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Abstract 2 The Data Replication Problem

Creating replicas of frequently accessed objects across a  First, we describe the inputs to the data replication
read-intensive network can result in large bandwidth 5roplem (DRP) and introduce a notation (see Table 1) that
savings which, in turn, can lead to reduction in user || pe subsequently used. Consider a distributed system

response time. On the contrary, data replication in thecomprisingM sites, with each site having its own processing
presence of writes incurs extra cost due to multiple update (i)

. . oL L5 : . power, memory and storage media. L%t s”)  be the name
The set of sites at which an object is replicated constitutes ita g the total storage capacity (in simple data units e.g.

replication scheme. Finding an optimal replication schemep)ocks), respectively, of sitewhere1<i<M . TheM sites
that minimizes the amount of network traffic, given read ancyf the system are connected by a communication network. A
write frequencies for various objects, is NP-complete injink petween two sites" ans‘}/’ (if it exists) has a positive
general. We propose two heuristics to deal with this problemniegercyi, j) associated with it, giving the communication
for static read and write patterns. The first is a simple and cost for transferring a data unit between sigds ~ afld . If
fast greedy heuristic that yields good solutions when thgpe two sites are not directly connected by a communication

system is predominantly read-oriented. The second is §nk then the above cost is given by the sum of the costs of
genetic algorithm that through an efficient exploration of the g| the links in a chosen path from sig’  to s . We

solution space provides better solutions for cases where thgssyme thatc(i, j) = C(j,i) and is knowapriori to
greedy heuristic does not perform well. We also propose arFepresent_ the cumulative cost of the shortest path between
extended genetic algorithm that rapidly adapts to the S0 and s | et there bl objects, namedO,, O,, ..., Oy} .
dynamically changing characteristics such as the frequencype size of objecD, is denote_d ay, and is measured in

of reads and writes for particular objects. simple data units. Ler’ and{’ "be the total number of
reads and writes, respectively, initiated frog?  fox,
1 Introduction during a certain time period.

. . . . . Table 1. Notation and their meanings
Undesired delays in accessing the information have

triggered much research activity on improving web
performance through caching [1], [4], [7] (proxy servers) | ©«
and replication [6] (mirror servers). In this paper we address [ Size of objeck
the problem of replicating data objects according to their :
size, read and write frequencies as well as sites’ capacities| s”
in order to minimize the network traffic, which would lead

to the reduction of average response time. A more spherica
study of replication would include consistency and fault

Symbol Meaning
kth object

ith site

Total storage capacity )

Remaining storage capacity ")

tolerance issues [2]. This work focus on clarifying the data | ™ Number of sites in the network
replication problem. We provide a detailed formulation in | N Number of objects in the distributed system
the context of both read and write queries. The resulting| ® Number of reads from siiefor objectk
Data Replication Problem (DRP) is provably NP-complete. | —* :

We then propose a greedy heuristic, called (SRA), which| rY Associated cost of thel)  reads

yields good solutions when the number of reads is large.[ Number of writes from sitefor objectk
However, the greedy algorithm has its shortcoming in | "

dealing with situations when the number of writes is large | w" Associated cost of the{  writes

and the storage capacity is limited. To overcome these —
limitations, we propose an efficient genetic algorithm based | C€(i1)
heuristic called (GRA) that provides good quality solutions. | sr, Primary site okth object
Both SRA and GRA are static algorithms. To deal with the

Communication cost (per unit) between sitasd]

. . i) Nearest site of site which holds objedt
dynamic nature of the web we propose an extension of the| ° _ _
GRA algorithm which adapts to the dynamically changing | R Replication scheme of thiéh object
characteristics such as the number of reads and writes for—p Total data transfer cost function
particular objects. All algorithms are extensively evaluated. =0 Benefit value, that is, the NTC saves we can achievk by
The rest of the paper is organized as follows: Section 2| =« replicating thejth object at théth site.

elaborates the problem and describes a cost model for ﬂEl Replication Poli

total data transfer cost. Section 3 describes the SRA-1 Replication Policy .

algorithm. Section 4 describes the GRA and Section 5 . Our replication policy assumes the existence of one
presents the adaptive (AGRA). Section 6 and 7, respectivelyprimary copy for each object in the network. L8k, be the

include the experimental results and the related workSite which holds the primary copy @b, , i.e., the only copy
Section 8 includes some concluding remarks and futurd? the network that cannot be deallocated, hence referred to

work. as primary site of théth object. Each primary sit&sR,
contains information about the whole replication schétpe



of O,. This can be done by maintaining a list of the sites
where thekth object is replicated at, called from now on the
replicatorsof O,. Moreover, every sit&")  stores a two-field
record for each object. The first field is its primary s&8,
and the second the “nearest” si¢{’  of sitehich holds
areplica of objeck. In other wordsSN.’ is the site for which
the reads froms" foio, , if served there, would incur the

Subject to the storage capacity constraint:
N

3 Xo<s? O(1sism)
. k=1, . .
Subject to the primary copies policy:

Xspk=1 DO(l<ksN)

The DRP as presented above is a constrained

minimum possible communication cost. It is possible thatCPtimization problem. The equivalent decision problem is

s\ = &V if $"is a replicator or the primary site ab,
Another possibility is thasN’ = SR, , if the primary site is
the closest one holding a replica@f
When a sites”  reads an object
the request to the correspondiﬂg‘lﬂ)

to its primary siteSP, , which afterwards broadcasts it to
every site in its replication schenme . The simplicity of this
policy allows us to develop a general cost model in Section

2.2 that can be used with minor changes to formalize various

replication and consistency strategies.

2.2 The Object Transfer Cost Model

We are interested in minimizing the total network
transfer cost (NTC) due to object movement, since th
communication cost of control messages has minor impa

to the overall performance of the system. There are twgy

components affecting NTC. First, is the NTC created from

Eorithm based on the greedy method. For eachss )te
]

terms, if we replicated®,
using the difference between the NTC occurred from the
current read requests, which would be eliminated if we made

reducable to th&napsack Problenfil9] which is known to
be NP-complete

o ~ 3 A Greedy Method for Data Replication
it does so by addressing

. For the updates we
assume that every site can update every object. Updates 8
an objectO, are performed by sending the updated versioﬁ

In this section we describe the simple replication

_ and
ect O, we define theeplication benefitvalue B{
llows:

, as

M_03 0 i o

R =0y w0, Ci, SR) — W S

(0 = =1
B = 5 (5)

The above value represents the expected benefitin NTC

Y This benefit is computed by

replica and the NTC arising due to the updates to that
plica. Since we want to consider the benefit per storage

ata unit, we divide the difference of NTCs by the object
size. Negative values &’

mean that replicatitly object

the read requests. _

Let RY denote the total NTC, due ts"
requests for objeco, , addressed to the nearestsig
This cost is given by the following equation:

‘s reading

is inefficient from the “local view” ofith site. This does not
necessarily mean that we are not able to reduce the total
NTC by creating such a replica, but that the local NTC

observed from thiéh site will be increased. ) )
To present our algorithm, we maintain a lis? g/
] o containing all the objects that can be replicated. An object
The second component of NTC is the cost arising due tao, can be replicated ag” , only if the remaining storage
the writes. Letw,” be the total NTC, due ®’ ‘s writing capacityb® of the site is greater than its size, it} o,
requests for objecO, , addressed to the primary Si®  and the benefit value is positive. We also keep a ISt
This cost is given by the following equation: containing all the sites that have the “opportunity” to
replicate an object. In other words, as#80LS  ifand only
@ if L #0. The SRA Algorithm performs in steps. In each
step asitss” is chosen frob8in a round-robin fashion and
Y . _ the benefit values of all objects belonging 1d”  are
Here, we made the indirect assumption that in order taomputed. The one with the highest benefit is replicated and
perform a write we need to ship the whole updated versionhe listsLS, L", together with the corresponding nearest site
of the object. This of course is not always the case, as we cafalue SN, are updated accordingly. The SRA algorithm is
move only the updated parts of it (modelling such policiesoutlined as follows:
can also be done using our framework). The cumulative
NTC, denoted ab, due to reads and writes is given by:

R = Mo, ci, sN) (1) where sN” ={site j jO R OminC(i, )}

W =il

C(i, SR) + ; C(SR. J)
O TR

(1) InitializeLSand allL® .
(2) WHILELS#0O DO .
MoN 0 (i /*BMAX holds the,(furrem ma)B(k') valu©@MAX holds the identity of the
D=3 ¥ R+W) (3 Obiject for whichB{ '= BMAX */
et . . (3) BMAX=0,OMAX=NULL.
Let X;, = 1 if s” holds a replica of objec, , and 0 (@) Pick up a siteS" HLS in a Round-Robin way.

otherwise.X;, s define aM xN  replication matrix, named (5  FOReachQ, 0L DO

X, with boolean elements. Eq. 3 is now refined to: Egg oMUk ) THEN
Mo WO . BMAX = '),OMAe(: K
D=3 ¥ @=Xlr ogmin{ & PIX = 1} + w0, C(i, SRYT + ®) ELSE IF gj%(k')s ). ORb") <0, ) THEN
i=1k=1 L( —L')—{O}
. = g
gM xd . 9) RepllcateOQMAx . . _ .
+ X DY w0 C(I, SR)  (4) /*Remove(gMAX(%b]ect from the list of potentials to be replicated*/

g%, o @) L9 =10Zro .0 -

=1
Sites which are not replicators of obje@t  create NTC
equal to the communication cost of their reads from the
nearest replicator, plus that of sending their writes to the
primary site ofO, . Sites belonging to the replication scheme
of Oy, are associated with the cost of sending/receiving all
the updated versions of it. Using the above formulation, the

/* Update “nearest sites™/ 0

(11) F8R all(%ltes imSupdate theSNg), 5% field.

(12) b"’ = b’ -0y ./*New remaining capacity*/

/*RemoveS")_ if there are no other candg?tes (objects) to be replicated*/
@3 FLW =0 THENLS= LS-{ §)} .

(14) ENDWHILE

Data Replication Problem (DRP) can be defined as:

Find the assignment of 0, 1 values in tkamatrix that

minimizeD.

Each execution of the while-loop has complexity
O(M + N). In the worst case where each site has enough
capacity to hold all the objects and the number of updates is
zero, there ar®IN such iterations. Hence, we conclude that



the complexity of our algorithm IB(M*N + MN?) . Validity of a chromosoméi/e define a gene (site) to be
We presented SRA as a centralized algorithm. In itsvalid if and only if the total storage cost of allocating the
distributed version we assig”’ ‘s to their correspondingrequired objects (1's in the gene) does not exceed the site’s
sites and_Sto the network leader. All the main calculations capacity; otherwise the gene is invalid. We also define a
are done locally, while (11) requires a broadcasogf; . tochromosome to be valid/invalid according to the existence
all sites in order to update thean\{}),.,  field. The selection of an invalid gene.
of s”in (4) is done by the leader and followed by a token ~ Generation of the initial PopulationWe initialize the
passing mechanism. The token is returned to the leader upgropulation by using SRA algorithnN,  times, whekg,
completion of (13). It should be mentioned that since thestands for the population size. In order to provide diversity,
algorithm replicates objects according to their “local” instead of picking up the “start-up” sites (step 4 of the
benefit value, it provides good solution quality when algorithm) in a round-robin way, we do it randomly.
independent read frequencies’(  s) are significantly largeMoreover, half of the population defined by SRA s
than updates. This is better illustrated in our experiments atubjected to random perturbation of 1/4th of their values,

Section 6. ensuring their validity. Thus, we obtain chromosomes that
; are homogeneous in their fitness values; the building-blocks
4 The Evolutionary Method (sub-strings) they consist of are diverse enough &nd is

Genetic algorithms (GAs), introduced by Holland in considerably high. The above holds true even when the total
1975 [17], are search methods based on the evolutionamnyumber of updates is large enough and SRA fails to provide
concept of natural mutation and the survival of the fittestgood solutions, since the random assignment of 1s in half of
individuals. Given a well-defined search space they applythe population provides a good “starting point” for GRA.
three different genetic search operations, nanssiection,  Thus, initialization require@(NpMzN + Np,M N?) time.
crossoverand mutation to transform an initial population Selection mechanismthis operation consists of two
of chromosomes, with the objective to improve their quality. parts: evaluation of a chromosome and offspring allocation.
Fundamental to the GA structure is the notion of Evaluation is performed by measuring its fithess value
chromosome, which is an encoded representation of ahich depicts the quality of solution the chromosome
feasible solution, most commonly a bit string. Before therepresents. Offspring allocation is done by using the
search process starts, a set of chromosomes is initialized fwoportionate schemeas proposed in Holland's SGA
form the first generation. Then the three genetic searck{Simple Genetic Algorithm) [17]. This scheme allocates to
operations are repeatedly applied, in order to obtain dhe ith chromosomef,/f offspring for the next generation.
population with better characteristics. An outline of a SGA implements this scheme by using tloellette wheel

generic GA is as follows. selection i.e., allocating a sector of the wheel equaling
Generate initial population. 2mf,/ f to theith chromosome and creating an offspring if a
Perform selection step. generated number in the range of 02 falls inside the
while stopping criterion not meto assigned sector of the string. The chromosomes under
Perform crossover step. evaluation in SGA areN, exactly, i.e., the outcomes of
Perform mutation step. crossover and mutation. Instead of following this approach
Perform selection step. that can lead to large sampling errors, we selected the
end while stochastic remainder techniq(#4] to incorporate in GRA.
Report the best chromosome as the final solution. Following this method, a chromosome is assigned offspring

We demonstrate GRA’s design in detail by presentingaccording to the integer part of the proportionate fithess
our encoding mechanism and then the selection, crossovealue in a deterministic way, while the fractional parts are
and mutation operators. put in a roulette wheel in order for the remaining offspring

Encoding mechanismA chromosome consists dfl to be defined. Moreover, instead of evaluating
genes (one for each site). Every gene is composédifs  chromosomes (Simple Selection), we used f{lper A
(one for each objectA 1 value in thekth bit of theith gene  Selection borrowed from evolutionary strategies [21]. Under
simply denotes that thi¢gh site holds a replica déth object.  this strategy from the initial population @f  size, two more
Using this encoding the total length of a chromosomdié  subpopulations are created of total sike , one from the

bits. The following scheme explains the above: crossover and the other from the mutation operator. The
Site 1 Site M chromosomes of all these three populatigns ) compete
for the p slots of the next generatiolN( in our case).
Example Chromosome: ]101..0]100...1].....] 001...1] Finally, we implemented thelitistic approach, with which
1...N Objects the best chromosome found until one generation before,

. , . replaces the worst chromosome of the population. In order to
Fitness valuef :The quality of each chromosome is prevent premature convergence, we allow the elite
measured by computing its fitness value. Our objectivechromosome to be copied back once every 5 generations.
function D, .defllned -|n Se.Ctlon 22, _helps us defirie . In Crossover mechanism:We selected a tWO_point
order to maintain uniformity over various problem domains, crossover mechanism to include in GRA. After the pairing of
we need to normalize the fitness value to a convenient rangghromosomes two crossover points are randomly selected
of 0 to 1. For our algorithm we consider our initial allocation and either the portion of the bit-string in between them or the
scheme, i.e., an object appears in the network only at itgyo fractions not included by them are swapped. The
primary site, and the NTC occurred in it, denotedmhy;,.  -decision as to which parts to juxtapose is random. The whole

and define the fitness value in the following way: operation is performed with probability, , known as the
¢ = Dprime=D crossover ratge and may result in producing invalid
Dprime chromosomes. Clearly, if this is the case, the only possible

In the rare case that<0 , we reset the chromosome’#valid genes are the two (or one) containing the crossover

fitness value to be 0 by copying the initial allocation schemepoints and we restore their validity by exchanging the
in it. portion of the gene that was not previously crossed. The



rationale behind crossover operation, is that after the Each chromosome in the population of AGRA is a
exchange of genetic materials, it is very likely that the twobitstring of lengthM. Let O, be the object for which the
newly generated chromosomes will possess the goodlgorithm is runA 1 value in theth bit of it denotes thas"”’
characteristics of both their parents (building-block holds a replica ofo, . LetA, represent the population size
hypothesis [14][17]). and A, the number of generations it evolves. The
Mutation mechanismMutation is an operation aiming at initialization of the first generation is performed by
restoring lost genetic material and is performed in the GRArandomly generating half of the population while the rest is
by simply flipping every bit with a certain probability,, , obtained from the solutions previously found by GRA,
called the mutation rate Mutating a bit can result in making sure that AGRA always copies the current
violating either the storage, or the primary site constraint. Taeplication scheme o, , being incorporated to the highest
counter this, we check if either of the two constraints isfitness solution of GRA. The three operations of GA
violated and in such case flip the mutated bit again. (Selection, Crossover, Mutation) come afterwards to define
Control ParametersLarge values ofy, andh,, force a the population of the next generation.
GA to explore the solution space, while low values favour  LetV, denote the NTC occurred due to reads and updates
exploitation. Optimal tuning of these values requiresof the object O, .V, can be computed by omitting the
extensive experiments [14]. Typical values of thesesummation for all objects 1N.in D’s computation (Eq.4).
parameters, as stated in [15] areN, = {3010p, The fitness value we used resembles to the one of GRA and
M. = {0.90.5, K, = {0.010.00L Obviously, even with the is given by:
best decisions on the above parameters, optimal solutions
can not be guaranteed due to the algorithm’s probabilistic prime
nature. Unless otherwise stated, after considering a series of whereVv ;. stands for the NTC occurred when the only
experimental results GRA’'s parameters were fixed toreplicator ofO, inthe network is its primary site. Following
N, = 50, Ny = 80, p,, = 0.01, u, = 0.9. GRA design, in the rare case when a chromosomefha
Complexity:Selection is clearly the “hardest” operation we setthe chromosometig, = 0 by setting to 1 only the bit
because itinvolves computifiy(O(M°N) time). Thus, GRA  corresponding t&R, .
runs in O(NgN M°N + initialization) resulting in a total The sampling space of AGRA is regular as opposed to
time of O(NngR/IZN +N,M N?). Cr;]RA vffvhere we usded enlarged sampling space. It contains all
: : At : the offspring and some part of the parents (those not
5 Adaptive Genetic Replication Algorithm subjected to crossover and mutation). Again, stochastic
So far, we assumed the existence of a monitor site in theemainder selection is used with the fractional parts being
network which collects statistics for the objects and definesllocated in a roulette wheel. The rationale behind these
their replication schemes by using one of the above statichoices, as with all others concerning AGRA’s design is to
methods. Each site sends during night hours the previougduce the running time. Indeed, the selection mechanism
day’s locally observed R/W patterns to the monitor. Afterused in GRA can result in evaluating three times more
accumulating all the patterns, the monitor site defines newchromosomes in the worst case and the improvement in
replication schemes using preferably the GRA algorithmperformance if incorporated in AGRA would be marginal,
The newly defined schemes are realized during night hoursince the algorithm needs to solve an unconstrained problem
through object migration and deallocation and by the nexand operates over chromosomes of small length. From this
day the whole network is already tuned accordingly. point of view and by keepingp, and, small (10, 50),
The above static methods, however, are not able to de#dGRA is essentially a micro-GA. We also follow the
with the situation when the read-write patterns exhibitedelitistic approach as in GRA. Single point crossover is used
during daytime, differ largely from the night time with equal probabilities of crossing the left and the right part
estimations. To cope with the problem, statistics collectionof the chromosomes. Mutation again means simply flipping
should be done every few minutes and the monitor site must bit. Constant crossover and mutation rates are used with
be able to quickly decide about new replication schemes. Wealues of 80% and 1%, respectively.
have already presented SRA and GRA for redistribution of ~ After A, generations, AGRA terminates having
the objects. While the fast execution time of SRA isconverged largely to high fithess solutions distributing ~ to
desirable in a dynamic environment, it can result in lowa degree that minimizes the NTC of R/W requests. The best
guality schemes which are sometimes worse than the alread®x found by AGRA is transcripted to half of the initial
existing object allocation. On the other hand, the executiopopulation of GRA, including the corresponding elite
time of GRA is unacceptable for the dynamic environment.chromosome (current network replica distribution), while
To overcome this problem, we design another genetithe remainingRc s are randomly transcripted to the other
algorithm referred to as AGRA (Adaptive Genetic half. Such transcription can result in storage capacity
Replication Algorithm), which rests as a compromiseviolation which needs to be resolved efficiently. Other than
between the two extremes. randomly deallocating objects until the constraint is
Each time the R/W pattern ofan objeat  changes aboveatisfied, we can follow a greedy method and calculate the
a threshold value either in favour of reads, or updatesnegative impact each possible one object deallocation has in
AGRA takes as input the new pattern, computes a set ob value. By deallocating the object which corresponds to the
replication schemer, for it, which are then transcripted tdeast degradation dd and performing the above steps until
the initial GRA solutions. The modified population is then the constraint is met, we can have a good quality
inserted to a micro-GRA and evolved for few generations intranscription method. The key drawback though of this
order to determine an even better solutigp. s are definethethod is the high complexity of computing tBevalue,
by measuring the NTC occurred fromthe ~ , without takingwhich can be O(M°N) in the worst case. Such a
the Knapsack component of the DRP into account, i.e.computational cost, is clearly unacceptable for a dynamic
neglecting the storage capacity constraint. Any violationamethod.
are repaired during the transcription phase. A detailed Instead of deciding which object to deallocate through
description of the algorithm follows. accurate calculation of its impact to the NTC, we can use a

Fo= Vprime_vk
A \%



rapid estimation based ab, ‘s degree of replication.fé‘ét Next, we generate the number of reads for all (site, object)
be a site where we have allocated more objects than it capairs by using a uniform distribution from 1 to 40. Having
accommodate. For each object currently allocated we defindefined the read patterns, we use them to calculate the total

a new replica benefit estimation valb as: number of reads for each object, and subsequently, the total
localReadd] SiteCapacity ~ humber of its updates with respect to U%. The final total
() _ (TotalReads localupd Totalupd ObjectSize update value is defined using a uniform distribution from
k localProportionalLinkWeights] ReplicaDegree TotalUpdateg2 to 3[TotalUpdateg2. We randomly
or using the notation of Table 1: allocate these updates to the sites of the network. In this way
y y 0 - () we instill enough diversity in our system.
EZ P rw) - 5 Wfp%ﬁ We generate the size of each object using a uniform
g0 2 5= x=1 0 % ) distribution with mean value 35. In all the experiments, the
k Mo capacity of sites (C%) is proportional to the total size of
Zlc("x) M objects. The capacity of a site is also generated using a
W O3 Xk uniform distribution from C%TotalObjectSize&2 to
hY C(I,X)E/M x=1 3C%L0TotalObjectSizes2 . This ensures the creation of sites
&5

) T1x=1 . . with diverse enough storing capabilities.

The rationale behind the above formula, is that in order |n the fifth experiment we alter the generated R/W
to estimate how beneficial a replica is (from NTC reductionpatterns to test AGRA. This is performed by adding all the
standpoint), we must take into consideration both 9|0baﬁew read requests one by one to randomly chosen sites. For
properties of the object and local characteristics. The globahe updates, we follow the same policy for half of them. For
properties consist of whether the object is read demanding ahe other half, we assign the requests to the sites using
not and how many of its replicas exist in the network.normal distribution with variance equal to one fifth of the
Naturally, an object having high update ratio, but beingiotal number of sites and mean value randomly selected
widely distributed will have more chances of being selecte@mong the number of sites. This is to simulate the scenario
for deallocation. A special weight to the local read requestsvhen some objects are frequently updated from a specific
needs to be given. We do this, in conjunction with thecluster of nodes and not by all the sites. For each network
storage capacity of the site and the size of the object. Larggystance, 15 different networks were generated. In all the
objects with poor local read demand are preferred folexperiments we recorded the average quality of replication
deallocation, since this will result in freeing up more spaceschemes obtained (% NTC saving), together with the

for future allocation. Finally, we include an estimation of average execution time of the algorithms and the average
how good the site acts as the potential closest neighbour gfumber of replicas created in those 15 runs.

other sites, by calculating its proportional link weights. The
computational complexity of the estimation M) for a 6.2 Performance of SRA and GRA
single object. First, we assess the performance of SRA and GRA by
Having transcripted th& ‘s to the initial solutions, there varying the number of sites and objects. We fixed C=15%
are two valid options: a) we stop here and pick up theand used three different update ratios, 2%, 5% and 10%. Fig.
chromosome of highest fithness value to realize thel(a)-(d) summarize the results. In the first two figures we
corresponding total replication scheme, b) use the resultingtudy the behavior of the static algorithms when the number
population as the initial population of a mini_GRA intended of sites increases, by setting the number of objects to 150,
to run for small number of generations, such as 5-10. In thavhile in Fig. 1(c) and (d) we fix the number of sites to 100
following section we use and evaluate both policies. ahnd vary the objects Lroanaoloo (50410,80%.We S.hOLrJ]Id P_ote here
. that experiments wit an objects in the first case
6 Experimental Results and 50 and 150 sites in the second, showed similar results
Here, we present the results of our experiments carriegoncerning the trends in the plots but are not included here
out on a 200Mhz Ultra Sparc 2 machine. Five differentdue to space limitations. The first observation is that GRA
experiments were conducted. The purpose of the first two igutperforms SRA in terms of solution quality. Only for small
to explore how an increase in the number of sites and object3etwork sizes and small update ratio (2%) are the quality of
can affect the performance of the static algorithms. In thesolutions obtained by SRA, comparable to the ones of GRA.
next two, we study the effects of the update ratio and théMoreover, the savings obtained from the genetic algorithm
capacity of sites. The solution quality in all cases, isnotonly are higher, but tend to diminish less rapidly than the
measured according to the NTC percentage that is saveghes yielded by the greedy method. Indeed, Fig. 1(a) and (c)
under the replication scheme found by the algorithmsshow that the percentage of NTC saving for GRA is only
compared to the initial one, i.e, when only primary copiesmarginally affected by the increase in either the number of
exist. Finally, in the last set we evaluate the performance osites, or the objects and remain almost constant.
AGRA both as a stand-alone algorithm and in combination  Results in Fig. 1(a) should be attributed to the fact that by

with the micro-GRA. adding a site in the network, we introduce additional traffic
due to its local requests, together with more storage capacity
6.1 Workload to be used for replication. GRA explores and balances these

We generate the network structures in the followingdiverse effects, so as to achieve almost constant savings.
manner. First, we define the total number of sites and objectfhdeed, Fig. 1(b) shows an almost linear increase to the
in the network. Among every pair of sites” S there number of replicas GRA creates, while the ones from SRA
exists a bi-directional link connecting them, with its cost remain constant. The above trend is more obvious when the
C(i, j) taking values from a uniform distribution between 1 ypdates are 2% and 5% which, in terms, means that the
and 10. This effectively represents the number of hops @additional storage capacity introduced through the increase
TCP/IP packet should make in order to reach its destinationyf sjtes is explored by GRA when the update ratio is such,
a link cost measurement that is commonly used, see fothat makes replication beneficial. When the update ratio is

example [16]. For each object we randomly choose a site t@igh, the additional capacity added is only marginally used
hold the primary copy for it, no other replicas are created.
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Figure 1(d): The number of replicas Figure 2(a): Execution time of SRA versus Figure 2(b): Execution time of GRA versus
generated versus the number of objects. the number of sites. the number of sites.

after a certain point (60 sites in Fig.1(b)), due to the fact thaalgorithms. The constant NTC savings of SRA in the figure,
further replicating an object in the network would yield is due to the fact that with update ratio of 5%, the point
negative results as the updates are high. On the contrarwhere further replicating objects is inefficient, is reached
SRA retains a constant number of replicas, thus, novery quickly. Indeed, in further experiments we made with
exploring the additional storage space added. U = 0.5%, 1% and 2%, the trends in SRA’s performance
In the experiments of Fig. 1(c), the capacity of sites iswere similar to the ones of GRA. It is noteworthy that
fixed proportionally to the total size of objects, so increasingaugmenting the capacity from 10% to 30%, resulted in 5
the number of objects, has no effect to the degree ofimes more replicas being created by GRA, while the
replication an object can achieve and the benefits it can yieldelevant performance gains as shown in Fig. 3(b) were less
(only depends on the updates). Here also, GRA explores thihan 1%.
solution space with the same efficiency as the number of Summarizing the above, GRA achieves more traffic
objects grows, while SRA fails to do so. savings (in many cases even 70%), than the greedy method
Without new storage space introduced, GRA manages tand responds better to changes in the network size, the
retain almost the same degree of replication when U=10%ipdate ratios or the sites’ capacities. On the other hand the
(Fig.1(d)), resulting in keeping a constant performance. Fogreedy method apart from achieving good quality of
the smaller update ratios, the degree of replication is nosolutions for small network sizes and update ratios, runs in
stable but ranges without though affecting the performanceabout 4 orders of magnitude less time.
This is due to the non-deterministic nature of GRA. SRA
creates far less replicas than GRA (3 times less in the U=20§-3 _Performance of AGRA . .
case) and the small decrease in the degree of repIicatioRGNOWv we illustrate the performance gains by using the

experienced, has large impact to the quality of solution. RA algorithm. Our test case is a network of M=50,
pUnfortunately, thg bettgr performaqnce gf GRA and theN=200, U=5%, and C=15%. To illustrate the main merits of

large traffic savings are achieved in expense of largd®GRA we have considered the case where either reads or
execution time. As shown in Fig. 2(b) GRA’s running time Writes increase. The dual case of decrease is not included

is 3-4 orders of magnitude higher compared to SRA and rise§€ere but the results are equivaledhdenotes the percentage

in an almost quadratic way to the number of sites, fact that i&f rising in either reads or writes for an object that had

due to the complexity of the algorithm, see Sec 4. The trenghanged its R/W patter©Chrepresents the percentage of

in SRA’s execution time in Fig. 2(a), is also quadratic. ~ Objects in the network changing patterns &d represent
The” pomarce ol o gt Gecrsasshepercniagefhargesbengparomadiouce e

exponentially to the update ratio (Fig. 3(a)), with GRA . - =Y,

achieving once more better performance than SRA. Arfonsidered, Ch=600%, Och=30%, R=80% and U=20%,

increase in storage capacities means that a larger number B€ans, that among the 200 total objects 48 experienced an

objects can be replicated. Since objects are not equally redficrease by 600% in their reads, while 12 a same increase in

intensive, increasing the storage capacity has great impact te!r write requests. . . -

the beginning, but has little effect after a certain point where W€ consider various scenarios. Given a replication

the most beneficial ones are already replicated. This i§cheme (supposedly determined by a static algorithm), we

observed in Fig. 3(b) which shows the performance of theévaluate this scheme according to the new read-write
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patterns and determine the current value (Current legendf AGRA and the static policies as shown in Fig. 4(a)-(b), is
label) of NTC savings. Then we run the AGRA algorithm around 10% when large portion of the objects change their
(Current + AGRA legend label) using the current schemepatterns, with the (AGRA + 10 GRA) and (AGRt+ 5 GRA)
We also executed AGRA with 5 generations of mini_ GRA achieving comparable savings. Fig. 4(c) shows how the
(AGRA + 5 GRA legend label) and then 10 generations oftraffic savings increase as the changes in patterns shift from
mini_GRA (AGRA + 10 GRA legend label). Next, we run 100% updates to 100% reads. Among all the static methods,
only GRA with 80 (Current + 80 GRA legend label) and 150 running GRA with a random initial population (150 GRA) is
(Current + 150 GRA legend label) generations. Finally, wethe best choice when reads are increased, while the (Current
run 150 generations of GRA (150 GRA legend label), not+ 80/150 GRA) policies are better when updates increase.
with the current scheme, but with a population generatedhese results suggest the usefulness of AGRA and its
from scratch. transcription/estimation method in dynamic environments.

The performance of all policies when only reads areAs we can observe, AGRA’s performance as stand-alone is
increased seems to converge to different upper bounds (Figignificantly better than the current scheme, while its
4(a)). This can be attributed to the fact that an increase in theombination with the mini-GRA constantly outperforms all
reads lead all GA policies to replicate intensively at theother static policies and is only worse by no more than 1%
beginning, so as to exploit the available capacity to thefrom (150 GRA) in the case where only reads increase. The
maximum. After a certain point though, further replication is (150 GRA) policy though, has prohibitively high execution
constrained due to storage limitations and thus, the savinggme around 1920 seconds, while AGRA both as stand-alone
tend to increase less rapidly. When only the number ofand in combination with the mini-GRA is 1.5 to 2 orders of
updates increase, AGRA policies perceive an almost lineamagnitude faster (Fig. 4(d)). The same figure also shows that
behavior (Fig. 4(b)) due to the fact that increasing thethe increase to the percentage of objects changing patterns
updates of a certain percentage of objects, means only thhas only marginal effect in the execution time of AGRA.
these objects should not be distributed widely. There are still Summarizing the results of the experimental evaluation
though, enough read intensive objects which should beve conclude that when static patterns are considered, the
replicated and the deallocation criterion together with theGRA algorithm promises good performance in expense of
unconstrained mini-GA, shift the replication schemehigh running time. In dynamic environments though, AGRA
towards them. Another thing we should notice is that theperforms far better especially when combined with the mini-
initial static solution can be totally outdated and inefficient GRA, since its adaptive/transcription method enhances the
when updates are significantly increased. For example irxploration power of our static design. As a result, the
Fig.4(b) when the updates are increased by 600% for 20% afombination of the two algorithms proves to be very
the objects, the traffic savings of the previously foundefficient in the very first 5 generations of mini-GRA. The
replication scheme drops to less than 10%, while AGRArunning time of AGRA with mini-GRA is acceptable for the
variations achieve traffic savings close to 38%. This fact isrequirements of a dynamic environment, while the quality of
supportive for a dynamic method to adapt the replicatiorsolutions obtained is if not higher at least comparable to the
scheme of the network. more time consuming static genetic algorithm method.

The performance difference between the combinations
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