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Abstract

This paper proposes a new approach to rollback-recovery for mobile-agent
systems, and describes its implementation in the MESSENGERS mobile agents
system. The used checkpointing method allows to implement space and time
efficient, user-transparent rollback-recovery in heterogeneous distributed
environments. Together with an efficient non-blocking system snapshot
algorithm this checkpointing method is an attractive choicefor implementing a
rollback-recovery mechanism in the mobile agent system, because it exploits
features specific to mobile agent systemsduring the recovery.

This paper also presents an optimization technique, called concurrent
checkpointing, that increases the effectiveness of theproposed rollback-recovery
mechanism.

1. Introduction

Distributed systems consisting of a network of workstations or personal computers are an attractive way to speed up
large computations. These systems have a much higher performance-to-price ratio than large parallel computers, and
they are also more widely available.

The major drawback is that the computing nodes in a distributed system or their connections may fail. As some
applications mayrequire hours to execute, it is important to be ableto continue computation in the presence of node or
link failures. Recovery from failures becomes more important for large systems, since the possibility of a failure
increases with the number of computing nodes/links. Link failures can be solved by fault-tolerant communication
protocols, and thus we only need to deal with failures of nodes.

Failure recovery may be achieved with a rollback-recovery mechanism. A rollback-recovery mechanism consists of
three parts: checkpointing, fault detection, and failure recovery. During checkpointing the states of the participating
processes are periodically savedon a stablestorage. The savedprocess state is caWed a checkpoint. When a nodefailure
occurs, the recovery mechanism uses saved checkpoints to recover the system to the consistent system state and
continue execution from that state. The number of processes that have to be rolled back to the previous checkpoint
varies, depending on the recovery algorithm. It may he necessary for one [1], some [2], or all [3] processes toroll back
to the previous checkpoint.



It is useful for the checkpointing algorithm to take a checkpoint of each process such that the set of the local
checkpoints represents a consistent system state, also called a consistent system snapshot. This facilitates fast recovery,
since a consistent system snapshot does not have to be derived from uncoordinated local checkpoints. It also simplifies
memory management, since as a new consistent snapshot is taken, the previous one can be discarded. In addition, a
consistent system snapshot can be used for debugging purposes.

It is not always possible to restart the failed process on the same machine it ran before the failure. To allow recovery in
a heterogeneous system, the process checkpoint must be architecture-independent. Another desirable feature of
checkpoints in heterogeneous system is a portability of checkpointing routines. For example, computers are being
purchased incrementally and added to the distributed system. As computer technology advances, new computers are
available with every new purchase. Difficulties with porting of checkpointing routines can limit the availability of
resources that could participate in distributed computations. Therefore, it is not sufficient for the checkpoints to be
architecture-independent. The checkpointing functions must also be easily portable.

One way to implement a distributed system is using the mobile agent paradigm. In such systems, computation is
performed by cooperating agents, which migrate through the system according to their individual programs. Most of
the existing mobile agent systems are focusing on internet-based computing on LANs or clusters of workstations.
However, mobile agent systems are also well suited for general-purpose computing. Applications include Monte-Carlo
simulations, matrixmultiplication, and individual-based simulations [4, 29]. As was shown in [4] mobile agent systems
can show comparable performance with message-passing systems.

Interestingly, the architecture of the mobile-agent systems offers certainbenefits in collecting a checkpoint and during
the recovery. To demonstrate our approach, we describe the implementation of the rollback-recovery mechanism in the
MESSENGERS mobile agent system. The rest of the paper is organized as follows: section 2 gives an overview of the
MESSENGERS system, section 3 describes how the checkpoint of the individual process is taken, and section 4 shows
the performance of the checkpointing method in section 3. Section 5 describes the algorithm for taking a consistent
system snapshot. Section 6 presents a technique that optimizes the efficiency of the proposed checkpointing scheme.
Section 7 describes the recovery algorithm and process merging: a feature of the recovery procedure specific to the
mobile agent systems, section 8 presents related work and section 9 concludes the paper.

2. MESSENGERS system

MESSENGERS is a distributed system based on the principles of autonomous objects, called Messengers.
MESSENGERS distinguishes three separate levels of network (figure 1). The physical network is the underlying
computational resource. The daemon network is a collection of server processes, whose task is to interpret the behavior
of Messengers, and system commands. Examples of possible system commands are initiation of the checkpointing,
daemon failure notification, load balancing messages, and injection of a new Messenger. There is one daemon per
physical node. The logical network is an application-specific computation network created at run time on top of the
daemon network. Multiple logical network nodes may be created on the same daemon network node, which are then
running on the samephysical node. Logical nodes maybe interconnected by logical links intoan arbitrary topology.

Each link of the logical network has a name and several (optional) weights, which Messengers use for determining
which links to route themselves along. Eachlogical node hasa name andprovides a memory space commonly accessed
by all Messengers that gather on the node. This memory space, the Node Variable Area, functions as both a node-
unique database and as an inter-Messengers communication channel.



Each Messenger can access three types of variables: messenger, node, and environmental variables. Messenger
variables are local to and carried by the Messenger as it propagates through the logical network. Node variables are
node-resident and are mapped to the Node Variable Area where the Messenger is currently running. There they are
shared among Messengers running on the same node. Environmental variables provide information such as the current
node name, and the name and weights of the last traversed link.

Messengers navigate through the logical networkbased on their own internal program and state. This is accomplished
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Figure 1

by explicit navigational statements, which also permit the creation or destruction of logical links and/or nodes.
Messengers may also perform arbitrary computations in the nodes they visit. This can take two forms. First, the
Messenger program may contain computational statements, and second. Messengers may invoke ordinary C functions.
More information on MESSENGERS can be found in [5].

3. Capturing daemon state

When a Messenger is running, the daemon state is as complex as with any other program. But when no Messenger is
running, the state is very simple: it consists of the data space shared by the Messengers (the logical network) and the
collection of Messengers waiting for execution or sitting in input/output queues. Each Messenger is represented by a
simple data structure, called the Messenger Control Block. Moreover, when the agent arrives to the daemon orprepares
to migrate, its state is already captured in such a data structure.

Techniques to capture an agent state have been implemented in Odyssey [6], IBM Aglets [7], Ara [8], Agent TCL [9],
Tacoma [10] and other mobile-agent systems. All these systems are interpreter-based, which makes them significantly
slower than systems running compiled code. In MESSENGERS, agents are fully compiled into machine code, which
makes theperformance of MESSENGERS compatible with compiled message passing distributed systems.



A technique of compiling Messengers into native code that makes it easy to capture their state was first proposed in [4],
and further explored in [28]. The Messenger script is fu-st compiled by a special compiler that groups parts of the script
into function blocks that are separated by migration statements and can be compiled with a standard compiler. An
example of such precompilation is shown in figures 2, 3, and 4.

After a Messenger is compiled, it consists of a set of
local variables, an array of compiled functions, and an
index of the next function that must be executed. This

index eliminates the need for saving a program
counter. Moreover, in between functions, the stack
does not contain any Messenger data. The heap in this
approach is either disallowed, or private to the agent.

functionBlock_l(t_agent *a)

{
a->agentVariables.i = 1;
a->agentVariables.j = 2;

a->nextFunctionBlock = 2 ;

/*(code for migrate */

Figure 3: function block 1

i = 1; function

j = 2; r>- block 1

migrate( destination ); J function

i = j block 2

Figure 2: agent script

functionBlock_2(t_agent *a)
{

a->agentVariables.i =

a->agentVariables.j;

a->nextFunctionBlock = 0;
/* function 0 indicates */
/* end of agent script */

}

Figure 4: function block 2

The Messenger code is compiled into a mn-time library for every participating machine type in the system. When a
Messenger migrates to a machine, it loads the library, (if it is not loaded yet) and calls the function specified by the
index of the next function it carried along.

The main benefit of this approach is that the state of the daemon is captured in a data files, which is both machine and
application independent. At the beginning of the file the type of the byte order used by the original host should be
specified, so that the data is correctly loaded on machines that use alternative byte order convention. Since there are no
system calls involved in taking a checkpoint, this checkpointing mechanism is portable to any architecture without
modifications.

4. Performance evaluation of daemon state capture

This type of checkpointing also takes less space, and therefore less time to collect, than a regular process core dump.
We did two experiments that qualitatively show the advantages of this checkpointing method. In the first experiment
we implemented a synthetic application consisting of logical nodes and Messengers hopping around in the logical
network. Since we are only concerned with the size of the checkpoints, the semantics of the application is irrelevant.
The application was ran on a single Sparc-5 workstation.

We measured the size of checkpoints taken by Clubs, a version of
libckpt [11], and by MESSENGERS. Figure 5 illustrates our results.
The first column specifies number of logical nodes (N) and
Messengers (M) participating in the computation. The second
column shows the checkpointing size (in bytes) for Clubs, and the
third for MESSENGERS.

The difference in the size of the checkpoint comes from the fact that
Clubs saves the state of the daemon process, including all daemon

Clubs MESSENGERS

1 N, 1 M 1665768 1684

10 N, 10 M 1669864 12360

20 N, 20 M 1686248 22096

30 N, 30 M 1702632 39320

Figure 5



variables, which MESSENGERS saves only the logical network and the individual Messengers. After the first row, in
both Clubs and MESSENGERS, the size of checkpoints grows linearly with addition of new logical nodes and
Messengers.

In the second experiment the Messenger script was modified to call a C
function that initializes a thousand-by-thousand array of characters.
Figure 6 presents the results of this experiment. Comparing with the
results of figure 5 the size of the checkpoint in Clubs increased by
1,000,000 bytes, since it includes an array of [1000][1000] characters
into the checkpoint. The size of the MESSENGERS checkpoint did not
change. This is because in our checkpointing mechanism checkpoints
are taken only at the script level, i.e, between Messengers functions, and
therefore, local variables of the C function do not have to be saved. The
overhead from taking the checkpoints within functions also grows with the number of execution threads. The current
implementation of MESSENGERS has only one execution thread per processor.

Clubs MESSENGERS

1 N. 1 M 2665192 1684

10N, 10M 2672360 12360

20 N. 20 M 2681^ 22096

30 N, 30 M 2714344 39320

Figure 6

In these experiments we did not consider possible optimizations to the Clubs, such as incremental checkpointing [16].
With incremental checkpointing only memory pages that were modified since the time of the previous checkpointing
are saved to the checkpoint, which makes the checkpoint size smaller. A similar technique could be applied in our
approach to unmodified shared memory areas, and unmodified Messengers.

5. Consistent system snapshot algorithm

In this section we describe the algorithm to capture a consistent system snapshot. The idea is to collect a set of
checkpoints that represent a consistent system state. Section 5.1 gives a definition of a consistent system state. Section
5.2 describes the algorithm that was used in the MESSENGERS system, followed by MESSENGERS-specific parts of
the algorithm. In section 5.3 we describe how logical network is created and modified in MESSENGERS, and in
section 5.4 we present the complete algorithm.

5.1. Consistent system state

The definition of a consistent system state varies, depending on the underlying communication channels. Reliable
communication channels guarantee that every message that was sent will also be delivered to its destination. Unreliable
communication channels dont provide such a guarantee. For systems using unreliable communication channels a
consistent system state is one in which every message that has been received is also shown to have been sent in the
state of the sender [13]. In distributed systems using reliable communication channels a consistent system state also
includes in-transit messages since they will always be delivered to their destination in any legal execution of the
program [2]. Hence, we add to the above definition that a consistent system state is one in which every message that
has been sent is also shown to be received in the state of the receiver.

Figure 7 shows the types of inconsistencies
that checkpointing algorithms should avoid in
order to take a consistent system snapshot. In
these diagrams, checkpointing is represented
by a dashed line. The checkpointing line is
not strait because clocks of different

computing nodes are not synchronized.
Instead checkpointing is synchronized by
message exchanges, and message
transmission in asynchronous systems can take arbitrary time. When the system snapshot line crosses the process line,
the checkpoint of the process is taken.
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When a snapshot is taken as in figure 7a, message m2 will be registered as received by P2, but will not be registered as
sent by PI. This is called a received-not-sent inconsistency. Figure 7b illustrates a sent-not-received inconsistency; m3
is registered as sent by P3, but it is not registered as received by P2. This type of inconsistency applies only to systems
with reliable communication channels, since in systems that use unreliable channels message loss is allowed. The
snapshot shown in figure 7c is an example of a consistent system snapshot.

Reliable communication channels are harder to provide than unreliable channels. The guaranteed message delivery may
be provided by the hardware, by communication protocol, or by a user program. Supporting reliable communication
channels places a more stringent requirement on the checkpointing algorithm. If the checkpoints are taken on the level
relying on the guaranteed message delivery, then the checkpointing algorithm must guarantee that all the messages that
were sent were also received.

The two main requirements for the algorithm that captures a consistent system snapshot in our case are 1) the snapshot
algorithm should implement reliable communication channels. This allows using standard communication protocols
that provide guaranteed message delivery, such as TCP/IP, for inter-process communication. 2) The algorithm should
be non-blocking, since checkpoints are taken only in between agent functions.

Another concern for the snapshot algorithm is the number of required communication messages. Most algorithms
require O(n^) communication messages, where n is the number of processors in the system. This makes them
unnecessarily slow as the number of participating nodes grows.

5.2. Checkpoint Algorithm

One distinguished checkpoint server acts as a checkpoint coordinator. Each process maintains one permanent
checkpoint, belonging to the most recent consistent checkpoint. During each mn of the protocol, each process takes a
tentative checkpoint, which replaces the permanent one only if the protocol terminates successfully. Each checkpoint is
identified by a monotonically increasing Checkpoint Number (CN). Every application message is tagged with the CN
of its sender, enabling the protocol to run in the presence of message re-ordering or loss.

Each process counts the number of messages it sent and received in a srDelta (sent/received delta) variable. Every time
a message is sent, the srDelta is incremented. When a message is received, srDelta is decremented. The resulting
algorithm is presented below.

1. The coordinator process starts a newconsistent checkpoint by takinga tentative checkpoint, incrementing CN, and
broadcasting an Initiate message containing CN.

2. Upon receiving an Initiate message, a process takes a tentative checkpoint, and increments its local CN. It sends a
cvTaken message to the coordinator, including its srDelta.

If a process receives an application message with CN greater than its own, it also takes a checkpoint before
processing the message.

3. When the coordinator (root) process receives a cpTaken message from all processes (its children), and if its srDelta
is zero, coordinator (root) broadcasts a Commit message (to its children).

4. Handling late messages: when a message arrives whose CN is less than the current CN, a copy of the message is
appended to the log file of the checkpoint identified by the message CN. An Update message is sent to the
coordinator.

5. When the coordinator process receives an Update message, it increments its srDelta. If srDelta equals zero, the
coordinator broadcasts a Commit message.

Steps 4 and 5 are repeated until all messages that were sent with a given CN are also received.

6. When a process receives a Commit message, it makes its tentative checkpoint permanent and discards its previous
permanent checkpoint.



The important characteristics of this algorithm are that it is non-blocking, has a minimum storage requirements (only
one complete system snapshot is stored at all times). Its message complexity is 0(n -t- m), where n is the number of
participating processes, and mis anumber of late messages. Another important characteristic ofthis algorithm is that
it implements reliable communication channels. This is necessary for rollback-recovery in the systems relying on
guaranteed message delivery by the underlying communication layer, such as TCP/IP.

5.3. Modifying the logical network in MESSENGERS

An example of a logical network is shown in figure 8. Each link, although presented as a single structure to the user,
consists of two parts, one for each direction. If a logical link spans two daemons, such as LI, the information is
repeated on both daemons. Each link has a daemon-unique id. Every link also knows the idof its counterpart, and the
daemon address where the destination noderesides. The linkpointer is storedin two data stmctures. One data structure
is accessible from the logical node. It is the listofpointers to all the links connected to the logical node. Another data
structure is a tree, accessible from the daemon. This tree contains the pointers to all the links residing on the daemon,
sorted by the link id.

This is how these structures are used toaccommodate Messenger transfer from one node to the other. Messenger finds
the link it wants to traverse from the link list ofits current logical node. From the link information Messenger knows on
what physical machine the destination node resides, and the id of the link on the destination daemon. Messenger is
transferred to the destination daemon, searches the link by the link id in the daemon link tree. From the link information
Messenger acquires the pointer to the destination logical node.

Lets look at how Messenger builds a logical network. Creation of the logical link can be broken into three steps as
illustrated on figure 9a. Inthe first step a link data stracture iscreated on the first daemon and daemon-unique link idis
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^^urkinje| |No^uchi| Da^in ^
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weight; 10

Purkinje Noguchi Darwin Purkinje Noguchi Darwin

Purkinje Route

Figure 8



assigned to it. New link is registered in the daemon link tree,
but not in the node a link list. After this operation link can
be followed to node a, but not from it, as indicated by the
arrow. A star above the link indicates on which daemon
changes are made in this step.

3)

In step two a Messenger is transferred to the destination
daemon, carrying id of the link created in step 1. Messenger a) create link operation b) delete link operation
creates a new link with a daemon-unique link id. This link is Figure 9
registered both in the daemon link tree and node b link list.
The value of the link id created in the step 1 is assigned to the destination link id field of the new link. After this
operation, link can be traversed from node b to node a.

In the third step a message is sent to the daemon, host of the node a, carrying the id of the link created in the step 2.
As the destination link id field of the first link is updated, the link is added to the node link list so that Messengers can
traverse this link from node a to node b.

Delete operation is also done in three steps, as illustrated in figure 9b. In the first step a link is disconnected from the
logical node, so that Messengers can not traverse it from a to b. In the second step the second link is completely
destroyed. In the third step a message is sent to the host of a that destroys the first link.

5.4. Handling logical network modiHcations in checkpointing

As create and delete operations are not atomic; they might not be completed in a single checkpoint. This may lead to a
system with inconsistent logical network.

Example 1: in figure 9a node a is created, node b is created, and checkpoint is taken. CN is incremented. Message
is sent to the first daemon to create the link from a to b. Since message comes with increased CN, it will force the
first daemon to take a checkpoint before processing the message, and the link from a to b will not be included in
the checkpoint.

This can be avoided by not incrementing the CN of the message sent from b to a. This, however, introduces
another problem. In the checkpointing algorithm there is a sent-received delta (srDelta) counter. When a message is
sent out, srDelta is incremented, when the message is received srDelta is decremented. Then the srDeltas of all
processes added together, and if the sum equals to zero, checkpoint is committed. Since now messages with the old
CN can be sent even after checkpoint is taken, there is no way to say when checkpoint can be committed, as illustrated
in the following example.

Example 2: in figure 9a node a is created, node b is created, and checkpoint is committed before step 3 is made.
One computer fails and the system is restarted from the last committed checkpoint, which does not have a link from a
to b.

The checkpoint is not committed unless the number of the reported sent messages equals to the number of the reported
received messages. We can use this fact to ensure that creating and deleting logical links and nodes is finished in the
same checkpoint where it was started. The message leaving the daemon to create a new link or a new logical node
increments srDelta not by one, but by two. When it is received by the other daemon, srDelta is decremented only by
one. The last count is saved for the update message sent in step 3. This message does not increment srDelta of the
sender daemon, but decrements the srDelta of the receiving daemon. This scheme guarantees that link creation is
started and finished in the same checkpoint interval.

The only logical links that are saved in checkpoints are the ones connected to the logical nodes. This means that the
delete link operation does not cross with the checkpointing on the first daemon, since link is disconnected from the
logical node in the first step of the protocol, and therefore it is not saved. This means that message sent from b to a
does not affect the saved logical network, and does not need to have any particular CN. Because of this fact we dont
need a special counting in delete operation; each Messenger counts as one on sending and receiving daemons, and all
other messages are ignored in counting.

3)



Messengers have the ability to modify the logical network during the system execution. There are three ways
Messengers can modify the logical network. Messengers can create logical links and logical nodes. Messengers can
destroy logical links and nodes, and Messengers can modify logical link and node information, such as link names and
weights. Because Messengers can arrive after a checkpoint is taken, these changes need to be reflected in the
checkpoint. When such a Messenger that modifies logical network arrives, the appropriate information is appended to
the checkpoint. This information includes the id of the node or link, and operation code that needs to be performed.
These operations include add node, add link, remove node, remove link, modify node, and modify link. Figure 10
summarizes how create and delete operations are handled. Last column specifies what additional information is
appended to a checkpoint.

step send 1count rcvdHate message step isend count rcvdjiate message
1) 2! 0 1 1) "T 1 Oi

2) of 1 add node and/or 1 2) i 0 lldeiete node and/or

3) o! 1 add link ! 3) 1 0 Of •

Create operation
Figure 10

Delete operation

6. Concurrent Checkpointing

With many benefits of taking checkpoints in between Messengers functions there is a drawback: if an agent is executing
a long function, checkpointing will not proceed to the next stage until the function is completed. This does not cause
any additional delay to the main computation, because a non-blocking snapshot algorithm is being used, but it prolongs
the time needed for checkpointing to commit. This limits the frequency with which system snapshots can be taken,
reducing the usability of the rollback-recovery mechanism.

To deal with this problem, the checkpointing protocol can be made concurrent-, multiple checkpointing protocols can be
active at the same time. Concurrent checkpointing does not speed up the time it takes for the individual checkpointing
protocol to complete, but it removes the limitation on how often checkpoints are initiated. In the following subsections
we present a mechanism implementing concurrent checkpointing with the algorithm presented in section 5. Section 6.1.
and 6.2. present the implementation of concurrent checkpointing. Section 6.3. presents a proof of correctness, and
section 6.4. discusses the benefits of concurrent checkpointing in more detail.

6.1. Checkpointing States

Each process (daemon) maintains a tree of checkpoint structures shown in figure 11, one for each checkpoint in
progress. As soon as the system execution starts, the first s_checkpoint structure is created. There are four distinct
states of the checkpointing protocol that require different actions. When s_checkpoint structure is created, the
checkpointing protocol is in the Initial state. In this state the work of the checkpointing mechanism is to count the

struct s_checkpoint{
int CN; // Checkpoint Number
int srDelta; // Sent/Received delta counter

int state; // Initial, In Progress, Complete, Committed
};

Figure 11

difference between sent and received messages. When the checkpointing protocol is initiated and daemon takes a
checkpoint, the state of the checkpointing protocol is updatedto In Progress. In this state, a process increments its CN
and appends all the arrivingmessages with the CN smaller than the currentprocess CN to the checkpoint, as described
in the next section. When the coordinator announces that the system sum of the srDeltas is zero, the status of
checkpointing is updated to Complete. If the state of the previous checkpointing is Committed, then the state of the



current checkpointing is also upgraded to
Committed and the previous s_checkpoint
structure is removed from the checkpoint tree,
and the corresponding checkpoint is removed
from the stable storage. When the checkpoint
state is upgraded to Committed, the daemon

checks whether the checkpoint with a higher
checkpoint number is Complete and is waiting
to be Committed. If so, the state of that

State Action

Initial Update SRC

In Progress Update SRC, add new Info to checkpoint file

Complete Walt until all previous checkpoints are committed

Committed Remove earlier checkpoint structures and fiies

Figure 12

checkpoint is also upgraded to Committed, and so on. Figure 12 summarizes the actions taken in different checkpointing
states. The differentiation between the Complete and Committed states guarantees that a checkpoint is committed only
after all the previous checkpoints are committed.

6.2. Including late messages in checkpoints

When a message with CN less than the current process CN, also calleda late message, arrives, it must be appended to
the corresponding checkpoints. Section 5.1 describes how this is done in the case when a single checkpointing
algorithm is in progress at any time. Here we address this issue in the case of concurrent checkpointing. The rule to
decide whether to append new information to the checkpoint or not is

Message with CN = a has to be appended to all checkpoints x ofthe process with current CN = b,
such that a <= X <b.

The following example provides an intuitive explanation of this solution: a message M with CN = 5 arrives at the
process with a current CN = 7. Message M needs to be included in checkpoint 5. It also needs to be included in
checkpoint 6. This is because the arrival of M is not recorded in checkpoint 6, since it was taken before the message
arrival.

6.3. Proof of correctness

Definition 1 A checkpointing protocol captures a consistent system state if for any checkpoint taken, all received-not-
sent and sent-not-received inconsistencies are eliminated.

Assumption Serial snapshot algorithmcaptures a consistent system state.
Theorem 1Presentedalgorithmfor concurrent checkpointing captures a consistent system state.
Proof The received-not-sent inconsistencies are eliminated, since if a message with higher CN arrives, the checkpoint
is taken before processing the message. The sent-not-received inconsistencies are eliminated since messages with lower
CN are appended to the checkpoint and the checkpoint protocol is not complete until all the messages that were sent
before the checkpoint was taken are also received. This follows since a checkpoint is not committed until all the
previous checkpoints are also committed.

6.4. The impact of concurrent checkpointing
To demonstrate the impact of the concurrent checkpointing
we created a synthetic application mnning on six machines
so that agents executing on five machines (PI, P2, P3, P4,
P5) invoke functions that are generally longer than the
interval with which checkpointing is initiated. The sixth
machine (PO) executes agents whose functions take exactly
checkpointing interval to execute. For simplicity, we
assume that PO is a coordinator daemon that triggers the
checkpointing. We use only one such daemon because any
other daemons executing short agent functions would
behave exactly the same as PO. For this example we also
disregard network latency.

Figtire 13 shows checkpoints taken with the serial scheme.
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The rectangles represent agent functions. The time line
goes down so the agent functions executed on the same
processor are in the same column. Dashed lines represent
checkpoints. Even though checkpoints can be initiated
after each task on the processor PO, there are only four
checkpoints taken. After the first checkpoint is triggered,
the checkpoint can not proceed until all the processes see
the checkpoint request, which means they have to be out
of the agent functions. As soon as the last daemon replies,
P4 in this case, checkpoint is committed and a new one
can be initiated. The table in figure 13 shows the agent
functions that were included in each checkpoint on every
daemon.

Figure 14 illustrates what happens in the case of
concurrent checkpointing, when the next snapshot
algorithm can be initiated independently of all the
previous runs of the algorithm. Concurrent checkpointing

PO PI P2 P3 P4 P5 CPl^PO iPI P2 iP3 P4 P5

i! ii 1 1 1 1: 1

2 2 1 1 2 f 1
3i 3! 1 2 2 l! 2
41 4i 2 2 2 f 2

5i 5i 2 3 2 2; 3

6i 6! 2 3: 2 21 3

71 7\ 3 3i 3 2i 4;

8: 8' 3 4 3 2 4

9! 9 3 4 4 3 5

10 10 4 4 4 3 5

If If 4 4 5 3 6

12i 12: 4 4 5 3 6

131 131 4 5 5 3: 7

145 141 4 5 5 3 7

15j 15j 4 51 5

d6

CO

Figure 14. Concurrent checkpointing

allows to collect more fine-grained snapshots than non-concurrent checkpointing. For example, checkpoint #2 in the
serial case corresponds to checkpoint #5 in the case of concurrent checkpointing. Checkpoints #2, #3, and #4 in the
concurrent checkpointing are missing in the serial scheme.

Note, that the checkpoints of theprocesses thatdidnotchange sincetheprevious checkpoint neednotbe saved again.

7. Failure recovery

In this section wediscuss issues of failure recovery. In section 7.1. we describe process merging, a feature specific to
the mobile agent systems. Section7.2. discusseshow a single point of failure is handled. Section 7.3. shows the failure
recovery algorithm supporting process merging.

7.1. Process merging

The state of the MESSENGERS daemon from the application viewpoint consists of the setof the logical nodes, logical
links, connecting these nodes, and mobile agents, doing a computation in this logical environment. Since the logical
network, from the application viewpoint, is completely independent of the physical network, it is possible tomerge the
checkpoint of thefailed process into thecheckpoint of thecoordinator as shown in figure 15.

Here the daemon processes are
identified by rectangles, logical
nodes as circles and logical links
are the lines connecting these
circles. After the daemon on PI

fails, the logical nodes d and e
are moved to P2.

Merging allows to have only one
daemon per physical node at all
times. This means that an ip
address is sufficient to uniquely
identify the daemon process in

P4

P3

PI

/I I 13/

/

1 17

P2

a) system before the failure

P4

P3

b) system after the failure

Figure 15

the system. Having one process per physical node facilitates simpler and more efficient load balancing, since balancing
between processes on the same machine need not be considered. Process merging also helps to eliminate unnecessary
interprocess communications between daemons residing onthe same physical node.
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Merging, however, can introduce imbalance into the distributed system. As shown in figure 15, after process PI is
merged into P2, P2 hosts half of the logical nodes of the system. However, logical nodes can be offloaded from the
daemon to other daemons using a similar mechanism as that used for merging. A load balancing mechanism was
developed that can move logical nodes around the system, minimizing the systems idle time. Together with this load
balancing mechanism daemon merging can be used efficiently.

In our implementation a failed daemon is always merged with the coordinator. Even though more sophisticated
strategies could be used to reduce the imbalance introduced by the failure, we choose this simple rule for its simplicity
and let the load balancing algorithm do the balancing.

7.2. Single point of failure

Both our checkpointing algorithm and recovery algorithm rely on a central coordinator. Therefore the question of
coordinator failure has to be considered. A simple rule to elect a new coordinator is to elect the one with the smallest IP
address. Each daemon has the list of all participating processes. When a daemon receives a notification that another
daemon failed, it removes it from its daemon list and selects a new coordinator independently of other daemons. Since
all daemons have information about all other daemons in the system, they all will select the same new coordinator. (We
did not consider the case when the distributed systemis split into two parts, since it is not applicableto computingon a
LAN.) This election scheme does not require the exchange of extra messages, other than notification of failure, which
is done anyway in the course of recovery.

7.3. Recovery algorithm

We assume that if a process fails, one or more processeswill detect this failure. Failure detectionis based on the quality
of the TCP/IP protocol to signal the sender when receiver is not reachable. Our recovery protocol assumes that
communication channels are reliable and obey FIFO order, which is also supported by TCP/IP.

The recovery protocol consists of two parts. In the first part a new set of live processes is determined, and all the
messages that were sent beforethe failure are eliminated fromthe system. The basicidea is that all the processes send a
message to all the other live processes in the system. After every pair of live processes exchange such messages, the
communication channels are clear of messages sent before the failure, and all participating processes know about all
live processes in the system. In the second part of the protocol the system is restarted from the previous checkpoint.
The algorithm proceeds as follows.

1. When a process is notified of unknown failure it reinitializes the daemon and broadcasts the Failure message that
includes the ip of the failed daemon and checkpoint number (CN) that needs to be loaded.

2. When a process receives the Failure message from allother processes in the system, it sends a Recover message
to the coordinator process, and loads the checkpoint.

3. Whencoordinator receives Recover message from all liveprocesses, it loads the checkpoint of the failed daemon,
appending it to its own checkpoint, and sends a LinkUodate message to corresponding daemons to update failed
links.

4. Daemons that receive LinkUodate message update corresponding links and send LinkUodateAck message to
coordinator.

5. When coordinator receives allLinkUodateAck messages, it broadcasts an Activate message.
6. After receiving Activatemessage, daemon resumes computation.

In the example on figure 15 the coordinator P2inthe third step of the protocol will send a message to P3 toupdate the
destination of the link 13. Links14 and15 willbe updated locally on P2.

This algorithm works correctly even in the presence ofmultiple failures. After every new failure the algorithm restarts
byflushing all communication channels, thereby discarding allprevious messages.
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8. Related Work

In recent years several projects have considered checkpointing in heterogeneous systems. A number of different
approaches have been proposed. The Dome distributed system [19] uses the SPMD model for application
parallelization. The program is organized as a loop. In their approach checkpoints are taken automatically at the
beginning of the loop. This avoids saving the program counter and the stack. Another method implemented in Dome is
to use a preprocessor to insert extra statements into the code, to save the program counter and the stack. This approach
has some limitations: the user is responsible for saving C++ variables that are in the scope at the time of a checkpoint.

A checkpointing library was developed by Silva, Veer, and Silva [20]. In their approach the user is responsible for
specifying the data that has to be included into checkpoints. The resulting checkpoints are architecture-independent.

Another approach to checkpointing was implemented in the Charm++ system [21]. Charm++ is an object oriented
parallel language based on C++. It uses message passing between objects, called chairs. In Charm++ checkpoints are
taken only when none of the chairs are executing functions, which allows capturing the state of the chair as a set of
chair variables and a list of messages that arrived at the chair. In this respect, their approach is similar to the one
proposed in this paper. However, they used a blockingalgorithmto collect a consistentsystem snapshot.

Ramkumar and Strampen [22] proposed a source-to-source compilation to support portability. A C program is pre
compiled with the c2ftc compiler. The resulting program is instrumented with checkpointing and recoveiy code. That
program is compiled with a regular C compiler. The prototype presented in [22] is efficiently used for providing fault
tolerance to a single-process application.

A compiler-based approach for process migration was proposed by Theimer and Hayes [23]. When a process is
migrating, its state is translated into a machine-independent state. The migratory program that represents that state is
generated and compiled on the target machine. When this migratory program is run, the process is recreated.
Implementation of this approach was not presented.

The table in figure 16 summarizes the characteristics of different approaches to checkpointing. Each approach uses
different methods tooptimize the size ofcheckpoints. The application-level checkpoints (whether supported by the run
time library or not) can potentially capture the checkpoint most efficiently, since they have the most knowledge of the
applicationprogram. The price for this is applicationtransparency.

Checkpoint
type

Porta

bility
Trans

parency
Check

point
Porta

bility

Application
Support

System
Support

Consistent

system state
Examples

Application-
based

Yes No Yes All the work None Captured by
application

[24]

Run-time

library
Yes No Yes When and

what to

checkpoint

Checkpointing
routines

Ensured by
checkpoint
placement

[20,25,26]

Compiler-
based

Yes Almost Yes When to

checkpoint
None Not

implemented
[19,22,23,
27, 28]

Environment-

based

Yes Yes Yes Optional Checkpointing
supported by
the environment

Captured by
the

environment

[19,21],
this work

System-based No Yes No Optional All Not

implemented
[3,11]

Figure 16
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There has been much research in designing checkpointing algorithms [2, 3, 13-18]. However, none of these algorithms
satisfy all our requirements: algorithms [13, 15, 16] do not implement reliable communication channels. Algorithms
presented in [2, 3, 15] are blocking. Algorithm [17] relies on the assumption that all the processor clocks are
approximately synchronized, which limits the generality of these algorithms.

Several non-blocking algorithms [14, 18] require less than 0(t^} communication messages. The Kai Li algorithm [14]
performs well on multicomputers. It requires O(nlogn) messages for hypercube coiinected multicomputers and 0{n}for
mesh connected multicomputers. However, this algorithm depends on the knowledge of the process interconnection
topology, which is unusable in systems where the pattern by which processors are connected varies, as in systems
constructed by interconnecting PCs or workstations. Furthermore, this algorithm requires communication channels to
be FIFO. The Silva algorithm [18] requires only 0(n) communication messages. However, it relies on the knowledge of
fault detection latency, and message latency, which might be difficult to determine.

9. Conclusion

It was shown in [4] that mobile agent systems can be effectively used to solve general computing problems. In this
paper we investigated the rollback-recovery mechanism for systems based on the mobile agent paradigm. This
rollback-recovery mechanism can be applied in the heterogeneous environment and requires minimum modifications
for porting. Modifications are required for data marshalling between different platforms.

The proposed approach to checkpointing a single daemon process is general for the mobile agent systems, and it
captures the stateefficiently. It allows to capture thestateof theprocess transparently to the user, andsavea checkpoint
in a machine independent format, so that the process state could be reloaded on a machine with a different architecture.
The drawback of this approach is checkpointing routines are sensitive to the modifications of the distributed system
itself. Another drawbackis that the user does not have full controlof the exact time when the checkpointwill be taken.
A non-blocking snapshot algorithm and a conctirrent checkpointing technique presented in this paper compensate for
this drawback.

The daemon checkpoints consist of a set of the independent checkpoints of the individual logical nodes. This allows
merging of a failed process with a running process instead ofstarting a failed process ona separate machine. Merging
allows having only one daemon per physical node at all times. This facilitates simpler and more efficient load
balancing, and eliminates unnecessary interprocess communications between daemons residing on the same physical
node.
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