
Abstract
Creating replicas of frequently accessed objects across a

read-intensive network can result in large bandwidth
savings which, in turn, can lead to reduction in user
response time. On the contrary, data replication in the
presence of writes incurs extra cost due to multiple updates.
The set of sites at which an object is replicated constitutes its
replication scheme. Finding an optimal replication scheme
that minimizes the amount of network traffic, given read and
write frequencies for various objects, is NP-complete in
general. We propose two heuristics to deal with this problem
for static read and write patterns. The first is a simple and
fast greedy heuristic that yields good solutions when the
system is predominantly read-oriented. The second is a
genetic algorithm that through an efficient exploration of the
solution space provides better solutions for cases where the
greedy heuristic does not perform well. We also propose an
extended genetic algorithm that rapidly adapts to the
dynamically changing characteristics such as the frequency
of reads and writes for particular objects.

1  Introduction
Undesired delays in accessing the information have

triggered much research activity on improving web
performance through caching [1], [4], [7] (proxy servers)
and replication [6] (mirror servers). In this paper we address
the problem of replicating data objects according to their
size, read and write frequencies as well as sites’ capacities,
in order to minimize the network traffic, which would lead
to the reduction of average response time. A more spherical
study of replication would include consistency and fault
tolerance issues [2]. This work focus on clarifying the data
replication problem. We provide a detailed formulation in
the context of both read and write queries. The resulting
Data Replication Problem (DRP) is provably NP-complete.
We then propose a greedy heuristic, called (SRA), which
yields good solutions when the number of reads is large.
However, the greedy algorithm has its shortcoming in
dealing with situations when the number of writes is large
and the storage capacity is limited. To overcome these
limitations, we propose an efficient genetic algorithm based
heuristic called (GRA) that provides good quality solutions.
Both SRA and GRA are static algorithms. To deal with the
dynamic nature of the web we propose an extension of the
GRA algorithm which adapts to the dynamically changing
characteristics such as the number of reads and writes for
particular objects. All algorithms are extensively evaluated.

The rest of the paper is organized as follows: Section 2
elaborates the problem and describes a cost model for the
total data transfer cost. Section 3 describes the SRA
algorithm. Section 4 describes the GRA and Section 5
presents the adaptive (AGRA). Section 6 and 7, respectively,
include the experimental results and the related work.
Section 8 includes some concluding remarks and future
work.

2  The Data Replication Problem
First, we describe the inputs to the data replication

problem (DRP) and introduce a notation (see Table 1) that
will be subsequently used. Consider a distributed system
comprisingM sites, with each site having its own processing
power, memory and storage media. Let , be the name
and the total storage capacity (in simple data units e.g.
blocks), respectively, of sitei where . TheM sites
of the system are connected by a communication network. A
link between two sites and (if it exists) has a positive
integer associated with it, giving the communication
cost for transferring a data unit between sites and . If
the two sites are not directly connected by a communication
link then the above cost is given by the sum of the costs of
all the links in a chosen path from site to site . We
assume that and is knownapriori to
represent the cumulative cost of the shortest path between

and . Let there beN objects, named .
The size of object is denoted by and is measured in
simple data units. Let and be the total number of
reads and writes, respectively, initiated from for
during a certain time period.
Table 1. Notation and their meanings

2.1  Replication Policy
Our replication policy assumes the existence of one

primary copy for each object in the network. Let , be the
site which holds the primary copy of , i.e., the only copy
in the network that cannot be deallocated, hence referred to
as primary site of thekth object. Each primary site ,
contains information about the whole replication scheme

Symbol Meaning
kth object

Size of objectk

ith site

Total storage capacity of

Remaining storage capacity of

M Number of sites in the network

N Number of objects in the distributed system

Number of reads from sitei for object k

Associated cost of the reads

Number of writes from sitei for object k

Associated cost of the writes

Communication cost (per unit) between sitesi andj

Primary site ofkth object

Nearest site of sitei, which holds objectk

Replication scheme of thekth object

D Total data transfer cost function

Benefit value, that is, the NTC saves we can achieve by
replicating thejth object at theith site.
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of . This can be done by maintaining a list of the sites
where thekth object is replicated at, called from now on the
replicatorsof . Moreover, every site stores a two-field
record for each object. The first field is its primary site
and the second the “nearest” site of sitei which holds
a replica of objectk. In other words, is the site for which
the reads from for , if served there, would incur the
minimum possible communication cost. It is possible that

, if is a replicator or the primary site of .
Another possibility is that , if the primary site is
the closest one holding a replica of .

When a site reads an object, it does so by addressing
the request to the corresponding . For the updates we
assume that every site can update every object. Updates of
an object are performed by sending the updated version
to its primary site , which afterwards broadcasts it to
every site in its replication scheme . The simplicity of this
policy allows us to develop a general cost model in Section
2.2 that can be used with minor changes to formalize various
replication and consistency strategies.

2.2  The Object Transfer Cost Model
We are interested in minimizing the total network

transfer cost (NTC) due to object movement, since the
communication cost of control messages has minor impact
to the overall performance of the system. There are two
components affecting NTC. First, is the NTC created from
the read requests.

Let denote the total NTC, due to ‘s reading
requests for object , addressed to the nearest site .
This cost is given by the following equation:

The second component of NTC is the cost arising due to
the writes. Let be the total NTC, due to ‘s writing
requests for object , addressed to the primary site .
This cost is given by the following equation:

Here, we made the indirect assumption that in order to
perform a write we need to ship the whole updated version
of the object. This of course is not always the case, as we can
move only the updated parts of it (modelling such policies
can also be done using our framework). The cumulative
NTC, denoted asD, due to reads and writes is given by:

Let if holds a replica of object , and 0
otherwise. s define an replication matrix, named
X, with boolean elements. Eq. 3 is now refined to:

Sites which are not replicators of object create NTC
equal to the communication cost of their reads from the
nearest replicator, plus that of sending their writes to the
primary site of . Sites belonging to the replication scheme
of , are associated with the cost of sending/receiving all
the updated versions of it. Using the above formulation, the
Data Replication Problem (DRP) can be defined as:

Find the assignment of 0, 1 values in theX matrix that
minimizeD.

Subject to the storage capacity constraint:

Subject to the primary copies policy:

The DRP as presented above is a constrained
optimization problem. The equivalent decision problem is
reducable to theKnapsack Problem[19] which is known to
be NP-complete

3  A Greedy Method for Data Replication
In this section we describe the simple replication

algorithm based on the greedy method. For each site and
object we define thereplication benefitvalue , as
follows:

The above value represents the expected benefit in NTC
terms, if we replicated at . This benefit is computed by
using the difference between the NTC occurred from the
current read requests, which would be eliminated if we made
a replica and the NTC arising due to the updates to that
replica. Since we want to consider the benefit per storage
data unit, we divide the difference of NTCs by the object
size. Negative values of mean that replicatingkth object
is inefficient from the “local view” ofith site. This does not
necessarily mean that we are not able to reduce the total
NTC by creating such a replica, but that the local NTC
observed from theith site will be increased.

To present our algorithm, we maintain a list for
containing all the objects that can be replicated. An object

can be replicated at , only if the remaining storage
capacity of the site is greater than its size, i.e.,
and the benefit value is positive. We also keep a listLS
containing all the sites that have the “opportunity” to
replicate an object. In other words, a site if and only
if . The SRA Algorithm performs in steps. In each
step a site is chosen fromLSin a round-robin fashion and
the benefit values of all objects belonging to are
computed. The one with the highest benefit is replicated and
the listsLS, , together with the corresponding nearest site
value , are updated accordingly. The SRA algorithm is
outlined as follows:

Each execution of the while-loop has complexity
. In the worst case where each site has enough

capacity to hold all the objects and the number of updates is
zero, there areMN such iterations. Hence, we conclude that
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the complexity of our algorithm is .
We presented SRA as a centralized algorithm. In its

distributed version we assign ‘s to their corresponding
sites andLSto the network leader. All the main calculations
are done locally, while (11) requires a broadcast of to
all sites in order to update their field. The selection
of in (4) is done by the leader and followed by a token
passing mechanism. The token is returned to the leader upon
completion of (13). It should be mentioned that since the
algorithm replicates objects according to their “local”
benefit value, it provides good solution quality when
independent read frequencies ( s) are significantly larger
than updates. This is better illustrated in our experiments at
Section 6.

4  The Evolutionary Method
Genetic algorithms (GAs), introduced by Holland in

1975 [17], are search methods based on the evolutionary
concept of natural mutation and the survival of the fittest
individuals. Given a well-defined search space they apply
three different genetic search operations, namely,selection,
crossover,andmutation, to transform an initial population
of chromosomes, with the objective to improve their quality.
Fundamental to the GA structure is the notion of
chromosome, which is an encoded representation of a
feasible solution, most commonly a bit string. Before the
search process starts, a set of chromosomes is initialized to
form the first generation. Then the three genetic search
operations are repeatedly applied, in order to obtain a
population with better characteristics. An outline of a
generic GA is as follows.

Generate initial population.
Perform selection step.
while stopping criterion not metdo

Perform crossover step.
Perform mutation step.
Perform selection step.

end while
Report the best chromosome as the final solution.
We demonstrate GRA’s design in detail by presenting

our encoding mechanism and then the selection, crossover
and mutation operators.

Encoding mechanism:A chromosome consists ofM
genes (one for each site). Every gene is composed ofN bits
(one for each object). A 1 value in thekth bit of theith gene
simply denotes that theith site holds a replica ofkth object.
Using this encoding the total length of a chromosome isMN
bits. The following scheme explains the above:

Fitness value :The quality of each chromosome is
measured by computing its fitness value. Our objective
function D, defined in Section 2.2, helps us define . In
order to maintain uniformity over various problem domains,
we need to normalize the fitness value to a convenient range
of 0 to 1. For our algorithm we consider our initial allocation
scheme, i.e., an object appears in the network only at its
primary site, and the NTC occurred in it, denoted by .
and define the fitness value in the following way:

In the rare case that , we reset the chromosome’s
fitness value to be 0 by copying the initial allocation scheme
in it.

Validity of a chromosome:We define a gene (site) to be
valid if and only if the total storage cost of allocating the
required objects (1’s in the gene) does not exceed the site’s
capacity; otherwise the gene is invalid. We also define a
chromosome to be valid/invalid according to the existence
of an invalid gene.

Generation of the initial Population:We initialize the
population by using SRA algorithm times, where
stands for the population size. In order to provide diversity,
instead of picking up the “start-up” sites (step 4 of the
algorithm) in a round-robin way, we do it randomly.
Moreover, half of the population defined by SRA is
subjected to random perturbation of 1/4th of their values,
ensuring their validity. Thus, we obtain chromosomes that
are homogeneous in their fitness values; the building-blocks
(sub-strings) they consist of are diverse enough and is
considerably high. The above holds true even when the total
number of updates is large enough and SRA fails to provide
good solutions, since the random assignment of 1s in half of
the population provides a good “starting point” for GRA.
Thus, initialization requires  time.

Selection mechanism:This operation consists of two
parts: evaluation of a chromosome and offspring allocation.
Evaluation is performed by measuring its fitness value ,
which depicts the quality of solution the chromosome
represents. Offspring allocation is done by using the
proportionate schemeas proposed in Holland’s SGA
(Simple Genetic Algorithm) [17]. This scheme allocates to
the ith chromosome, offspring for the next generation.
SGA implements this scheme by using theroulette wheel
selection, i.e., allocating a sector of the wheel equaling

to theith chromosome and creating an offspring if a
generated number in the range of 0 to falls inside the
assigned sector of the string. The chromosomes under
evaluation in SGA are exactly, i.e., the outcomes of
crossover and mutation. Instead of following this approach
that can lead to large sampling errors, we selected the
stochastic remainder technique[14] to incorporate in GRA.
Following this method, a chromosome is assigned offspring
according to the integer part of the proportionate fitness
value in a deterministic way, while the fractional parts are
put in a roulette wheel in order for the remaining offspring
to be defined. Moreover, instead of evaluating
chromosomes (Simple Selection), we used the
Selection borrowed from evolutionary strategies [21]. Under
this strategy from the initial population of size, two more
subpopulations are created of total size , one from the
crossover and the other from the mutation operator. The
chromosomes of all these three populations compete
for the slots of the next generation ( in our case).
Finally, we implemented theelitistic approach, with which
the best chromosome found until one generation before,
replaces the worst chromosome of the population. In order to
prevent premature convergence, we allow the elite
chromosome to be copied back once every 5 generations.

Crossover mechanism:We selected a two-point
crossover mechanism to include in GRA. After the pairing of
chromosomes two crossover points are randomly selected
and either the portion of the bit-string in between them or the
two fractions not included by them are swapped. The
decision as to which parts to juxtapose is random. The whole
operation is performed with probability , known as the
crossover rate, and may result in producing invalid
chromosomes. Clearly, if this is the case, the only possible
invalid genes are the two (or one) containing the crossover
points and we restore their validity by exchanging the
portion of the gene that was not previously crossed. The
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rationale behind crossover operation, is that after the
exchange of genetic materials, it is very likely that the two
newly generated chromosomes will possess the good
characteristics of both their parents (building-block
hypothesis [14][17]).

Mutation mechanism:Mutation is an operation aiming at
restoring lost genetic material and is performed in the GRA
by simply flipping every bit with a certain probability ,
called the mutation rate. Mutating a bit can result in
violating either the storage, or the primary site constraint. To
counter this, we check if either of the two constraints is
violated and in such case flip the mutated bit again.

Control Parameters:Large values of and force a
GA to explore the solution space, while low values favour
exploitation. Optimal tuning of these values requires
extensive experiments [14]. Typical values of these
parameters, as stated in [15] are: ,

, . Obviously, even with the
best decisions on the above parameters, optimal solutions
can not be guaranteed due to the algorithm’s probabilistic
nature. Unless otherwise stated, after considering a series of
experimental results GRA’s parameters were fixed to:

, , , .
Complexity:Selection is clearly the “hardest” operation

because it involves computingD ( time). Thus, GRA
runs in resulting in a total
time of .

5  Adaptive Genetic Replication Algorithm
So far, we assumed the existence of a monitor site in the

network which collects statistics for the objects and defines
their replication schemes by using one of the above static
methods. Each site sends during night hours the previous
day’s locally observed R/W patterns to the monitor. After
accumulating all the patterns, the monitor site defines new
replication schemes using preferably the GRA algorithm.
The newly defined schemes are realized during night hours
through object migration and deallocation and by the next
day the whole network is already tuned accordingly.

The above static methods, however, are not able to deal
with the situation when the read-write patterns exhibited
during daytime, differ largely from the night time
estimations. To cope with the problem, statistics collection
should be done every few minutes and the monitor site must
be able to quickly decide about new replication schemes. We
have already presented SRA and GRA for redistribution of
the objects. While the fast execution time of SRA is
desirable in a dynamic environment, it can result in low
quality schemes which are sometimes worse than the already
existing object allocation. On the other hand, the execution
time of GRA is unacceptable for the dynamic environment.
To overcome this problem, we design another genetic
algorithm referred to as AGRA (Adaptive Genetic
Replication Algorithm), which rests as a compromise
between the two extremes.

Each time the R/W pattern of an object changes above
a threshold value either in favour of reads, or updates,
AGRA takes as input the new pattern, computes a set of
replication schemes for it, which are then transcripted to
the initial GRA solutions. The modified population is then
inserted to a micro-GRA and evolved for few generations in
order to determine an even better solution. s are defined
by measuring the NTC occurred from the , without taking
the Knapsack component of the DRP into account, i.e.,
neglecting the storage capacity constraint. Any violations
are repaired during the transcription phase. A detailed
description of the algorithm follows.

Each chromosome in the population of AGRA is a
bitstring of lengthM. Let be the object for which the
algorithm is run. A 1 value in theith bit of it denotes that
holds a replica of . Let represent the population size
and the number of generations it evolves. The
initialization of the first generation is performed by
randomly generating half of the population while the rest is
obtained from the solutions previously found by GRA,
making sure that AGRA always copies the current
replication scheme of , being incorporated to the highest
fitness solution of GRA. The three operations of GA
(Selection, Crossover, Mutation) come afterwards to define
the population of the next generation.

Let denote the NTC occurred due to reads and updates
of the object . can be computed by omitting the
summation for all objects 1...N in D’s computation (Eq.4).
The fitness value we used resembles to the one of GRA and
is given by:

where stands for the NTC occurred when the only
replicator of in the network is its primary site. Following
GRA design, in the rare case when a chromosome has
we set the chromosome to by setting to 1 only the bit
corresponding to .

The sampling space of AGRA is regular as opposed to
GRA where we used enlarged sampling space. It contains all
the offspring and some part of the parents (those not
subjected to crossover and mutation). Again, stochastic
remainder selection is used with the fractional parts being
allocated in a roulette wheel. The rationale behind these
choices, as with all others concerning AGRA’s design is to
reduce the running time. Indeed, the selection mechanism
used in GRA can result in evaluating three times more
chromosomes in the worst case and the improvement in
performance if incorporated in AGRA would be marginal,
since the algorithm needs to solve an unconstrained problem
and operates over chromosomes of small length. From this
point of view and by keeping and small (10, 50),
AGRA is essentially a micro-GA. We also follow the
elitistic approach as in GRA. Single point crossover is used
with equal probabilities of crossing the left and the right part
of the chromosomes. Mutation again means simply flipping
a bit. Constant crossover and mutation rates are used with
values of 80% and 1%, respectively.

After generations, AGRA terminates having
converged largely to high fitness solutions distributing to
a degree that minimizes the NTC of R/W requests. The best

found by AGRA is transcripted to half of the initial
population of GRA, including the corresponding elite
chromosome (current network replica distribution), while
the remaining s are randomly transcripted to the other
half. Such transcription can result in storage capacity
violation which needs to be resolved efficiently. Other than
randomly deallocating objects until the constraint is
satisfied, we can follow a greedy method and calculate the
negative impact each possible one object deallocation has in
D value. By deallocating the object which corresponds to the
least degradation ofD and performing the above steps until
the constraint is met, we can have a good quality
transcription method. The key drawback though of this
method is the high complexity of computing theD value,
which can be in the worst case. Such a
computational cost, is clearly unacceptable for a dynamic
method.

Instead of deciding which object to deallocate through
accurate calculation of its impact to the NTC, we can use a
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rapid estimation based on ‘s degree of replication. Let
be a site where we have allocated more objects than it can
accommodate. For each object currently allocated we define
a new replica benefit estimation value  as:

or using the notation of Table 1:

The rationale behind the above formula, is that in order
to estimate how beneficial a replica is (from NTC reduction
standpoint), we must take into consideration both global
properties of the object and local characteristics. The global
properties consist of whether the object is read demanding or
not and how many of its replicas exist in the network.
Naturally, an object having high update ratio, but being
widely distributed will have more chances of being selected
for deallocation. A special weight to the local read requests
needs to be given. We do this, in conjunction with the
storage capacity of the site and the size of the object. Large
objects with poor local read demand are preferred for
deallocation, since this will result in freeing up more space
for future allocation. Finally, we include an estimation of
how good the site acts as the potential closest neighbour of
other sites, by calculating its proportional link weights. The
computational complexity of the estimation is for a
single object.

Having transcripted the ‘s to the initial solutions, there
are two valid options: a) we stop here and pick up the
chromosome of highest fitness value to realize the
corresponding total replication scheme, b) use the resulting
population as the initial population of a mini_GRA intended
to run for small number of generations, such as 5-10. In the
following section we use and evaluate both policies.

6  Experimental Results
Here, we present the results of our experiments carried

out on a 200Mhz Ultra Sparc 2 machine. Five different
experiments were conducted. The purpose of the first two is
to explore how an increase in the number of sites and objects
can affect the performance of the static algorithms. In the
next two, we study the effects of the update ratio and the
capacity of sites. The solution quality in all cases, is
measured according to the NTC percentage that is saved
under the replication scheme found by the algorithms,
compared to the initial one, i.e, when only primary copies
exist. Finally, in the last set we evaluate the performance of
AGRA both as a stand-alone algorithm and in combination
with the micro-GRA.

6.1  Workload
We generate the network structures in the following

manner. First, we define the total number of sites and objects
in the network. Among every pair of sites , there
exists a bi-directional link connecting them, with its cost

taking values from a uniform distribution between 1
and 10. This effectively represents the number of hops a
TCP/IP packet should make in order to reach its destination,
a link cost measurement that is commonly used, see for
example [16]. For each object we randomly choose a site to
hold the primary copy for it, no other replicas are created.

Next, we generate the number of reads for all (site, object)
pairs by using a uniform distribution from 1 to 40. Having
defined the read patterns, we use them to calculate the total
number of reads for each object, and subsequently, the total
number of its updates with respect to U%. The final total
update value is defined using a uniform distribution from

to . We randomly
allocate these updates to the sites of the network. In this way
we instill enough diversity in our system.

We generate the size of each object using a uniform
distribution with mean value 35. In all the experiments, the
capacity of sites (C%) is proportional to the total size of
objects. The capacity of a site is also generated using a
uniform distribution from C% to
3C% . This ensures the creation of sites
with diverse enough storing capabilities.

In the fifth experiment we alter the generated R/W
patterns to test AGRA. This is performed by adding all the
new read requests one by one to randomly chosen sites. For
the updates, we follow the same policy for half of them. For
the other half, we assign the requests to the sites using
normal distribution with variance equal to one fifth of the
total number of sites and mean value randomly selected
among the number of sites. This is to simulate the scenario
when some objects are frequently updated from a specific
cluster of nodes and not by all the sites. For each network
instance, 15 different networks were generated. In all the
experiments we recorded the average quality of replication
schemes obtained (% NTC saving), together with the
average execution time of the algorithms and the average
number of replicas created in those 15 runs.

6.2  Performance of SRA and GRA
First, we assess the performance of SRA and GRA by

varying the number of sites and objects. We fixed C=15%
and used three different update ratios, 2%, 5% and 10%. Fig.
1(a)-(d) summarize the results. In the first two figures we
study the behavior of the static algorithms when the number
of sites increases, by setting the number of objects to 150,
while in Fig. 1(c) and (d) we fix the number of sites to 100
and vary the objects from 100 to 1,000. We should note here
that experiments with 300 and 400 objects in the first case
and 50 and 150 sites in the second, showed similar results
concerning the trends in the plots but are not included here
due to space limitations. The first observation is that GRA
outperforms SRA in terms of solution quality. Only for small
network sizes and small update ratio (2%) are the quality of
solutions obtained by SRA, comparable to the ones of GRA.
Moreover, the savings obtained from the genetic algorithm
not only are higher, but tend to diminish less rapidly than the
ones yielded by the greedy method. Indeed, Fig. 1(a) and (c)
show that the percentage of NTC saving for GRA is only
marginally affected by the increase in either the number of
sites, or the objects and remain almost constant.

Results in Fig. 1(a) should be attributed to the fact that by
adding a site in the network, we introduce additional traffic
due to its local requests, together with more storage capacity
to be used for replication. GRA explores and balances these
diverse effects, so as to achieve almost constant savings.
Indeed, Fig. 1(b) shows an almost linear increase to the
number of replicas GRA creates, while the ones from SRA
remain constant. The above trend is more obvious when the
updates are 2% and 5% which, in terms, means that the
additional storage capacity introduced through the increase
of sites is explored by GRA when the update ratio is such,
that makes replication beneficial. When the update ratio is
high, the additional capacity added is only marginally used
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after a certain point (60 sites in Fig.1(b)), due to the fact that
further replicating an object in the network would yield
negative results as the updates are high. On the contrary,
SRA retains a constant number of replicas, thus, not
exploring the additional storage space added.

In the experiments of Fig. 1(c), the capacity of sites is
fixed proportionally to the total size of objects, so increasing
the number of objects, has no effect to the degree of
replication an object can achieve and the benefits it can yield
(only depends on the updates). Here also, GRA explores the
solution space with the same efficiency as the number of
objects grows, while SRA fails to do so.

Without new storage space introduced, GRA manages to
retain almost the same degree of replication when U=10%
(Fig.1(d)), resulting in keeping a constant performance. For
the smaller update ratios, the degree of replication is not
stable but ranges without though affecting the performance.
This is due to the non-deterministic nature of GRA. SRA
creates far less replicas than GRA (3 times less in the U=2%
case) and the small decrease in the degree of replication
experienced, has large impact to the quality of solution.

Unfortunately, the better performance of GRA and the
large traffic savings are achieved in expense of large
execution time. As shown in Fig. 2(b) GRA’s running time
is 3-4 orders of magnitude higher compared to SRA and rises
in an almost quadratic way to the number of sites, fact that is
due to the complexity of the algorithm, see Sec 4. The trend
in SRA’s execution time in Fig. 2(a), is also quadratic.

The performance of both algorithms decreases
exponentially to the update ratio (Fig. 3(a)), with GRA
achieving once more better performance than SRA. An
increase in storage capacities means that a larger number of
objects can be replicated. Since objects are not equally read
intensive, increasing the storage capacity has great impact at
the beginning, but has little effect after a certain point where
the most beneficial ones are already replicated. This is
observed in Fig. 3(b) which shows the performance of the

algorithms. The constant NTC savings of SRA in the figure,
is due to the fact that with update ratio of 5%, the point
where further replicating objects is inefficient, is reached
very quickly. Indeed, in further experiments we made with
U = 0.5%, 1% and 2%, the trends in SRA’s performance
were similar to the ones of GRA. It is noteworthy that
augmenting the capacity from 10% to 30%, resulted in 5
times more replicas being created by GRA, while the
relevant performance gains as shown in Fig. 3(b) were less
than 1%.

Summarizing the above, GRA achieves more traffic
savings (in many cases even 70%), than the greedy method
and responds better to changes in the network size, the
update ratios or the sites’ capacities. On the other hand the
greedy method apart from achieving good quality of
solutions for small network sizes and update ratios, runs in
about 4 orders of magnitude less time.

6.3  Performance of AGRA
Now, we illustrate the performance gains by using the

AGRA algorithm. Our test case is a network of M=50,
N=200, U=5%, and C=15%. To illustrate the main merits of
AGRA we have considered the case where either reads or
writes increase. The dual case of decrease is not included
here but the results are equivalent.Chdenotes the percentage
of rising in either reads or writes for an object that had
changed its R/W pattern.OCh represents the percentage of
objects in the network changing patterns andR, U represent
the percentage of changes being performed towards a read or
write increase respectively. So, for example in the network
considered, Ch=600%, Och=30%, R=80% and U=20%,
means, that among the 200 total objects 48 experienced an
increase by 600% in their reads, while 12 a same increase in
their write requests.

We consider various scenarios. Given a replication
scheme (supposedly determined by a static algorithm), we
evaluate this scheme according to the new read-write

Figure 1(a): Savings in network cost versus
the number of sites.

Figure 1(b): The number of replicas
generated versus the number of sites.

Figure 1(d): The number of replicas
generated versus the number of objects.

Figure 1(c): Savings in network cost versus
the number of objects.

Figure 2(a): Execution time of SRA versus
the number of sites.

Figure 2(b): Execution time of GRA versus
the number of sites.



patterns and determine the current value (Current legend
label) of NTC savings. Then we run the AGRA algorithm
(Current + AGRA legend label) using the current scheme.
We also executed AGRA with 5 generations of mini_GRA
(AGRA + 5 GRA legend label) and then 10 generations of
mini_GRA (AGRA + 10 GRA legend label). Next, we run
only GRA with 80 (Current + 80 GRA legend label) and 150
(Current + 150 GRA legend label) generations. Finally, we
run 150 generations of GRA (150 GRA legend label), not
with the current scheme, but with a population generated
from scratch.

The performance of all policies when only reads are
increased seems to converge to different upper bounds (Fig.
4(a)). This can be attributed to the fact that an increase in the
reads lead all GA policies to replicate intensively at the
beginning, so as to exploit the available capacity to the
maximum. After a certain point though, further replication is
constrained due to storage limitations and thus, the savings
tend to increase less rapidly. When only the number of
updates increase, AGRA policies perceive an almost linear
behavior (Fig. 4(b)) due to the fact that increasing the
updates of a certain percentage of objects, means only that
these objects should not be distributed widely. There are still
though, enough read intensive objects which should be
replicated and the deallocation criterion together with the
unconstrained mini-GA, shift the replication scheme
towards them. Another thing we should notice is that the
initial static solution can be totally outdated and inefficient
when updates are significantly increased. For example in
Fig.4(b) when the updates are increased by 600% for 20% of
the objects, the traffic savings of the previously found
replication scheme drops to less than 10%, while AGRA
variations achieve traffic savings close to 38%. This fact is
supportive for a dynamic method to adapt the replication
scheme of the network.

The performance difference between the combinations

of AGRA and the static policies as shown in Fig. 4(a)-(b), is
around 10% when large portion of the objects change their
patterns, with the (AGRA + 10 GRA) and (AGRA + 5 GRA)
achieving comparable savings. Fig. 4(c) shows how the
traffic savings increase as the changes in patterns shift from
100% updates to 100% reads. Among all the static methods,
running GRA with a random initial population (150 GRA) is
the best choice when reads are increased, while the (Current
+ 80/150 GRA) policies are better when updates increase.
These results suggest the usefulness of AGRA and its
transcription/estimation method in dynamic environments.
As we can observe, AGRA’s performance as stand-alone is
significantly better than the current scheme, while its
combination with the mini-GRA constantly outperforms all
other static policies and is only worse by no more than 1%
from (150 GRA) in the case where only reads increase. The
(150 GRA) policy though, has prohibitively high execution
time around 1920 seconds, while AGRA both as stand-alone
and in combination with the mini-GRA is 1.5 to 2 orders of
magnitude faster (Fig. 4(d)). The same figure also shows that
the increase to the percentage of objects changing patterns
has only marginal effect in the execution time of AGRA.

Summarizing the results of the experimental evaluation
we conclude that when static patterns are considered, the
GRA algorithm promises good performance in expense of
high running time. In dynamic environments though, AGRA
performs far better especially when combined with the mini-
GRA, since its adaptive/transcription method enhances the
exploration power of our static design. As a result, the
combination of the two algorithms proves to be very
efficient in the very first 5 generations of mini-GRA. The
running time of AGRA with mini-GRA is acceptable for the
requirements of a dynamic environment, while the quality of
solutions obtained is if not higher at least comparable to the
more time consuming static genetic algorithm method.

Figure 3(a): Savings in network cost versus
the update ratio.

Figure 3(b): Savings in network cost versus
the capacity of sites.

Figure 4(a): Savings in network cost versus
the number of objects having their reads
increased.

Figure 4(b): Savings in network cost versus
the number of objects having their updates
increased.

Figure 4(c): Savings in network cost versus
the kind of pattern change.

Figure 4(d): Execution time of AGRA
versions.



7  Related Work
The data replication problem as presented in Section 2 is

an extension of the file allocation problem (see [11] for a
survey). Chu [10] studied the file allocation problem with
respect to multiple files in a multiprocessor system. Casey
[8] extended this work by distinguishing between updates
and queries on files. Eswaran [12] proved that Casey’s
formulation was NP complete. Apers [3] considered the
allocation of data in distributed databases, so as to minimize
the total data transfer cost, while Kwoket al. [18] proposed
several algorithms to solve the data allocation problem
(without replication) in distributed multimedia databases.
Our model is unique as we consider the capacity constraint
and the issue of multiple copies at the same time, reflecting
a pragmatic scenario in today’s distributed information
environments such as the Internet. Moreover, previous
works assume a static environment and solve the problem
mainly by using integer programming or similar time
consuming techniques.

Some recent work [5], [22] addresses dynamic
replication of objects in distributed systems when the read-
write patterns are not knownapriori. Although Awerbuch’s
et al.work [5] is significant from a theoretical point of view,
the competitive algorithm proposed has little practical
applications, since after a write is issued all replicas but one
are deleted. In [22] Wolfsonet al. proposed an algorithm
which leads to optimal single file replication in case of a tree
network. However, the performance of the scheme for cases
other than the tree networks is not clear. In [20] the authors
proposed a protocol for replication over the Internet. In the
model used though, no attention was paid to the update cost,
thus limiting its scope.

Genetic algorithms have been used to solve various
optimization problems including graph partitioning [9] and
multiprocessor document allocation [13]. We took
advantage of their capability to explore fast and efficient the
solution space of a problem in order to design static and
adaptive algorithms for data replication.

8  Conclusions
In this paper we addressed the data replication problem

and developed a cost model, which is applicable to very
large distributed systems such as the WWW and distributed
databases. We proposed a greedy algorithm to solve the
problem. Having obtained initial solutions from our greedy
approach, we designed a genetic algorithm. We evaluated
both approaches and assessed the trade-off between running
time/solution quality. Experimental analysis illustrated that
the GRA constantly outperforms SRA in terms of solution
quality. On the other hand SRA is much faster than GRA.
Moreover, for small and medium sized networks SRA’s
performance is comparable to that of GRA. However, for an
environment where static algorithms are less than useful, we
proposed AGRA which adapts to the changing environment
very quickly and readjusts the replication scheme with
solutions that are comparable to static algorithms. Therefore,
AGRA combined with the mini_GRA is a promising choice
in a dynamic environment such as the Internet.
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