
The Complexity of Adding Failsafe Fault-Tolerance
�

Sandeep S. Kulkarni Ali Ebnenasir
Department of Computer Science and Engineering

Michigan State University
East Lansing MI 48824 USA

Abstract
In this paper, we focus our attention on the problem of automating
the addition of failsafe fault-tolerance where fault-tolerance is
added to an existing (fault-intolerant) program. A failsafe fault-
tolerant program satisfies its specification (including safety and
liveness) in the absence of faults. And, in the presence of faults, it
satisfies its safety specification. We present a somewhat unexpected
result that, in general, the problem of adding failsafe fault-tolerance
in distributed programs is NP-hard. Towards this end, we reduce
the 3-SAT problem to the problem of adding failsafe fault-tolerance.
We also identify a class of specifications, monotonic specifications
and a class of programs, monotonic programs. Given a (positive)
monotonic specification and a (negative) monotonic program, we
show that failsafe fault-tolerance can be added in polynomial time.
We note that the monotonicity restrictions are met for commonly
encountered problems such as Byzantine agreement, distributed
consensus, and atomic commitment. Finally, we argue that the
restrictions on the specifications and programs are necessary to add
failsafe fault-tolerance in polynomial time; we prove that if only
one of these conditions is satisfied, the addition of failsafe fault-
tolerance is still NP-hard.
Keywords : Fault-tolerance, Formal methods, Program
synthesis, Program transformation, Distributed
programs

1 Introduction
We focus on the automation of failsafe fault-tolerant
programs, i.e., programs that satisfy their safety specification
if faults occur. We begin with a fault-intolerant program
and systematically add fault-tolerance to it. The resulting
program, thus, guarantees that if no faults occur then the
specification is satisfied. However, if faults do occur then
at least the safety specification is satisfied.
There are several advantages of such automation. For one,
the synthesized program is correct by construction and there
is no need for its correctness proof. Second, since we begin
with an existing fault-intolerant program, the derived fault-
tolerant program reuses it. Therefore, it would be possible
to add fault-tolerance even to programs for which the entire
specification is not available or where the existing program
is the de-facto specification. Third, in this approach, the
concerns of the functionality of a program and its fault-
tolerance are separated. This separation is known to help [1]

1Email: sandeep@cse.msu.edu, ebnenasi@cse.msu.edu
Web: http://www.cse.msu.edu/˜{sandeep,ebnenasi}
Tel: +1-517-355-2387, Fax: 1-517-432-1061
This work was partially sponsored by NSF CAREER CCR-0092724,

DARPA contract F33615-01-C-1901, ONR Grant N00014-01-1-0744, and a
grant from Michigan State University.

in simplifying the reuse of the techniques used in manually
adding fault-tolerance. We expect that the same advantage
will apply in the automated addition of fault-tolerance.
The main difficulty in automating the addition of fault-
tolerance, however, is the complexity involved in this
process. In [2], Kulkarni and Arora showed that the problem
of adding masking fault-tolerance –where both safety and
liveness are satisfied in the presence of faults– is NP-hard.
We find that there are three possible options to deal with this
complexity: (1) develop heuristics under which the synthesis
algorithm takes polynomial time, (2) consider a weaker form
of fault-tolerance such as failsafe –where only safety is
satisfied in the presence of faults, or nonmasking -where
safety may be violated temporarily if faults occur, or (3)
identify a class of specifications and programs for which the
addition of fault-tolerance can be performed in polynomial
time.
The first approach was used in [3], where Kulkarni, Arora and
Chippada presented heuristics that are applicable to several
problems including byzantine agreement. In polynomial
time, their algorithm finds a fault-tolerant program or it
declares that a fault-tolerant program cannot be synthesized.
In this paper, we focus on the other two approaches.
Regarding the second approach, we focus our attention on
the design of failsafe fault-tolerance. By adding failsafe
fault-tolerance in an automated fashion, we can simplify –
and partly automate– the design of masking fault-tolerant
programs. More specifically, the algorithm that automates the
addition of failsafe fault-tolerance and the stepwise method
for designing masking fault-tolerance [1] can be combined
to partially automate the design of masking fault-tolerant
programs. The algorithm in [1] shows how a masking fault-
tolerant program can be designed by first designing a failsafe
(respectively, nonmasking) fault-tolerant program and then
adding nonmasking (respectively, failsafe) fault-tolerance to
it. Thus, given an algorithm that automates the addition
of failsafe fault-tolerance, we can automate one step of
designing masking fault-tolerance.
In our investigation, we find that the design of distributed
failsafe fault-tolerant programs is also NP-hard. To show this,
we provide a reduction from 3-SAT to the problem of adding
failsafe fault-tolerance.
To deal with the complexity involved in automating the
addition of failsafe fault-tolerance, we follow the third
approach considered above. Specifically, we identify the
restrictions that can be imposed on specifications and fault-
intolerant programs in order to ensure that failsafe fault-

tolerance can be added in polynomial time. Towards this
end, we identify a class of specifications, namely monotonic
specifications, and a class of programs, namely monotonic
programs. Given a (positive) monotonic specification and a
(negative) monotonic program, we show that failsafe fault-
tolerance can be added in polynomial time. Finally, we
note that the class of monotonic specifications contains well-
recognized [4–6] problems of distributed consensus, atomic
commitment, and byzantine agreement.
We also argue that the restrictions imposed on the
specification and the fault-intolerant program are necessary.
More specifically, we show that if restrictions are imposed
only on the specification (respectively, the fault-intolerant
program) then the problem of adding failsafe fault-tolerance
is still NP-hard.
Organization of the paper. This paper is organized
as follows: In Section 2, we provide a few basic concepts
such as programs, computations, specifications, faults and
fault-tolerance. In Section 3, we state the problem of
adding failsafe fault-tolerance. In Section 4, we prove the
NP-completeness of the problem of adding failsafe fault-
tolerance. In Section 5, we precisely define the notion
of monotonic specifications and monotonic programs, and
show their necessity and sufficiency for adding failsafe fault-
tolerance in polynomial time. Finally, we make concluding
remarks in Section 6.

2 Preliminaries

In this section, we give formal definitions of programs,
problem specifications, faults, and fault-tolerance. The
programs are specified in terms of their state space and their
transitions. The definition of specifications is adapted from
Alpern and Schneider [7]. The definition of faults and fault-
tolerance is adapted from Arora and Gouda [8] and Kulkarni
[1]. The issues of modeling distributed programs is adapted
from [2]. A similar modeling of distributed programs in
read/write atomicity was independently identified by Attie
and Emerson [9].
Most definitions in this section are straightforward, and are
included to make the paper self-contained. A reader who is
familiar with this area can skip this section if necessary. We
ask the reader to carefully look how distribution is modeled
(cf. Section 2.2), how safety specification is specified (cf.
second paragraph in Section 2.3) and the definition of failsafe
fault-tolerance (cf. fourth paragraph in Section 2.4).

2.1 Program

A program � is a set of finite variables and a set of
finite processes. Each variable is associated with a finite
domain of values. Let �����������
	�	����� be variables of � , and
let �����������	�	����� be their respective domains. A state of� is obtained by assigning each variable a value from its
respective domain. Thus, a state � of � is of the form:��� ��� � ����	�	�� � ��� where ����� � � � �"! � �$#&% � # . The state
space of � , ')(, is the set of all possible states of � .
A process, say * , in � is associated with a set of program
variables, say +
, , that it can read and a set of variables, say

- , , that it can write.2 Also, process * consists of a set of
transitions ./, ; each transition is of the form 01�32��4���
5 where� 2 �/� � % ' (. We address the effect of read/write restrictions
on . , in Section 2.2. The transitions of � , . (, is the union of
the transitions of its processes.
In this paper, in most situations we are interested in the state
space of � and all its transitions. Hence, unless we need to
talk about the transitions of a particular process or the values
of the particular variables, we simply let program � be the
tuple

� ')(6�./(�� where '�(is a finite set of states and .7(is a
subset of 890:��2;�4���<5>=��
2;�4��� % ')(6? .
A state predicate of � is any subset of ' (. A state
predicate ' is closed in the program � (respectively, . () iff0@�A0:� 2 �/� � 5B�C01� 2 �4� � 5 % . (��0:� 2 % 'EDF� � % 'G55 . A sequence
of states,

� � 2 �4� � �
	�	�	H� , is a computation of � iff the following
two conditions are satisfied: (1) �6*I��*KJMLN�O0:��,@P����/�7,35 % .7(,
and (2) if

� �32;�/�����
	�	�	H� is finite and terminates in state �3Q then
there does not exist state � such that 01�3QR�4��5 % .7(.
The projection of program � on state predicate ' , denoted as� = ' , is the program

� '�(��<8�01��2��4���<5S�O01�
2��4���
5 % .7(UTV��2��/��� %'B?�� . I.e., � = ' consists of transitions of � that start in '
and end in ' . Given two programs, � 0XW � ' (�4. (��5 and�)Y 01W � ' Y(�4. Y(��5 , we say ��Y[Z � iff ' Y(W\' (and . Y(Z . (.
Notation. When it is clear from context, we use � and .
(
interchangeably. Also, we say that a state predicate ' is true
in a state � iff � % ' .

2.2 Issues of Distribution
Now, we present the issues that distribution introduces during
the addition of fault-tolerance. More specifically, we identify
how read/write restrictions on a process affect its transitions.
Write restrictions. Given a transition 0:�32;�4���<5 , it is
straightforward to determine the variables that need to be
changed in order to modify the state from �32 to ��� . Thus,
the write restrictions amount to ensuring that the transitions
of a process only modify those variables that it can write.
More specifically, if process * can only write the variables in- , and the value of a variable other than that in - , is changed
in the transition 0:� 2 �/� � 5 then that transition cannot be used
in obtaining the transitions of * . In other words, if * can
only write variables in - , then * cannot use the transitions in! - 0�*�� - ,�5 , where! - 0�*;� - ,�5]WU890:��2��/���
5^�C01_9`K��`ba% - ,c��`d0:��2�5eaW�`d0:����5�5/?
Read restrictions. Given a single transition 01��2;�/���
5 , it
appears that all the variables must be read in order for that
transition to be executed. For this reason, read restrictions
require us to group transitions and ensure that the entire group
is included or the entire group is excluded. As an example,
consider a program consisting of two variables f and g , and
let their domain be 8�L�� � ? . Suppose that we have a process
that cannot read g . Now, observe that the transition from the
state

� fhWiLC�4gjWiL;� to
� fhW � �/g�WiL;� can be included iff

the transition from
� fkWlL��/gmW � � to

� fIW � �/gbW � � is also
included. If we were to include only one of these transitions,
we would need to read both f and g . However, when these

2For this paper, we assume that n�oBp�qXo , i.e., r cannot blindly write any
variable. A more general case is discussed in [2]; we omit it here as this
simple case suffices for this paper.

two transitions are grouped, the value of g is irrelevant and,
hence, we do not need to read it.
More generally, consider the case where +
, is the set of
variables that * can read, - , is the set of variables that * can
write, and - , Z + , . Now, process * can include the transition0:� 2 �/� � 5 iff it also includes the transition 0:� Y2 �4� Y � 5 where � 2
(respectively, � �) and � Y2 (respectively, � Y �) are identical as
far as the variables in + , are considered. We define these
transitions as � +���� � 0�*;�+ , 5<01� 2 �4� � 5 for the case - , Z + , ,
where� +���� � 0�*;��+ , 5<01� 2 �4� � 5GW 890:� Y2 �/� Y � 5B�0 ��`I��` % + , ��` 0:� 2 5�W ` 01� Y2 5"T\`d0:� � 5;W�`d0:� Y � 5�5 T0 ��`I��`ba% + , ��` 0:� Y2 5]W `d0:� Y � 5NT"` 01� 2 5GW ` 0:� � 5�5G?
The grouping of transitions caused by the inability to read is
used in Section 4 to show that the problem of adding fault-
tolerance is NP-hard.

2.3 Specification
A specification is a set of infinite sequences of states that is
suffix closed and fusion closed. Suffix closure of the set
means that if a state sequence � is in that set then so are all
the suffixes of � . Fusion closure of the set means that if
state sequences

��� �4�;�	�[� and
��
 �/�;�.�� are in that set then so

are the state sequences
��� �/�;�.�� and

��
 �/�;��O� , where
�

and

are finite prefixes of state sequences, � and . are suffixes of
state sequences, and � is a program state.
Following Alpern and Schneider [7], we let the specification
consist of a safety specification and a liveness
specification. For the problem of adding failsafe fault-
tolerance, the safety specification is specified in terms of a
set of bad transitions that should not occur in any program
computation. I.e., for program � , its safety specification is a
subset of 8�01��2��/���
5m�)��2��/��� % ')(6? . The liveness specification
is not specified in our algorithm; we show that the fault-
tolerant program satisfies the liveness specification (in the
absence of faults) iff the fault-intolerant program satisfies the
liveness specification. Moreover, in the problem of adding
fault-tolerance, the initial fault-intolerant program satisfies
its specification (including the liveness specification). Thus,
the liveness specification need not be specified explicitly.
Since the specification is suffix closed, it is always possible
to specify the safety specification as a set of bad transitions.
For reasons of space, we refer the reader to [1] for the proof
of this claim. We also refer the reader to [1] where we show
that it is possible to convert a set of state sequences that is not
suffix closed and/or fusion closed into an equivalent set that
is suffix closed and fusion closed.
Given a program � , a state predicate ' , and a specification� ����� , we say that � satisfies � ����� from ' iff (1) ' is closed in� , and (2) Every computation of � that starts in a state where' is true is in � ����� . If � satisfies � ����� from ' and '\aWK8�? , we
say that ' is an invariant of � for spec.
For a finite sequence (of states)

�
, we say that

�
maintains

(does not violate) � ����� iff there exists a sequence of states

such that

��
h% � ����� .
Notation. Let � ����� be a specification. We use the term
safety of � ����� to mean the smallest safety specification that
includes � ����� . Also, whenever the specification is clear from
the context, we will omit it; thus, ' is an invariant of �
abbreviates ' is an invariant of � for spec.

2.4 Faults
The faults that a program is subject to are systematically
represented by transitions. A fault � for program � 01W� ' (�4. (��5 is a subset of the set 890:� 2 �/� � 5 �d� 2 �/� � % ' (? . We
use ��� � � to denote the transitions obtained by taking the union
of the transitions in � and the transitions in � . We say that a
state predicate � is an � -span (read as fault-span) of � from' iff the following two conditions are satisfied: (1) 'UD��
and (2) � is closed in ��� � � . Observe that for all computations
of � that start at states where ' is true, � is a boundary in the
state space of � up to which (but not beyond which) the state
of � may be perturbed by the occurrence of the transitions in
� .
Just as we defined the computation of � , we say that a
sequence of states,

� �32��/�����
	�	�	 � , is a computation of � in
the presence of � iff the following three conditions are
satisfied: (1) ��* �S* J L � 0:�
,@P����4�<,35 % 0:./(����[5 , (2) if� ��2��4������	�	�	H� is finite and terminates in state �3Q then there does
not exist state � such that 01� Q �4��5 % . (, and (3) _ ! � !��
L �m0@��* �A* J ! �m0:� , P�� �4� , 5 % . (5 . The first requirement
captures that in each step, either a program transition or a
fault transition is executed. The second requirement captures
that faults do not have to execute, i.e., if the program reaches
a state where only a fault transition can be executed, it is
not required that the fault transition be executed. It follows
that fault transitions cannot be used to deal with deadlocked
states. Finally, the third requirement captures that the number
of fault occurrences in a computation is finite.
Using the above definitions, we now define what it means
for a program to be failsafe fault-tolerant. We say that � is
failsafe � -tolerant (read as fault-tolerant) to � ����� from '
iff the following two conditions hold:�k� satisfies � ����� from ' , and� there exists � such that � is an � -span of � from ' and��� � � maintains � ����� from � .
Note that a specification is a set of infinite sequences of states.
Hence, if � satisfies � ����� from ' then all computations of �
that start in ' must be infinite. However, � may deadlock if
it starts in a state that is not in ' . Also, note that � is allowed
to contain a self-loop of the form 0:��2;�/��235 ; we use such a self-
loop whenever �32 is an acceptable fixpoint of � .
Notation. Henceforth, whenever the program � is clear
from the context, we will omit it; thus, “ ' is an invariant”
abbreviates “ ' is an invariant of � ” and “ � is a fault”
abbreviates “ � is a fault for � ”. Also, whenever the
specification � ����� and the invariant ' are clear from the
context, we omit them; thus, “ � -tolerant” abbreviates “ � -
tolerant for � ����� from ' ”, and so on.

3 Problem Statement
In this section, we formally state the problem of adding fault-
tolerance. During automated addition of fault-tolerance, we
begin with the fault-intolerant program, its invariant, faults
and the safety specification that needs to be satisfied in the
presence of faults. The goal is to only add failsafe fault-
tolerance to develop a program that reuses the given fault-
intolerant program. In other words, we require that any new
computations that are added in the fault-tolerant program
are solely for the purpose of dealing with faults; no new
computations are introduced when faults do not occur.

Now, consider the case where we begin with the fault-
intolerant program � , its invariant ' , specification, � ����� , and
faults � . Let ��Y be the fault-tolerant program derived from � ,
and let ' Y be an invariant of ��Y .
Since ' is an invariant of � , all computations of � that start
from a state in ' satisfy the specification, � ����� . Since we
have no knowledge about the computations of � that start
outside ' and we are interested in deriving �eY such that the
correctness of ��Y in the absence of faults is derived from the
correctness of � , we must ensure that �[Y begins in a state in' , i.e., the invariant of ��Y , say ' Y , must be a subset of ' (cf.
Figure 1).

No new transitions here New transitions added here

program

Invariant of fault-tolerantInvariant of fault-intolerant

program

Figure 1. The relation between the invariant of a fault-
intolerant and a fault-tolerant program

Likewise, to show that � Y is correct in the absence of faults,
we need to show that computations of �eY that start in states in' Y are in � ����� . We only have knowledge about computations
of � that start in a state in ' (cf. Figure 1). Hence, we must
not introduce new transitions in the absence of faults. Thus,
we define the problem of adding failsafe fault-tolerance as
follows (To obtain this problem statement, we have tailored
the problem statement in [2] to deal with failsafe fault-
tolerance.):
The Addition Problem
Given � , ' , � ����� and � such that � satisfies � ����� from '
Identify � Y and ' Y such that' Y Z ' ,��Y = ' YjZ � = ' Y , and� Y is failsafe � -tolerant to � ����� from ' Y .
Notations. Given a fault-intolerant program � , specification� ����� , invariant ' and faults � , we say that program � Y and
predicate ' Y solve the addition problem for a given input iff�)Y and ' Y satisfy the three conditions of the addition problem.
We say ��Y (respectively, ' Y) solves the addition problem iff
there exists ' Y (respectively, ��Y) such that ��Y �4' Y solve the
addition problem.

4 NP-Completeness proof
In this section, we prove that the problem of adding failsafe
fault-tolerance is NP-hard. Towards this end, we reduce 3-
SAT to the problem of adding failsafe fault-tolerance. First,
we present 3-SAT problem and then we identify the mapping
between 3-SAT and the addition problem in Section 3.
3-SAT problem.
Given is a set of literals, `[����`)�;�
	�	�	��`)� and ` Y � �` Y� �
	�	�	���` Y� ,

where ` # and ` Y# are complements of each other, and a
boolean formula � W � �GT � � T 	�	�	�T � � , where each � ,
is a disjunction of exactly three literals.

Does there exist an assignment of truth values to`e����`)�;�
	�	�	��`)� such that � is satisfiable?

Mapping 3-SAT to the problem of adding failsafe fault-
tolerance. To map the given 3-SAT formula into an instance
of the addition problem, we identify states and transitions
corresponding to each literal and disjunction. Then, we
identify the invariant of the fault-intolerant program, the
safety specification, and the value assignment to variables.
Finally, we show that the 3-SAT formula is satisfiable iff
failsafe fault-tolerance can be added to this instance of the
addition problem.
The states of the fault-intolerant program. Corresponding
to each literal ` # and its complement we introduce the
following states (see Figure 2):� ` # �` Y# �f # ��� # ��� Y# ��� # ��� Y#
For each disjunction, � , W `����k` Y 	 �K`CQ , we introduce the
following states:� �<Y,�� ��
 Y,�� � � , 	 ��
�, 	 � �<Y,�Q ��
 Y,�Q
The transitions of the fault-intolerant program.
Corresponding to each literal ` # and its complement` Y# , we introduce the following transitions (cf. Figure 2):� 0:f # P[����` # 5<��0�` # �f # 5<��0�� Y# ��� Y# 5� 0:f # P[����` Y# 5<��0�` Y# �f # 5<��0�� # ��� # 5
Corresponding to each � ,mWM`���N` Y 	 �N`)Q , we introduce the
following program transitions (Wlog, we assume that � , does
not include both ` # and ` Y#):� 0 �<Y,�� ��
 Y,�� 5<��0 � , 	 ��
�, 	 57��0 �<Y,�Q ��
 Y,�Q 5
In the reduction from the 3-SAT problem, the transition0 �
Y,�� ��
 Y,�� 5 is included iff ` � is false, and the transition
0 � , 	 ��
�, 	 5 is included iff ` 	 is true. Thus, if � , evaluates
to true then at least one of the transitions introduced for� , is not included. We choose the safety specification in
such a way that it is violated iff all three transitions that
correspond to any disjunction are included. Correspondingly,
the truth value of ` # will be decided based upon whether
the transition 0:f # P[����` # 5 is included or whether transition0�f # P[����` Y# 5 is included. We choose the safety specification in
such a way that both these transitions are not included.
Fault transitions. For each literal ` # and its complement ` Y# ,
we introduce the following fault transitions:� 0�` # ��� # 57�30$` Y# ��� Y# 5
For each disjunction � ,SW 0�`���� ` Y 	 � `CQ15 , we introduce a fault
transition that perturbs the program from state f # , L � ��� ! ,
to �<Y,�� . We also introduce the fault transitions that perturb
the program from
 Y,�� to � , 	 , and the transition that perturbs

na

1
z’
1

a

z
1 z z

i-1

i

bady
1

1

y’

a

bad

ix

bad
n ny y

i

0
a

1

x1

y’

x

an
x’

i

bad

z’
i

x’

bad n bad

n
y’
i

a
i

a
n-1

z’n

n

x’
0

a =

Figure 2. The transitions corresponding to the literals in
the 3-SAT formula

the program from
�, 	 to �<Y,�Q . Thus, the fault transitions for� , are as follows (Note that the fault transition can perturb
the program from state f # only to the first state introduced for� , .):
� 0�f # � �<Y,�� 5 and 0
 Y,�� � � , 	 5<��0
�, 	 � �<Y,�Q 5

The invariant of the fault-intolerant program. The
invariant of the fault-intolerant program consists of the
following set of states:� 8�`[��� ����� �`)�e? � 83` Y � � ����� ��` Y� ? � 83f�2�� ����� �f9�9P[��?
Safety specification of the fault-intolerant program. For
each literal ` # and its complement ` Y# , the following two
transitions violate the safety specification (cf. Figure 3).� 0 � # ��� # 5 , 0�� Y# ��� Y# 5

i
z

x i

z’
i

a
i

i-1
a

x’
i

x’ l

x k

ix’

c = xx’xj
li k

i
f

y bad< i, -1, i-1, 2 >

bad

f

< i-1, 0, i-1, 0 >

f

f

f

d’

c’
jl

d
jk

cjk

c’
ji

ji
d’

jl

< i, 0, i, ji >

< i, -1, i-1, ji >

Faults transitions
P4
P3

P2

< i, 1, i-1, 1 > y’
i

< k, 0, k, jk >

< k, 1, k-1, jk >

< i, 0, i, 2 >

< i, 1, i-1, 0 >

< i, 0, i, 0 >

< l, -1, l-1, jl >
< i, 0, i, 1 >

< i, -1, i-1, 0 >

< l, 0, l, jl>bad

P1

Figure 3. The structure of the fault-intolerant program
for a literal ��� . 4-tuples represent the values of variables���
	��	���	����

in each state.

For each disjunction � , W `�� � ` Y 	 � `CQ , the following
transition violates the safety specification (Note that only
the last program transition added for � , violates the
specification).� 0 �<Y,�Q ��
 Y,�Q 5
Observe that from state f # , the fault can perturb the program
to the state � ,�� . Now, if all three program transitions
corresponding to � , are included, the safety may be violated
by the execution of program and fault actions (cf. Figure 3).
Variables and Their Values. The fault-intolerant program
has 4 variables: e, f, g, and h. The domains of these
variables are respectively 83LC�
	�	�� ! ? , 8� � �LC� � ? , 83LC�
	�	�� ! ? , and83L���	�	������ ! � � ? . For the states introduced for the literals` # and ` Y# , the value assignments are as follows:

State/Variable name e f g h��� � � � �
��� � � � �!� �
�"� � �#� � �!� �
$ "� � � � �!� �
$
� � �#� � �!� %
&'"� � � � �
& � � � � %

For the states introduced for the disjunction � , , the variable
values are as follows (Recall that state ��Y, # (respectively, � , #)
is introduced if � , contains ` # (respectively, ` Y#).):

State/Variable name e f g h("o � � �#� �)�*� +-,.��,/�0 "o � � � � +-,.��,/�
(o � � � �)�*� +-,.��,/�0 o � � � � +-,.��,/�

Processes and read/write restrictions. The fault-intolerant
program consists of four processes, 1G���21d����143 , and 145 . The
read/write restrictions on these processes are as follows: i)
Processes 1A� and 1 � can read and write variables f and g.
They can only read variable e and they cannot read or write
h, ii) Processes 163 and 145 can read and write variables e and
f. They can only read variable g and they cannot read or write
h.
Remark. We could have used one process for transitions
of 1 � and 1 � (respectively, 1 3 and 1 5) however, we have
separated them in two processes in order to simplify the
presentation.
Grouping of Transitions. Based on the above read/write
restrictions, we identify the transitions that are grouped
together (cf. Figure 3).
Observation 4.1 Based on the inability of 173 and 145 to write� , the transitions 0�` # �f # 5<��0$` Y# �f # 5<��0 � # ��� # 5 , and 0�� Y# ��� Y# 5 can
only be executed by 1G� or 1d� .
Observation 4.2 Based on the inability of 1G� and 1d� to
write � , the transitions 0�f # PO���` # 5 and 0:f # PO���` Y# 5 can only be
executed by 163 or 145 .
Observation 4.3 Based on the inability of 1]� to read 8 , the
transitions 0$` # �4f # 5 and 0 � Y# ��� Y# 5 are grouped in 1 � (or 1 �).
Moreover, this group also includes the transition 0 � , # ��
 , # 5 for
each � , that includes ` Y# .
Observation 4.4 Based on the inability of 1 � to read 8 , the
transitions 0$` Y# �f # 5 and 0�� # ��� # 5 are grouped in 1 � . Moreover,
this group also includes the transition 0 ��Y, # ��
 Y, # 5 for each � ,
that includes ` # .
Observation 4.5 0�f # PO���` # 5 is grouped in 163 .
Observation 4.6: 0:f # P[����` Y# 5 is grouped in 145 .
For � , �b� � � ! , the set of transitions for each process is the
union of the transitions mentioned above. Now that we have
identified the fault-intolerant program, say � , as the union of
these four processes, we show that 3-SAT has a satisfying
truth value assignment iff there exists a failsafe fault-tolerant
program derived from � . Towards this end, we prove the
following two lemmas:
Lemma 4.7 If the given 3-SAT formula is satisfiable then
there exists a failsafe fault-tolerant program that solves the
instance of the addition problem identified earlier.
Proof. Since the 3-SAT formula is satisfiable, there exists
an assignment of truth values to the literals ` # , �k� � �l! ,
such that each � , , �K� * �:9

, is true. Now, we identify a
fault-tolerant program, ��Y , that is obtained by adding failsafe
fault-tolerance to the fault-intolerant program, � , identified
earlier in this section. The invariant of �eY is:
' Y W 83f 2 ��	�	��f �9PO� ? � 8�` # = literal ` # is true in 3-SAT ?

� 83` Y# = literal ` # is false in 3-SAT ?

The transitions of the fault-tolerant program �[Y are obtained
as follows:� For each literal ` # , � � � � !

, if ` # is true,
we include the transition 0:f # PO���` # 5 that is grouped in
process 163 . We also include the transition 0$` # �f # 5 .
Based on Observation 4.3, as we include 0$` # �4f # 5 , we
have to include 0�� Y# ��� Y# 5 . And, for each disjunction � , that
includes ` Y# , we have to include the transition 0 � , # ��
 , # 5 .
As an illustration, we have shown the partial mapping
when ` � W � +�� � , ` � W �ef � � � , and ` 3 W � +�� � in Figure
4.

y2

a3

x3

a2

= false2x= truex1

a0

1x

a1

= true3x

z’
3y’3y’1

z’
1

2x’

bad
2z

badbad

Figure 4. The partial structure of the fault-tolerant program

� For each literal ` # , � � � � !
, if ` # is false,

we include the transition 0:f # PO���` Y# 5 that is grouped in
process 145 . We also include the transition 0$` Y# �f # 5 .
Based on Observation 4.4, as we include 0$` Y# �4f # 5 , we
have to include 0 � # ��� # 5 . For each disjunction � , that
includes ` # , we have to include the transition 0 ��Y, # ��
 Y, # 5 .

Now, we show that the safety violating transitions are not
executed by ��Y , even if faults occur.
� Safety violating transitions related to ` # . If ` # is true

then the safety violating transition 0�� Y# ��� Y# 5 is included in�)Y . However, in this case, we have removed the state ` Y#
from the invariant of � Y and, hence, the � Y cannot reach
state � Y# . It follows that ��Y cannot execute the transition0 � Y# ��� Y# 5 . By the same argument, the transition 0�� # ��� # 5 is
also not executed in � Y .� Safety violating transitions related to disjunction � , .
Since the 3-SAT formula is satisfiable, every disjunction
in the formula is true. Let � ,SW `�� �j` Y 	 �j`CQ . Wlog, let` � be true in � , . Therefore, the transition 0 �
Y,�� ��
 Y,�� 5
is not included in ��Y . It follows that ��Y cannot reach the
state �
Y,�Q and, hence, it cannot violate safety by executing
the transition 0 �
Y,�Q ��
 Y,�Q 5 .

Since ' Y�Z ' , �)Y =�' Y�Z � =�' Y , �)Y does not deadlock in
the absence of faults, and �eY does not violate safety in the
presence of faults, ��Y and ' Y solve the addition problem.
Lemma 4.8 If there exists a failsafe fault-tolerant program
that solves the instance of the addition problem identified
earlier then the given 3-SAT formula is satisfiable.
Proof. Suppose that there exists a failsafe fault-tolerant
program ��Y derived from the fault-intolerant program, � ,
identified earlier in this section. Since the invariant of �[Y , ' Y ,
is not empty and ' Y[Z ' , ' Y must have at least one state in S.
Since the computations of fault-tolerant program in ' Y should
not deadlock, for L � � � ! � �

, every f # must be included
in ' Y . For the same reason, one of the transitions 0:f # PO���` # 5

or 0�f # P[����` Y# 5 should be in ��Y . If ��Y includes 0�f # PO���` # 5 we set` # W � +�� � in the 3-SAT formula. If �eY contains the transition0�f # P[� ��` Y# 5 , we set ` # W �ef � � � . Now, we show that this value
assignment is consistent and each � , is true.� Each literal gets a unique truth assignment. Suppose

that there exists a literal ` # , which is assigned both
true and false, i.e., both 0�f # PO���` # 5 and 0�f # P[����` Y# 5 are
included in ��Y . Based on the Observations (4.1–
4.4), the transitions 0�f # P[���` # 57�30$` # �4f # 5 , 0 � Y# ��� Y# 5 and the
transitions 0:f # PO���` Y# 57�30$` Y# �f # 5 , 0 � # ��� # 5 must be included
in �)Y . Hence, in the presence of faults, �eY may reach � #
and violate safety by executing the transition 0 � # ��� # 5 .
This is a contradiction since we assumed that �eY is
failsafe fault-tolerant.� Each disjunction is true. Suppose that there
exists a � , W ` # �l` Y 	 � ` Q , which is not true.
Therefore, ` # W �ef � � � , ` 	 W � +�� � , and ` Q W �ef � � � .
Based on the grouping discussed earlier, the transitions0 �<Y, # ��
 Y, # 5<��0 � , 	 ��
 , 	 5<��0 �<Y,�Q ��
 Y,�Q 5 are included in ��Y . Thus,
in the presence of faults, ��Y can reach �
Y,�Q and violate
safety specification by executing the transition 0 ��Y,�Q ��
 Y,�Q 5 .
Since this is a contradiction, it follows that each disjunct
in the 3-SAT formula is true.

5 Monotonic Specifications and Programs:
Necessity and Sufficiency

Since the addition of failsafe fault-tolerance is NP-hard, as
discussed in the Introduction, we focus on this question:
What restrictions can be imposed on the specifications,
programs and faults in order to guarantee that the addition
of failsafe fault-tolerance can be done in polynomial time?
As seen in Section 4, a group of transitions � may include a
transition within the invariant of the fault-intolerant program
and a transition that violates safety, together. To add failsafe
fault-tolerance we have to determine whether � should be
included. This issue is one of the reasons behind the
complexity of adding safety.
To identify the restrictions that need to be imposed on the
specification, the fault-intolerant program and the faults, we
begin with the following question: Given a program � with
invariant ' , under what conditions, can we design a failsafe
fault-tolerant program, say ��Y , that includes all transitions
in � = ' ? If all transitions in � = ' are included then it follows
that � Y will not deadlock in any state in ' , and hence, � Y will
satisfy its specification from ' . Now, we need to ensure that
safety will not be violated due to fault transitions and the
transitions that are grouped with those in � = ' .
In this section, we first define a class of specifications,
monotonic specifications, and a class of programs, monotonic
programs. The intent of these definitions is to identify
conditions under which a process can make safe estimates
of variables that it cannot read. Then, we introduce the
concept of fault-safe specifications. Subsequently, we argue
that the monotonicity restrictions imposed on specifications
and programs are sufficient and necessary for adding failsafe
fault-tolerance in polynomial time.
Consider the case where process * cannot read the value of a
boolean variable ` . The definition of (positive) monotonicity

captures the case where * can safely assume that ` is false.
Thus, we define monotonic specification as follows:
Definition. A specification spec is positive monotonic with
respect to a boolean variable ` iff the following condition is
satisfied:����� 	 ��� 	 � " � 	 � " � ::��� � � ���
	�� � �� � ��� � � ����	�� � �� � ��� � � � " � 	�������� �� � � � " � 	�������� ��

the value of all other variables in
� �

and
� " � are the same�

the value of all other variables in
� �

and
� " � are the same� � � � 	 � � 	

does not violate spec)� � � " � 	 � " � 	 does not violate spec)

Likewise, we define monotonicity for programs by
considering transitions within the invariant, and define
monotonic programs as follows:
Definition. A program � with the invariant ' is positive
monotonic with respect to a boolean variable ` iff the
following condition is satisfied.��� � 	 � � 	 � " � 	 � " � ::��� � � ���
	�� � �� � ��� � � ����	�� � �� � ��� � � � " � 	�������� �� � � � " � 	�������� ��

the value of all other variables in
� �

and
� " � are the same�

the value of all other variables in
� �

and
� " � are the same� � ��� 	 ����	! #"%$ &'	� � � " � 	 � " � 	! #"%$ &)

Negative monotonicity and monotonicity with respect to
non-boolean variables. By swapping the word �ef � � �
and

� +�� � in the above definition, we can define negative
monotonicity. Also, although we defined monotonicity with
respect to boolean variables, it can be extended to deal with
non-boolean variables. One approach is to partition the
domain of the non-boolean variable ` into two parts, and
define ` W � +�� � if the value of ` lies in the first part and
false otherwise. We use this definition later in this section
while discussing the necessity of the monotonic programs
and specifications.
Fault-safe specifications. In a fault-safe specification � ����� ,
if a fault transition 01��2��4���<5 violates � ����� then all transitions
that reach state ��2 violate � ����� . One interpretation of this
definition is that the first transition that causes safety to be
violated is a program transition.
Definition. Given a specification � ����� and faults � , we say
that � ����� is � -safe iff the following condition is satisfied.
� � � � 	 � � 	!()(

(
� � � 	 � � 	* �+� � � � 	 � � 	

violates
��" � ()� (

�,��-.�/()(� ��-.� 	 �0�
	
violates

��" � ()
For most problems, the specifications being considered are
fault-safe. To understand this, consider the problem of
mutual exclusion where a fault may cause a process to fail. In
this problem, failure of a process does not violate the safety;
safety is violated if some process subsequently accesses its
critical section even though some other process is already
in the critical section. Thus, the first transition that causes
safety to be violated is a program transition. We also note
that the specifications for byzantine agreement, consensus
and commit are � -safe for the corresponding faults. In fact,
given a specification � ����� and a fault � , we can obtain an
equivalent specification � ������1 that prohibits the execution of
the following transitions.

23� ��� 	 ���4	!(� �0� 	 ����	
violates

��" � (5 �76 �089(:(� � � 	 �08
	� �;� � � � 	 �08�	
violates

��" � () <
We leave it to the reader to verify that ‘� is failsafe � -tolerant
to � ����� from ' ’ iff ‘� is failsafe � -tolerant to � ������1 from ' ’.
With this observation, in the rest of this section, we assume
that the given specification, � ����� , is � -safe. If this is not
the case, Theorem 5.1 and Corollary 5.2 can be used if one
replaces � ����� with � ����� 1 .
Using monotonicity of specifications/programs for
polynomial time synthesis. We use the monotonicity
of specifications and programs to show that even if the
fault-intolerant program executes after faults occur, safety
will not be violated. More specifically we present Theorem
5.1 and Corollary 5.2, below. For reasons of space, we refer
the reader to [10] for proofs. (Recall that the following
results only apply for programs in which no process can
blindly write a variable.)
Theorem 5.1 Given is a fault-intolerant program � , its
invariant ' , faults � and an � -safe specification � ����� ,
If � � + 	 � (+ is a process in

"
and + cannot read � :��" � (is positive monotonic with respect to ��

The program consisting of the transitions of +
is negative monotonic with respect to �)

Then
Failsafe fault-tolerant program that solves the addition
problem can be obtained in polynomial time.

We generalize Theorem 5.1 as follows:
Corollary 5.2 Given is a fault-intolerant program � , its
invariant ' , faults � and an � -safe specification spec,
If � + 	 � (+ is a process in

"
and + cannot read � :

(
��" � (is positive monotonic with respect to ��
The program consisting of the transitions of +

is negative monotonic with respect to �)5
(
��" � (is negative monotonic with respect to ��
The program consisting of the transitions of +

is positive monotonic with respect to �)
Then

Failsafe fault-tolerant program that solves the addition
problem can be obtained in polynomial time.

Necessity of Monotonicity. We consider the following
question: Is monotonicity of specifications/programs
necessary to obtain polynomial time synthesis of failsafe
fault-tolerance? We argue that the answer to this question
is affirmative. More specifically, we observe that if only
monotonicity of the fault-intolerant program (respectively,
specification) were available, the addition of failsafe
fault-tolerance would be NP-hard. To see this, we recall
the reduction of 3-SAT to the problem of adding failsafe
fault-tolerance. In that proof, we mapped the 3-SAT problem
to a fault-intolerant program � , its invariant ' , faults � and
specification � ����� . We make the following observations
about them: i) � ����� is � -safe as no fault transition violates� ����� (� ����� is violated if some program action is executed
after the fault action), ii) letting 8 W �ef � � � iff 8 WFL ,� ����� is negative monotonic with respect to 8 , iii) � is

negative monotonic with respect to 8 . Thus, if the fault-
intolerant program is negative monotonic (with respect to the
appropriate variables) and no condition is imposed on the
specification, the problem of adding failsafe fault-tolerance
is NP-hard. By symmetry, if the specification is positive
monotonic (with respect to the appropriate variables) and
no condition is imposed on the fault-intolerant program, the
problem still remains NP-hard.
6 Concluding Remarks and Future Directions
In this paper, we focused on the problem of adding failsafe
fault-tolerance to an existing fault-intolerant program. A
failsafe fault-tolerant program satisfies its specification
(including safety and liveness) when no faults occur.
However, if faults occur, it satisfies at least the safety
specification. We showed, in Section 4, that the problem
of adding failsafe fault-tolerance is NP-hard. Towards this
end, we reduced the 3-SAT problem to the problem of adding
failsafe fault-tolerance.
In broader perspective, we are interested in identifying the
problems for which the synthesis of fault-tolerant programs
can be designed efficiently (in polynomial time) and the
problems for which exponential complexity is inevitable
(unless 1 W � 1). By identifying such a boundary, we
can determine the problems that can easily reap the benefits
of automation and the problems for which heuristics need
to be developed in order to benefit from automation. This
paper helps to make this boundary more precise than [2] in
three ways. For one, the proof in [2] is for masking fault-
tolerance where both safety and liveness need to be satisfied.
By contrast, the NP-completeness in this paper applies to
the class where only safety is satisfied. Second, the proof
in [2] relies on the ability of a process to blindly write some
variables. By contrast, the proof in this paper does not rely
on such an assumption.
The third –and the most important– step in identifying the
boundary is addressed in Section 5 where we identified a
class of specifications and a class of programs for which
failsafe fault-tolerance can be added in polynomial time.
Towards this end, we imposed two restrictions: positive
monotonicity of the specification and negative monotonicity
of the fault-intolerant program. We showed that these
restrictions are both necessary and sufficient.
For sufficiency, in Section 5, we showed that given a
positive monotonic specification and a negative monotonic
program, it is possible to add failsafe fault-tolerance in
polynomial time. For necessity, we showed that negative
monotonicity was satisfied in the instance of the addition
problem generated in Section 4. However, in that instance,
positive monotonicity of the specification was not satisfied.
It follows that the problem of adding fault-tolerance remains
NP-hard if one begins with a negative monotonic program
and an arbitrary specification. Likewise, by symmetry,
polynomial time algorithm cannot be synthesized (unless
1UW � 1) if the specification is positive monotonic but the
fault-intolerant program is not negative monotonic.
The synthesis approach in this paper differs from that in
[9, 11–14] where one begins with a specification and obtains
a fault-tolerant program. When a fault-tolerant program can
be designed in an automated fashion, we expect that it will be

easier to add fault-tolerance if we begin with a fault-intolerant
program than if we begin with just the specification. Also,
our approach allows one to reuse a given fault-intolerant
program and, hence, it provides the potential that it can
preserve properties such as efficiency that are difficult to
model in an automated synthesis procedure.
Our work suggests several future directions. For one,
given a fault-intolerant program and its invariant that do not
satisfy monotonicity requirements, how can we modify the
invariant such that monotonicity requirements are met while
ensuring that the program satisfies the specification from the
new invariant. Thus, a heuristic based on the principle of
modifying the given invariant may be used to add failsafe
fault-tolerance in polynomial time. We are investigating the
conditions under which this heuristic will be applicable. We
are also developing heuristics to deal with the case where
the given specification does not satisfy the monotonicity
requirements.

References

[1] S. S. Kulkarni. Component-based design of fault-tolerance. PhD
thesis, Ohio State University, 1999.

[2] S. S. Kulkarni and A. Arora. Automating the addition of fault-
tolerance. Formal Techniques in Real-Time and Fault-Tolerant
Systems, 2000.

[3] S. S. Kulkarni, A. Arora, and A. Chippada. Polynomial time synthesis
of byzantine agreement. Symposium on Reliable Distributed Systems,
2001.

[4] M. Barborak, A. Dahbura, and M. Malek. The consensus problem in
fault-tolerant computing. ACM Computing Surveys, 25(2):171–220,
1993.

[5] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Systems,
1982.

[6] L. Gong, P. Lincoln, and J. Rushby. Byzantine agreement with
authentication: Observations and applications in tolerating hybrid and
link faults. Dependable Computing and Fault Tolerant Systems, IEEE
Computer Society, 10:139–157, Sep 1995.

[7] B. Alpern and F. B. Schneider. Defining liveness. Information
Processing Letters, 21:181–185, 1985.

[8] A. Arora and M. G. Gouda. Closure and convergence: A foundation of
fault-tolerant computing. IEEE Transactions on Software Engineering,
19(11):1015–1027, 1993.

[9] P. Attie and A. Emerson. Synthesis of concurrent programs for an
atomic read/write model of computation. ACM TOPLAS, 23(2), March
2001.

[10] Sandeep S. Kulkarni and Ali Ebnenasir. The complexity of adding
failsafe fault-tolerance. Technical Report MSU-CSE-02-10, Computer
Science and Engineering, Michigan State University, East Lansing,
Michigan, March 2002.

[11] A. Arora, P. C. Attie, and E. A. Emerson. Synthesis of fault-tolerant
concurrent programs. Proceedings of the 17th ACM Symposium on
Principles of Distributed Computing (PODC), 1998.

[12] O. Kupferman and M. Vardi. Synthesis with incomplete information.
ICTL, 1997.

[13] A. Pnueli and R. Rosner. On the synthesis of a reactive module. ACM
Symposium on Principles of Programming Languages, pages 179–190,
1989.

[14] A. Anuchitanukul and Z. Manna. Reliability and synthesis of reactive
modules. International Conference on Computer-Aided Verification,
pages 156–169, 1994.

