
Appeared in: Proceedings of the 20th International Conference on Distributed Computing Systems,
Taipei, April 2000.

HYDRANET-FT: Network Support for Dependable Services

Gurudatt Shenoy Suresh K. Satapati Riccardo Bettati
Department of Computer Science

Texas A&M University

Abstract

With the Internet increasingly being used as access
medium for a variety of critical services, there is a growing
need to provide fault tolerant services over internetworks,
in a completely client-transparent fashion. We present
HYDRANET-FT, an infrastructure to dynamically repli-
cate services across an internetwork and have the repli-
cas provide a single fault tolerant service access point to
clients.HYDRANET-FT uses the TCP communication pro-
tocol with a few modifications on the server side to allow
one-to-many message delivery from a client to service repli-
cas and many-to-one message delivery from the replicas to
the client. A communication channel between the replicas
provides atomicity and message ordering. A low-latency
failure estimator is used to detect failures of servers in the
system and initiate fail-over mechanisms. An implemen-
tation and measurements on a local testbed show that the
overhead of our scheme is reasonably small.

1. Introduction

The Internet is increasingly being used as access medium
for a variety of critical services, for which very high require-
ments are set on availability and reliability. Examples range
from e-commerce sites, to per-pay media servers, to infor-
mation servers in distributed mission critical systems, such
as air-traffic control systems. During live Web broadcasts
of important events, for example, the video service serving
potentially many thousands of clients with live action must
guarantee uninterrupted broadcast. Similarly, service inter-
ruptions for an on-line brokerage firm may have very seri-
ous effects. To satisfy the fault-tolerance requirements in
such systems, an infrastructure must be in place that is able
to effectively handle failures in the network and at servers
with little to no effects on clients. As service disruption can
be caused by temporary overload as well, this infrastructure
must also be able to diffuse extreme load conditions in the
network and on the servers.

The initial emphasis of services over internetworks was

merely to provide high availability (ensuring that a service
was available to clients regardless of the load). To this end, a
number of schemes were adopted, including DNS caching,
client and proxy caching, and IP-level service replication.
In case of failure of the service mid-way through a client in-
teraction however, it was left to the client (typically the user)
to seek the service again later or from a different source. Of
late, the issue of providing fault-tolerant services over inter-
networks in a client-transparent fashion is rapidly becoming
an important area, driven by a need for such services on the
Web.

In an attempt to meet these needs, a number of ap-
proaches to providing fault-tolerant distributed services on
the Internet have been proposed. Commercial solutions in-
clude clustering [2, 11], hardware support, such as usage
of dual-ported disks [3], and others. Such solutions how-
ever are susceptible to “site-disaster”, For example, the net-
work link to the cluster may fail or simply be temporar-
ily congested, rendering the whole cluster inaccessible and
disrupting the service, while nodes in the cluster are func-
tional. Protocols and related toolkits have been proposed
that attempt to create a complete environment for support-
ing fault-tolerant services, e.g., Horus [10], Isis [4], Tran-
sis [1], Consul [16], and many others. While these have
proved to be quite effective by themselves, they are diffi-
cult to deploy for large-scale applications, since they rely
on low-level interfaces and may be difficult to transparently
integrate with the Internet standard TCP/IP protocol suite.
In addition, converting to and from the native Internet pro-
tocols adds overhead, thereby affecting performance.

An infrastructure is needed that provides all the essen-
tials to deploy fault-tolerant services across an internetwork.
For this, it must provide a number of capabilities. First, it
must provideservice replicationacross geographically dis-
tributed server hosts, which in turn may be served by dif-
ferent network providers. This is needed to increase re-
siliency to failures or congestions in servers or portions of
the network. Second, it needs support foratomic multi-
casting to ensure that all servers agree on the set of op-
erations to perform on behalf of the clients. Third,mes-
sage orderingis necessary to ensure that all servers agree

on the order of events to be dispatched to the server pro-
grams. Next, alow-latency failure detectionmechanism is
needed that quickly identifies service disruptions. Such a
mechanism would then allow to quickly shut-down the mis-
behaving server, thus effectively providing a fail-stop fail-
ure behavior. This is particularly important when servers
spuriously become unavailable due to server or network
congestion. Ideally, it should be possible to temporarily
shut down servers when they cause service disruption due
to congestion, and bring them back in when the congestion
clear. Finally, and very importantly, the infrastructure must
provide full transparency to clientsin order to enable the
deployment of fault-tolerant services with a large existing
client population. This is particularly important for Web-
based services, where client programs are typically general-
purpose Web browsers, which are burdensome to extend
to incorporate proprietary protocols for access to replicated
servers or for failure recovery. Such client programs should
continue to see the expected single service access point, typ-
ically in form of a TCP connection to the server.

Additionally, such an infrastructure must be fully appli-
cation independent, making it a solution for current and
next-generation services, and must be easy to incremen-
tally shoehorn into an existing internetworking infrastruc-
ture (similar to the MBONE [9]).

In this paper, we propose an infrastructure to dynami-
cally replicate services across an internetwork while hav-
ing them provide a fault-tolerant single service access point
to clients. For service replication, we rely on our previ-
ous work on network support for large-scale service scaling
within the HYDRANET effort [6]. In this paper we describe
how to combine service replication with TCP communi-
cation service to provide fault-tolerant services in a fully
client-transparent fashion. By this we mean that a fault-
tolerant TCP connection is provided between the client and
the service, and neither the client application, nor the client
TCP stack are aware of service management, server failures,
and server recoveries.

In order to test the feasibility of our approach, we im-
plemented HYDRANET-FT, a protocol infrastructure for
fault-tolerant service replication. Similarly to HYDRANET,
HYDRANET-FT consists of two components: host servers
and redirectors.Host Serversare hosts that are specially
equiped to act as servers for replicated and fault-tolerant
services. To achieve transparent service replication, they
are able to host IP services that may be known to the out-
side world under the IP address of another host.1

To achieve fault-tolerance for TCP services, the protocol
processing on the host server is able to handle TCP commu-

1This is used in HYDRANET to achieve service scaling. Typically, the
service running on the server host is then a replica of the service running
on theOrigin Host, for example a mirror of a site of a Web server. It can
also be a scaled-down versions of the service (for example an active cache)
that runs on the host server as agent of the server on the origin host.

host

client

services

host server

redirector

Figure 1. Replicating Services in HydraNet

nication from clients to a group of replicated servers. To do
this, it synchronizes communication between the client and
the servers and provides a low-latency failure estimator to
determine server unavailability due to failure or congestion.

The location of the host servers is known to theRedi-
rectors, specially equipped routers that maintain informa-
tion about the host servers, replicated services and thos host
servers running copies of them. Redirectors detect requests
for replicated services, and direct the requests on to the ap-
propriate host servers(s) based on what the requirements of
the service are. If the service is simply replicated for scala-
bility, that is, with no fault-tolerance requirements, then the
redirector may forward the request to the “nearest” avail-
able host server with a replica running. If the service is
replicated on several host servers, and is required to pro-
vide fault-tolerant service, the redirector sends each of the
available host servers a copy of the request.

A replica-management protocol allows to dynamically
install services, or service replica, or remove them, depend-
ing on the load in the network and on the servers. It also
allows to reconfigure the system in case of failure or pro-
longed congestion of a server.

The scenario in Figure 1 gives a general idea of how the
components of HYDRANET-FT work together: The service
www.northwest.com is accessed by large groups of
users from the two ISPssouthwest.net andnorth-
east.net . Without a replication scheme, the dis-
tance from the clients innortheast.net to the server
www.northwest.com can cause increased access laten-
cies and network load. In addition, the server itself may be
overly loaded. In this example, the ISPnortheast.net
routes its traffic through a redirector, and has access to a
host server. The server atnorthwest.com installs a
replica for its Web service on the host server ofnorth-
east.net . We elaborate in [6] on how this approach helps
control the load on network and servers, and proactively dif-
fuses hot spots.

The scenario in Figure 1 also shows how a fault-tolerant
service is deployed in HYDRANET-FT. The serviceau-
dio.south.com (dark triangle) is replicated on two
hosts, of which one is a host server. Both hosts are accessi-
ble to all clients through at least one redirector. Whenever

a request to this service reaches the redirector, it gets for-
warded to both hosts. Failure detectors on the hosts inform
the redirectors about host failures and trigger a reconfigu-
ration: the redirector updates its redirection tables to reflect
the unavailability of the failed host. In this way, servers
that experience spurious unavailability (this is common dur-
ing network or server congestion) can be effectively “shut
down”, allowing for a fail-stop failure behavior.

The rest of the paper is organized as follows. Section 2
discusses work done in related areas. This includes a clas-
sification of the approaches commonly adopted to provide
fault-tolerant distributed applications. In Section 3 we give
a short overview of mechanisms for service replication in
HYDRANET. Based on this, we present in Section 4 how
we extend service replication to fault-tolerant service repli-
cation for TCP services by incorporating support for atom-
icity, message ordering, and failure detection for TCP-based
services into the protocol processing on the host servers.
Section 5 provides a number of performance measurements.
Section 6 presents the conclusion and the outlook for future
work.

2. Related Work

A number of approaches to designing fault tolerant, dis-
tributed applications have been explored. In the following
we will describe a number of such schemes and group them
according to their location within the overall system archi-
tecture.

Group Communication Toolkits. A large number of
approaches have been proposed to support fault tolerance,
load balancing, and service replication through communica-
tion subsystems that provide various forms of reliable group
communication. Such approaches typically provide process
groups and fault-tolerant multicast, and support a number of
event ordering protocols. Typically, they also support some
form of virtual synchrony. Examples of implementations
are Isis [4], Horus [10], Transis [1], Consul [16], and Totem
[17]. Unfortunately, service deployment using these toolk-
its is not easy, as they each rely on their own, low-level,
programming interfaces, which typically must be used in
both server and client programs, thus making integration of
existing client bases difficult.

Primary-Backup Systems. A number of approaches
to implement fault-tolerant services using a server replica-
tion and a primary-backup paradigm have been proposed
[5, 8, 19, 20]. The service is replicated to have one pri-
mary and one or more backups. Clients make requests to
the service by communicating to the primary. When the
primary server fails, one of the backup servers takes over in
what is called afailover. Similarly the approaches based on
group communication described earlier, the client must be
well aware of the protocol being used. It also must be aware

and maintain the identity of the current server.
Fault-Tolerant Distributed-Object Middleware. It has

been argued (e.g., [15]) that the process group abstrac-
tion provided by group communication toolkits is too low-
level for the development of distributed applications, and
should be replaced by anobject-groupabstraction. Ex-
amples of systems that integrate distributed object-oriented
technology with a fault-tolerant communication subsystem
to achieve this are Orbix over Isis and Electra [13], Goofy
[7], and Eternal over Totem [18].

3. HydraNet

HYDRANET replicates services byglobally replicating
IP addresses. A service is replicated by installing repli-
cas on one or morehost serversand have them bind to the
same set of TCP or UDP ports as the service on the origin
host.Redirectorsensure that the replicas on the host servers
are accessible under the same IP address as the origin host.
When a redirector receives an IP packet destined to a repli-
cated service, it knows the location of the “nearest” replica
of the service, which is identified by the pair of IP address
and port number. If the destination of the packet does not
appear to the redirector as a service with replica, the packet
is simply forwarded to its destination. This allows to dy-
namically, and transparently, install replicas at strategic lo-
cations (for example “near” large client populations).

IP-Redirectors. Each redirector maintains aredirector
table, which lists the transport-level service access points
(in our case pairs of IP addresses and port numbers) for
which packets must be redirected, and the host server to
which the packets must go.

When a redirector receives an IP packet, it checks the
destination IP address and port in the header against the
entries in the redirector table. If it finds a match, it for-
wards the packet to the appropriate server host. If there is
no match, the packet is simply forwarded to the origin host.
A packet is redirected to the appropriate host server bytun-
nelling it using IP-in-IP encapsulation. The destination host
server is equipped to detect tunneled packets and to forward
them internally to the service.

Host Servers. Replicas of server processes run on
host servers, which are specially equipped hosts that act as
servers-of-servers. A replicated service on the host server
runs as a replica of the server program. This server program
runs within an environment called avirtual host, which is
identified by the IP address of its origin host. A new virtual
host is created on the host server by the system call

int v_host(u_long ip_address);

which associates the currently running process with the
given IP address. Whenever the process, or any of its de-
scendants, binds a socket to a TCP or UDP port, the socket

192.20.225.20

httpd telnetd

80 23

a_httpd

80

192.20.225.20

a_httpd

80

128.32.33.109

128.142.222.80

Redirector
Origin Host

Host Server

Client A
“get object from 195.20.225.20”

Client B
“telnet to 195.20.225.20”

service(ip-addr:port)

...
192.20.225.20:80

128.32.33.109:80

...

host server

...
128.142.222.80

128.142.222.80

...

Redirector Table

Figure 2. Components of HydraNet

belongs to the virtual host associated with the process.
Whenever a socket is created, the kernel checks whether
the current process belongs to a virtual host and marks the
socket’s protocol control block appropriately. The replica
management protocol then informs the redirector about the
newly created socket on the host server, and the redirector
sets up the redirection information appropriately.

When a packet destined to a virtual host is received by
the host server, its destination IP address and port number
are compared against currently installed virtual hosts and
the ports applications are bound to. If a match is found, the
data is deposited at the appropriate socket buffer.

Figure 2 shows how the components of HYDRANET

interact. We observe from the figure that Host
128.142.222.80 is a host server. The Web service (re-
alized by thehttpd daemon) on Host192.20.225.20
is replicated on the host server, where it is realized by the
a httpd replica daemon. Whenever the process on the
host server binds to a TCP or UDP port, the host server and
the redirectors are informed, and the redirector tables up-
dated. HTTP requests (identified by destination port num-
ber 80) from ClientA are intercepted by the redirector,
which happens to be on their route, and which was informed
earlier that the nearest Web port for host192.20.225.20
is located on host server128.142.222.80 . The requests
are routed accordingly. ClientB’s requests for the telnet
service are not rerouted by the redirector, but are forwarded
to the origin host; the redirector does not have an entry for
the telnet port of host192.20.225.20 . We note that nei-
ther the clients nor the non-participating servers are affected
by this scheme.

4. HydraNet-FT

While HYDRANET effectively handles service replica-
tion and load balancing, it provides no facility to handle
server failures. This has been addressed in HYDRANET-
FT, which extends service replication by adding a fault-
tolerant TCP communication service. A TCP-based fault-

tolerant service is realized by replicating a server program
onto one or more hosts and by having all replicas bind to
the same TCP port on all the hosts. A fault-tolerant TCP
connection has a single service access point (in BSD this is
the TCP socket) on the client side, and one or more service
access points on the server side, one for each replica. The
communication subsystem in HYDRANET-FT provides or-
dered, atomic, one-to-many message delivery from client(s)
to the group of replicas, and many-to-one message delivery
from replicas to the client(s). This is accomplished by (i)
message replication at the redirectors, (ii) a primary-backup
setup on the replica side, with only the primary commu-
nicating back to the client while the backups are kept on
hot-standby, and (iii) modifications at the TCP machinery
to provide anacknowledgment channelfrom backups to the
primary for atomicity and message ordering purposes.

We realized HYDRANET-FT as a set of simple modifi-
cations to the process management and the TCP/IP protocol
stack in the FreeBSD kernel. In this section we describe
the most important aspects of the design on the Host Server
and the Redirector. We describe the light-weight synchro-
nization mechanisms between servers used to achieve reli-
able communication. Also, we give a short overview of the
replica management protocol to manage replicated servers
and their TCP ports.

4.1. Host Servers

In HYDRANET-FT, a replica of the server program for a
fault-tolerant service either operates as a primary server or
as a backup server. This mode of operation is defined during
server program startup by defining the operation mode of
the transport service access point of the server, in our case
its well-known TCP port. A TCP port can be marked as a
replicated portby means of the system call

int setportopt(port, mode,
detector-parameters);

whereport defines the port number,mode is used to in-
dicate whether the replica binding to the port is a primary
server or a backup, anddetector-parameters defines
the behaviour of the failure detector for this port. When-
ever a socket for a replicated port is created, the kernel
marks the protocol control block accordingly and initializes
the failure detector. The replica management protocol con-
tacts the nearest redirector about inserting the newly created
socket into the acknowledgement channel, which is further
described later.

4.2. Redirectors

The redirectors in HYDRANET-FT act as described in
Section 3 for services that are simply replicated. In ad-

dition, the redirector maintains information about fault-
tolerant services and their replicated ports: For each service
on a replicated port, the redirector maintains the location
of the primary server and of all the backup servers. When-
ever a datagram matches a pair of destination IP address
and port number in the redirector table, it is encapsulated
and tunnelled to the appropriate hosts, with one copy going
to the primary server and one copy to each backup server.
Redirectors are made aware of the existence of theprimary
server, and the replicas designated asbackup serversby
means of thereplica management protocol, similar to HY-
DRANET. The management of replicas in HYDRANET-FT
is further described in Section 4.4.

One goal in HYDRANET-FT was to keep the operation
within redirectors as simple as possible. It will become ev-
ident below that redirectors take no part in providing fault-
tolerant message delivery to servers or to clients, except for
providing a simple form of non-reliable multicast and for
acting as an access point for the replica management pro-
tocol. In addition, there is no need for redirectors to han-
dle messages directed from servers to clients, which makes
routing of return-paths more flexible.

4.3. Atomicity, Message Ordering, and Virtual Syn-
chrony

Atomicity and ordering of message delivery is main-
tained with the help of a one-way acknowledgment channel
between the backups and the primary. Backups are daisy-
chained along this channel as described below, starting at
the primary. While all the replicas (primary and backups)
receive the TCP data (data and flow control information)
from the client, only the primary responds to the client. In-
stead of responding, backups pass the control flow infor-
mation only to the previous server up the chain, with the
first backup passing that information to the primary. For
convenience, we haveS0 denote the primary server, and
S1; : : : ; SN theN backup server, as they appear in the daisy
chain.

Figure 3 illustrates this with a simple system of a primary
serverS0 with two backup serversS1 andS2. Packets from
clients to the replicated server are detected at the redirector,
which sends one copy of the packet each to the three servers
S0, S1, andS2. Only the primary server,S0, responds to the
client. The backup servers,S1 andS2, do not respond to the
client directly. Instead, they send all the relevant acknowl-
edgement information along the acknowledgement channel
to the previous server, in this case fromS2 to S1, and from
S1 to S0.

When a backup serverSi is ready to send a TCP packet
(be it a data packet, or a packet with only flow control in-
formation) it sends to the previous serverSi�1 the two flow
control fields in the TCP header of the packet: the SE-

Redirector

Primary Server (S 0)

1st Backup
Server (S 1)

ft-TCP stack 2nd Backup
Server (S 2)

Client

acknowledgement
channel

ft-TCP stack

ft-TCP stack

Figure 3. Example of a Replicated Server with
one Primary and two Backup Servers.

QUENCE NUMBER of the packet, which identifies the po-
sition in the server’s byte stream of the data in the packet,
and the ACKNOWLEDGEMENT NUMBER, which is the
number of the byte that the server expects to receive next.

Atomicity. This is achieved by synchronizing the de-
positing and retrieving of data to and from the socket buffer
using these two numbers. Atomicity of message delivery
from the client to the servers is maintained by allowing each
serverSi to deposit a Bytek from the data stream coming
from the client into the socket buffer only after an acknowl-
edgement message has been received fromSi+1 with an
ACKNOWLEDGEMENT NUMBER larger thank. (The
last backup server in the chain,SN , is free to immediately
deposit the data.) In this fashion, it is guaranteed that Server
Si puts incoming data from the client into the socket buffer
only after all serversSi+1; : : : ; SN have done so.

OnceSi has deposited the data in the socket buffer, it
forwards the flow control information along the acknowl-
edgement channel to serverSi�1. Once the primary server
S0 receives the data and the acknowledgment information
for that data from backup serverS1, it replies to the client,
and so closes the familiar TCP flow-control loop.

In a similar fashion, the outgoing data from the servers
is synchronized with the help of the SEQUENCE NUM-
BER FIELD forwarded along the acknowledgement chan-
nel. More precisely, no serverSi is allowed to send Bytek
before a SEQUENCE NUMBER larger or equal thank has
been received from serverSi+1. Again, the last backup
server,SN is free to immediately send out data from its
socket buffer. Note again that outgoing packets of backup
servers are not actually sent to clients. The acknowledge-
ment information is stripped from the packet header and
forwarded to the predecessor server along the acknowledg-
ment channel. The contents of the packet is then discarded.

We note that the acknowledgment channel does not en-
force full synchronization between the servers. At any given
point in time, the last backup serverSN can receive (and
send) up to a window full of data ahead of the primary

server. As it is the primary server to communicate with
the client, this lack of synchronization has no effect in case
of failure. As this all is handled by the TCP error control
mechanism. If the primary fails, for example, the backups
will experience transmissions after the recovery of data pre-
viously received. TCP gracefully discards this data.

Message Ordering. Message ordering within a single
connection is guaranteed by TCP sequence numbering. Or-
dering across connections to the same replicated TCP port is
assured if the acknowledgement channel provides in-order
message delivery. In the current implementation we use
a kernel-to-kernel UDP connection for the acknowledge-
ment channel, trading low overhead against lack of order-
ing across connections and against client re-transmissions
if packets on the acknowledgement channel are lost.

Failure Detection and Virtual Synchrony. If a server
fails to receive a packet, the flow control loop is broken, and
the client re-tranmits. If this re-transmission was caused by
a lost packet on a server, say ServerSi, the message delivery
to servers simply picks up where it was interrupted, that is,
with ServerSi receiving the data, and perhaps sending ac-
knowledgment information up the acknowledgment chan-
nel. If the problem persists, on the other hand, the client
keeps re-transmitting. Repeated re-transmissions are de-
tected at the servers. After some number of re-transmissions
have been detected, any server can initiate a reconfiguration
of the set of replicas. Setting the detection threshold in num-
ber of re-transmissions before action is taken is a trade-off
between detection latency and chance of “false positives”.
In addition, the thresholds should be high enough to not
interfere with TCP’s own congestion control mechanism,
which for example initiates a slow-start recovery from link
congestion after detecting a triple acknowledgment.

In general, this effective failure detection mechanism,
in combination with atomicity of message delivery as de-
scribed above, allows for a virtually synchronous reconfig-
uration of server after failures [15].

4.4. Replica Management Protocol

The architecture of the management protocol in both
HYDRANET and HYDRANET-FT is patterned after the
route management infrastructure for IP, with management
daemons running on all HYDRANET hosts and the redirec-
tors. The management daemons interact with each other
using UDP for idempotent operations and a form of reliable
UDP for the message exchanges. The daemons interact with
the kernel on the local machine through raw routing sockets.
The general operation of the replica protocol are itemized as
follows:

Creation of primary server:When a server program
binds to a replicated port on the primary server, an entry is
created in the local kernel table to notify the host. The man-

agement daemon on the primary server also sends a mes-
sage to the redirector informing it of the new primary. The
redirector updates its kernel routing tables.

Creation of backup servers:In addition to the setup pro-
cedure described above, when a backup server is created,
the redirector looks up the routing tables and sends to the
backup the IP address and port of the server ahead of it in
the acknowledgement channel.

Deletion of primary server: When a primary server
needs to voluntarily leave the HYDRANET-FT setup, the
management daemon on the server informs the redirector. If
the server is a primary, the redirector designates the backup
immediately following the primary in the acknowledgement
channel as the new primary and sends a message to it to re-
configure itself as a primary.

Deletion of backup server:When a backup server leaves,
it is eliminated from the acknowledgement channel.

Reconfiguration after a failure detection:When a server
detects a failure, it informs the redirector. Reconfigura-
tion consists of two steps: First, the failed server needs to
be identified. As a failure partitions the acknowledgement
channel, identification is simple. The failed server must
then be “shut down” by eliminating it from the set of repli-
cas and removing it from the acknowledgement channel.
If the failed server was the primary server, a new primary
server needs to be designated as part of this deleting proce-
dure. The reconfiguration is trivial in the case of a single-
backup system, in which the backup can immediately take
over as primary server.

5. Experiments

We measured the performance impact of our BSD im-
plementation of HydraNet-FT on a small testbed, which,
for measurement purposes, consists of two Pentium/120 PC
and two 486 PCs. (In this setup with antiquated equipment
we purposely used slow machines to measure the effects of
bottlenecks.) We did measurements withttcp to deter-
mine the overhead, in terms of reduced throughput, in redi-
rectors and host servers. We set one 486 PC to act as the
redirector and the two Pentiums as Primary and Backup.
Another 486 PC is client. We compared the sustained band-
width of TCP for the following four series of measurements.
(For the measurements, we turned off buffering of small
segments at the TCP sender, preventing it from batching
multiple small segments into a segment of MTU size.)

Clean: All machines run unmodified system software.
No redirection happens and no services are replicated.
These measurements act as baseline for performance com-
parison.

No Redirection:The routers and the receivers run the
HydraNet-FTmodified system software. There is no redi-
rection.

ttcp Throughput Measurements for HydraNet-FT

0

100

200

300

400

500

600

16 32 64 128 256 512 1024

Packet Size [Bytes]

T
hr

ou
gh

pu
t [

kB
yt

es
/s

ec
]

clean kernel
no redirection
primary only
primary and backup

Figure 4. Throughput measurements for
HydraNet-FT

To Primary only: Configuration is same as above. The
packets, however, are destined to a port on a non-existent
host with a replica running as Primary server on the host
server. There are no backup servers. These experiments
illustrate the penalties caused by redirection.

To Primary with single Backup:In this configuration, the
redirector multicasts packets to the Primary and the Backup
server. The resulting throughput indicates the performance
of the HYDRANET-FT protocol with a single backup.

Figure 4 depicts the throughput measurements for the
four cases. The general trend indicates that throughput rises
as the packet size increases. This is to be expected, since
for small packet sizes the TCP/IP header processing proves
to be a significant overhead. Also, beyond packet size of
MTU, the throughput drops again. This is due to the frag-
mentation of packets. From the graphs, it is evident that
the HYDRANET-FT when operating in Fault-tolerant mode
with a server and a backup offers a throughput that is not
unreasonably lower than that offered by a TCP connection
between a single server and client (as in case of the clean
kernel). A closer examination of the experimental data in-
dicates that most of the performance hits happen in form of
timeouts at the client, with successive re-transmission be-
cause of packets being dropped at the primary. In this case
it is the lengthy timeout, not the re-transmission, which af-
fects the performance. This is strictly due to our conserva-
tive modification of the TCP/IP stack, and we are confident
that the throughput can be further improved by eliminating
unnecessary timeouts and retransmissions of this form.

6. Conclusion

As long as the Web was used mostly as backbone for
data dissemination and relied on stateless servers, the idem-

potency of HTTP allowed to handle server failures by sim-
ple replication of servers and provision for some means
(naming-based or other) to redirect the request around the
failed server. Over the years, however, the Web has de-
veloped into the infrastructure of choice for a large vari-
ety of often rather complex applications. Some of these are
transaction based, for example many e-commerce systems,
and have servers maintain much state. Some others may
have long-lasting sessions, such as media streaming or data
feeders, again causing servers to keep state. Plain service
request redirection is not sufficient to recover from server
failures for these classes of applications.

Existing approaches for robust applications over con-
ventional hardware typically rely on messaging subsystems
with some support for reliable multicasting, and typically
require that client programs have these capabilities as well.
In this paper we present an infrastructure for fault-tolerant
service replication that is fully transparent to the client.
It allows to replicate a service across several host servers.
When a particular server becomes inaccessible, we rely on
the reconfiguration capability of routers and redirectors to
appropriately redirect requests to the remaining replicas of
the service.

For TCP-based services, we take advantage of the flow-
control and error-control mechanisms in TCP to provide an
accurate failure estimator (through monitoring of client re-
transmissions) and ordered atomic multicast to the service
replicas (through the window-based flow control at the two
TCP end points). The result is a very natural extension of
the service model provided by TCP: while TCP guarantees
reliable communication as long as there is a path between
client and server, HYDRANET-FT guarantees reliable com-
munication as long as there is a path between the client and
at least oneoperational server. Providing this level of fault
tolerance at TCP level is particularly interesting for two rea-
sons: First, it does not affect clients, thus allowing for de-
ployment of fault-tolerant services with a large population
of existing clients, for example Web-browsers. Second, it
builds on a familiar and simple-to-use programming inter-
face (TCP streams) both on client and server side.

We have implemented this approach to fault-tolerant ser-
vice replication as part of HYDRANET, an extension of
the BSD process management and TCP/IP protocol pro-
cessing, which allows to dynamically install replicas of
server processes across an internetwork. Requests to repli-
cated services are redirected to the replicas, and the mod-
ified TCP protocol software on the replicas takes care of
atomic, ordered delivery of packets to the socket buffers of
the server application. The same mechanisms also ensures
atomicity of many-to-one message delivery from servers to
clients. A suite of experiments indicates that the perfor-
mance (we show results of throughput measurements on the
HYDRANET testbed) of this approach is high.

A number of issues need to be further investigated in the
context of fault-tolerant services on the proposed infrastruc-
ture. We provide ordered atomic delivery to and from the
transport-level service access points of the replicated ser-
vice (i.e. the TCP socket buffers of the replica server pro-
cesses). Unfortunately, this is not sufficient to ensure event
ordering across the servers. While message delivery is in-
deed ordered, thread scheduling and dispatching may cause
messages to be processed in different order across servers.
This problem is not specific to our approach. Rather, it is
inherent in any approach that does not guarantee atomic-
ity of message deliveryandof event processing. This is a
common problem in fault-tolerant ORBs over fault-tolerant
messaging subsystems, for example [15].

While we provide effective procedures for failure de-
tection and for fail-over from the primary to the backup
servers, no appropriate mechanism is in place to allow for
transparent re-commissioning of recovered servers. This is
particularly important for temporary failures due to conges-
tion in the network or at the server. The server recovery
procedure must ensure the required level of consistency of
states at application level. In addition, in accordance with
our requirements for client transparent failure and recovery,
mechanisms must be put in place to transfer the current state
of the TCP connection(s) from the backup to the primary.
We are currently investigating the latter issue.

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. “Tran-
sis: A communication subsystem for high availabil-
ity.” Proceedings of the 22nd Annual International
Symposium on Fault-tolerant Computing, pp 76-84,
July 1992.

[2] D. Andresen, T. Yang and O.H. Ibarra. “SWEB: To-
wards a Scalable World Wide Web Server on Mul-
ticomputers.”Proceedings of the IPPS’96, pp 850 –
856, April 1996.

[3] A. Bhide, E. Elnozahy, S. Morgan, A. Siegel. “A Com-
parison of Two Approaches to Build Reliable Dis-
tributed File Servers.”Proceedings of the 11th Inter-
national Conference on Distributed Computing Sys-
tems, pp 616-623, 1991

[4] K. P. Birman and R. van Renesse, eds,Reliable Dis-
tributed Computing with the Isis Toolkit, IEEE Com-
puter Society Press, 1994.

[5] N. Budhiraja and K. Marzullo. “Highly-Available Ser-
vices using the Primary-Backup approach.”Second
Workshop on Management of Replicated Data, pp 47-
50, 1992

[6] H. Chawla, G. Dillon and R. Bettati, “HYDRANET:
Network support for scaling of large-scale services,”
Journal of Network and Computer Applications, to ap-
pear.

[7] P.Y. Chevalier. “A Replicated Object Server for a
Distributed Object-Oriented System,”Proceedings,
Eleventh Symposium on Reliable Distributed Systems,
pp 4-11, 1992.

[8] P. Chundi, R. Narasimhan, D. Rosenkrantz, and S.
Ravi. “Using Active Clients to Minimize Replica-
tion in Primary-Backup protocols.”Proceedings, 1996
IEEE Fifteenth Annual International Phoenix Confer-
ence on Computers and Communications, pp 96-102,
1996

[9] S. Deering and D. Cheriton. “Multicast Routing in
Datagram Internetworks and Extended LANs.”ACM
Transactions on Computer Systems, 8 (2), 85-110.

[10] R. Friedman and R. van Renesse. “Strong and weak
virtual synchrony in Horus.”Proceedings, Fifteenth
Symposium on Reliable Distributed Systems, pp 140-
149, 1996.

[11] R. Gamache, R. Short, and M. Massa. “Windows NT
Clustering Service.”Computer Magazine. Vol. 31(10),
Oct 1998, pp 55-62.

[12] M. Hayden. “The Ensemble System.” Cornell Univer-
sity Technical Report TR98-1662, January 1998.

[13] S. Landis and S. Maffeis, “Building Reliable Dis-
tributed Systems with CORBA,”Theory and Practice
of Object Systems, New York: John Wiley, April 1997.

[14] J. Lyon. “Tandem’s Remote Data Facility.”COMP-
CON Spring 90, Digest of Papers, pp 562-567, Feb
1990.

[15] S. Maffeis and D. Schmidt. “Constructing Reliable
Distributed Communication Systems with CORBA.”
IEEE Communications Magazine, February 1997, pp
56-60.

[16] S. Mishra, L.L. Peterson, and R.D. Schlichting. “Con-
sul: A Communication Substrate for Fault-Tolerant
Distributed Programs.”Distributed Systems Engineer-
ing Journal, 1, 2, (Dec. 1993).

[17] L. E. Moser, P. M. Melliar-Smith, A. Agrawal, R. Bud-
hia, A. Lingley-Papadopoulos, and T. Archambault.
“The Totem System.”Proceedings of the Twenty-Fifth
International Symposium on Fault-tolerant Comput-
ing, pp 61-66, 1995.

[18] L. E. Moser, P. M. Melliar-Smith and P. Narasimhan,
“Consistent Object Replication in the Eternal System,”
Theory and Practice of Object Systems, vol. 4, no. 2
(1998).

[19] L. Wang, W. Zhou. “Primary-Backup Object Repli-
cations in Java.”Technology of Object-Oriented Lan-
guages, Proceedings, pp 78-82, 1998.

[20] H. Zou and F. Jahanian. “Real-Time Primary-Backup
(RTPB) Replication with Temporal Consistency Guar-
antees”,Proceedings, 18th International Conference
on Distributed Computing Systems, pp 48–56, 1998.

