two different types of private agent data
allowed to roll back the private agent data belonging to one type using an image of the data while the data belonging
to the other type has to be compensated using compensating operations. The rollback mechanism presented ensures,

7 References 15

that the rollback is eventually executed even in the presence of (non-lasting) node and network crashes. By introducing
different types of compensating operations and integrating the rollback with an itinerary concept, performance optimi-
zations of the rollback mechanism were presented. Currently, the protocol is under implementation in the Mole
system [9] and will be evaluated in terms of performance.

Future work will concentrate on further performance optimizations of the rollback mechanism and a fault-tolerant
rollback mechanism. Furthermore, an enhanced agent execution model supporting exactly-once executions compris-
ing more than one agent will be investigated.

7 References
[1] J. Baumann, F. Hohl, K. Rothermel, M. Schwehm, and M. Strasser, “Mole 3.0: A Middleware for Java-Based

Mobile Software Agents”,Proc. Middleware'98, Springer Verlag London, 1998

[2] D. Chaum, “Security Without Identification: Transaction Systems to Make Big Brother Obsolete”, Communica-
tions of the ACM, 28(10), October 1985, p. 1030-1044

[3] M. Dalmeijer, E. Rietjens, M. Soede, D. Hammer, and A. Aerts, “A Reliable Mobile Agent Architecture”,Proc.
1st IEEE Int. Symp. on Object-oriented Real-time distributed Computing (ISORC’98), 1998, p. 64-72

[4] H. Garcia-Molina, and K. Salem, “SAGAS”,Proc. ACM SIGMOD Int. Conf. on Management of Data, 1988, pp.
249-259

[5] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, and K. Salem, “Modeling Long-Running Activities as
Nested Sagas”,Bulletin of the IEEE Technical Commitee on Data Engineering, 14(1), 1991, pp. 14-18

[6] T. Härder, and A. Reuter, “Principles of Transaction-Oriented Database Recovery”,ACM Computing Surveys,
15(4), December 1983, pp. 287-317

[7] D. Johansen, R. van Renesse, and F. Schneider, “Operating System Support for Mobile Agents”,Proc. 5th IEEE
Workshop on Hot Topics in Operating Systems, 1995, pp. 42-45

[8] H. Korth, E. Levy, and A. Silberschatz, “A Formal Approach to Recovery by Compensating Transactions”,Proc.
16th Very Large Data Bases Conf., Brisbane, Australia, 1990, pp. 95-106

[9] Project Mole, http://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole.html

[10] A. Reuter, K. Schneider, and F. Schwenkreis, “ConTracts Revisited”, S. Jajodia and L. Kerschberg (eds.),Ad-
vanced Transaction Models and Architectures (ATMA), Kluwer Academic Publ., Boston, 1997, pp. 127-151

[11] K. Rothermel and M. Strasser, “A Fault-Tolerant Protocol for Providing the Exactly-Once Property of Mobile
Agents”,Proc. 17th IEEE Symp. on Reliable Distributes Systems, West Lafayette, IN, October 1998, pp. 100-108

[12] F. Schneider, “Towards Fault-Tolerant and Secure Agentry”,Proc. 11th Int. Workshop on Distributed Algorithms,
1997

[13] F. Morais de Assis Silva, and S. Krause, “A Distributed Transaction Model Based on Mobile Agents”,
K. Rothermel, and R. Popescu-Zeletin (eds.),Mobile Agents, Proc. 1st Int. Workshop (MA’97), LNCS 1219,
Springer, Berlin, 1997, pp. 198-209

[14] M. Strasser, and K. Rothermel, “Reliability Concepts for Mobile Agents”,International Journal of Cooperative
Information Systems (IJCIS), 7(4), World Scientific, 1998, pp. 355-382

[15] M. Strasser, K. Rothermel, and C. Maihöfer, “Providing Reliable Agents for Electronic Commerce”, W. Lam-
ersdorf, M. Merz (eds.),Trends in Distributed Systems for Electronic Commerce (TREC'98), LNCS 1402,
Springer-Verlag, 1998, pp. 241-253

[16] M. Strasser, and M. Schwehm, “A Performance Model for Mobile Agent Systems”, H. Arabnia (ed.),Proc. Int.
Conf. on Parallel and Distributed Processing Techniques and Applications (PDPTA'97), Vol II, CSREA, 1997,
pp. 1132-1140

[17] H. Vogler, T. Kunkelmann, and M. Moschgath, “An Approach for Mobile Agent Security and Fault Tolarance
Using Distributed Transactions”, Proc. 1997 Int. Conf. on Parallel and Distributed Systems (ICPADS’97), 1997,
pp. 268-274

