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Abstract 
This paper indicates that a scalable fault-tolerant name ser-

vice can be provided utilizing an overlay network and that 
such a name service can scale along a number of dimensions: 
it can be sized to support a large number of clients, it can al-
low large numbers of concurrent lookups on the same name or 
sets of names, and it can provide name lookup latencies meas-
ured in seconds.  Furthermore, it can enable updates to be 
made pervasively visible in times typically measured in sec-
onds for update rates of up to hundreds per second.  We ex-
plain how many of these scaling properties for the name ser-
vice are obtained by reusing some of the same mechanisms 
that allowed the underlying overlay network to scale. Finally, 
we observe that the overlay network is sensitive to bandwidth 
and CPU limitations. 

1. Introduction 
Name services [1, 13, 12] are widely recognized as being 

one of the key building blocks for distributed applications.  In 
their most general form, they allow clients to present a name 
and obtain a set of data associated with that name. 

Our interest in scalable name services stems from the Her-
ald project’s effort to build an Internet-scale event notification 
service [3].  Such an event notification service requires an 
Internet-scale name service to manage the name space for its 
event topics.  The Overlook name service is designed to fill 
this role. 

Furthermore, such a name service requires two features not 
found in traditional large-scale name services.  One require-
ment is that updates to the name space must become globally 
visible relatively quickly (in seconds rather than hours or 
days).  We want to enable applications to dynamically gener-
ate or change event topic names’ contents on the fly and then 
use them almost immediately thereafter. 

Another requirement is that the name service be able to 
handle high variations in the popularity of various parts of the 
name space and high variations in the lookup request rates 
made to various parts of the name space.  In other words, the 
name service must support “flash crowds” that suddenly focus 
on one or a few names—perhaps only briefly—that were never 
before of interest. 
Although these requirements stem from our focus on Internet-
scale event notification, we believe that they represent capa-
bilities that would be generally useful.  Hence we present 
Overlook as a general name service design rather than one that 
is specific to just event notification services. 

1.1 Use of Overlay Networks 
Existing scalable name services, such as DNS, tend to rely 

on fairly static sets of data replicas to handle queries that can-
not be serviced out of caches on or near a client.  Unfortu-
nately, static designs don’t handle flash crowd workloads very 
well.  We want a design that enables dynamic addition and 
deletion of data replicas in response to changing request loads.  
Furthermore, in order to scale, we need a means by which the 
changing set of data replicas can be discovered without requir-
ing global changes in system routing knowledge. 

Peer-to-peer overlay routing networks such as Tapestry 
[24], Chord [22], Pastry [18], and CAN [15] provide an inter-
esting means of achieving the desired design.  Such networks 
organize a collection of cooperating hosts so that they can 
route messages among themselves in the face of node and 
network link failures while maintaining only relatively small 
overlay routing tables and scaling to large numbers of partici-
pant nodes. 

More interestingly for our work, these networks can be em-
ployed to implement the equivalent of a distributed hash table.  
Furthermore, replicas of hash table entries can be created 
along the queries’ routing paths such that they can be found 
without requiring global state changes.  Thus, query loads can 
be diffused both by distributing table entries among multiple 
nodes and by replicating popular entries along the routing 
paths that are followed to find the “master” copy of a table 
entry. 

1.2 Peer-to-Peer or Not? 
The use of overlay networks has become closely associated 

with the idea of peer-to-peer computing.  Such systems take 
advantage of the ability to place content anywhere among co-
operating nodes.  However, as [20] makes clear, not all peers 
are equal.  In that study, among other results, we see that the 
median peer connection time was only about an hour, that 
downstream bandwidths tend to be in the range of 56Kbits/s to 
10Mbits/s, and that the upstream bandwidths are often a factor 
of 5-10 times worse than that. 

As we discuss in our experimental results section, we found 
that the scalability of our peer-to-peer server system is sensi-
tive to both the network bandwidth provided among the par-
ticipating server nodes and the CPU processing rate of those 
nodes. Because of this, Overlook’s design targets a setting of 
managed server machines connected by high-speed network 
links rather than one of arbitrary client machines.  An example 
of such a setting is the Akamai “edge computing” model, in 
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which server machines are spread among ISP data centers 
throughout the world. 

Overlook runs peer-to-peer routing algorithms among name 
server nodes, but assumes that each name service client will 
separately connect to some server node and use it as a proxy 
for its requests.  Thus, clients do not participate in the peer-to-
peer system themselves and our design can be viewed as being 
peer-to-peer among the server nodes but not end-to-end to the 
client nodes. 

In the remainder of this paper we present design require-
ments in Section 2, describe the design of the Overlook scal-
able name service in Section 3, and present and discuss ex-
perimental results obtained for Overlook via simulations in 
Section 4.  Section 5 reviews related work, while Section 6 
discusses future work and Section 7 presents a summary of our 
work and draws several conclusions. 

2.  Design Requirements 
2.1 Desired Functionality 

Overlook’s goal is to provide an Internet-scale hierarchical 
name space with the following functionality: 
• Directories can contain both (name, value) pairs and names 

of subdirectories. 
• Clients can look up a value stored in the name service by 

presenting the fully-qualified directory name and a name 
within that directory whose value is to be retrieved. 

• Directories can be updated by modifying or deleting an 
existing (name, value) pair, adding a new (name, value) 
pair, adding a new subdirectory, or deleting an existing 
subdirectory. 

• Clients can enumerate a directory’s contents.  An enumera-
tion returns an unordered list of directory-relative names, 
one per directory element. 

2.2 Scalability, Performance, and Availability 
The applications we intend to use Overlook for require the 

following performance and availability characteristics from it: 
• The service should scale to allow many millions of clients 

to query and update the namespace during the course of 
each day.  Scalability should be achievable by simply add-
ing more servers. 

• Queries against a given (name, value) pair should complete 
within less than a second, even when unavailable in a cli-
ent’s local cache.  The popularity of any given (name, 
value) pair or directory should not affect the time required 
for queries against that (name, value) pair or directory, ex-
cept during brief transient periods when their popularity is 
drastically changing. 

• Directory updates should typically be visible to all clients 
within a short period of time, such as a few seconds. 

• The service should be able to execute hundreds of thou-
sands of queries per second against a single directory or 
(name, value) pair.  (100,000 lookups/second corresponds 
roughly to having everyone on the planet query a particular 
directory or (name, value) pair once during a single day.) 

• The service should be able to execute hundreds of updates 
per second against a single directory or (name, value) pair.  
(100 updates/second corresponds to having a directory of 

all machines in a company the size of Microsoft—about 
100,000 machines—and having each machine update its 
entry once every 15 minutes.) 

• The service should be able to survive the failure of any f 
machine nodes with no loss of data, where f is a pre-
specified value. 

3. Scalable Name Service Design 
In this section we present the design of Overlook, a scal-

able distributed name service built on top of a peer-to-peer 
overlay routing network, such as Pastry.  We first give a brief 
overview of salient aspects of Pastry and describe how we 
exploit its various characteristics to obtain both generalized 
load diffusion as well as flash crowd support.  We then de-
scribe how to deal with network congestion, how to effect 
updates that will become globally visible quickly, and how to 
obtain fault tolerance against server node failures. 

3.1 Brief Introduction to Pastry 
The properties of peer-to-peer overlay networks, such as 

Pastry, that make them attractive for building a scalable name 
service are: 
• They provide a scalable general-purpose routing mecha-

nism that can route messages between participants in the 
system. 

• They provide a fault-tolerant routing. 
• They enable placement of application-level services at 

overlay routing nodes. 
Paraphrasing from the published literature: Pastry forms a 

secure, robust, self-organizing overlay network on top of an 
underlying network such as the Internet, an organization’s 
Intranet, or a data center’s local network fabric.  Each Pastry 
node has a unique, 128-bit nodeId and the set of existing 
nodeIds is uniformly distributed.  Nodes can select suitable 
nodeIds by, for instance, taking a secure hash of their public 
key or IP address.   

Destinations in Pastry are designated by means of 128-bit 
keys. Given a message and a key Pastry reliably routes a mes-
sage to the Pastry node with the nodeId that is numerically 
closest to the key, among all live Pastry nodes.  Thus, to im-
plement a distributed hash table on top of Pastry involves stor-
ing each table entry on the Pastry node that is numerically 
closest to the hash key associated with the entry.  Table entries 
are found by routing request messages via the hash key of each 
desired entry. 

Pastry overlay networks are designed to be scalable.  Rout-
ing is implemented by sending a message to another Pastry 
node that is numerically closer to the destination than the cur-
rent one.  Each node maintains a routing table whose entries 
are selected so that the expected number of routing hops to 
reach a final destination is O(log N) in a network consisting of 
N nodes.  By selecting routing table entries in a manner that 
also reflects network topology considerations, Pastry is able to 
route messages in a manner that mostly avoids sending mes-
sages through far-away nodes of the network.  Furthermore, 
the routing tables required in each Pastry node are small, hav-
ing O(log N) entries, where each entry maps a nodeId to the 
associated nodeId’s IP address. 
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Pastry routing is also robust in the face of node failures.  
With concurrent node failures, eventual delivery is guaranteed 
unless l/2 nodes with adjacent nodeIds fail simultaneously (l is 
a configuration parameter with typical value 16). 

Finally, an important feature of Pastry that we take advan-
tage of is that each node along a message’s route passes the 
message up to a registered application.  The application can 
perform application-specific computations related to the mes-
sage and then inform the underlying Pastry layer whether or 
not to continue routing the message onward to its intended 
final destination. 

3.2 Basic Design 
At its most fundamental level, Overlook employs a distrib-

uted hash table to diffuse load across a set of server machines 
that are interconnected by a Pastry overlay network.  Table 
entries are the directories of the hierarchical name space.  The 
hash key for a directory is obtained by applying a secure hash 
to its full pathname to obtain a 128-bit hash key. 

Name lookup, directory enumeration, and name update re-
quests get routed via Pastry to the server node where the rele-
vant directory resides.  Directory creation and deletion re-
quests require that messages get routed to two different nodes: 
the node hosting the parent directory and the node that will (or 
is) hosting the directory to be created or deleted. 

As mentioned in the Introduction, we avoid the issues of 
dealing with the client machines that may be connected via 
high-latency, low bandwidth network links or that may be 
unreliable or corrupt by only maintaining a Pastry overlay 
network among a set of managed server machines.  We envi-
sion that these might be distributed among ISP data centers 
around the “edge” of the Internet or aggregated within one or a 
few “mega-service” data centers. 

All Overlook server machines register themselves with 
DNS.  Clients interact with Overlook by finding an Overlook 
server machine via DNS and then sending requests to the se-
lected server.  Servers thus contacted act as proxies for client 
requests, forwarding them into the Pastry overlay network and 
subsequently relaying response messages back to the clients. 

Clients can either randomly select an Overlook server from 
those registered in DNS or they can attempt to select one that 
is “nearby” if they have a means of gauging network distances, 
for example as Akamai’s software does.  If a client happens to 
pick a server that has crashed since it registered itself with 
DNS, then the client simply picks another one. 

Overlook assumes the existence of client-side caches but 
permits name entries to be cached for only short durations so 
that updates can become visible quickly.  In particular, unless 
a name’s creator specifies a longer caching timeout value, it 
will be cached for only one second before being discarded. 

3.3 Handling Popular Directories 
A distributed hash table can diffuse the load of managing 

multiple directories across multiple server machines.  How-
ever, it cannot diffuse the load directed at individually popular 
directories.  For this we need replication. 

Caching popular directories and/or their entries can provide 
the desired load diffusion if updates are not required to be 
quickly visible.  However, if they are, then caches will have to 
timeout their contents quickly.  This is all right if the average 

period between updates is comparable to the cache timeout 
interval.  However, if updates occur significantly less fre-
quently than cache invalidations then it is better to “push” 
updates rather than “pull” them.  Hence Overlook employs a 
replication scheme in which replicas are kept up-to-date by 
means of update notifications. 

Directory replicas are placed along the most congested Pas-
try routing paths leading to the “root” node for a directory so 
they will be encountered automatically by name lookup and 
directory enumeration requests.  To do this, each server keeps 
track of the request rate for each directory of which it hosts a 
copy—either as a root instance or as a replica.  The request 
rate is furthermore tracked according to which nodes the re-
quests came from on their most recent routing hop. The nature 
of the Pastry routing scheme is such that requests only arrive 
from about log N different forwarding nodes, hence the storage 
costs of tracking this information are minor. 

When a server node detects that the total request rate for a 
directory it is hosting exceeds a particular threshold, it initiates 
the creation of a new replica of the directory.  Overlook does 
this by selecting the incoming forwarding node that has the 
highest recorded request rate associated with it and sending 
that node a create-replica request message.  Once the request 
has been accepted, the server node records the fact that it has 
created a new child.1 This information will be used to imple-
ment the update propagation scheme described in Section 3.5. 

One could imagine selecting a replica candidate node based 
on both the above-described request rate criteria as well as its 
current CPU load.  We have not explored this alternative yet, 
in part because it requires maintaining distributed state infor-
mation in an up-to-date manner, whereas the request rate in-
formation can be maintained locally. 

As mentioned, directory replicas are encountered automati-
cally by name lookup and directory enumeration requests.  
This is because the Pastry routing layer passes each message 
up to the application layer on each node that a message gets 
routed through.  When a request message is received by a node 
that hosts an instance of the directory to which the message is 
directed, the node processes the request and informs the rout-
ing layer not to forward the message any further. 

Under sustained high load conditions, a node eventually 
creates a directory replica along all the incoming forwarding 
paths to it (for a given directory).  At that point, it services 
only requests that it receives directly from clients.  For an ex-
tremely popular directory, eventually every server node in the 
system contains a replica of it and services requests to it only 
from directly connected clients. 

Server nodes discard local directory replicas when the re-
quest rate to them goes below a lower-bound threshold.  To 
discard a given directory replica, a server node must inform 
both the “parent” server node that requested the creation of the 
replica and the “child” server nodes on which the server has 
created additional replicas.  The child nodes must be informed 
that their new parent is the parent of the departing replica; the 
parent node must be told to add all the departing replica’s 
children to its own child replicas list for the given directory. 

                                                             
1 If the selected node has failed then the next most-trafficked forwarding 
node is selected and so-on. 
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3.4 Dealing with Network Congestion 
The replication scheme described in Section 3.3 works well 

if server load is the limiting resource in a system.  Network 
congestion is a second limitation on overall system capacity. 
Congestion can occur in two places: on the network links in-
terconnecting server nodes and on the links between clients 
and servers. The latter form of congestion is something that we 
cannot do much about.  However, the former form of network 
congestion can be alleviated by suitable replication of direc-
tory instances. 

To activate replication of a directory due to network con-
gestion, we require a means of detecting network congestion.  
Because server nodes act as proxies for client requests, they 
can measure the round-trip times for requests that they forward 
into the overlay network.  When round-trip times for requests 
to a given directory are observed to be larger than a given 
threshold, a server (in its capacity as client proxy) sends a 
request-replica message to the server node that replied to the 
request.  That server responds with a create-replica message 
back to the requesting node.  In this manner, replicas can be 
“pulled” to other nodes across congested network links, in 
addition to being “pushed” to other nodes from overloaded 
nodes. 

If server nodes were to request replicas immediately in re-
sponse to high observed round-trip times, many less-popular 
directories might end up getting replicated as well as the popu-
lar ones creating the network congestion.  This is because net-
work congestion affects all request traffic that is being routed 
through congested links.  To avoid this unnecessary replica-
tion, servers only initiate replica requests for directories for 
which they themselves observe high client request rates. 

3.5 Propagating Updates among Replicas 
Replicated directory management implies that updates must 

be propagated to all replicas.  Ideally, updates would be ap-
plied in a strongly-consistent manner, so that all clients would 
see identical views of the name space at any given time.  
However, the cost of maintaining strong-consistency seman-
tics across multiple replicas would be prohibitive for the num-
ber of replicas that can occur in Overlook for popular directo-
ries.  To support scalability, Overlook applies client update 
requests by default in a weakly-consistent manner.   

Clients wishing strongly-consistent update semantics can 
request them when a directory is created, but doing so will 
disable replication for that directory.  This is fine for directo-
ries whose creators know that they will only be accessed by 
limited numbers of clients.  The scalability limit for such di-
rectories will be determined by the ability of a single server 
node to process requests.  Modern machines are typically able 
to process a few thousand network requests per second.  Rec-
ognizing that hosts must process both lookup and forwarding 
traffic, it should still be possible to achieve our goal of hun-
dreds of updates per second.  Thus, in practice, all but the most 
popular directories could probably be declared to be strongly-
consistent without affecting actual client request latencies in 
any noticeable manner.  Such directories would, however, 
have to forego the opportunity of ever becoming popular. 

For weakly-consistent directories, all update requests get 
routed to the root node for a directory.  The root node forwards 

each update to all its child replicas.  These, in turn, forward 
each update to their child replicas, until eventually every up-
date propagates down the entire replica tree. 

Update messages are sent using a reliable request-response 
messaging protocol.  As a consequence, when replica nodes 
reply to update messages the sending node will know when an 
update has been successfully received, in the absence of fail-
ures.  Replicas reply to an update message after they have 
forwarded the update message to their own child replicas and 
have either heard back from those replicas or those replies 
have timed out.  Thus, after the root node for a directory hears 
a reply from each of its child replicas or has timed out, it 
knows that the update has been successfully propagated to all 
reachable replicas of the directory in the system.  If we assume 
that replicas can infer when they are unreachable and take 
themselves out of commission, the root node can at that point 
reply to an update request with an indication that the update 
has successfully propagated to all visible replicas of the direc-
tory. 

In order for the replica nodes for a given directory to detect 
that they are unreachable, they keep track of the last time they 
have heard from the directory’s parent node.  If a node hasn’t 
heard from its parent within a specified time interval, it as-
sumes the parent is unreachable and stops answering lookup 
requests, effectively taking its replica off-line.  When contact 
with the parent is reestablished, the node requests that the par-
ent send it all updates it has missed.  If too many updates have 
been missed then the parent simply sends down a copy of the 
entire directory.  For this process to work correctly, at least 
once each time interval the root node for a directory must ei-
ther forward an update or send out a “heartbeat” message. 

The timeout value that a server node should use while wait-
ing for replies from updates forwarded to child replicas must 
be a function of how deep the tree of replicas currently is be-
low that node.  The appropriate value can be determined by 
monitoring the round trip times required for successful propa-
gation of updates.  Thus, server nodes keep track of how long 
it takes for update—as well as heartbeat—replies to return 
from their children.  These times are used to dynamically ad-
just the timeout value used for waiting for future replies. 

If one—or worse yet, several—extremely popular directo-
ries must also be updated on a frequent basis, then the update 
and heartbeat message traffic in the system may become sub-
stantial.  Two things can be done to reduce the traffic should 
such a situation occur: updates can be batched together and the 
frequency of heartbeat messages emitted can be reduced.   

For a directory’s root node to be able to decide whether up-
date and heartbeat traffic should be throttled it needs to know 
how many replicas exist in the system for its directory.  This 
can be achieved by using update and heartbeat reply messages 
to roll up a summary of how many replicas exist for a direc-
tory.   

To reduce the frequency with which heartbeat messages are 
sent out requires that replica nodes be informed that they must 
increase their heartbeat timeout interval.  This can be done by 
including a timeout interval in heartbeat messages that tells 
replicas the length of the next timeout interval they should use.  
The penalty for this increase in heartbeat timeout interval is 
longer timeouts waiting for replies to update messages.  That, 
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in turn, will result in clients having to wait longer to hear that 
an update has successfully propagated to all visible directory 
replicas within the system. 

3.6 Fault Tolerance 
If we wish to tolerate f server node failures then we must 

immediately make at least f replicas of a directory in addition 
to its root node instance.  Since the Pastry overlay network 
routes a message to the live Pastry node whose nodeId is nu-
merically closest to the key value that a message is being 
routed to, the best place to put the f+1 replicas for a directory 
is on the server nodes whose Pastry nodeIds are closest to the 
key value corresponding to the directory.  With this placement, 
“fail-over” from a failed root node for a directory to the next 
closest directory replica (in Pastry nodeId space) is automatic.  
Hence routing a request message towards the root node for a 
directory is guaranteed to find the same root replica among the 
f+1 replicas regardless of which f of those replicas might fail. 

To ensure that updates are not lost as a result of root node 
fail-over, the order in which update messages are propagated 
to replicas must be the order in which fail-over would choose a 
new root node.  Also, fail-over candidate nodes must be cogni-
zant of the child replicas that the original root node has created 
so that they can reestablish contact with them after a fail-over 
has occurred.  Fail-over is detectable on a new root node by 
keeping track of relevant activity in the node’s local overlay 
routing table. 

4. Experimental Results 
In this section we present results obtained from running 

simulations of the Overlook design.  We start with an over-
view of the kinds of experiments we used to evaluate our de-
sign.  We then present basic scalability results, flash crowd 
results, and results quantifying the impact of updates. 

4.1 Experimental Overview 
4.1.1 Experimental Setup 

Our experiments used an enhanced version of the packet-
level discrete event simulator described in [4]. As well as 
modelling propagation delay on physical links, we added 
modelling of link bandwidths as well as both network queuing 
delays and delays caused by server CPU time consumption. A 
simplifying assumption we retained was that link congestion 
always causes packets to be queued rather than dropped. 

The simulations ran on network topologies generated using 
the Georgia Tech random graph generator [23]. We used a 
transit-stub model to generate the core of the network and 
attached a LAN with a star topology to each node in the core. 
There were an average of 100 nodes in each LAN and each 
node in a LAN was directly attached by a stub link to the core 
node (as was done in [4]). Name server nodes were assigned 
randomly to LAN nodes with uniform probability and Pastry 
was configured with a leaf set size of l=16, a neighborhood set 
size of 32, and b = 4. 

Our experiments were conducted on a topology with 600 
nodes in the core and 60,000 LAN nodes.  Links were simu-
lated with these bandwidths: Transit-Transit links were set to 
2Gbits/s and LAN links to 100Mbits/s.  Transit-Stub links 
were simulated with three different settings: 45Mbits/s, 
100Mbits/s, and 1Gbits/s.  Stub-Stub links (those correspond-

ing to links within ISPs) were simulated with bandwidths of 
1.5Mbits/s, 45Mbits/s, 100Mbits/s, and 1Gbits/s.  In the rest of 
the paper we shall use the following acronyms: T1 = 
1.5Mbits/s, T3 = 45Mbits/s, LAN = 100Mbits/s, and GIGA = 
1Gbits/s. 

We modeled the service load of processing an application-
level message as taking either 0.5 or 1 millisecond of CPU 
time each. 

4.1.2 Experiment Design 
We conducted a series of experiments designed to deter-

mine the performance and scalability limits of our name ser-
vice implementation.  In these experiments, we simulated cli-
ents sending requests to servers, with the requests arriving at 
randomly chosen times according to an exponential distribu-
tion with a specified mean.  We measured request service 
times from the point at which a server, acting as a proxy for a 
client, forwarded a request into the server overlay network 
until the point at which that server received a corresponding 
reply message from the server overlay network.  Thus, our 
request service times are representative of the latencies that 
clients will experience when their lookup requests miss in their 
local client-side cache.  Note, however, that our latencies do 
not include the message times required from a client to its 
proxy server and back again.  In the case where a request 
could be serviced directly on the originating server node, we 
accounted the service time to be the time required to process a 
request at the server, without any additional network message 
transmission time. 

To determine the capacity of the system, we ran simula-
tions with increasing request rates until the measured response 
times started rising noticeably.  We applied a threshold to the 
observed service times, calling runs with average service la-
tencies of under 800ms “good” and those with average service 
latencies of over 800ms “bad”.  The value 800ms was chosen 
as the breakpoint because we observed that for experiments 
not experiencing significant network congestion or server 
queuing delays, round trips would typically average less than 
700ms. For experiments experiencing significant network 
congestion and/or server queuing delays the observed service 
times would quickly cross this threshold.  

We ran successive experiments, varying the average re-
quest arrival rate for each configuration until we determined 
the boundary between “good” and “bad” runs to within a 10% 
ratio.  The resulting lower and upper bounds on request rates 
are what is shown in all the graphed figures of this paper. 
Parameter Meaning 
Stub-BW Bandwidth of Stub-Stub links 
S Server CPU time per message 
N Number of overlay network nodes 
D Number of name service directories 
R Total number of requests per second 
CPU-Rep True if CPU load-based replication on 
Latency-Rep True if latency-based replication on 
Updates True if name update traffic present 

Table 1: Experiment Parameters 

The parameters to our experiments are shown in Table 1.  
Note that N, the number of overlay network nodes, represents 
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the number of machines that are members of the overlay net-
work eligible for containing directory information.  For small 
values of D, though, not all of these nodes may actually con-
tain directory entries.  However, if replication is enabled (ei-
ther with CPU-Rep or Latency-Rep or both), even though a 
particular server may not host the primary copy of a directory 
it may contain a replica of it. 

If the Updates parameter is true, then for every 100 name 
lookup requests, a single update request will be made to 
change the value of a name, causing update traffic to all server 
nodes holding replicas of that name. 

Finally, note that a parameter one might expect—the num-
ber of clients—is absent.  Our model has clients making re-
quests to servers that are members of the overlay network, but 
the clients themselves are not members of the overlay.  In our 
experiments, we assume that client requests are uniformly 
distributed among the servers.  Therefore, for simulation pur-
poses, we have each request originate directly from the server 
where the client would have made the request.  Increasing the 
number of clients can then instead be modelled by making a 
corresponding increase to the total request rate R. 

4.1.3 Experiment Details 
Experiments are run in two phases.  The first, the warmup 

phase, lasts for five simulated seconds and linearly ramps up 
the request rate over this period from zero to the desired value 
of R by the end of the warmup period.  This phase is intended 
to inject enough work into the system to bring it closer to a 
steady state than it would be in if we started taking measure-
ments with no pending traffic. 

During the second, the data collection phase, we begin re-
cording data and run the actual experiment to determine the 
lookup request latency for the specified set of parameters.  The 
second phase runs for at least 30 seconds of simulated time.  
After this, several heuristic termination criteria are applied 
with the goal of running the experiment long enough to deter-
mine its steady-state behavior. 

We used the following termination criteria, which were de-
termined experimentally from numerous simulation trial runs:  
If the average lookup latency is above one second and rising, 
then the run is declared “bad”.  If the average latency is below 
800ms and falling, then it is declared “good”.  If the averages 
over a simulated ten second period have remained within 10% 
of one another, we assume the run has reached a steady state 
and the run is declared “good” or “bad” by comparing its aver-
age to the 800ms threshold.  Finally, if the overall average 
drops below 50ms, the run is declared “good”.  If none of 
these criteria apply, the run is continued by simulating another 
50,000 requests and then reevaluating the termination criteria. 

4.1.4 Example Experiment 
This section explains an example experiment to give the 

reader a feel for the kinds of data to be presented in the re-
mainder of the section. 

Consider an experiment with values Stub-BW=T1, D=1, 
N=100, S=1ms, CPU-Rep=False, Latency-Rep=False, Up-
dates=False.  This models traffic going to a single name ser-

vice directory that is hosted on a single node among the 100 
nodes in the overlay network, at a rate R, which we will vary.  
Replicas of the directory will not be made on other nodes be-
cause neither kind of replication is enabled. Traffic consists 
solely of lookup requests—no updates are being sent. Finally, 
the network being simulated uses T1 lines for Stub-Stub (ISP 
network) connections. 

We simulated these conditions for varying values of R, 
looking for the point at which too large a value of R causes the 
average request latency to cross the threshold of 800ms.  Table 
2 shows results for a series of experiments with these parame-
ters. 
R (Re-
quests/s) 

Re-
quests 
Simu-
lated 

Max 
Latency 
(ms) 

Avg. 
Latency 
(ms) 

Latency 
Std. Dev. 
(ms) 

Status 

500 15,995 1,072 646 234 Good 
1,000 19,140 13,988 7,164 3,842 Bad 

667 28,538 6,106 3,184 1,537 Bad 
571 31,932 1,167 668 236 Good 
615 30,876 2,753 1,514 561 Bad 

Table 2: Results for Stub-BW=T1, D=1, N=100, CPU-
Rep=False, Latency-Rep=False, Updates=False 

In this series, when the system is not overloaded (the 
R=500 and 571 “Good” runs), the average request latency is 
under 700ms and the maximum latency is a bit over one sec-
ond.  These times are due to the costs of transmitting requests 
and replies through the overlay network, the physical network 
underlying it, and invoking the name service application code 
on each overlay network forwarding hop node. Conversely, 
when the network becomes overloaded (the “Bad” runs) the 
average and maximum latency values shoot up due to network 
congestion. 

In this case, the inflection point between “good“ and “bad” 
runs, representing roughly the maximum effective request rate 
that can be supported by the system, lies between 571 and 615 
total requests per second.  Such sets of bounds on the maxi-
mum supportable request rate are the subject of all the graphed 
data in subsequent sections. 
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Figure 1: Performance of a Single Directory.              
D=1, S=1ms, no replication or updates, Stub-BW={T1,T3}. 
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4.2 Single Directory Calibration 
Figure 1 shows the results of experiments to find the load at 

which a single unreplicated directory saturates.  We placed a 
directory on a randomly chosen LAN node and accessed it 
from varying numbers of servers, searching for the request rate 
at which the lookup latency crossed the 800ms threshold.  The 
results were different for T1 and T3 stub-stub links. 

For T3 links, the directory could handle almost 1000 re-
quests per second.  At this point the server becomes CPU-
limited, as each request takes 1ms of CPU time. 

The T1 case is more interesting.  For large numbers of 
servers network effects limit the directory to handling about 
600 requests per second.  The 30 server point, where the direc-
tory could handle nearly 1000 requests per second, demon-
strates that the T1 link connecting the server to the WAN is 
not necessarily the limiting factor, since at least for this par-
ticular placement of servers, it had sufficient bandwidth to 
allow the computation to become CPU-limited.  But what the 
oscillations for small numbers of servers do illustrate is that 
for small systems, unfortunate placements of links or band-
width settings will be visible, as each link will represent a 
significant part of the total overlay network.  For large net-
works, we expect to see smoother data since the law of large 
numbers will come into play. 

4.3 Scalability Calibration 
To examine basic scalability, we ran tests in which N direc-

tories were placed randomly among the N servers of the sys-
tem.  Clients’ requests were directed randomly among the 
directories, resulting in a uniform load against all directories, 
coming from all server machines in their capacity as proxies 
for client requests.  Directories were not replicated.  These 
results are illustrated in Figure 2 and summarized below:2 
• For T1 stub network links the aggregate network capacity 

is a noticeable limiting factor.  Adding additional servers to 
the system does not appreciably increase capacity beyond 
about 20,000 requests per second. 

• Employing T3 stub network links increases system capacity 
significantly.  In this case, aggregate network capacity lim-
its system performance to a maximum of about 300,000 re-
quests per second. 

• Employing 100Mbits/s speeds for both Transit-Stub and 
Stub-Stub links increases system capacity even more.  The 
upper bound seems to be around 600,000 requests per sec-
ond.  Increasing link speeds to 1Gbits/s causes network ca-
pacity to no longer be the primary bottleneck, at least for 
system sizes of 10,000 or less. 

• Halving the CPU service time yields about twice the per-
formance in all cases except when the aggregate network 
capacity is reached.  Individual server capacity is extra im-
portant because completing a single lookup request in-
volves application-level messages being queued up and 
then processed at multiple servers.  Thus, the aggregate 
number of lookups that can be handled is only a fraction of 
the number one might expect from multiplying the number 
of machines by their raw service request capacity. 

                                                             
2 10,000 servers was the maximum sized system we could simulate due to 
computer memory limitations. 

• Employing at least 100Mbits/s links everywhere and a CPU 
service time of 0.5 milliseconds resulted in a system that 
could process about 130,000 requests per second using 
1000 servers and about 560,000 requests per second using 
10,000 servers.  Increasing the links speeds to 1Gbits/s 
does not significantly improve the performance for a sys-
tem of 1000 servers, but it does improve the capacity of a 
10,000 server system to about 690,000 requests per second. 

4.4 Flash Crowd Tests 
To test how our CPU-load-based replication scheme re-

sponds to flash crowds, we ran experiments in which all client 
traffic was directed at a single directory.  When either CPU-
load-based or latency-based replication is enabled, or both, the 
system is able to dynamically respond to hotspot overloads by 
creating additional replicas.  If demand continues to increase, 
then eventually every server machine in the system will obtain 
a local replica of the hotspot directories.  In the limit (assum-
ing no updates to the hotspot directories), the aggregate hot-
spot load capacity of the system will equal the sum of the CPU 
load capacities of all the server machines—assuming that the 
Internet capacity is sufficient to allow clients to still reach the 
server machines to make requests of them. 

Indeed, in the experiments with replication enabled but no 
update traffic present, the lookup latencies eventually dropped 
to just over 1ms—the local limit imposed by the CPU.  This is 
unsurprising because without updates, no network traffic is 
needed to maintain the effectively read-only state. 

4.5 Update Propagation Results 
Finally, we ran experiments to determine the scalability of 

Overlook when the workload includes update traffic—
meaning that the replicas are no longer read-only.  These were 
like the flash crowd tests above, except that 1% of the requests 
update the value associated with a name instead of reading it. 

Figure 3 shows the results of these tests for T1 stub links, 
combined with the T1 scaling data with no replication, as 
taken from Figure 1 for comparison purposes.  The system 
capacity scales nearly linearly until 1000 servers are reached, 
at which point the system can service a load of between a half 
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Figure 2: Scale Out Without Replication.                  
D=N, no replication or updates.  Only lower bound curves 
are shown; upper bound curves are the same at this scale.      
Stub-BW = {T1, T3, LAN, GIGA}.  S = {0.5ms, 1ms}. 
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million and a million total requests per second.  For larger 
numbers of servers, the serviceable load begins to drop. 

This behavior can be explained as follows:  Under sus-
tained high load each server eventually hosts a replica of the 
directory being queried and updated.  Consequently, each up-
date will need to be propagated to every server node in the 
system, implying a quadratic dependency on system size for 
update costs.  For system sizes up to about 1000 nodes the 
overhead of updates is overshadowed by the fact that all 
lookup requests are effectively handled locally.  Beyond repli-
cation factors of about 1000 the overhead of updates begins to 
noticeably dominate the overall responsiveness of the system.  
Thus, an important control that must be exerted by directory 
root nodes is to monitor the number of replicas existing for a 
directory and manage the rate of batched updates and heartbeat 
messages sent out accordingly. 

Whereas the overhead incurred for updates has a quadratic 
dependency on the number of replicas for a directory, the la-
tencies experienced by updating clients has a mostly logarith-
mic dependency.  Under non-overload conditions, the time 
required to propagate an update to all the replicas of a direc-
tory is determined by the time required to send update mes-
sages down and back up the directory’s replica tree. 

For a system with 10,000 server nodes, the depth of the tree 
will be at most 4, given the uniform manner in which Pastry 
routing paths are defined.  Thus, update latencies for even the 
most popular directories are observed to be a few seconds once 
replication has removed most lookup traffic and assuming that 
the update (and heartbeat) rate is throttled to avoid overloading 
the network with update traffic. 

However, under circumstances when the entire system is at 
or near its capacity—for example, in our experiments where 
we try to find the maximum effective system request rates—
the latencies experienced by update clients can be substantially 
higher.  We conclude that directory root nodes must monitor 
the update latencies they observe and be aggressive about 
throttling update and heartbeat rates whenever observed laten-
cies exceed their normal-case values. 

5. Related Work 
5.1 Traditional Name Services 

Name services are widely recognized as being one of the 
key building blocks for distributed applications.  They have a 
substantial history of use in real distributed systems.  The 
Grapevine system [1] was the first replicated distributed name 
service in regular use over a geographically distributed inter-
net.  It was designed to scale to a size of about 30 name server 
machines. 

The Internet Domain Name System (DNS) was introduced 
in November 1983 [13, 14] to replace host tables and is the 
primary scalable name service in actual use today.  Lampson 
[12] also proposed a design for a general-purpose global-scale 
hierarchical name service. 

An important factor common to both DNS and Lampson’s 
design is that they both rely on a set of root name servers that 
must be traversed to lookup hierarchical names.  These designs 
try to mitigate the load on the root servers through caching. 
[10] quantifies the effectiveness of this caching for today’s 
Internet.  In contrast, Overlook explicitly avoids having to 
traverse root servers and servers for intermediate directory 
path components when using a name. 

Like DNS and Topaz, our design replicates directories onto 
multiple servers both for availability and load spreading.  
However, while in these systems the amount of replication 
needed is determined by a system administrator and changes in 
the degree of replication are a relatively rare event, in Over-
look dynamic replication in response to offered load and/or 
network congestion is a principal feature. 

5.2 Overlay Networks and Applications 
There are several active research projects exploring scal-

able routing via general-purpose overlay networks.  These 
projects include Tapestry [24], Chord [22], Pastry [18], and 
CAN [15].  While the results presented in this paper were pro-
duced using Pastry for routing, we believe that the same tech-
niques should be usable on any of the above overlay routing 
schemes with similar effectiveness. 

Several applications have been proposed on top of general-
purpose scalable overlay routing networks.  These include the 
OceanStore storage system [11] on Tapestry, the CFS file sys-
tem [7] on Chord, the PAST file system [17] on Pastry, and 
the Scribe event notification system [4, 19] on Pastry.  In addi-
tion, Freenet [6] is an existing peer-to-peer system that pro-
vides file storage functionality similar to that of PAST and 
Chord, albeit with inexact semantics: file retrieval requests are 
not guaranteed to find the files they refer to.  All of these sys-
tems utilize the technique of hashing a content identifier to 
determine which overlay node should hold the primary copy of 
the content, just as we do for name service directories.  The 
storage systems also cache content at intermediate forwarding 
nodes to alleviate hotspots.  However, these storage systems 
are primarily intended to provide archival storage for immuta-
ble data; updates to existing data objects is not their primary 
focus. 

Overlook’s design differs from these overlay storage appli-
cations by supporting directory enumeration and by employing 
replication instead of caching so that quickly visible updates to 
stored objects can be achieved.  Our work is also the first to 

100

1,000

10,000

100,000

1,000,000

1 10 100 1 ,000 10 ,000

N  (O verlay N etw o rk N od es)

R
 (

R
eq

u
es

ts
/s

)

R ep+U pdates U pper B ound
R ep+U pdates Lower B ound

N o R ep o r U pdates U pper B ound
N o R ep o r U pdates Lower B ound

 

Figure 3: Non-replicated versus replicated scaling limits 
with 1% update traffic.  D=1, S=1ms, Stub-BW = T1, with 
and without replication. 
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address the question of what effect replication has upon the 
time it takes to make updates globally visible. 

5.3 Overlay Multicast 
One sub-problem faced by Overlook was the need to 

propagate name updates to directory replicas.  This can be 
viewed as an instance of the reliable multicast problem applied 
to directory replicas. 

There are several proposals for doing multicast using gen-
eral-purpose overlay networks.  Among them are the CAN 
multicast design [16] and Bayeux [25]. Other systems provid-
ing overlay multicast include Overcast [9], Inktomi [8], End 
System Multicast [5], and the MBONE [21]. 

6. Future Work 
Much remains to be done to fully understand how a large 

peer-to-peer system such as Overlook will behave in real life.  
We list a few of the most important topics needing additional 
exploration below. 

Given the sensitivity that our simulations exhibited to net-
work aspects such as bandwidth, the most important future 
work to do is to explore how a system such as Overlook be-
haves under a variety of different network topologies.  Part of 
this should be an exploration of the potential benefits to be 
gained from modifying a given network topology so that it is 
more suitable for a system such as Overlook.  For example, 
consider a “mega-service”-style name service, implemented by 
means of several thousand server machines residing in a single 
(or a few) data center(s), interconnected primarily by means of 
high-speed LAN or Gigabit connections.  The uniformity and 
high capacity of the network in such a setting might provide 
substantially different performance results than the Internet 
topology that we have so far been exploring.  

Another important area to explore is how systems such as 
Overlook behave under various failure scenarios, as well as 
under a variety of more heterogeneous workloads than have so 
far been simulated. 

We are also in the process of implementing Overlook on a 
testbed of several hundred machines in order to understand 
more detailed aspects of a real system.  This will give us the 
ability to carefully validate various aspects of our simulations. 

7. Summary and Conclusions 
We have presented the design of Overlook, a scalable name 

service that supports flash crowds and quickly visible updates.  
The motivation for this work was management of the event 
topic name space for an Internet-scale event notification ser-
vice, but we believe the design to be generally useful. 

Our simulation experiments lead us to believe that Over-
look can be scaled to support large loads.  For example, when 
run on a network topology that provided at least LAN-level 
bandwidths on all network links and message processing ser-
vice times of 0.5 milliseconds, a system of about 10,000 server 
nodes seems able to handle request loads on the order of 
560,000 requests per second.  However, the aggregate CPU 
overhead of processing multiple application-level forwarding 
hops per lookup request does mean that the incremental con-
tribution of each new server is much less than one might ex-
pect. 

Our dynamic replication scheme seems able to divert as 
many servers to the job of fielding requests for a popular di-
rectory as is necessary, up to the limit of all servers in the sys-
tem.  Despite this ability to handle flash crowds via dynamic 
replication, Overlook’s design is able to support the updating 
of directory entries in a manner that makes updates globally 
visible within seconds in most cases. 

Overlook’s design is based on a scalable overlay routing 
network and exploits several interesting features of such a 
network to achieve its goals.  Key among those were the natu-
ral support for distributed hash tables, the ability to dynami-
cally, and more importantly, transparently replicate directories 
without having to effect global state updates, and the auto-
matic “fail-over” behavior of the routing substrate in response 
to failed nodes. 

While the results presented in this paper were produced us-
ing the Pastry overlay design, we believe that the same tech-
niques should be usable on other similar overlay routing 
schemes with similar effectiveness. 

Other projects have proposed a variety of different applica-
tions that exploit the same features of an overlay network as 
we have to achieve different, but still similar goals.  One way 
to view our design work is as an extension of prior work that 
further illustrates the versatility of overlay networks such as 
Pastry.  These networks seem to offer a very versatile “toolkit” 
of capabilities for building a number of different behaviors 
into large distributed systems. In our case, we explored how to 
handle flash crowds while still quickly propagating updates to 
all replicas of a data object. 

Another significant contribution of our work is a first, pre-
liminary exploration of the effects of network bandwidth and 
CPU load on peer-to-peer systems under high load conditions.  
Our experimental results imply that peer-to-peer systems may 
be quite sensitive to both the detailed aspects of the intercon-
nection networks they employ as well as the CPU power of the 
machines used.  In particular, we observed that insufficiently 
provisioned network bandwidths or CPU resources can cause a 
system to fail to live up to its scaling potential.  Even within a 
purely server-to-server setting, Overlook was able to scale to 
truly large sizes only when all network links among our serv-
ers were at least LAN-speed links.   

In consequence, we chose to avoid a pure peer-to-peer de-
sign for our system because of a concern about how low 
bandwidth network links and intermittently connected, weak 
client nodes might impede the scalability of our design.  We 
speculate that highly scalable peer-to-peer systems may only 
be feasible in server-to-server settings, such as “edge of the 
Internet” data centers, rather than in settings that include client 
machines sitting behind DSL, or worse yet, 28K modem lines. 

This sensitivity to network congestion also forced us to de-
sign a replication scheme that would “pull” replicas across 
congested links as well as the more traditional method of 
“pushing” new replicas out from overloaded server nodes. 

In conclusion, we believe that peer-to-peer overlay net-
works offer a very promising way of building scalable distrib-
uted systems, such as the Overlook name service, that offer a 
variety of interesting capabilities such as efficient support for 
flash crowds and quickly visible updates.  However, we also 
speculate that these peer-to-peer systems will end up being 
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successful primarily when deployed as server-to-server sys-
tems rather than client-to-client systems because of their sensi-
tivity to the characteristics of the underlying transport net-
works and host machines on which they rely. 
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