
UC San Diego
Technical Reports

Title
Group Membership and Wide-Area Master-Worker Computations

Permalink
https://escholarship.org/uc/item/8w32p8fs

Authors
Jacobsen, Kjetil
Zhang, Xianan
Marzullo, Keith

Publication Date
2002-11-06

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8w32p8fs
https://escholarship.org
http://www.cdlib.org/

Group Membership and Wide-Area Master-Worker Computations

Kjetil Jaobsen

�

kjetilja�s.uit.no

Xianan Zhang

y

xzhang�s.usd.edu

Keith Marzullo

y

marzullo�s.usd.edu

Abstrat

Group ommuniations systems have been designed to provide an infrastruture for fault-

tolerane in distributed systems, inluding wide-area systems. In our work on master-worker

omputation for GriPhyN, whih is a large projet in the area of the omputational grid, we

asked the question should we build our wide-area master-worker omputation using wide-area

group ommuniations? This paper explains why we deided doing so was not a good idea.

Keywords: master-worker, group membership, network partitions, redundant tasks, omni-do.

1 Introdution

The GriPhyN

1

(Grid PhysisNetwork) is a NSF-funded researh projet to implement a Petabyte-

sale omputational environments for data intensive researh projets. The projet, whose re-

quirements are being de�ned in the ontext of four urrent large physis experiments, will deploy

omputational environments alled Petasale Virtual Data Grids (PVDGs) that will meet the data-

intensive omputational needs of a diverse ommunity of thousands of sientists spread aross the

globe.

One of the funtions of a PVDG will be the reonstrution of \virtual" data, whih is data that

is derived from the raw or proessed output of experiments. Reonstrution is highly parallelizable,

and so we use a master-worker-like omputation for reonstrution. Some reonstrutions will be

large enough that we believe that we will want to exeute them utilizing the resoures of several

omputation farms spread aross the Internet. Hene, we are looking into the issues of wide-area

�

Department of Computer Siene, University of Troms�, N-9037 Troms�, Norway. Supported by NSF (Norway)

grant No. 112578/431 (DITS program).

y

Department of Computer Siene and Engineering, University of California, San Diego, La Jolla, CA 92093-0114,

USA. Supported by NSF ACI-0086044.

1

GriPhyN homepage: http://www.griphyn.org/

1

master-worker omputations. In partiular, the authors of this paper, who are members of the

GriPhyN ollaboration, are looking into the salability, fault-tolerane, and performane problems

of wide-area master-worker omputations.

Group ommuniations systems are designed to provide an infrastruture for fault-tolerane in

distributed systems, inluding wide-area systems. We give a brief overview of the support they

provide in the next setion. Master-worker has been advoated at ICDCS as an appliation that

�ts well with partitionable group ommuniations [6℄ and has been formally studied in the ontext

of group ommuniations [12℄. Furthermore, there are partitionable group membership protools

that have been designed expliitly for salability, inluding one that was developed by a group that

inluded an author of this paper [14℄. Hene, an obvious question to us was should we build our

wide-area master-worker omputation using group ommuniations? To answer this question, we

hose as our objetive a reasonable metri, the number of redundantly exeuted tasks, that has been

studied in the ontext of group ommuniations-based solutions. We �rst examine a protool that

is optimal with respet to this metri, and observe how group ommuniations is used to ome up

with an optimal solution. We then show, via trae analysis, that this protool performs poorly with

respet to another important metri, total ompletion time. The reason for this poor performane

is in salability: the larger the network, the more likely ommuniations will not be transitive and

symmetri. One an address this issue, but doing so an reate other problems. We then show

that a simple solution, whih has a muh larger worst-ase omplexity in the number of redundant

tasks, appears to work muh better in pratie. Hene, we have deided that partitionable group

ommuniations is a poor hoie for building salable wide-area master-worker omputations.

2 System Model

We assume a distributed system omprised of proessors onneted to loal area networks, where

the loal-area networks are onneted into a wide-area network. Proesses on di�erent proessors

an only ommuniate by sending messages over the network. We assume that proessors an fail

by rashing and that the network an fail by dropping messages. We assume that ommuniations

provide FIFO delivery order: if proess p sends message m to proess p

0

and then sends message

m

0

to proess p

0

, then p

0

may reeive just m, or just m

0

, or m before m

0

, but never m

0

before m.

2

We assume that the system is timed asynhronous [10℄: proessors have loks that progress at a

rate lose to real-time, but the time between some proess p sending a message and the intended

destination p

0

delivering the message an be arbitrarily long.

In Setion 3 we assume that there exists a partitionable group ommuniation system. Group

ommuniation [1, 8℄ provides reliable multiast ommuniation among proesses that are organized

into groups. A group is a set of proesses that together omprise the members of the group. A

proess beomes a group member by requesting to join the group; it an ease being a member by

requesting to leave the group or by failing.

Eah group is assoiated with a name. Proesses multiast to group members by sending a

message to the group name, and the group ommuniation servie delivers the message to the

group members (depending on the ability of the members to ommuniate, whih we elaborate on

below).

Group ommuniation systems are view oriented, whih means that they provide membership

information and deliver messages in a well-de�ned order among all members. Suh systems provide

a useful abstration for the development of highly available distributed and ommuniation-oriented

appliations. Group ommuniations systems di�er in the details on how they implement suh an

ordering.

The membership of a group is a list of the urrently ative and onneted proesses in a group.

The task of a group membership servie is to trak the membership of the group as it evolves over

time. When the membership hanges, the appliation proesses are noti�ed at an appropriate point

in the delivery sequene. The output of the membership servie is alled a view, whih onsists of

the list of the urrent members in the group and a unique identi�er that allows the appliation to

distinguish the view from other views with the same list of members. Views are used in two main

ways:

1. Sine the members of the view agree on the membership of the view, they an deterministially

assign roles to eah other without using further ommuniation. For example, the �rst proess

in the membership list an serve as a oordinator for all the proesses in the membership list.

2. Consider any two proesses that are both in the membership of a view v when they both

install the same new view v

0

. The group ommuniations system ensure that both proesses

3

have delivered the same sequene of messages while in view v.

A partitionable group membership servie (for example, [4, 14℄) is a group membership servie

that is designed to operate in wide-area networks and that supports writing partition-aware appli-

ations, whih are appliations that an ontinue to make progress despite network partitions [5℄.

A network partition is the situation in whih two sets of nonfaulty proesses annot ommuniate

with eah other due to problems at the network layer or lower. We say that two proessors in whih

at least one proessor an ommuniate with eah other are in the same onneted omponent of

the network. Hene, a partitioned network has more than one onneted omponent.

Partitionable group membership protools monitor the network onnetivity using an underlying

unreliable failure detetion servie. The failures it reports are used to instigate view hanges. When

the failure detetion servie stabilizes suh that ommuniation is possible among all the proessors

in a onneted omponent, a new view an be delivered to the proesses that are running on

proessors in the onneted omponent. Di�erent partitionable group ommuniations systems

have di�erent delivery rules assoiated with messages that are sent while the failure detetion

servie is stabilizing; [20℄ ontains a summary of the rules of six di�erent protools. Some systems

allow messages to be multiast during suh periods of unstable failure detetion, while others do

not allow multiasting. In the systems in whih messages an be multiast, suh messages are not

delivered until the next view is installed. Hene, some bloking of ommuniations ours during

the time that a onneted omponent's failure detetion relation laks symmetry or transitivity

(and so is not a lique). Suh bloking ould be avoided by implementing the missing transitivity

and symmetry by routing within the group ommuniations system (one system, Phoenix, did

exatly this [19℄) but doing so reates other problems, as we disuss in Setion 6.

3 A Protool that uses Group Membership

There has been a vast amount of work that has been done on the problem of master-worker

omputation. Only a small amount of it has been into the question of protools for master-worker

omputation in a wide-area network that an su�er from partition failures. The problem was

reently identi�ed as one amenable to partition aware solutions [6℄, whih are appliations that an

ontinue to make (perhaps limited) progress during the period of time that a wide-area network

4

is partitioned. It has been argued that group ommuniations servies for wide-area networks

provide a onvenient framework for writing suh appliations, although the exat details of group

ommuniation may have a signi�ant impat on the design (for example, see [20℄ and [5℄).

There has been reent work into the omplexity of solving a variation of master-worker. This

work onsiders the ase in whih the amount of redundant task exeution is to be kept as small

as possible (e.g., [17, 11, 18℄). This researh projet has produed a protool, named AX, that is

based on group ommuniation servies [12℄. The variation of master-worker that it solves is alled

the OMNI-DO problem:

OMNI-DO Problem The problem of performing a set of N independent tasks on a set of P

message-passing proessors, where eah proessor must learn the results of all N tasks.

This variation is important from a theoretial viewpoint beause a entralized version (in whih

only the master need know the results of all the tasks) an minimize the amount of redundant

task exeution by using stable storage and a simple failover mehanism for reovering from a failed

master. Workers that an partition away from the master would not ompute any tasks, sine

the results ould be unavailable from the master for an unbounded time, and so termination an

require redundant task exeution. From a pratial point of view, though, it is also important for

the omputation to omplete in a timely manner, whih would drive one to use a partition-aware

approah. Furthermore, a pratial wide-area master-worker omputation, like OMNI-DO, would

distribute the results among several loal area networks so that the user would be able to obtain

the results even in the fae of a long-lived partition.

AX employs a oordinator-based approah and relies on the underlying partitionable group

membership servie to trak hanges in the group's omposition. There is a set of proesses, one

for eah proessor in P , that are ooperating to solve the OMNI-DO problem, and there is a set of

tasks T known by all of the proesses that are to be omputed. All tasks have the same duration.

During exeution, eah proess i maintains the loal sets D

i

, R

i

, U

i

and G

i

:

D

i

{ The set of tasks whose results proess i knows.

R

i

{ The results of the tasks in D

i

.

U

i

{ The set of tasks whose results proess i does not know: U

i

= T �D

i

.

5

G

i

{ The set of proesses in i's view.

For eah proess i, rank(i; G

i

) is the rank of i in G

i

, when the proess identi�ers are in some

well-known order, suh as the order they appear in the view membership list. For a task u in U

i

,

rank(u;U

i

) is the rank of u in U

i

, when the task identi�ers are sorted in asending order.

The task alloation rule for eah proessor i is:

� if rank(i; G

i

) � jU

i

j, then proessor i performs task u suh that rank(u;U

i

) = rank(i; G

i

).

� if rank(i; G

i

) > jU

i

j, then proessor i does nothing.

AX strutures its omputation in terms of rounds. Eah proess exeutes at most one task in

eah round. At the beginning of eah round, eah proessor i knows G

i

, D

i

, U

i

and R

i

. Sine

all proessors know G

i

, eah proessor deterministially hooses a group oordinator, whih is

the proess with the highest ID in G

i

. In eah round, eah proessor i reports D

i

and R

i

to its

oordinator. The oordinator reeives and ollates these reports and broadasts the results to the

members of the group. After reeiving this broadast message from the oordinator, eah proess

i updates D

i

, R

i

, and U

i

, and then hooses a new task to ompute using the task alloation rule.

Initially, all proesses are members of a single initial view that ontains all the proesses. If a

regrouping ours, then the a�eted proesses reeive the new views from the group membership

servie, omplete any tasks that they are urrently omputing, and report the results to the new

oordinators. Eah new oordinator will then start the �rst round in the new view.

We an lassify all the tasks into three types as follows. Given a view G:

Fully done tasks FD(G): the tasks ft 2 T j8i 2 G : t 2 D

i

g.

Partially done task PD(G): the tasks ft 2 T j9i; j 2 G : t 2 D

i

^ t 2 U

j

g.

Undone tasks UD(G): the tasks ft 2 T j8i 2 G : t 2 U

i

g.

Consider the situation in whih the view G partitions into two or more views. Clearly, all the

tasks in FD(G) won't be re-exeuted by any proess in G. In any algorithm, all of the tasks in

UD(G) are at risk of being exeuted redundantly beause of the need for liveness: the partition

may last for an unbounded time, and so the tasks in UD(G) may need to be omputed by at least

6

one proess in eah new view. Any task u in PD(G) is also at risk of being exeuted redundantly

in any new view that does not know u's result. By using a round struture, AX ensures that the

size of PD(G) is never larger than jGj � 1. No algorithm an ensure PD(G) is smaller unless it

does not allow all proesses in G to be omputing at the same time. Hene, using a round struture

is one way to redue the number of redundant tasks exeuted.

There are other ways to ensure jPD(G)j < jGj; for example, eah proess i ould broadast its

result of exeuting task u to G

i

rather than just sending it to the oordinator. Proess i would

not alloate another task until it knew that all other proesses j in G had updated D

j

, R

j

and

U

j

. AX was not designed this way beause it would introdue many more messages [12℄, and given

that the tasks in T all have the same exeution time, there would not be muh to be gained if this

additional ommuniation were used.

2

Even though it is optimal (in terms of the worst-ase number of tasks exeuted, as a funtion

of the number of views installed) and has a low message overhead, AX was not meant to be a

pratial algorithm. It has some obvious problems that an be easily addressed. For example,

eah proessor sends D

i

and R

i

to its oordinator at the end of eah round. Doing so makes the

propagation of results when views merge trivial to implement, but it ould result in a huge message

overhead. It would be easy for i to limit the size of D

i

and R

i

by having eah proess maintain a

vetor denoting the results it knows. Suh a vetor ould probably be kept small with a suitable

enoding tehnique. These vetors ould be managed in a manner similar to logial loks [15℄ so

that when i sends a result to its oordinator, it only sends the part of D

i

and R

i

that i does not

know that the oordinator knows.

Another problem that ould be easily addressed would redue the number of tasks exeuted

redundantly in some runs (reall that AX is optimal only in terms of the worst-ase behavior).

Consider what AX does if the proesses partition into two or more views in the initial state. The

proesses in eah view will deterministially start exeuting the same set of tasks. One ould instead

have a oordinator hoose tasks randomly without replaement for the proesses in its view to

ompute. If T is large and the partition does not last a long time (as measured in task omputation

time), then this would result in a smaller expeted number of redundant task exeution.

2

Note that the problem an be solve with no message ommuniation, and so trying to inlude optimality in terms

of message omplexity is not an interesting exerise. [17℄

7

A third problem arises from its use of oordinators. In a real system the tasks would not have

exatly the same exeution time. Eah round runs as long as the longest task in that round, and

with a large number of workers, the longest task in eah round ould be quite long. Despite the

larger number of messages, the variation of AX we gave above that does not use a oordinator

would probably be a better hoie.

In the next setion, we disuss a more important pratial problem with AX whih arises from

its use of group ommuniations. This problem ours even if all the hanges above are made to

AX.

4 Analysis of AX

AX was designed with the idea of reduing the number of redundantly omputed tasks. Redundant

task exeution an our when the network partitions. The exat number of redundant tasks

exeuted depends on many fators, inluding the length of time a task exeutes, the number of

proesses, how the proesses partition from eah other, at what point the partitions our, and for

how long eah endures.

AX was not expliitly designed to ompute the results of OMNI-DO quikly, but in fat it would

appear to do so. It is work onserving: if there is a task to be exeuted and a proess available to

exeute a task, then the task is exeuted. Sine tasks have the same omputation time, bloking

due to the round struture should be small and the order that the tasks are exeuted is immaterial.

Hene, sine AX redues the number of redundant tasks, it would appear to be a fast algorithm

as well. However, as was disussed in Setion 2, group ommuniation servies an perform poorly

when ommuniation is not symmetri and transitive. The atual performane of AX depends

strongly on the frequeny and duration of nonsymmetri or nontransitive ommuniation.

To understand the performane of AX in pratie, we need to understand how ommuniation

breaks down: how symmetri and transitive ommuniation is and how often a network partitions.

Furthermore, worst-ase behavior is not neessarily the most important metri to onsider. In

pratie, the average exeution time is probably of more interest to users of the system.

Unfortunately, there are no aurate existing models of network onnetivity that would allow

us to analyze AX. Hene, we follow other similar work (e.g., [2℄ and [7℄) and resort to using network

8

traes. Using trae data means that it is diÆult to generalize from our �ndings to other network

on�gurations. Hene, we also give a simple model for the expeted behavior of AX given metris

that an be measured. We show via simulation that the model has preditive value.

4.1 Trae data

We used two di�erent soures for trae data sets. The �rst data set omes from the Resilient Overlay

Networks (RON) projet [2℄. RON is an appliation-layer overlay on top of the existing Internet

routing substrate. The nodes that omprise RON monitor the funtion and quality of the Internet

paths among themselves, and use this information to deide whether to route pakets diretly over

the Internet or by way of other RON nodes. The RON projet uses a testbed deployed at sites

sattered aross the Internet to demonstrate the bene�ts of the arhiteture. Sine the probing

reported in the trae data referred to in [2℄ is not frequent enough for our analysis, we used another

trae that was kindly olleted and supplied to us by the RON group [3℄.

In this trae, there are sixteen nodes that are spread aross the United States and Europe. Eah

pair of nodes probe eah other via UDP pakets one every 22.5 seonds on average. To probe,

eah RON node independently piks a random node j, sends a paket to j, reords this fat in a

log, reords if there was a response, and then waits for a random time interval between one and

two seonds. The logs from eah mahine are then olleted and merged into a single trae.

From this trae, we generated a direted ommuniations graph with the RON nodes as the

verties in the graph. Ideally, an edge is drawn from node i to node j if a proess at j an suessfully

reeive messages from a proess in i. A node i may be marked as rashed, whih indiates that the

proess at node i is rashed.

The graph is initially onneted and all nodes are marked as not rashed. A node i is marked

as rashed if the log indiates that i did not send a probe for �ve minutes. One i subsequently

sends a probe, the node i is marked as not rashed. If the trae shows that the last three messages

(either probes or responses) a node i sent to j were not reeived by j, then the direted edge from

i to j is erased. The edge from i to j is added again when the trae reords j having reeived a

paket from i (either a probe or a response). The trae ontains ontinuous probing for the two

week period from August 2 through August 16, 2002.

9

Group ommuniations servies for wide-area networks an be fatored to run on top of spe-

ialized failure detetor servies [14℄, and so it an be hard to ome up with a general onnetivity

model that would predit how group ommuniations servies would behave in any given situation.

One obvious model, however, is based on TCP onnetivity. UDP onnetivity is learly worse

than TCP onnetivity sine pakets an be lost due to ongestion and there is no retry (unlike

TCP). We hose the method of delaring a link down only when three pakets are lost to make

the onnetivity graph a more onservative estimator of how group ommuniations servies would

perform.

The seond set was olleted by Omar Bakr and Idit Keidar. They studied the running time

of TCP-based distributed algorithms deployed in a widely distributed setting over the Internet.

They experimented with four algorithms that implement a simple and typial pattern of message

exhange that orresponds to a ommuniation round in whih every host sends information to

every other host. The traes we analyzed are desribed in [7℄.

The information was olleted from universities and ommerial ISP hosts. The mahines were

spread aross the United States, Europe, and Asia. Eah host sent a ping (ICMP) paket to eah

other host one a minute. Eah proess reords to a loal log the ping pakets it reeives from

other proesses.

The ommuniations graph is onstruted in a similar way as was done for the RON traes.

The graph is initially onneted. The edge from a proess i to another proess j is removed when

three minutes elapses without j having reeived a ping from i. The edge is put bak when j �nally

reeives a ping from i. There is not enough information in these traes for us to be able to mark a

node as being rashed, and no node is ever marked as being rashed.

There were three traes generated in total: one with nine nodes, one with eight nodes, and

one with ten nodes. We denote these three traes as exp1, exp2 and exp3. Eah trae reorded

more than three days' worth of probing. In exp1, two links had high loss rates: one from National

Taiwan University to a ommerial site in Utah sustained a 37% loss rate, and another from

National Taiwan University to a ommerial site in California sustained a 42% loss rate. In exp3,

links from National Taiwan University and from Cornell University had high loss rates. Beause

of these high loss rates, in [7℄ they also onsidered the subset of exp1 with the proess at National

10

RON (16 nodes): F=18%, Pt Partition time = 3.9%

Non-partition Partition period

period Start time Duration Two-lique time

1st 60,843.5 60,843.5 2.4 100%

2nd 259,966.6 320,812.5 1.7 100%

3rd 290,407.9 611,222.1 56.4 100%

4th 41,421.3 652,699.8 27,639.6 98%

5th 224,965.6 905,365 70.6 0%

6th 16,591.4 922,027 27.9 0%

7th 149,180.1 1,071,235 98.2 100%

8th 7,995.6 1,079,328.8 22.4 100%

9th 912 10,80263.2 95.9 100%

10th 60,003.8 114,0362.9 92 100%

11th 49,995.9 1,190,450.8 19149 94%

exp1 (9 nodes): F=32%, Pt Partition time = 0.89%

Non-partition Partition period

period Start time Duration Two-lique time

1st 74,520 74,520 3,720 82%

2nd 21,360 99,600 300 100%

3rd 360,900 - - -

exp2 (8 nodes): F=5%, Pt Partition time = 0%

exp3 (10 nodes): F=46%, Pt Partition time = 0%

Table 1: Partitions in the four traes.

Taiwan University removed (they did not analyze exp3 in their paper). We did not remove the data

onerning National Taiwan University and Cornell from our traes beause we felt that leaving it

in represented a real-world situation.

4.2 Trae analysis

First, we would like to know how often partitions happen and what duration they have. A partition

ours when the ommuniations graph ontains more than one omponent, and all omponents

ontain non-rashed nodes. The partition data is shown in Tables 1. Eah partition is identi�ed by

when it started in the trae and how long it endured. The perentage of time during whih there

was a partition in eah trae is reported in Table 1. Summarizing,

1. There are eleven partitions in the RON trae. Nine of the eleven endured for less than two

11

minutes, and the two others endured for over �ve hours. For over 96% of the trae there was

no partition.

2. There are two partitions in the exp1 trae. One lasted for �ve minutes and the other lasted

for over an hour. For over 99% of the trae there was no partition.

3. There were no partitions in the exp2 or exp3 traes.

Sine there is no information in the three traes about rashes, the partitions time reported for

exp1 is only an upper bound.

All partitions that we found in the traes resulted in exatly two onneted omponents. In all

but one of the partitions, one of the omponents ontained exatly one node; in the ase, whih is in

the RON trae, the smaller omponent ontained two nodes (one of these two nodes subsequently

rashed during the partition). This two-node omponent was symmetrially and (by de�nition)

transitively onneted.

Seond, we would like to know how often ommuniation is not symmetri and transitive. At

any point in time, eah proess i is in a onneted omponent of the ommuniations graph. For

a proess i, let (i) be the fration of time during a trae in whih its onneted omponent is a

lique. Then we ompute:

F = 1�

X

i2�

(i)=P

Larger values of F indiates that AX will be less likely to make progress beause of the lak of

a fully formed view. Table 1 reports the values of F for the four traes we onsidered. All traes

reord a signi�ant value for F , and trae exp2 has the lowest value.

Reall that in all partitions, the smaller of the onneted omponents ontained either one or two

nodes and was both symmetrially and transitively onneted. The larger onneted omponent,

of ourse, was not always symmetrially and transitively onneted. If it is not, then AX may be

bloked in the larger omponent, thereby reduing the number of redundant tasks omputed. So, we

also list the fration of time of eah partition during whih the larger omponent was symmetrially

and transitively onneted. For the most part, the larger omponent's ommuniations graph is a

lique.

12

Looking at these values, we observe that:

� The periods of time during whih there is no partitioning are usually quite long. In the RON

traes, the shortest suh period was about 15 minutes and the longest period was over three

days, and in the exp2 and exp3 traes, both of whih reord three days' worth of probing, there

were no partitions. Thus, we would expet that in the ommon ase and with omputations

that span no more than a day or so, AX should not ompute many redundant tasks.

� When they happen, partitions an endure for a long time. In the RON trae, the longest

partition lasted for over seven hours, and in the exp1 trae the longest partition lasted for

over an hour. This implies that, as was stated in [6℄, OMNI-DO is an appropriate problem for

a partition-aware solution; making progress during suh long periods is obviously desirable.

� The periods of time during whih ommuniations are not symmetri and transitive is sig-

ni�ant. It appears that suh periods are often due to one troublesome node or link. For

example, from the RON traes during partitions, the larger onneted omponent is usually

fully onneted. Being able to predit whih nodes will be the troublemaker, though, may be

hard. For example, Cornell partiipated in all the traes but was troublesome only in trae

exp3. Thus, we expet that AX will not be as fast as one might think beause of its use of

group ommuniations.

We an estimate the slowdown fator of AX with a simple model. Assume that the network

does not partition but su�ers from periodi times of poor onnetivity: for � seonds it is

not a lique, for � seonds it is a lique, for � seonds it is not a lique, and so on. Let

eah task ompute for T seonds. Sine the tasks have the same length, they will omplete

at lose to the same time. The master then broadasts the new assignment to start the next

round. With probability �=(� + �), the broadast will our during an � period, and will

blok on average �=2 seonds; otherwise, the broadast ours during a � period and does

not blok. Hene, it bloks on average �

2

=2(� + �) seonds. The slowdown fator should

then be (T + �

2

=2(� + �))=T . This simpli�es to:

Slowdown fator = 1 + �F=2T

13

4.3 Simulation results

In order to see if our observations above are orret, we simulated AX running over the RON trae.

We used the ommuniations graph to generate a set of view hanges, and we used the group

membership semantis in whih a proess's multiast is bloked while its onneted omponent is

not a lique. Given the round nature of AX, our results would not di�er if only the delivery of

multiast messages were bloked during these times.

We assumed that eah of the sixteen nodes monitored by RON have ten proesses. We assume

that sine proesses in one node are in the same loal area network, the ommuniation among them

is always symmetri and transitive. We assume that there are 1,000 tasks that run for a time muh

longer than it takes for messages to be transmitted over the wide-area network, and so we assume

that ommuniations is e�etive instantaneous among a omponent when its ommuniation graph

is a lique (otherwise, it is bloked as desribed above). A run Sim(i) indiates a simulation in

whih eah task runs for 100i seonds.

We �rst ran the simulations over a period of time in the RON traes during whih there were no

node rashes and there were no partitions. The results of our simulation are shown in Table 2. The

olumn \Start time" indiates where in the trae the simulation was started. The row \Slowdown"

gives the slowdown fator for di�erent simulations and the row \F" gives the value of F for the

segment of the run during whih the simulation ran.

F was either very small or very large. When F is small, there is no e�et on the running

time, and large values of F an make AX runs between about 50% to over 11 times slower. As

predited, the slowdown fator dereases with inreasing T . The slowdown fator equation requires

a value for �, and so we omputed a histogram of values of � and � over the entire run (when the

network was partitioned we onsidered only the larger onneted omponent). Table 3 gives the

histogram. The average and median values for � are 143 and 22 seonds, and for � are 665 seonds

and 162 seonds. The ranges of values for both are very large. If we use the average value of �

in the slowdown formula, then the slowdown fators in Table 2 are usually muh higher than the

slowdown formula predits. We believe that this is beause some larger periods of nontransitive

ommuniation happened during the simulation.

We then ran Sim(1) over �ve di�erent time intervals in the RON trae during whih F was

14

Start time Value Sim(1) Sim(2) Sim(3) Sim(4) Sim(5)

500,000 Exeution time 700 1,400 2,100 2,800 3,500

Slowdown 1 1 1 1 1

F 0% 0% 2.7% 2.1% 1.6%

510,000 Exeution time 700 1,400 2,100 2,800 3,500

Slowdown 1 1 1 1 1

F 0% 0% 0% 0% 0%

520,000 Exeution time 700 1,400 2,100 2,800 3,500

Slowdown 1 1 1 1 1

F 1% 0.5% 0.9% 0.6% 0.5%

530,000 Exeution time 3,266 6,320 6,320 6,858 8,156

Slowdown 4.67 4.51 3.01 2.45 2.33

F 99.2% 99.2% 99.2% 99.3% 99.4%

540,000 Exeution time 2,696 3,780 4,081 5,211 5,211

Slowdown 3.85 2.70 1.94 1.86 1.49

F 98.6% 98.9% 98.7% 98.6% 98.6%

550,000 Exeution time 7,819 9,573 10,188 10,188 10,825

Slowdown 11.17 6.84 4.85 3.64 3.09

F 99.4% 99.2% 99.1% 99.1% 99.2%

Average Exeution time 2,647 3,979 4,482 5,110 5,782

Slowdown 3.78 2.84 2.13 1.82 1.65

Table 2: AX simulation results for traes with no partitions.

Time range Non-transitive views Transitive views

Number Perentage Number Perentage

10 425 28.41% 240 16.05%

100 1,271 84.96% 637 42.61%

1,000 1,460 97.59% 1,227 82.07%

10,000 1,494 99.87% 1,489 99.60%

100,000 1,496 100% 1,495 100%

Table 3: The length of views.

Start time 526,900 688,000 856,500 1,070,000 1,189,300 Average

Exeution time 1,118 813 1,498 1,012 976 1,083

Slowdown 1.6 1.16 2.14 1.45 1.39 1.55

F 52% 41% 55% 44% 50% 48.4%

Table 4: Simulation with � = 0:5.

15

Partn 1 Partn 2 Partn 3 Partn 4 Partn 5

Start time 652,700 905,365 922,027 1,071,235 1,140,363

Duration 27,700 71 28 98 92

Exeution time 10,000 19,104 2,642 3,852 761

Slowdown 14.3 27.3 3.8 5.5 1.1

Redundant tasks 1,000 10 0 10 10

Table 5: AX simulation results for traes with partitions.

lose to 50%. The results are shown in Table 4. With � = 143 seonds, the slowdown formula

predits a slowdown fator of 1.36, whih is lose to the values omputed by simulation.

Sine no partitions ourred during any of these runs, the number of redundantly exeuted tasks

should be zero, whih is what the simulation reported. We then ran Sim(1) starting at �ve di�erent

times, where at eah starting time there was a partition but no rashed nodes. The results are shown

in Table 5. In the �rst simulation, the network was partitioned throughout the whole exeution,

and so all tasks were exeuted redundantly. In the other ases, the partition lasted for only a

short time. Here, sine the partition result in one side having a single node with ten workers, and

redundant exeutions starts when there is a partition, there will be only ten redundantly exeuted

tasks. In the third simulation, the number of redundant tasks is zero beause the larger omponent

is not a lique during the partition, and so only the smaller omponent makes progress.

5 A Simpler Approah

AX uses group ommuniations to redue the number of redundant task exeutions during parti-

tions, but it runs more slowly beause of the more prevalent problem of poor network onnetivity.

By running more slowly, whih is bad in itself, it an also inrease the hanes of redundant task

exeution beause it is more likely to enounter a partition.

In this setion, we give a simple protool alled WAMW

3

, that we believe is more appropriate

for the network onnetivity we observed. It is a partition-aware solution, but does not require

group ommuniations. It uses leases [13℄ rather than an underlying failure detetion servie, but

it would be easy to extend to use suh a servie if one were available.

3

Short forWide-Area Master-Worker.

16

Trae Time D(G) > 1 Time D(G) = 2 Perentage

RON 215,043.4 214,376.8 99.7%

exp1 145,560 138,360 95%

exp2 235,20 22,440 95%

exp3 213,180 208,260 98%

Table 6: Maximum distane.

5.1 Link Failures

Our protool should make progress even when there are faulty links. Flooding protools and gossip

protools [9, 16℄ are often used in suh irumstanes. Let d(a; b) be the shortest distane between

nodes a and b in a graph G. The time it takes to omplete a multiast in the ommuniations

graph using ooding depends on D(G) = max

a;b2G

d(a; b). We all D(G) the maximum distane of

G.

Table 6 gives information on D(G) where G is the the ommuniations graph when not parti-

tioned and the larger onneted omponent when partitioned. The �rst olumn gives the amount

of time that G is not a lique, and the seond olumn gives the amount of time that D(G) = 2. The

third olumn is the perentage of time that the graph is not a lique and D(G) = 2. These values

are all lose to 1, and so a ooding protool should be fast most of the time. The observation that

D(G) is rarely more than two has been noted by many others, and reently by [2℄.

5.2 Algorithm Struture

WAMW uses masters and workers to perform a omputation. Masters shedule tasks, and workers

request and exeute tasks given by the masters. Eah LAN has at least one master and its set of

workers. Complete pseudoode for the master and the worker is in Appendix A.

A worker exeutes one task at a time. When a worker starts up, it requests a task from its

designated master by sending a TASK REQUEST message. Upon reeiving a task, the worker starts

exeuting it and sends the result of the task to the master upon ompletion. A worker terminates

when its master responds with no task to be exeuted. A master �rst heks if there is a worker

request pending. If so, the master extrats the result from the previous task done by the worker

from the request, and marks the task as done. The worker is subsequently added to a list of idle

17

workers. The master then heks if there are any unalloated tasks left to be performed. If there

are tasks to be performed, the master alloates a task, piks an idle worker and sends the task to

the worker. The masters are terminated after every master knows the results of all tasks.

WAMW uses two types of leases. The �rst lease is the worker lease. When a worker is given

a task by a master, the master registers a lease on the task. The value of the worker lease is the

estimated ompletion time of the task. If a worker �nds that it annot omplete its task within

the estimated ompletion time, it alulates a new lease and sends a RENEW LEASE message to

the master. If, however, a master �nds that a worker lease has expired, the worker is assumed to

have rashed. The seond type of lease is the master lease. Every master registers a master lease

with every other master. If a master lease expires, then the master for whih the lease expired is

assumed to have rashed or partitioned away.

As in AX, task alloation in WAMW assumes that all masters know all tasks T to be exeuted

in advane. We also assume that all masters know the identity of all other masters and that masters

are totally ordered by 0; 1; : : : ; (n� 1) where n is the number of masters. Initially, the omplete task

list for the omputation is divided evenly among all masters. The size of the slie for eah master is

jT j=n. The slie of tasks to perform for master i, S

i

, is then given by S

i

= T [i� size; (i+ 1)� size℄

and the remote set R

i

for master i is de�ned by R

i

= fS

0

; S

1

; : : : ; S

i�1

; S

i+1

; : : : ; S

n�1

g.

Task are alloated by master i to waiting workers as follows: if there is an unalloated task in

S

i

, then alloate the �rst suh task; else alloate the �rst unalloated task in R

i

. When a worker

lease held by master i expires, any task it has alloated is put bak into S

i

or R

i

. When a master

lease for master j held by master i expires, master i mark all tasks in S

j

as unalloated. When a

task ompletes, it is removed from S

i

or R

i

.

A task alloated from S

i

by master i only auses redundant task exeutions when a worker lease

expires. A task alloated from R

i

by master i always ause a redundant task exeution, unless a

remote master j has rashed before alloating this task in S

j

. A task u 2 S

j

in R

i

will only be

alloated after the master lease of master j has expired.

At eah task ompletion (and the orresponding task alloation) and at the frequeny pmax, a

master broadasts its state. This state inludes whih tasks have been ompleted, whih tasks have

been alloated, the task results, and master lease information to the other masters. Broadasting

18

at task ompletion redues the hane of two masters both alloating the same tasks in their remote

sets. Broadasting at pmax frequeny inrease the hane of overoming temporary ommuniation

failures. The value of pmax is a funtion of the average task exeution time and the value for the

master lease. For instane, if a task takes seonds to omplete on average and given that D(G) is

almost always 2 or less, then pmax should be set to =2 to ensure that state about individual task

ompletions is broadast at least twie. However, for a master lease m, if =2 > m, pmax should

be set to a smaller value than =2 to avoid a master leases expiring �rst.

Redundant task exeution ours in WAMW when leases expire. Compared to AX, the number

of redundant task exeution an be large. If ommuniations are truly asynhronous, then in the

worst ase even with no partitions the number of tasks exeuted is W

w

= NK where N is the

number of tasks and K is the number of workers. Even if we assume that the leases are well-

hosen|that is, a lease on master i held by master j expires if and only if i and j partition from

eah other|then the number of tasks exeuted an be as high as W

s

= N(1+M

1

�M

2

=M) when

the M masters partition into two omponents, one of size M

1

and the other of size M

2

. These

values are derived in Appendix B. We expet, of ourse, that ommuniations will not as poorly

behaved as are needed to attain these bounds. Assuming that we an assign lease values in an

appropriate manner, we expet that the number of redundantly exeuted tasks an be kept small.

5.3 Assigning Leases

The value for master leases inuenes both the number of redundant tasks exeuted and the total

exeution time of all tasks. Assume that all masters work in isolation during the whole omputation,

ausing W

w

tasks to be exeuted. For the total exeution time of the omputation to be optimal,

the master lease should not be larger than the time t it takes to exeute the loal set S

i

for a

master i, sine the master immediately starts exeuting tasks in R

i

one S

i

is ompleted. Hene, t

seems like a reasonable upper bound for the master lease. For long-lasting partitions, though, t is

unrealistially large to use for master leases, sine doing so will ause the total exeution time to

beome very large. The question is then, how small an the master lease be to make the number

of redundant tasks small while at the same time to avoid bloking the omputation unneessarily.

One obvious value for a master lease is the expeted duration of a partition. In general, suh

19

a value is impossible to establish, but we an use a value based on our traes. Partition durations

in the RON trae were less than 2 minutes for nine out of 11 partitions. For the exp1 trae,

one partition lasted �ve minutes and one for over an hour. Hene, if we disregard the very long

partitions, partition in the traes typially endured for �ve minutes or less. We thus set the master

lease to ten minutes for our experiments to mask the majority of partitions while ensuring that the

omputation does not blok for long periods during long-lasting partitions.

The value for the worker lease is based on the expeted exeution time of a given task. We

assume that for most ases when a worker sends a RENEW LEASE message to the master, the

message get to the master suessfully and in a timely manner, sine all ommuniation between

workers and masters is within LANs with small lateny and low paket loss. Thus the auray of

the worker lease is not important, as workers an periodially renew the lease if it is an underesti-

mate. In our simulations we assume that workers do not rash, and hene the worker lease has no

signi�ane for our results.

5.4 Simulation

We used the RON traes to determine whether a message ould be suessfully sent from one host

to another during an unreliable broadast. If a message sent from node i to node j in the RON

trae fails, then we assume that all subsequent messages sent in WAMW from node i to node j fail

until a message is suessfully sent from node i to node j in the RON trae.

Sine the task exeution times are idential, we added a small random jitter in the interval

[0; 2℄ to the exeution time of the tasks to avoid unrealisti synhronous behavior in master to

master ommuniation. Adding jitter auses a master state broadast for all task ompletions

(and orresponding alloations). Sine network jitter was not part of the simulation for AX, we

normalized the exeution time for WAMW to exlude the additional time aused by the jitter.

To inrease tolerane to ommuniation failures when doing the state broadasts in the master,

additional broadasts are sent every pmax seonds. In our experiments, tasks have lengths 100i

seonds where i = 1; : : : ; 5 and to ensure we have at least one additional broadast between every

task ompletion broadast we set pmax to 100=2 = 50. Note that we do not inrease pmax for

i > 1 to avoid master leases from expiring due to temporal ommuniation failures. We assume

20

Sim(1) Sim(2) Sim(3) Sim(4) Sim(5)

Fastest running time 700 1,400 2,100 2,800 3,500

Start Slowdown 1 1 1 1 1

at Total msgs 18,360 21,720 25,080 28,440 31,800

500,000 Pt msgs failed 0.02% 0.02% 0.06% 0.08% 0.11%

Start Slowdown 1 1 1 1 1

at Total msgs 18,360 21,720 25,080 28,440 31,800

510,000 Pt msgs failed 0.08% 0.10% 0.19% 0.23% 0.28%

Start Slowdown 1 1 1 1 1

at Total msgs 18,360 21,720 25,080 28,440 31,800

520,000 Pt msgs failed 0.20% 0.16% 0.19% 0.21% 0.24%

Start Slowdown 1 1 1 1 1.01

at Total msgs 18,360 21,720 25,080 28,440 31,830

530,000 Pt msgs failed 7.40% 6.07% 6.38% 6.15% 6.02%

Start Slowdown 1 1 1 1.02 1

at Total msgs 18,360 21,720 25,080 28,485 31,800

540,000 Pt msgs failed 6.14% 6.05% 6.36% 6.03% 5.69%

Start Slowdown 1.07 1.04 1.02 1.02 1

at Total msgs 18,405 21,765 25,125 28,485 31,800

550,000 Pt msgs failed 11.82% 11.72% 11.79% 11.95% 11.82%

Table 7: WAMW simulation results from traes with no partitions.

that there is one master and ten workers on eah of the 16 nodes monitored by RON, and that

there are 1,000 tasks to be exeuted totally. The omputation terminates when all masters know

the results of all tasks. As with AX (see Table 2) we �rst ran the simulations over the same periods

of time in the RON traes that we used for AX and reported in Table 2. The results are shown in

Table 7.

We also report in the simulation results the number of messages that WAMW sends. The values

are signi�antly larger than the number sent with AX. The average rate of message transmission is

Partn 1 Partn 2 Partn 3 Partn 4 Partn 5

Start time 652,700 905,365 922,027 1,071,235 1,140,363

Duration 27,700 71 28 98 92

Exeution time 10,000 700 700 700 700

Slowdown 14.3 1 1 1 1

Redundant tasks 1,000 0 0 0 0

Total msgs 78,480 18,360 18,360 18,360 18,360

Pt msgs failed 28.19% 3.56% 2.64% 4.85% 1.38%

Table 8: WAMW simulation results from traes with partitions.

21

faster for shorter tasks. With Sim(1) the rate is about 26 messages/seond and with Sim(5) it is

about 9 messages/seond. If the messages are large, then the message overhead would most likely

pose a salability issue when task length is short.

The number of redundantly exeuted tasks is always zero, as expeted given that there were no

partitions. 80% of the slowdown fators are 1, and the maximum value is 1.07 whih is muh better

than the performane of AX, where the largest slowdown was 11.17 and the smallest slowdown

greater than 1 was 1.49. For the results where the slowdown is larger than 1, the exeution time

is always optimal plus pmax, where pmax is 50 seonds. In these ases, the last task ompletion

broadast from a ontroller failed to reah all other ontrollers, but the suessive broadast whih

happens pmax seonds later ompleted the broadast.

We then ran Sim(1) over the �ve di�erent time intervals in Table 5. The results are shown

in Table 8. Sine the network is partitioned during the whole exeution in the �rst simulation,

all the tasks are exeuted redundantly, as they are with AX. For the other simulations, no tasks

are exeuted redundantly, sine the duration of the partitions are less than the master lease. The

slowdown fator of the �rst simulation is 14.3, and that of all the other simulations are 1, all of

them optimal.

To summarize, in most ases WAMW runs faster than AX, sine it does not blok during non-

transitive ommuniations. And in pratie, the number of redundant tasks exeuted by WAMW

is not greater than AX. Attaining this performane requires using good values for the lease times.

In pratie, a user might set the master lease times to balane o� his or her own partiular trade

o� between running time and redundant task exeution.

6 Conlusions

We started this researh beause we wanted to know if we should use wide-area group ommuni-

ations in onstruting a wide-area master-worker framework for GriPhyN. We hose a protool

that had been developed to minimize the amount of redundant tasks exeute and evaluated it both

with a simple analytial model and via simulation. The protool was not meant to be a pratial

one, but on the surfae it does not appear hard to make it more pratial. We also ompared it's

performane under simulation against a simple protool that does not use group ommuniations

22

and that has a signi�antly higher upper bound on the amount of redundant work.

We were surprised by the frequeny of nontransitive or asymmetri ommuniations. In an

earlier study [14℄ one of us had found signi�antly less periods of poor ommuniations onnetivity,

but the network we onsidered ontained only �ve nodes. From the traes we used to evaluate AX, it

appears that as the number of nodes grow, the more likely it will be that one will enounter periods

of nontransitive or asymmetri ommuniations. Hene, using group ommuniations systems upon

whih to build wide-area master-worker does not seem a good idea.

One an redue the impat of poor ommuniations onnetivity in two ways. One way is

to identify o�-line whih ommuniation links will prove to be unreliable and then on�gure the

bakbone of the group ommuniations system to avoid these links. An example of doing this is

shown in [14℄. The drawbaks of this approah are (1) it isn't lear how aurately and ompletely

troublesome links an be identi�ed in advane, and (2) the graph may have small node and link

ut-sets, thereby inreasing the hanes of a partition. For example, in [14℄ to avoid a relatively

unreliable link, we set up the bakbone as a tree. The failure of one node subsequently aused a

long-lasting partition.

The other way to redue the impat of poor ommuniations onnetivity would be to relay

information aross better-performing links. This is what overlay networks like RON do [2℄ and one

group membership protool did [19℄. Salability of suh overlay networks is not lear and is an

ongoing researh problem; if it an be addressed, then this would be a possible approah. However,

our initial results with the simple algorithm indiate that the kind of poor onnetivity that exists

is masked quite well by limited ooding (and presumably by gossip protools). Hene, it isn't

lear that the generality of an overlay network is required. If one had other reasons for wanting

partitionable group ommuniations, then it would be worth onsidering using very limited gossip

or ooding underneath.

What group ommuniations o�ers for wide-area master-worker omputation is a mehanism

to ensure that in the worst ase, the number of redundantly exeuted tasks is small. Our initial

experiene with a simple protool, though, indiates that the expeted number of redundantly exe-

uted tasks an be kept quite small without using group ommuniations. If the worst-ase senario

were more dire|for example, as it is in the Banomat problem [20℄, then it would be worthwhile

23

running a group ommuniations system over a ommuniations layer that relayed information to

avoid poor links. For wide-area master-worker, it is hard to justify suh an expenditure of e�ort to

avoid a highly unlikely worst-ase behavior.

We believe, though, that group ommuniations has a role in wide-area master-worker. One

would wish to repliate masters to a small degree within eah loal area network. This would be

done both to balane load and to mask rash failures of masters. Sine ommuniations is more

reliable in a loal area network, using a tightly-repliated state approah within a loal-area network

should work well.

Aknowledgments

We would like to thank David Anderson, Frans Kaashoek, Omar Bakr, and Idit Keidar for giving us

aess to their traes. We would also like to thank Omar Bakr, Idit Keidar, and Alex Shvartsman

for fruitful disussions about the researh reported here.

Referenes

[1℄ Speial Issue on Group Communiation Systems. In Communiations of the ACM, volume

39(4), April 1996.

[2℄ David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Resilient

Overlay Networks. In Symposium on Operating Systems Priniples, pages 131{145, 2001.

[3℄ David G. Anderson. Personal ommuniation, June 2002.

[4℄ O. Babaoglu, A. Bartoli, and G. Dini. Enrihed View Synhrony: A Paradigm for Program-

ming Dependable Appliations in Partitionable Distributed Sytems. In IEEE Transations on

Computers, volume 46(6), pages 642{658, June 1997.

[5℄ Ozalp Babaoglu, Alberto Bartoli, and Gianlua Dini. Programming Partition-Aware Network

Appliations. In Advanes in Distributed Systems, pages 182{212, 1999.

[6℄ Ozalp Babaoglu, Renzo Davoli, Alberto Montresor, and Roberto Segala. System Support for

Partition-Aware Network Appliations. In International Conferene on Distributed Computing

Systems, pages 184{191, 1998.

[7℄ Omar Bakr and Idit Keidar. Evaluating the Running Time of a Communiation Round over

the Internet. In 21st ACM Symposium on Priniples of Distributed Computing, pages 243{252,

2002.

[8℄ Kenneth P. Birman. Building Seure and Reliable Network Appliations. Manning, 1996.

24

[9℄ Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and Yaron

Minsky. Bimodal Multiast. In ACM Transations on Computer Systems, volume 17, May

1999.

[10℄ F. Cristian and C. Fetzer. The Timed Asynhronous Distributed System Model. In IEEE

Transations on Parallel and Distributed Systems, pages 642{657, June 1999.

[11℄ C. Georgiou, A. Russell, and Alex A. Shvartsman. The Complexity of Distributed Cooperation

in the Presene of Failures. In Proeedings of the International Conferene on Priniples of

Distributed Computing, 2000.

[12℄ C. Georgiou and Alex A. Shvartsman. Cooperative Computing with Fragmentable and Merge-

able Groups. In 7th International Colloquium on Strutural Information and Communiation

Complexity, pages 141{156, 2000.

[13℄ Cary G. Gray and David R. Cheriton. Leases: An EÆient Fault-Tolerant Mehanism for Dis-

tributed File Cahe Consisteny. In 12th ACM Symposium on Operating Systems Priniples,

pages 202{210, 1989.

[14℄ Idit Keidar, Jeremy B. Sussman, Keith Marzullo, and Danny Dolev. Moshe: A Group Mem-

bership Servie for WANs. In ACM Transations on Computer Systems, August 2002.

[15℄ Leslie Lamport. Time, Cloks and the Ordering of Events in a Distributed System. In Com-

muniations of the ACM 21, volume 21, pages 558{565, July 1978.

[16℄ Meng-Jang Lin, Keith Marzullo, and Stefano Masini. Gossip Versus Deterministially Con-

strained Flooding on Small Networks. In 14th International Symposium on Distributed Com-

puting, 2000.

[17℄ Grzegorz Greg Malewiz, Alexander Russell, and Alex A. Shvartsman. Distributed Coop-

eration During the Absene of Communiation. In International Symposium on Distributed

Computing, pages 119{133, 2000.

[18℄ Grzegorz Greg Malewiz, Alexander Russell, and Alex A. Shvartsman. Optimal Sheduling

for Disonneted Cooperation. In Proeedings of VIII International Colloquium on Strutural

Information and Communiation Complexity, 2001.

[19℄ C. P. Malloth, P. Felber, A. Shiper, and U. Wilhelm. Phoenix: A toolkit for building fault-

tolerant, distributed appliations in large sale. In Workshop on Parallel and Distributed

Platforms in Industrial Produts, Otober 1995.

[20℄ Jeremy B. Sussman and Keith Marzullo. The Banomat Problem: An Example of Resoure

Alloation in a Partitionable Asynhronous System. In International Symposium on Distributed

Computing, pages 363{377, 1998.

25

A WAMW Pseudoode

def worker:

result = NULL

while true:

task = request work from master(result)

if task == NO MASTER:

terminate()

lease timeout = extrat lease timeout(task)

fork(task)

task ompleted = false

while not task ompleted:

result = blok until(expired(lease timeout) or task ompleted)

if result == LEASE EXPIRED:

lease timeout = renew lease(task)

else:

task ompleted = true

Pseudoode A.1: Worker main loop.

def request work from master(result):

ontroller = �rst available master for this worker

while true:

task = task request(master, result)

if task == NETWORK FAILURE:

mark as unavailable(master)

master = next available master for this worker

if not master:

return NO MASTER

else:

return task

Pseudoode A.2: Worker to master request handler.

26

def master:

pmax interval = interval between eah master state update

pmax = urrent time() + pmax interval

idle workers = [℄

while true:

state update = false

type, worker, result = get worker request()

if type == RENEW LEASE:

set worker lease(worker)

if type == TASK REQUEST:

idle workers.append(worker)

if result ! = NULL:

state update = true

mark task as done(result)

while len(idle workers) > 0 and num unalloated tasks() > 0:

task = alloate task()

worker = idle workers.pop()

set worker lease(worker)

send task to worker(task; worker)

state update =true

update master state(state update)

hek leases()

if all tasks ompleted():

terminate()

Pseudoode A.3: Master main loop.

def update master state(state update):

if urrent time() > pmax or state update:

pmax = urrent time() + pmax interval

send loal state to masters()

state = reeive state from masters()

if state:

update loal state(state)

Pseudoode A.4: State updates from master to the other masters.

def hek leases:

foreah master lease:

if expired(master lease):

unalloate all tasks alloated by master()

foreah worker lease:

if expired(worker lease):

unalloate task alloated by worker()

Pseudoode A.5: Cheking for expired leases in the master.

27

B Worst-ase Analysis of WAMW

Let:

M be the number of masters.

K

i

be the number of workers assoiated with master i; K

i

> 0.

K be the number of workers: K =

P

M

i=1

K

i

.

N be the number of tasks.

W be the total number of tasks exeuted.

Sine ommuniation is asynhronous, we an delay messages for an arbitrary amount of time

without having a partition (assuming that we de�ne a \partition" to mean ommuniations is

broken for an even longer time, perhaps forever). In this model, W an be as large as NK: Delay

all messages between masters so that the master leases expire. Thus, eah master will ompute

all N tasks. Consider master i. Sine it is work-onserving, it will assign K

i

tasks in eah round.

Number the workers as w

1

through w

x

where x = K

i

. We an delay the replies long enough so that

the worker leases expire. The master will not assign a task until a worker responds with results of

a task; let this worker be w

1

. Thus, the task that w

1

omputed will not be redone. We an reassign

all the other previously assigned tasks, for example, by assigning W

s

' task to w

1

, w

3

's tasks to

W

s

, and so on.

The total number of tasks that master i omputes is the number of tasks w

1

omputes plus the

number of tasks W

s

omputes ... plus the number of tasks w

x

omputes, whih gives a worst ase

of:

N + (N � 1) + (N � 2) + : : :+ (N �K

i

+ 1) = K

i

(2N �K

i

+ 1)=2)

The total number of tasks W

w

is thus:

W

w

=

P

M

i=1

K

i

(2N �K

i

+ 1)=2 = NK +K=2 �

P

M

i=1

K

2

i

=2

From this it follows that W

w

is maximized when 8i : K

i

= 1 in whih ase W

w

= NK.

Suppose we adopt a stronger model: Communiations an be arbitrarily delayed only if there

is a partition, and partitions are deteted by timeouts of master leases. For example, if a set of

masters

1

;

2

;

3

;

4

send messages to eah other and then partition into two omponents

1

;

2

and

3

;

4

, then by the time the partition is deteted

1

and

2

have reeived eah other's messages

(but not neessarily

3

and

4

's messages). We also assume that workers ommuniate with their

masters in a timely manner and so no worker leases expire

Under this model, W still depends on more than the number of installed views. Consider the

simple ase of the M masters partitioning into two: One side, A, onsists of M

1

masters and the

other side, B, onsists of M

2

masters. Assume that eah master has the same number of workers.

Have the masters eah omplete their slies, but delay all messages they send among themselves.

After the partition, eah master in A will redo the tasks that were omputed in B and vie versa.

So, before the partition the A side omputed NM

1

=M tasks and the B side omputed NM

2

=M

tasks. Afterwards, the A side omputesM

1

�NM

2

=M tasks and the B side omputesM

2

�NM

1

=M

tasks. Summing these, we get the total number of task omputations as, and so the work is:

W

s

= N + 2NM

1

M

2

=M

W

s

is maximized when M

1

=M

2

=M=2, giving in the worst ase W

s

= (1 +M=2)N . Even with

only only two views installed, the worst-ase of W

s

sales with the number of masters and is thus

not optimal.

28

