
PARM : Power Aware Reconfigurable Middleware

Shivajit Mohapatra & Nalini Venkatasubramanian
Dept. of Information & Computer Science

University of California, Irvine, CA 92697-3425
{mopy,nalini}@ics.uci.edu

Abstract

In distributed environments, generic middleware ser-
vices(e.g. caching, location management etc.) are widely
used to satisfy application needs in a cost-effective man-
ner. Such middleware services consume system resources
such as storage, computation and communication and can
be sources of significant power overheads when executed
on low-power devices. We present a distributed middle-
ware framework(parm), that is inherently power-aware
and reconfigures itself to adapt to diminishing power lev-
els of low-power devices. In this paper, we i) deter-
mine whether a reconfigurable component-based middle-
ware framework can be utilized to achieve energy gains
in low-power devices, while preserving the semantics of
the middleware services, ii) present and evaluate a graph
theoretic approach for dynamically determining middle-
ware component reconfigurations and ascertaining the op-
timal frequency at which the restructuring should occur,
for maximal energy gains at the device. We use extensive
profiling to chart the energy usage patterns of middleware
components and applications, and use the profiled data to
drive our reconfiguration decisions. Our simulation re-
sults demonstrate that our framework is able to save 5%
to 35% of energy depending on the nature and class of
applications and middleware components used.

1 Motivation

The next generation of the internet and intra-nets will
see a wide variety of small low power mobile devices op-
erating on board with high-end systems, in large scale
distributed environments. Due to their modest sizes and
weights, these systems have inadequate resources - lower
processing capabilities, memory, storage and power as
compared to desktop systems. These portable computers
are mostly battery driven and oftentimes have to run for
considerable time periods; therefore power management
becomes a critical issue for these systems. Tackling power
dissipation and improving service times for these devices
are crucial research challenges.

The growing popularity of distributed middleware

systems coupled with their scalability, flexibility and suit-
ability for mobile and wireless architectures has made
them a dominant methodology for supporting distributed
applications. Distributed applications require a multi-
plicity of services in order to accomplish their tasks. A
distributed middleware system can provide important
services like reliable messaging, distributed snapshots,
clock synchronization, directory management among oth-
ers, the complex details of which remain hidden from ap-
plications. In a reconfigurable middleware framework,
one or more of these component services can be indepen-
dently started, stopped or moved by a system-level entity.
This plug and play approach obviates the need for all mid-
dleware components to be running on a low power device
at all times. Customizable middleware frameworks can be
considered as important candidates for energy optimiza-
tion as they can be “pruned” depending on the workload
and residual power of the device. For example, a cache
management service can be offloaded to a nearby proxy
saving on both power and storage, while still providing
the performance benefits due to caching.

Diverse efforts have been made to improve power
management in mobile devices using hardware and soft-
ware techniques. Dynamic Voltage scaling(DVS) [7] and
dynamic power management techniques have been widely
studied as methods for optimizing the power consump-
tion. [4] describes a static task allocation scheme
that splits connected tasks between a mobile device
and a server for optimizing the energy consumption of
the mobile device. Other middleware frameworks (e.g.
Odyssey [6]) combine middleware notification and control
with application adaptation to achieve performance im-
provements. Puppeteer [2] presents a middleware frame-
work that uses transcoding to achieve energy gains. Our
approach is to design an auto configurable middleware
that customizes itself for optimal power benefits, indepen-
dent of application and low-level adaptations. As future
work, we plan to investigate the integration of applica-
tion adaptations as well as low-level power management
techniques with our framework.

In this paper, we present such an adaptive, recon-
figurable middleware framework(parm), that can signif-

1
Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

Wired
Network

Wired
Network

proxy

proxy

Server

Server

Wireless
base station

directory
service

Broker

PDA

power
optimization

handheld

Fig. 1: System Architecture

icantly improve energy uptake of low-power devices op-
erating in distributed environments. As the residual en-
ergy on the device diminishes, the parm middleware dy-
namically reconfigures the component distribution on the
low-power device. The middleware adaptation decisions
are shifted to an external entity with cross-application
knowledge and overall system information. parm em-
ploys a graph theoretic solution for determining the opti-
mal middleware component reconfigurations and identi-
fying, when and how often, reconfigurations should occur
for optimal energy gains. The reconfiguration decisions
are driven by comprehensive profiling of the energy usage
patterns of various applications and middleware compo-
nents.

The rest of the paper is organized as follows: Section
2 presents the overall system architecture and introduces
the parm framework; Section 3 characterizes the parm
component reconfiguration problem as a source paramet-
ric flow network and presents an optimal polynomial time
solution to the component reconfiguration problem. In
section 4, we evaluate the performance of parm under
different configuration criteria and conclude with future
research directions in section 5.

2 System Architecture

A typical distributed system architecture using low power
devices is envisioned in Fig. 1. The model environment
consists of several distributed servers(service providers),
proxy servers, meta-data repositories(e.g. directory ser-
vice) and mobile clients. The servers are high-end ma-
chines on the network that provide a variety of ser-
vices(e.g. streaming video, web services). A set of proxy
servers are available on the network and are used to per-
form an assortment of tasks. For example, a server can
replicate data onto a proxy for load balancing and a client
can offload expensive tasks onto a proxy in order to con-
serve local resources. End clients are mobile devices that

communicate with other entities via an access point(e.g
base station) in their geographical proximity. The mo-
bile clients route their requests to the servers through a
proxy server associated with its base station. Depend-
ing on the system design, a device may either be bound
to a proxy permanently, or it might disassociate and re-
connect to another(possibly nearer) proxy. In the latter
case, a proper handoff of state information might be nec-
essary between the proxies. For simplicity, we currently
bind a device to a pre-determined proxy. The directory
service stores the overall system state information and
forms an important focal point for storing and retrieving
data efficiently. The architecture is further bolstered by
the presence of a high-end server called the “power bro-
ker”. The power broker can be looked upon as the crux of
the system, making intelligent decisions and adaptations
based on either the global system energy state or individ-
ual device power states. In a large scale distributed envi-
ronment, there would be many such brokers distributed
over the network. In parm , the power broker determines
the set of middleware components that can be offloaded
from a device onto a proxy, to minimize the energy con-
sumption at the device. For simplicity, we assume that
the client is bound to a proxy. A more complicated sce-
nario would include a mobility model for the clients and
the state hand-offs involved therein. Additionally, we de-
fine policies which dictate the instants(when), as well as
the frequency(how often) at which the broker reconfig-
ures the devices. Based on the current system state, in-
formation from the device/proxy and one or more parm
policies, the broker runs the parm algorithm to deter-
mine a new configuration(if any) for reassignment of mid-
dleware components between the device and proxy. All
low-power devices update their current state informa-
tion(e.g. running applications/middleware components,
residual power, mobility information etc.) periodically to
the power broker. An optimal algorithm at the broker,
would ensure the most beneficial configuration of com-
ponents at the device and hence maximal energy savings.
For the rest of the paper, we refer to any battery operated
computer as a device and use the terms “components”
and “services” interchangeably to represent middleware
services.

The PARM Framework

In this section, we present a flexible, reflective mes-
sage oriented middleware framework that is suitable for
low power devices operating in distributed environments.
Fig. 2 gives a succinct depiction of the parm middleware
framework that drives the applications on any computer
in the system. parm applications are developed using
a set of application programming interfaces (APIs) ex-
ported by the middleware. The middleware framework

2
Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

Object
CreationCorrelation

Agent

Messaging

Comm.

Encrypt
Decrypt

Clock
Sync

Caching Mn

Applications

Object
CreationCorrelation

Agent

Messaging

Comm.

Encrypt
Decrypt

Clock
Sync

Caching Mn

Applications

CLIENT PROXY

RUNTIME RUNTIME

Enrichment
Middleware
components

Fig. 2: The parm Framework

comprises of a core runtime that runs on all the sys-
tems within the environment. The core runtime services
include the skeletal constructs for object creation, sim-
ple message passing and a communication framework for
message routing. A “correlation agent” is included with
the core runtime and performs adaptations and house-
keeping activities, while coordinating the various mid-
dleware components. A set of “enrichment” middleware
components are provided to impart a fuller abstraction
level that enable applications to achieve more complex
tasks through a simple interface. These components are
independent and can be transparently plugged into the
runtime by a system level entity. We target these com-
ponents as possible candidates for energy optimizations.
Our approach would enable low power devices to make
use of these services(whenever possible) while cutting
down on the energy costs.

In parm , middleware services can be dynamically
started and stopped/migrated by the runtime without
affecting the execution of the other components. Middle-
ware services can be discontinued on a device in a number
of ways. Whenever it is not feasible to migrate a service,
we can decide to either stop the service locally or degrade
the service, such that it does less work, albeit at a loss
of performance but with power savings. Otherwise, we
can migrate the middleware component to a proxy (with
an abundance of resources) and simply use the results
of the remote execution locally. In the process, a com-
munication overhead is incurred that includes the cost
of transferring state information and responses from the
proxy. Additionally, offloading/stopping the individual
components should be transparent to the applications.
In parm this is achieved by leaving a component stub
on the local machine as the component migrates to the
proxy. The stub provides the transparency to the appli-
cation and handles all the communication with the now
remotely executing component. The light weight compo-
nent stub is designed to have a very small computation
overhead; it has an existence outside of the component

and can be considered to be a first class object.

3 The PARM Problem

The basic premise of using a reconfigurable middleware
framework is that auxiliary services can be added and
stopped by a meta-level middleware entity, while main-
taining transparency to the applications. A power effi-
cient model could use this capability to its advantage by
stopping redundant components and offloading expensive
components to a proxy, which has both the power and
the resources to execute the components. The problem
then becomes that of identifying the components that can
be migrated away from the device such that the energy
costs at the device are minimized. Moreover, the cost
of executing the components on the device are inflated
as the residual power on the device drops. This adapta-
tion causes the middleware to re-evaluate the component
distribution and make appropriate alterations (possibly
choosing to assign the now expensive component to exe-
cute at the proxy).

3.1 Characterization

We use the following parameters to characterize the en-
ergy costs at the device for the various computation and
communication operations. It is important to note that
all energy costs are incurred at the device. The values
are quantified by careful experimentation and profiling.
Let BWt and BWr be the maximum bandwidth avail-
able to the device for transmitting and receiving data
respectively. Ptransmit and Precv are the average power
consumption rates at the device while it transmits and
receives data. Pruntime represents the power consump-
tion rate of the parm runtime. Let Ti be the length of the
ith time interval (i.e. time interval between 2 consecu-
tive executions of the parm algorithm at the broker and
let Ri represent the residual power on the device after
the ith time interval. Sizek

t and Sizek
r are the average

sizes of the messages transmitted and received respec-
tively, by the kth middleware component. We character-
ize the some of the other parameters as follows:

• PCk: Average rate at which the kth component con-
sumes power due to computation.

• PSk: Average rate at which the kth component stub
consumes power.

• NSk
di: Average number of messages transmitted

by the kth component during the ith time interval,
when component is executing at the device.

• NRk
di: Average number of messages received by the

kth component during the ith time interval, when
component is executing at the device.

3
Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

• NSk
pi: Average number of messages transmitted

by the kth component during the ith time interval,
when component is executing at the proxy.

• NRk
pi: Average number of messages received by the

kth component during the ith time interval, when
component is executing at the proxy.

Using the above characterization, we derive the following
energy costs for computation and communication.

1. Computation cost

• when middleware component “k” executes on
the proxy during time interval “i”
ECk

proxy = PSk × Ti

• when middleware component “k” executes on
the device during time interval “i”
ECk

device = E0 + λ.Tconst

where,
E0 = PCk × Ti

λ = 1
Ri

if Ri−1 − Ri > 0
= 1

Rmax
(otherwise)

Tconst = some scaling factor determined from
the profiling information

2. Communication cost

• when middleware component “k” executes on
the proxy during time interval “i”

CCk
proxy =

NSk
pi×Sizek

t

BWr
× Precv +

NRk
pi×Sizek

r

BWt
× Ptransmit

• when middleware component “k” executes on
the device during time interval “i”
CCk

device = NSk
di×Sizek

t

BWt
× Ptransmit +

NRk
di×Sizek

r

BWr
× Precv

In order to optimize the energy in the system, we now
have to find a allocation scheme that distributes the com-
ponents between the device and proxy such that the over-
all energy cost at the device is minimized. Let U be the
entire set of components that we consider. Let X be the
set of components mapped to the device. Then U - X
is set of components mapped to the proxy. Our problem
now becomes that of minimizing the computation and
the communication costs at each interval. For each Ti we
need to minimize the following term:

∑
k∈X ECk

device +
∑

k∈X CCk
device +

∑
k∈U−X ECk

proxy +
∑

k∈U−X CCk
proxy

M1

D P

Rd

Rp

M2

Mn

Runtime on
Device

Runtime on
Proxy

B1

A2

An

B2

Bn

A1

Ap

Bd

in
fin

ite

infin
ite

Xi

Yn

Xn
Yi

Y2

Fig. 3: Flow Network

Network Flow Representation

To achieve the optimal distribution of components be-
tween the device and the proxy, we cast our problem as
a source parametric flow graph [1]. The minimum cut
of the flow graph then gives us an optimal mapping of
components. We incorporate the energy costs of network
communication and cpu computation into a energy flow
network. To create the flow network(Fig. 3), we distin-
guish two special nodes in the network: a source node D
and a sink node P. Additionally, we define two conceptual
nodes Rd and Rp, that represent the core runtime frame-
works on device and the proxy respectively(see Fig. 3).
We associate the source node(D) with the low-power de-
vice and the sink node(P) with a proxy. In Fig. 3, Bd and
Ap represent the energy costs of the parm runtime exe-
cuting at the device and the proxy respectively. All the
other nodes in the graph correspond to the parm mid-
dleware components Mi. The arc capacities are assigned
as follows: Each Ai denotes the energy costs of com-
putation incurred at the device, when component Mi is
executing at the proxy. In parm it is the cost of execution
of the component stub at the device. Bi denotes the en-
ergy cost of computation when component Mi executes
at the device. Each Bi is defined as a non-decreasing
linear function of the residual energy on the device. This
makes the flow graph a source parametric graph, where
the computation cost capacity of every source arc(Bi)
increases with time. Xi represents the energy cost of
network communication when component Mi is execut-
ing at the device and sending/receiving data to/from the
proxy. Yi represents the energy cost of network commu-
nication when component Mi is executing at the proxy

4
Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

PROCEDURE ADJUST_ENERGYFLOW (Node i)
BEGIN

WHILE (node ‘i’ has excess flow)
BEGIN

IF (residual graph contains admissible arc (i , k))
BEGIN

SEND flow = min{ excess(i), Ri � k } on arc (i ,k);
Update excess() values for i , k; Update residual graph;
ADD newly active nodes to LIST;

ELSE
d(i) = MIN {d(j) + 1} for all arcs emanating from i ; & Ri � j > 0;
IF(d(i) >= n)

ADD node ‘i’ to N’ ; // component assigned to device
REMOVE node ‘i’ from LIST;

ELSE
ENQUEUE(LIST,i);

ENDIF
BREAK;

ENDIF
END

END

PROCEDURE RECONFIGURATION()
BEGIN

1. Synchronize time with device
2. Get Active components from device and

generate Flow graph and Residual Graph (G);
3. BEGIN

INITIALIZE(G);
WHILE (LIST not empty)

node = DEQUEUE(LIST);
ADJUST_ENERGYFLOW(node);

ENDWHILE
END

4. Reconfigure components at device (if needed)
END

PROCEDURE INITIALIZE(GRAPH G)
BEGIN
1. Compute distance labels d(i);
2. Send max. flow on all arcs emanating

from node D;
F(D,Mi) = U(D,Mi); For each arc D � Mi;

3. ENQUEUE(LIST,Mi);
4. Update the residual flow graph;
5. Set d(D) = n;
6. Add node D to N’;

END

• N : the number of nodes in the graph
• N’ : The SET of nodes assigned to the low-power device
• F(n1,n2) : Energy flow from node N1 →→→→ N2
• U(n1,n2) : Max. energy capacity of arc from node N1 →→→→ N2
• Ri � k : Residual energy flow available on arc from node i →→→→ k
• excess (n) : Excess flow at node n
• Distance d(i) : distance of node ‘i’ from the sink node (node P)
• Admissible Arc(i, j) : Arc admissible if d(j) = d(i) – 1
• Active node : Any node that has a positive excess
• LIST : QUEUE that maintains a list of currently active nodes

TERMS USED IN THE PARM ALGORITHM

Fig. 4: The PARM Algorithm

and sending/receiving data to/from the device. The de-
vice runtime(Rd) is bound to the device(D) by giving
assigning infinite energy cost to the arc from D to Rd.
The proxy runtime is similarly bound to the proxy.

With this representation, there now exists a one to
one correspondence between a minimum cut of the graph
and the assignment of components to the source(device)
and the sink (proxy). Let P1 and P2 be the assignment
of components to the device and the proxy respectively.
The minimum cut corresponding to this assignment is
then ({D,Rd} ∪ P1], {P,Rp} ∪ P2). The cut of the
graph effectively represents the minimum energy cost as-
signment of the components to the device and the proxy.
Our algorithm has a worst case execution time of O(n3).

3.2 The PARM Algorithm

The parm reconfiguration algorithm determines the
minimum-cut of the flow graph created in Fig. 3, by first
resolving the maximum flow of the graph. A residual
flow graph is generated that represents the residual en-
ergy flow capacities of each arc in the graph. For every
unit of flow sent along an arc, a reverse arc is added to
the residual graph with the same number of units. The
algorithm is initially executed on the residual graph of
the flow network in Fig. 3. Subsequently, the algorithm
works on the residual graph generated at the previous
step. The algorithm initially pushes the maximum pos-
sible flow from the device(node D) to the proxy(node
P, Fig. 4). Depending on the capacities of the interme-

diate arcs(Ai, Xi, Bi, Yi), the maximum allowable flow
gets routed to the proxy(P). Once a saturation point is
reached at the intermediate nodes Mi (i.e. the resid-
ual graph does not contain any forward arc to the node
P), the surplus flow initially sent, flows back to the de-
vice(node D). At this point, the flow in the network (from
D to P) is the maximum flow between the device and the
proxy. In order to get a minimum cut of the graph we
keep track of the intermediate nodes(Mi, Rd, Rp) that
get saturated (i.e. cannot send any more flow to node P)
during the first phase of the algorithm. At the end of the
first phase we get a set of nodes that would eventually
send their excess flows back to the source node(D). The
minimum-cut would partition the graph such that these
nodes are grouped with nodes D & Rd. In effect, this is
the set of nodes(components Mi) that would be assigned
to the device. The other intermediate nodes(components)
would be assigned to the proxy.

3.3 PARM Policies

We investigate the performance of our algorithm under a
set of policies that dictate when and how often the parm
algorithm is executed for reconfiguring components on a
device. The purpose is to determine which policy returns
the best results in terms of energy savings at the device.
We also ascertain the optimal times for executing the
algorithm for different classes of applications and compo-
nents. The power broker executes the parm algorithm
and initiates the required reconfiguration.

5
Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

• Random : The broker performs the component recon-
figurations at random intervals.
• Periodic : The broker performs the component recon-
figurations at periodic intervals determined by the system
administrator.
• Application Triggered : The parm algorithm is
triggered at the broker, whenever a new applica-
tion/component is started up at the device.
• Threshold : A reconfiguration is triggered by the device
whenever the residual energy of the device drops below
a certain threshold, determined as a percentage of the
initial energy of the device.

3.4 Profiling

Accurately profiling the energy consumption of the parm
runtime and the various middleware components is indis-
pensable to the success of our approach. Without the
knowledge of the energy overheads for communication
and computation , the generation of the flow network is
impossible. Given a set of “enrichment” middleware com-
ponents and a set of applications that use them, we chart
the energy usage (for both cpu operations and network
communication) for all combinations of the components
on the device and the proxy. Once the profiling is com-
plete, the data can be made available to the power broker
for generating the flow network. Appropriate hooks in
the parm runtime along with message tagging are used
for measuring number of messages and individual mes-
sage sizes. A more detailed description of the profiling is
available in [5]. Fig. 5 depicts some of the energy values
measured using our setup. Note that the profiled values
are distinct for a particular device. However, as profil-
ing is a one time effort, we assume energy usage can be
profiled for different devices. In reality, the number of
applications and components used in low-power mobile
devices will also be limited.

4 Performance Evaluation

This section presents our simulation model and perfor-
mance analysis. To simulate our system, we separately
model the low-power device, the proxy server, the power
broker, the parm middleware framework and the applica-
tions. Applications are created using the APIs exported
either by the parm runtime or one or more of the “en-
richment” components that are available with the middle-
ware framework. The low-power device is modelled after
a Compaq iPaq 3650 with a Lucent Orinoco PCMCIA
network interface card. The proxy and the broker are as-
sumed to be high-end wired workstations with substantial
resources. Each device registers itself with a proxy and
the parm runtime on the device updates the device state
at the directory service. The broker then runs the recon-

0.3 J/sAvg. PARM Runtime Overhead

270 minsTime to drain the battery of device

3.85 J/sAvg. Power rate (receive)

3.65 J/sAvg. Power rate (transmit)

9 MbpsTotal receiving bandwidth

9 MbpsTotal transmitting bandwidth

4.5 J/sAvg. Power (OS + PARM)

4.2 J/sAvg. Power (OS)

Fig. 5: Some profiled energy values

figuration algorithm and announces the optimal config-
uration to the device and the proxy. A reconfiguration
agent on the device then performs the necessary com-
ponent migration [5]. As all components are replicated
at the proxy, only a minimal amount of state(e.g queued
messages) is communicated and this includes a small com-
munication overhead. We are currently building a pro-
totype using the CompOSE|Q [9, 5] middleware frame-
work to integrate the parm reconfiguration algorithm for
power optimizations in a distributed environment.

The type of application we choose to execute on the
device has a significant bearing on the results of our ex-
periments. We therefore opt for applications that are
currently regarded as suitable for hand-held computers
and some applications can we think would be popular
as the devices evolve. We further divide our set of rep-
resentative applications into three classes: computation
intensive (class-1, e.g Image processing applications, in-
teractive games), communication intensive(class-2, e.g.
web browsing, network monitoring) and both computa-
tion and communication intensive (class-3, e.g multime-
dia streaming, GIS/navigation).

To model the parm components, we profile the en-
ergy pattern of each component while using it with a
different applications from each class. In particular, we
record the average power consumption rate of the com-
ponent running on the device, and the power overhead
of running the component stub on the device while the
component is executing at the proxy. We also store the
average number of control messages the component uses
to maintain state information when used in conjunction
with different classes of applications. Table 1 illustrates
the different power utilization values for a typical appli-
cation and linked components for each application class.
A detailed explanation of the simulation model can be
found in [5]. Again, for each application class we assess
the energy gains using a set of

• sporadic-start applications: applications that start
and stop irregularly over time.

• non-sporadic applications : applications that run
continuously till the device runs out of power.

6
Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

APPLICATION CLASS 1 CLASS 2 CLASS 3
Middleware Adaptive Scheduler Reliable Messaging Adaptive Sched.

Components linked Encryption-DES Clock Sync MM mesg service
Decryption-DES Message Ordering Clock Sync

Avg. Power(J/s) 0.65 0.23 0.38
Avg. Power(J/s)(comm) 0.21 (watts) 0.40 0.45

Avg. message size 64 (bytes) 128 (bytes) 1024 (bytes)
Avg. msgs via component(per/sec) 300,150,150 610,530,480 755,830,670

Table 1: Application model

4.1 Experimental Results

We analyze the performance of the parm framework by
evaluating its execution under different application loads
and reconfiguration times. Our primary metric of evalu-
ation is the gain achieved in the

• Residual Energy (ER): showing the unexpended
energy left in the device.

• Remaining Time of Service(TOS): indicating the
remaining time for which the device can be operational,
under the current load.

By “gain”, we mean the TOS/ER saved by running
the applications on the middleware framework with and
without the parm algorithm. We study how the TOS/ER
gains are impacted as the number of applications scale;
we also examine how often the broker should reconfigure
the parm components for a given set of applications to
achieve optimal energy benefits.

Due to space constraints we only present a summary
of the results here. A detailed performance report is avail-
able in [5]. We compared the impact of the periodic re-
configuration and the threshold reconfiguration policies
for the three classes of applications, for both sporadic
start and non-sporadic start applications. Fig. 6 and
Fig. 7 compare the impact of different reconfiguration
times for each class of applications. Both graphs show
improvements in TOS gains when the reconfiguration oc-
curs frequently. Fig. 8 and Fig. 9 depict the performance
of the threshold policy for the three application classes.
It was observed that class-3 applications showed nega-
tive gains for this policy and it performed significantly
worse than the periodic policy on the same class of ap-
plications. However, adjusting the thresholds to trigger
reconfigurations more frequently improved the gains ap-
preciably. Fig. 10 and Fig. 11 study the impact of recon-
figuration time on a mixed workload of applications. It
was observed that the reconfiguration time had little im-
pact on the selection of applications. A reconfiguration
rate of around 3 minutes was found to give a significant
gain in both residual energy and TOS. We also stud-
ied the impact of scaling the number of applications and
varying the rate of execution the parm reconfiguration

algorithm, on the gain in TOS/ER, for three classes of
applications [5]. We observed that for class-1 applica-
tions, service time gains of 15%-45% was achieved when
the parm reconfiguration algorithm was executed once
every 5 minutes or less. The gains were found to be lesser,
when the algorithm was executed less frequently. In case
of class-2 applications, there was a 7%-30% increase in
the time of service of the device. For class-3 applications
both the computation and communication costs played
a significant role in determining the reconfiguration of
components. The gains followed a pattern, similar to the
gains in class-2 applications, but were more moderate as
the applications drained the device power faster than the
other two classes. Interestingly, it was observed that the
gains in the case of sporadic start applications in this
class were negative, when the reconfigurations happened
less frequently (once every 8 minutes or more). We in-
fer that the unpredictability of the start/stop timings of
the components seems to offset the effectiveness of the
parm algorithm in this case. In summary, the gains due
to parm were highest in the case of class-1 applications;
gains were less moderate in the case of the other two
classes of applications.

5 Related Work & Conclusion

A tremendous amount of research has already been done
for achieving power savings in low-power and embedded
devices. OS level efforts include techniques like dynamic
voltage scaling [7], dynamic power management, effec-
tive battery management and optimization of communi-
cation devices [3]. Puppeteer [2] presents a middleware
framework that uses transcoding to achieve energy gains.
Odyssey [6] presents an applications aware adaptation
scheme for mobile applications. The parm framework
uses a profiler to gather energy data for individual com-
ponents and applications, but it does not require the ap-
plication to perform any energy adaptations. In parm
the intent is to provide a framework that optimizes en-
ergy independent of applications. However, the parm
framework can reap significant additional savings by us-
ing adaptive applications. [8] shows that the task offload-

7
Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

Fig. 6: Recon.time vs TOS Gain Fig. 7: Recon.Time on TOS Gain Fig. 8: Threshold(non-sporadic)

Fig. 9: Threshold(sporadic) Fig. 10: Recon.Time vs. TOS Fig. 11: Recon.Time vs. Energy

ing can deliver significant energy savings over a noiseless
wireless network channels, while the gains are offset over
noisy channels. In [4] a static task partition scheme is
presented for offloading application subtasks onto a re-
mote machine for energy savings. parm on the other
hand uses a dynamic component redistribution scheme
that uses the residual power on the device as a param-
eter for determining the allocation of components. It
is hard to compare parm with traditional middleware
frameworks such as CORBA, DCOM etc. as they are
not designed for power optimization.
Concluding Remarks: In future, distributed environ-
ments have to be cognizant of the widespread presence of
low-power devices and confront the new challenges intro-
duced by these computers. In this paper, we presented a
distributed power-aware middleware framework and ex-
plored the viability of applying such an architecture to
achieve significant power gains in low-power devices. The
framework dynamically adapted to the diminishing power
availability of the devices over time, by dynamically of-
floading expensive middleware components to a proxy; a
set of policies were designed to control the behavior of the
system. The extensive simulation results of our experi-
ments indicated that our framework can provide signif-
icant energy savings. Emerging middleware frameworks
will be a dominant technology for employing wide-ranging
mobile devices in future distributed systems. It is there-
fore imperative that middleware technology adapt itself

for performing advantageously in such environments.

References

[1] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B.
“Network Flows: Theory, Algorithms, and Applications”.
Prentice-Hall, Englewood Cliffs, N.J., 1993.

[2] Flinn, J., de Lara, E., Satyanarayanan, M., and et.
al. “Reducing the energy usage of office applications”. In
IFIP/ACM (2001).

[3] Kravets, R., and Krishnan, P. “Application-driven
power management for mobile communication”. In In Pro-
ceedings of MobiCom (1998).

[4] Li, Z., Wang, C., and Xu, R. “Task allocation for dis-
tributed multimedia processing on wirelessly networked
handheld devices”. In in Proc. of IPDPS (April 2002).

[5] Mohapatra, S., and Venkatasubramanian, N. “Opti-
mizing Power using a Reconfigurable Middleware”. Tech.
rep., UC, Irvine, 2003.

[6] Noble, B. D., Satyanarayanan, M., D.Narayanan,
J.E.Tilton, and Flinn, J. “Agile application-aware
adaptation for mobility”. In Proc. of 16th ACM Sym-
posium on OS and Principles, France, (October 1997).

[7] Pillai, P., and Shin, K. G. “Real-time dynamic voltage
scaling for low-power embedded operating systems”. In
In Proc. of the 18th ACM Symp. on Operating Systems
Principles (2001).

[8] Rudenko, A., Reiher, P., and et.al. “Portable com-
puter battery power saving using a remote processing
framework”. In ACM SAC (February 1999).

[9] Venkatasubramanian, N., Deshpande, M., Mohapa-
tra, S., and et. al. “Design and implementation of a
composable reflective middleware framework”. In ICDCS-
21 (2001).

8
Proceedings of the 23rd International Conference on Distributed Computing Systems (ICDCS’03)
1063-6927/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

