
UC San Diego
Technical Reports

Title
Group Membership and Wide-Area Master-Worker Computations

Permalink
https://escholarship.org/uc/item/8w32p8fs

Authors
Jacobsen, Kjetil
Zhang, Xianan
Marzullo, Keith

Publication Date
2002-11-06
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8w32p8fs
https://escholarship.org
http://www.cdlib.org/


Group Membership and Wide-Area Master-Worker Computations

Kjetil Ja
obsen

�

kjetilja�
s.uit.no

Xianan Zhang

y

xzhang�
s.u
sd.edu

Keith Marzullo

y

marzullo�
s.u
sd.edu

Abstra
t

Group 
ommuni
ations systems have been designed to provide an infrastru
ture for fault-

toleran
e in distributed systems, in
luding wide-area systems. In our work on master-worker


omputation for GriPhyN, whi
h is a large proje
t in the area of the 
omputational grid, we

asked the question should we build our wide-area master-worker 
omputation using wide-area

group 
ommuni
ations? This paper explains why we de
ided doing so was not a good idea.

Keywords: master-worker, group membership, network partitions, redundant tasks, omni-do.

1 Introdu
tion

The GriPhyN

1

(Grid Physi
sNetwork) is a NSF-funded resear
h proje
t to implement a Petabyte-

s
ale 
omputational environments for data intensive resear
h proje
ts. The proje
t, whose re-

quirements are being de�ned in the 
ontext of four 
urrent large physi
s experiments, will deploy


omputational environments 
alled Petas
ale Virtual Data Grids (PVDGs) that will meet the data-

intensive 
omputational needs of a diverse 
ommunity of thousands of s
ientists spread a
ross the

globe.

One of the fun
tions of a PVDG will be the re
onstru
tion of \virtual" data, whi
h is data that

is derived from the raw or pro
essed output of experiments. Re
onstru
tion is highly parallelizable,

and so we use a master-worker-like 
omputation for re
onstru
tion. Some re
onstru
tions will be

large enough that we believe that we will want to exe
ute them utilizing the resour
es of several


omputation farms spread a
ross the Internet. Hen
e, we are looking into the issues of wide-area

�

Department of Computer S
ien
e, University of Troms�, N-9037 Troms�, Norway. Supported by NSF (Norway)

grant No. 112578/431 (DITS program).

y

Department of Computer S
ien
e and Engineering, University of California, San Diego, La Jolla, CA 92093-0114,

USA. Supported by NSF ACI-0086044.

1

GriPhyN homepage: http://www.griphyn.org/

1



master-worker 
omputations. In parti
ular, the authors of this paper, who are members of the

GriPhyN 
ollaboration, are looking into the s
alability, fault-toleran
e, and performan
e problems

of wide-area master-worker 
omputations.

Group 
ommuni
ations systems are designed to provide an infrastru
ture for fault-toleran
e in

distributed systems, in
luding wide-area systems. We give a brief overview of the support they

provide in the next se
tion. Master-worker has been advo
ated at ICDCS as an appli
ation that

�ts well with partitionable group 
ommuni
ations [6℄ and has been formally studied in the 
ontext

of group 
ommuni
ations [12℄. Furthermore, there are partitionable group membership proto
ols

that have been designed expli
itly for s
alability, in
luding one that was developed by a group that

in
luded an author of this paper [14℄. Hen
e, an obvious question to us was should we build our

wide-area master-worker 
omputation using group 
ommuni
ations? To answer this question, we


hose as our obje
tive a reasonable metri
, the number of redundantly exe
uted tasks, that has been

studied in the 
ontext of group 
ommuni
ations-based solutions. We �rst examine a proto
ol that

is optimal with respe
t to this metri
, and observe how group 
ommuni
ations is used to 
ome up

with an optimal solution. We then show, via tra
e analysis, that this proto
ol performs poorly with

respe
t to another important metri
, total 
ompletion time. The reason for this poor performan
e

is in s
alability: the larger the network, the more likely 
ommuni
ations will not be transitive and

symmetri
. One 
an address this issue, but doing so 
an 
reate other problems. We then show

that a simple solution, whi
h has a mu
h larger worst-
ase 
omplexity in the number of redundant

tasks, appears to work mu
h better in pra
ti
e. Hen
e, we have de
ided that partitionable group


ommuni
ations is a poor 
hoi
e for building s
alable wide-area master-worker 
omputations.

2 System Model

We assume a distributed system 
omprised of pro
essors 
onne
ted to lo
al area networks, where

the lo
al-area networks are 
onne
ted into a wide-area network. Pro
esses on di�erent pro
essors


an only 
ommuni
ate by sending messages over the network. We assume that pro
essors 
an fail

by 
rashing and that the network 
an fail by dropping messages. We assume that 
ommuni
ations

provide FIFO delivery order: if pro
ess p sends message m to pro
ess p

0

and then sends message

m

0

to pro
ess p

0

, then p

0

may re
eive just m, or just m

0

, or m before m

0

, but never m

0

before m.

2



We assume that the system is timed asyn
hronous [10℄: pro
essors have 
lo
ks that progress at a

rate 
lose to real-time, but the time between some pro
ess p sending a message and the intended

destination p

0

delivering the message 
an be arbitrarily long.

In Se
tion 3 we assume that there exists a partitionable group 
ommuni
ation system. Group


ommuni
ation [1, 8℄ provides reliable multi
ast 
ommuni
ation among pro
esses that are organized

into groups. A group is a set of pro
esses that together 
omprise the members of the group. A

pro
ess be
omes a group member by requesting to join the group; it 
an 
ease being a member by

requesting to leave the group or by failing.

Ea
h group is asso
iated with a name. Pro
esses multi
ast to group members by sending a

message to the group name, and the group 
ommuni
ation servi
e delivers the message to the

group members (depending on the ability of the members to 
ommuni
ate, whi
h we elaborate on

below).

Group 
ommuni
ation systems are view oriented, whi
h means that they provide membership

information and deliver messages in a well-de�ned order among all members. Su
h systems provide

a useful abstra
tion for the development of highly available distributed and 
ommuni
ation-oriented

appli
ations. Group 
ommuni
ations systems di�er in the details on how they implement su
h an

ordering.

The membership of a group is a list of the 
urrently a
tive and 
onne
ted pro
esses in a group.

The task of a group membership servi
e is to tra
k the membership of the group as it evolves over

time. When the membership 
hanges, the appli
ation pro
esses are noti�ed at an appropriate point

in the delivery sequen
e. The output of the membership servi
e is 
alled a view, whi
h 
onsists of

the list of the 
urrent members in the group and a unique identi�er that allows the appli
ation to

distinguish the view from other views with the same list of members. Views are used in two main

ways:

1. Sin
e the members of the view agree on the membership of the view, they 
an deterministi
ally

assign roles to ea
h other without using further 
ommuni
ation. For example, the �rst pro
ess

in the membership list 
an serve as a 
oordinator for all the pro
esses in the membership list.

2. Consider any two pro
esses that are both in the membership of a view v when they both

install the same new view v

0

. The group 
ommuni
ations system ensure that both pro
esses

3



have delivered the same sequen
e of messages while in view v.

A partitionable group membership servi
e (for example, [4, 14℄) is a group membership servi
e

that is designed to operate in wide-area networks and that supports writing partition-aware appli-


ations, whi
h are appli
ations that 
an 
ontinue to make progress despite network partitions [5℄.

A network partition is the situation in whi
h two sets of nonfaulty pro
esses 
annot 
ommuni
ate

with ea
h other due to problems at the network layer or lower. We say that two pro
essors in whi
h

at least one pro
essor 
an 
ommuni
ate with ea
h other are in the same 
onne
ted 
omponent of

the network. Hen
e, a partitioned network has more than one 
onne
ted 
omponent.

Partitionable group membership proto
ols monitor the network 
onne
tivity using an underlying

unreliable failure dete
tion servi
e. The failures it reports are used to instigate view 
hanges. When

the failure dete
tion servi
e stabilizes su
h that 
ommuni
ation is possible among all the pro
essors

in a 
onne
ted 
omponent, a new view 
an be delivered to the pro
esses that are running on

pro
essors in the 
onne
ted 
omponent. Di�erent partitionable group 
ommuni
ations systems

have di�erent delivery rules asso
iated with messages that are sent while the failure dete
tion

servi
e is stabilizing; [20℄ 
ontains a summary of the rules of six di�erent proto
ols. Some systems

allow messages to be multi
ast during su
h periods of unstable failure dete
tion, while others do

not allow multi
asting. In the systems in whi
h messages 
an be multi
ast, su
h messages are not

delivered until the next view is installed. Hen
e, some blo
king of 
ommuni
ations o

urs during

the time that a 
onne
ted 
omponent's failure dete
tion relation la
ks symmetry or transitivity

(and so is not a 
lique). Su
h blo
king 
ould be avoided by implementing the missing transitivity

and symmetry by routing within the group 
ommuni
ations system (one system, Phoenix, did

exa
tly this [19℄) but doing so 
reates other problems, as we dis
uss in Se
tion 6.

3 A Proto
ol that uses Group Membership

There has been a vast amount of work that has been done on the problem of master-worker


omputation. Only a small amount of it has been into the question of proto
ols for master-worker


omputation in a wide-area network that 
an su�er from partition failures. The problem was

re
ently identi�ed as one amenable to partition aware solutions [6℄, whi
h are appli
ations that 
an


ontinue to make (perhaps limited) progress during the period of time that a wide-area network

4



is partitioned. It has been argued that group 
ommuni
ations servi
es for wide-area networks

provide a 
onvenient framework for writing su
h appli
ations, although the exa
t details of group


ommuni
ation may have a signi�
ant impa
t on the design (for example, see [20℄ and [5℄).

There has been re
ent work into the 
omplexity of solving a variation of master-worker. This

work 
onsiders the 
ase in whi
h the amount of redundant task exe
ution is to be kept as small

as possible (e.g., [17, 11, 18℄). This resear
h proje
t has produ
ed a proto
ol, named AX, that is

based on group 
ommuni
ation servi
es [12℄. The variation of master-worker that it solves is 
alled

the OMNI-DO problem:

OMNI-DO Problem The problem of performing a set of N independent tasks on a set of P

message-passing pro
essors, where ea
h pro
essor must learn the results of all N tasks.

This variation is important from a theoreti
al viewpoint be
ause a 
entralized version (in whi
h

only the master need know the results of all the tasks) 
an minimize the amount of redundant

task exe
ution by using stable storage and a simple failover me
hanism for re
overing from a failed

master. Workers that 
an partition away from the master would not 
ompute any tasks, sin
e

the results 
ould be unavailable from the master for an unbounded time, and so termination 
an

require redundant task exe
ution. From a pra
ti
al point of view, though, it is also important for

the 
omputation to 
omplete in a timely manner, whi
h would drive one to use a partition-aware

approa
h. Furthermore, a pra
ti
al wide-area master-worker 
omputation, like OMNI-DO, would

distribute the results among several lo
al area networks so that the user would be able to obtain

the results even in the fa
e of a long-lived partition.

AX employs a 
oordinator-based approa
h and relies on the underlying partitionable group

membership servi
e to tra
k 
hanges in the group's 
omposition. There is a set of pro
esses, one

for ea
h pro
essor in P , that are 
ooperating to solve the OMNI-DO problem, and there is a set of

tasks T known by all of the pro
esses that are to be 
omputed. All tasks have the same duration.

During exe
ution, ea
h pro
ess i maintains the lo
al sets D

i

, R

i

, U

i

and G

i

:

D

i

{ The set of tasks whose results pro
ess i knows.

R

i

{ The results of the tasks in D

i

.

U

i

{ The set of tasks whose results pro
ess i does not know: U

i

= T �D

i

.

5



G

i

{ The set of pro
esses in i's view.

For ea
h pro
ess i, rank(i; G

i

) is the rank of i in G

i

, when the pro
ess identi�ers are in some

well-known order, su
h as the order they appear in the view membership list. For a task u in U

i

,

rank(u;U

i

) is the rank of u in U

i

, when the task identi�ers are sorted in as
ending order.

The task allo
ation rule for ea
h pro
essor i is:

� if rank(i; G

i

) � jU

i

j, then pro
essor i performs task u su
h that rank(u;U

i

) = rank(i; G

i

).

� if rank(i; G

i

) > jU

i

j, then pro
essor i does nothing.

AX stru
tures its 
omputation in terms of rounds. Ea
h pro
ess exe
utes at most one task in

ea
h round. At the beginning of ea
h round, ea
h pro
essor i knows G

i

, D

i

, U

i

and R

i

. Sin
e

all pro
essors know G

i

, ea
h pro
essor deterministi
ally 
hooses a group 
oordinator, whi
h is

the pro
ess with the highest ID in G

i

. In ea
h round, ea
h pro
essor i reports D

i

and R

i

to its


oordinator. The 
oordinator re
eives and 
ollates these reports and broad
asts the results to the

members of the group. After re
eiving this broad
ast message from the 
oordinator, ea
h pro
ess

i updates D

i

, R

i

, and U

i

, and then 
hooses a new task to 
ompute using the task allo
ation rule.

Initially, all pro
esses are members of a single initial view that 
ontains all the pro
esses. If a

regrouping o

urs, then the a�e
ted pro
esses re
eive the new views from the group membership

servi
e, 
omplete any tasks that they are 
urrently 
omputing, and report the results to the new


oordinators. Ea
h new 
oordinator will then start the �rst round in the new view.

We 
an 
lassify all the tasks into three types as follows. Given a view G:

Fully done tasks FD(G): the tasks ft 2 T j8i 2 G : t 2 D

i

g.

Partially done task PD(G): the tasks ft 2 T j9i; j 2 G : t 2 D

i

^ t 2 U

j

g.

Undone tasks UD(G): the tasks ft 2 T j8i 2 G : t 2 U

i

g.

Consider the situation in whi
h the view G partitions into two or more views. Clearly, all the

tasks in FD(G) won't be re-exe
uted by any pro
ess in G. In any algorithm, all of the tasks in

UD(G) are at risk of being exe
uted redundantly be
ause of the need for liveness: the partition

may last for an unbounded time, and so the tasks in UD(G) may need to be 
omputed by at least

6



one pro
ess in ea
h new view. Any task u in PD(G) is also at risk of being exe
uted redundantly

in any new view that does not know u's result. By using a round stru
ture, AX ensures that the

size of PD(G) is never larger than jGj � 1. No algorithm 
an ensure PD(G) is smaller unless it

does not allow all pro
esses in G to be 
omputing at the same time. Hen
e, using a round stru
ture

is one way to redu
e the number of redundant tasks exe
uted.

There are other ways to ensure jPD(G)j < jGj; for example, ea
h pro
ess i 
ould broad
ast its

result of exe
uting task u to G

i

rather than just sending it to the 
oordinator. Pro
ess i would

not allo
ate another task until it knew that all other pro
esses j in G had updated D

j

, R

j

and

U

j

. AX was not designed this way be
ause it would introdu
e many more messages [12℄, and given

that the tasks in T all have the same exe
ution time, there would not be mu
h to be gained if this

additional 
ommuni
ation were used.

2

Even though it is optimal (in terms of the worst-
ase number of tasks exe
uted, as a fun
tion

of the number of views installed) and has a low message overhead, AX was not meant to be a

pra
ti
al algorithm. It has some obvious problems that 
an be easily addressed. For example,

ea
h pro
essor sends D

i

and R

i

to its 
oordinator at the end of ea
h round. Doing so makes the

propagation of results when views merge trivial to implement, but it 
ould result in a huge message

overhead. It would be easy for i to limit the size of D

i

and R

i

by having ea
h pro
ess maintain a

ve
tor denoting the results it knows. Su
h a ve
tor 
ould probably be kept small with a suitable

en
oding te
hnique. These ve
tors 
ould be managed in a manner similar to logi
al 
lo
ks [15℄ so

that when i sends a result to its 
oordinator, it only sends the part of D

i

and R

i

that i does not

know that the 
oordinator knows.

Another problem that 
ould be easily addressed would redu
e the number of tasks exe
uted

redundantly in some runs (re
all that AX is optimal only in terms of the worst-
ase behavior).

Consider what AX does if the pro
esses partition into two or more views in the initial state. The

pro
esses in ea
h view will deterministi
ally start exe
uting the same set of tasks. One 
ould instead

have a 
oordinator 
hoose tasks randomly without repla
ement for the pro
esses in its view to


ompute. If T is large and the partition does not last a long time (as measured in task 
omputation

time), then this would result in a smaller expe
ted number of redundant task exe
ution.

2

Note that the problem 
an be solve with no message 
ommuni
ation, and so trying to in
lude optimality in terms

of message 
omplexity is not an interesting exer
ise. [17℄

7



A third problem arises from its use of 
oordinators. In a real system the tasks would not have

exa
tly the same exe
ution time. Ea
h round runs as long as the longest task in that round, and

with a large number of workers, the longest task in ea
h round 
ould be quite long. Despite the

larger number of messages, the variation of AX we gave above that does not use a 
oordinator

would probably be a better 
hoi
e.

In the next se
tion, we dis
uss a more important pra
ti
al problem with AX whi
h arises from

its use of group 
ommuni
ations. This problem o

urs even if all the 
hanges above are made to

AX.

4 Analysis of AX

AX was designed with the idea of redu
ing the number of redundantly 
omputed tasks. Redundant

task exe
ution 
an o

ur when the network partitions. The exa
t number of redundant tasks

exe
uted depends on many fa
tors, in
luding the length of time a task exe
utes, the number of

pro
esses, how the pro
esses partition from ea
h other, at what point the partitions o

ur, and for

how long ea
h endures.

AX was not expli
itly designed to 
ompute the results of OMNI-DO qui
kly, but in fa
t it would

appear to do so. It is work 
onserving: if there is a task to be exe
uted and a pro
ess available to

exe
ute a task, then the task is exe
uted. Sin
e tasks have the same 
omputation time, blo
king

due to the round stru
ture should be small and the order that the tasks are exe
uted is immaterial.

Hen
e, sin
e AX redu
es the number of redundant tasks, it would appear to be a fast algorithm

as well. However, as was dis
ussed in Se
tion 2, group 
ommuni
ation servi
es 
an perform poorly

when 
ommuni
ation is not symmetri
 and transitive. The a
tual performan
e of AX depends

strongly on the frequen
y and duration of nonsymmetri
 or nontransitive 
ommuni
ation.

To understand the performan
e of AX in pra
ti
e, we need to understand how 
ommuni
ation

breaks down: how symmetri
 and transitive 
ommuni
ation is and how often a network partitions.

Furthermore, worst-
ase behavior is not ne
essarily the most important metri
 to 
onsider. In

pra
ti
e, the average exe
ution time is probably of more interest to users of the system.

Unfortunately, there are no a

urate existing models of network 
onne
tivity that would allow

us to analyze AX. Hen
e, we follow other similar work (e.g., [2℄ and [7℄) and resort to using network

8



tra
es. Using tra
e data means that it is diÆ
ult to generalize from our �ndings to other network


on�gurations. Hen
e, we also give a simple model for the expe
ted behavior of AX given metri
s

that 
an be measured. We show via simulation that the model has predi
tive value.

4.1 Tra
e data

We used two di�erent sour
es for tra
e data sets. The �rst data set 
omes from the Resilient Overlay

Networks (RON) proje
t [2℄. RON is an appli
ation-layer overlay on top of the existing Internet

routing substrate. The nodes that 
omprise RON monitor the fun
tion and quality of the Internet

paths among themselves, and use this information to de
ide whether to route pa
kets dire
tly over

the Internet or by way of other RON nodes. The RON proje
t uses a testbed deployed at sites

s
attered a
ross the Internet to demonstrate the bene�ts of the ar
hite
ture. Sin
e the probing

reported in the tra
e data referred to in [2℄ is not frequent enough for our analysis, we used another

tra
e that was kindly 
olle
ted and supplied to us by the RON group [3℄.

In this tra
e, there are sixteen nodes that are spread a
ross the United States and Europe. Ea
h

pair of nodes probe ea
h other via UDP pa
kets on
e every 22.5 se
onds on average. To probe,

ea
h RON node independently pi
ks a random node j, sends a pa
ket to j, re
ords this fa
t in a

log, re
ords if there was a response, and then waits for a random time interval between one and

two se
onds. The logs from ea
h ma
hine are then 
olle
ted and merged into a single tra
e.

From this tra
e, we generated a dire
ted 
ommuni
ations graph with the RON nodes as the

verti
es in the graph. Ideally, an edge is drawn from node i to node j if a pro
ess at j 
an su

essfully

re
eive messages from a pro
ess in i. A node i may be marked as 
rashed, whi
h indi
ates that the

pro
ess at node i is 
rashed.

The graph is initially 
onne
ted and all nodes are marked as not 
rashed. A node i is marked

as 
rashed if the log indi
ates that i did not send a probe for �ve minutes. On
e i subsequently

sends a probe, the node i is marked as not 
rashed. If the tra
e shows that the last three messages

(either probes or responses) a node i sent to j were not re
eived by j, then the dire
ted edge from

i to j is erased. The edge from i to j is added again when the tra
e re
ords j having re
eived a

pa
ket from i (either a probe or a response). The tra
e 
ontains 
ontinuous probing for the two

week period from August 2 through August 16, 2002.

9



Group 
ommuni
ations servi
es for wide-area networks 
an be fa
tored to run on top of spe-


ialized failure dete
tor servi
es [14℄, and so it 
an be hard to 
ome up with a general 
onne
tivity

model that would predi
t how group 
ommuni
ations servi
es would behave in any given situation.

One obvious model, however, is based on TCP 
onne
tivity. UDP 
onne
tivity is 
learly worse

than TCP 
onne
tivity sin
e pa
kets 
an be lost due to 
ongestion and there is no retry (unlike

TCP). We 
hose the method of de
laring a link down only when three pa
kets are lost to make

the 
onne
tivity graph a more 
onservative estimator of how group 
ommuni
ations servi
es would

perform.

The se
ond set was 
olle
ted by Omar Bakr and Idit Keidar. They studied the running time

of TCP-based distributed algorithms deployed in a widely distributed setting over the Internet.

They experimented with four algorithms that implement a simple and typi
al pattern of message

ex
hange that 
orresponds to a 
ommuni
ation round in whi
h every host sends information to

every other host. The tra
es we analyzed are des
ribed in [7℄.

The information was 
olle
ted from universities and 
ommer
ial ISP hosts. The ma
hines were

spread a
ross the United States, Europe, and Asia. Ea
h host sent a ping (ICMP) pa
ket to ea
h

other host on
e a minute. Ea
h pro
ess re
ords to a lo
al log the ping pa
kets it re
eives from

other pro
esses.

The 
ommuni
ations graph is 
onstru
ted in a similar way as was done for the RON tra
es.

The graph is initially 
onne
ted. The edge from a pro
ess i to another pro
ess j is removed when

three minutes elapses without j having re
eived a ping from i. The edge is put ba
k when j �nally

re
eives a ping from i. There is not enough information in these tra
es for us to be able to mark a

node as being 
rashed, and no node is ever marked as being 
rashed.

There were three tra
es generated in total: one with nine nodes, one with eight nodes, and

one with ten nodes. We denote these three tra
es as exp1, exp2 and exp3. Ea
h tra
e re
orded

more than three days' worth of probing. In exp1, two links had high loss rates: one from National

Taiwan University to a 
ommer
ial site in Utah sustained a 37% loss rate, and another from

National Taiwan University to a 
ommer
ial site in California sustained a 42% loss rate. In exp3,

links from National Taiwan University and from Cornell University had high loss rates. Be
ause

of these high loss rates, in [7℄ they also 
onsidered the subset of exp1 with the pro
ess at National

10



RON (16 nodes): F=18%, P
t Partition time = 3.9%

Non-partition Partition period

period Start time Duration Two-
lique time

1st 60,843.5 60,843.5 2.4 100%

2nd 259,966.6 320,812.5 1.7 100%

3rd 290,407.9 611,222.1 56.4 100%

4th 41,421.3 652,699.8 27,639.6 98%

5th 224,965.6 905,365 70.6 0%

6th 16,591.4 922,027 27.9 0%

7th 149,180.1 1,071,235 98.2 100%

8th 7,995.6 1,079,328.8 22.4 100%

9th 912 10,80263.2 95.9 100%

10th 60,003.8 114,0362.9 92 100%

11th 49,995.9 1,190,450.8 19149 94%

exp1 (9 nodes): F=32%, P
t Partition time = 0.89%

Non-partition Partition period

period Start time Duration Two-
lique time

1st 74,520 74,520 3,720 82%

2nd 21,360 99,600 300 100%

3rd 360,900 - - -

exp2 (8 nodes): F=5%, P
t Partition time = 0%

exp3 (10 nodes): F=46%, P
t Partition time = 0%

Table 1: Partitions in the four tra
es.

Taiwan University removed (they did not analyze exp3 in their paper). We did not remove the data


on
erning National Taiwan University and Cornell from our tra
es be
ause we felt that leaving it

in represented a real-world situation.

4.2 Tra
e analysis

First, we would like to know how often partitions happen and what duration they have. A partition

o

urs when the 
ommuni
ations graph 
ontains more than one 
omponent, and all 
omponents


ontain non-
rashed nodes. The partition data is shown in Tables 1. Ea
h partition is identi�ed by

when it started in the tra
e and how long it endured. The per
entage of time during whi
h there

was a partition in ea
h tra
e is reported in Table 1. Summarizing,

1. There are eleven partitions in the RON tra
e. Nine of the eleven endured for less than two

11



minutes, and the two others endured for over �ve hours. For over 96% of the tra
e there was

no partition.

2. There are two partitions in the exp1 tra
e. One lasted for �ve minutes and the other lasted

for over an hour. For over 99% of the tra
e there was no partition.

3. There were no partitions in the exp2 or exp3 tra
es.

Sin
e there is no information in the three tra
es about 
rashes, the partitions time reported for

exp1 is only an upper bound.

All partitions that we found in the tra
es resulted in exa
tly two 
onne
ted 
omponents. In all

but one of the partitions, one of the 
omponents 
ontained exa
tly one node; in the 
ase, whi
h is in

the RON tra
e, the smaller 
omponent 
ontained two nodes (one of these two nodes subsequently


rashed during the partition). This two-node 
omponent was symmetri
ally and (by de�nition)

transitively 
onne
ted.

Se
ond, we would like to know how often 
ommuni
ation is not symmetri
 and transitive. At

any point in time, ea
h pro
ess i is in a 
onne
ted 
omponent of the 
ommuni
ations graph. For

a pro
ess i, let 
(i) be the fra
tion of time during a tra
e in whi
h its 
onne
ted 
omponent is a


lique. Then we 
ompute:

F = 1�

X

i2�


(i)=P

Larger values of F indi
ates that AX will be less likely to make progress be
ause of the la
k of

a fully formed view. Table 1 reports the values of F for the four tra
es we 
onsidered. All tra
es

re
ord a signi�
ant value for F , and tra
e exp2 has the lowest value.

Re
all that in all partitions, the smaller of the 
onne
ted 
omponents 
ontained either one or two

nodes and was both symmetri
ally and transitively 
onne
ted. The larger 
onne
ted 
omponent,

of 
ourse, was not always symmetri
ally and transitively 
onne
ted. If it is not, then AX may be

blo
ked in the larger 
omponent, thereby redu
ing the number of redundant tasks 
omputed. So, we

also list the fra
tion of time of ea
h partition during whi
h the larger 
omponent was symmetri
ally

and transitively 
onne
ted. For the most part, the larger 
omponent's 
ommuni
ations graph is a


lique.

12



Looking at these values, we observe that:

� The periods of time during whi
h there is no partitioning are usually quite long. In the RON

tra
es, the shortest su
h period was about 15 minutes and the longest period was over three

days, and in the exp2 and exp3 tra
es, both of whi
h re
ord three days' worth of probing, there

were no partitions. Thus, we would expe
t that in the 
ommon 
ase and with 
omputations

that span no more than a day or so, AX should not 
ompute many redundant tasks.

� When they happen, partitions 
an endure for a long time. In the RON tra
e, the longest

partition lasted for over seven hours, and in the exp1 tra
e the longest partition lasted for

over an hour. This implies that, as was stated in [6℄, OMNI-DO is an appropriate problem for

a partition-aware solution; making progress during su
h long periods is obviously desirable.

� The periods of time during whi
h 
ommuni
ations are not symmetri
 and transitive is sig-

ni�
ant. It appears that su
h periods are often due to one troublesome node or link. For

example, from the RON tra
es during partitions, the larger 
onne
ted 
omponent is usually

fully 
onne
ted. Being able to predi
t whi
h nodes will be the troublemaker, though, may be

hard. For example, Cornell parti
ipated in all the tra
es but was troublesome only in tra
e

exp3. Thus, we expe
t that AX will not be as fast as one might think be
ause of its use of

group 
ommuni
ations.

We 
an estimate the slowdown fa
tor of AX with a simple model. Assume that the network

does not partition but su�ers from periodi
 times of poor 
onne
tivity: for � se
onds it is

not a 
lique, for � se
onds it is a 
lique, for � se
onds it is not a 
lique, and so on. Let

ea
h task 
ompute for T se
onds. Sin
e the tasks have the same length, they will 
omplete

at 
lose to the same time. The master then broad
asts the new assignment to start the next

round. With probability �=(� + �), the broad
ast will o

ur during an � period, and will

blo
k on average �=2 se
onds; otherwise, the broad
ast o

urs during a � period and does

not blo
k. Hen
e, it blo
ks on average �

2

=2(� + �) se
onds. The slowdown fa
tor should

then be (T + �

2

=2(� + �))=T . This simpli�es to:

Slowdown fa
tor = 1 + �F=2T

13



4.3 Simulation results

In order to see if our observations above are 
orre
t, we simulated AX running over the RON tra
e.

We used the 
ommuni
ations graph to generate a set of view 
hanges, and we used the group

membership semanti
s in whi
h a pro
ess's multi
ast is blo
ked while its 
onne
ted 
omponent is

not a 
lique. Given the round nature of AX, our results would not di�er if only the delivery of

multi
ast messages were blo
ked during these times.

We assumed that ea
h of the sixteen nodes monitored by RON have ten pro
esses. We assume

that sin
e pro
esses in one node are in the same lo
al area network, the 
ommuni
ation among them

is always symmetri
 and transitive. We assume that there are 1,000 tasks that run for a time mu
h

longer than it takes for messages to be transmitted over the wide-area network, and so we assume

that 
ommuni
ations is e�e
tive instantaneous among a 
omponent when its 
ommuni
ation graph

is a 
lique (otherwise, it is blo
ked as des
ribed above). A run Sim(i) indi
ates a simulation in

whi
h ea
h task runs for 100i se
onds.

We �rst ran the simulations over a period of time in the RON tra
es during whi
h there were no

node 
rashes and there were no partitions. The results of our simulation are shown in Table 2. The


olumn \Start time" indi
ates where in the tra
e the simulation was started. The row \Slowdown"

gives the slowdown fa
tor for di�erent simulations and the row \F" gives the value of F for the

segment of the run during whi
h the simulation ran.

F was either very small or very large. When F is small, there is no e�e
t on the running

time, and large values of F 
an make AX runs between about 50% to over 11 times slower. As

predi
ted, the slowdown fa
tor de
reases with in
reasing T . The slowdown fa
tor equation requires

a value for �, and so we 
omputed a histogram of values of � and � over the entire run (when the

network was partitioned we 
onsidered only the larger 
onne
ted 
omponent). Table 3 gives the

histogram. The average and median values for � are 143 and 22 se
onds, and for � are 665 se
onds

and 162 se
onds. The ranges of values for both are very large. If we use the average value of �

in the slowdown formula, then the slowdown fa
tors in Table 2 are usually mu
h higher than the

slowdown formula predi
ts. We believe that this is be
ause some larger periods of nontransitive


ommuni
ation happened during the simulation.

We then ran Sim(1) over �ve di�erent time intervals in the RON tra
e during whi
h F was

14



Start time Value Sim(1) Sim(2) Sim(3) Sim(4) Sim(5)

500,000 Exe
ution time 700 1,400 2,100 2,800 3,500

Slowdown 1 1 1 1 1

F 0% 0% 2.7% 2.1% 1.6%

510,000 Exe
ution time 700 1,400 2,100 2,800 3,500

Slowdown 1 1 1 1 1

F 0% 0% 0% 0% 0%

520,000 Exe
ution time 700 1,400 2,100 2,800 3,500

Slowdown 1 1 1 1 1

F 1% 0.5% 0.9% 0.6% 0.5%

530,000 Exe
ution time 3,266 6,320 6,320 6,858 8,156

Slowdown 4.67 4.51 3.01 2.45 2.33

F 99.2% 99.2% 99.2% 99.3% 99.4%

540,000 Exe
ution time 2,696 3,780 4,081 5,211 5,211

Slowdown 3.85 2.70 1.94 1.86 1.49

F 98.6% 98.9% 98.7% 98.6% 98.6%

550,000 Exe
ution time 7,819 9,573 10,188 10,188 10,825

Slowdown 11.17 6.84 4.85 3.64 3.09

F 99.4% 99.2% 99.1% 99.1% 99.2%

Average Exe
ution time 2,647 3,979 4,482 5,110 5,782

Slowdown 3.78 2.84 2.13 1.82 1.65

Table 2: AX simulation results for tra
es with no partitions.

Time range Non-transitive views Transitive views

Number Per
entage Number Per
entage

10 425 28.41% 240 16.05%

100 1,271 84.96% 637 42.61%

1,000 1,460 97.59% 1,227 82.07%

10,000 1,494 99.87% 1,489 99.60%

100,000 1,496 100% 1,495 100%

Table 3: The length of views.

Start time 526,900 688,000 856,500 1,070,000 1,189,300 Average

Exe
ution time 1,118 813 1,498 1,012 976 1,083

Slowdown 1.6 1.16 2.14 1.45 1.39 1.55

F 52% 41% 55% 44% 50% 48.4%

Table 4: Simulation with � = 0:5.

15



Partn 1 Partn 2 Partn 3 Partn 4 Partn 5

Start time 652,700 905,365 922,027 1,071,235 1,140,363

Duration 27,700 71 28 98 92

Exe
ution time 10,000 19,104 2,642 3,852 761

Slowdown 14.3 27.3 3.8 5.5 1.1

Redundant tasks 1,000 10 0 10 10

Table 5: AX simulation results for tra
es with partitions.


lose to 50%. The results are shown in Table 4. With � = 143 se
onds, the slowdown formula

predi
ts a slowdown fa
tor of 1.36, whi
h is 
lose to the values 
omputed by simulation.

Sin
e no partitions o

urred during any of these runs, the number of redundantly exe
uted tasks

should be zero, whi
h is what the simulation reported. We then ran Sim(1) starting at �ve di�erent

times, where at ea
h starting time there was a partition but no 
rashed nodes. The results are shown

in Table 5. In the �rst simulation, the network was partitioned throughout the whole exe
ution,

and so all tasks were exe
uted redundantly. In the other 
ases, the partition lasted for only a

short time. Here, sin
e the partition result in one side having a single node with ten workers, and

redundant exe
utions starts when there is a partition, there will be only ten redundantly exe
uted

tasks. In the third simulation, the number of redundant tasks is zero be
ause the larger 
omponent

is not a 
lique during the partition, and so only the smaller 
omponent makes progress.

5 A Simpler Approa
h

AX uses group 
ommuni
ations to redu
e the number of redundant task exe
utions during parti-

tions, but it runs more slowly be
ause of the more prevalent problem of poor network 
onne
tivity.

By running more slowly, whi
h is bad in itself, it 
an also in
rease the 
han
es of redundant task

exe
ution be
ause it is more likely to en
ounter a partition.

In this se
tion, we give a simple proto
ol 
alled WAMW

3

, that we believe is more appropriate

for the network 
onne
tivity we observed. It is a partition-aware solution, but does not require

group 
ommuni
ations. It uses leases [13℄ rather than an underlying failure dete
tion servi
e, but

it would be easy to extend to use su
h a servi
e if one were available.

3

Short forWide-Area Master-Worker.

16



Tra
e Time D(G) > 1 Time D(G) = 2 Per
entage

RON 215,043.4 214,376.8 99.7%

exp1 145,560 138,360 95%

exp2 235,20 22,440 95%

exp3 213,180 208,260 98%

Table 6: Maximum distan
e.

5.1 Link Failures

Our proto
ol should make progress even when there are faulty links. Flooding proto
ols and gossip

proto
ols [9, 16℄ are often used in su
h 
ir
umstan
es. Let d(a; b) be the shortest distan
e between

nodes a and b in a graph G. The time it takes to 
omplete a multi
ast in the 
ommuni
ations

graph using 
ooding depends on D(G) = max

a;b2G

d(a; b). We 
all D(G) the maximum distan
e of

G.

Table 6 gives information on D(G) where G is the the 
ommuni
ations graph when not parti-

tioned and the larger 
onne
ted 
omponent when partitioned. The �rst 
olumn gives the amount

of time that G is not a 
lique, and the se
ond 
olumn gives the amount of time that D(G) = 2. The

third 
olumn is the per
entage of time that the graph is not a 
lique and D(G) = 2. These values

are all 
lose to 1, and so a 
ooding proto
ol should be fast most of the time. The observation that

D(G) is rarely more than two has been noted by many others, and re
ently by [2℄.

5.2 Algorithm Stru
ture

WAMW uses masters and workers to perform a 
omputation. Masters s
hedule tasks, and workers

request and exe
ute tasks given by the masters. Ea
h LAN has at least one master and its set of

workers. Complete pseudo
ode for the master and the worker is in Appendix A.

A worker exe
utes one task at a time. When a worker starts up, it requests a task from its

designated master by sending a TASK REQUEST message. Upon re
eiving a task, the worker starts

exe
uting it and sends the result of the task to the master upon 
ompletion. A worker terminates

when its master responds with no task to be exe
uted. A master �rst 
he
ks if there is a worker

request pending. If so, the master extra
ts the result from the previous task done by the worker

from the request, and marks the task as done. The worker is subsequently added to a list of idle

17



workers. The master then 
he
ks if there are any unallo
ated tasks left to be performed. If there

are tasks to be performed, the master allo
ates a task, pi
ks an idle worker and sends the task to

the worker. The masters are terminated after every master knows the results of all tasks.

WAMW uses two types of leases. The �rst lease is the worker lease. When a worker is given

a task by a master, the master registers a lease on the task. The value of the worker lease is the

estimated 
ompletion time of the task. If a worker �nds that it 
annot 
omplete its task within

the estimated 
ompletion time, it 
al
ulates a new lease and sends a RENEW LEASE message to

the master. If, however, a master �nds that a worker lease has expired, the worker is assumed to

have 
rashed. The se
ond type of lease is the master lease. Every master registers a master lease

with every other master. If a master lease expires, then the master for whi
h the lease expired is

assumed to have 
rashed or partitioned away.

As in AX, task allo
ation in WAMW assumes that all masters know all tasks T to be exe
uted

in advan
e. We also assume that all masters know the identity of all other masters and that masters

are totally ordered by 0; 1; : : : ; (n� 1) where n is the number of masters. Initially, the 
omplete task

list for the 
omputation is divided evenly among all masters. The size of the sli
e for ea
h master is

jT j=n. The sli
e of tasks to perform for master i, S

i

, is then given by S

i

= T [i� size; (i+ 1)� size℄

and the remote set R

i

for master i is de�ned by R

i

= fS

0

; S

1

; : : : ; S

i�1

; S

i+1

; : : : ; S

n�1

g.

Task are allo
ated by master i to waiting workers as follows: if there is an unallo
ated task in

S

i

, then allo
ate the �rst su
h task; else allo
ate the �rst unallo
ated task in R

i

. When a worker

lease held by master i expires, any task it has allo
ated is put ba
k into S

i

or R

i

. When a master

lease for master j held by master i expires, master i mark all tasks in S

j

as unallo
ated. When a

task 
ompletes, it is removed from S

i

or R

i

.

A task allo
ated from S

i

by master i only 
auses redundant task exe
utions when a worker lease

expires. A task allo
ated from R

i

by master i always 
ause a redundant task exe
ution, unless a

remote master j has 
rashed before allo
ating this task in S

j

. A task u 2 S

j

in R

i

will only be

allo
ated after the master lease of master j has expired.

At ea
h task 
ompletion (and the 
orresponding task allo
ation) and at the frequen
y pmax, a

master broad
asts its state. This state in
ludes whi
h tasks have been 
ompleted, whi
h tasks have

been allo
ated, the task results, and master lease information to the other masters. Broad
asting

18



at task 
ompletion redu
es the 
han
e of two masters both allo
ating the same tasks in their remote

sets. Broad
asting at pmax frequen
y in
rease the 
han
e of over
oming temporary 
ommuni
ation

failures. The value of pmax is a fun
tion of the average task exe
ution time and the value for the

master lease. For instan
e, if a task takes 
 se
onds to 
omplete on average and given that D(G) is

almost always 2 or less, then pmax should be set to 
=2 to ensure that state about individual task


ompletions is broad
ast at least twi
e. However, for a master lease m, if 
=2 > m, pmax should

be set to a smaller value than 
=2 to avoid a master leases expiring �rst.

Redundant task exe
ution o

urs in WAMW when leases expire. Compared to AX, the number

of redundant task exe
ution 
an be large. If 
ommuni
ations are truly asyn
hronous, then in the

worst 
ase even with no partitions the number of tasks exe
uted is W

w


= NK where N is the

number of tasks and K is the number of workers. Even if we assume that the leases are well-


hosen|that is, a lease on master i held by master j expires if and only if i and j partition from

ea
h other|then the number of tasks exe
uted 
an be as high as W

s


= N(1+M

1

�M

2

=M) when

the M masters partition into two 
omponents, one of size M

1

and the other of size M

2

. These

values are derived in Appendix B. We expe
t, of 
ourse, that 
ommuni
ations will not as poorly

behaved as are needed to attain these bounds. Assuming that we 
an assign lease values in an

appropriate manner, we expe
t that the number of redundantly exe
uted tasks 
an be kept small.

5.3 Assigning Leases

The value for master leases in
uen
es both the number of redundant tasks exe
uted and the total

exe
ution time of all tasks. Assume that all masters work in isolation during the whole 
omputation,


ausing W

w


tasks to be exe
uted. For the total exe
ution time of the 
omputation to be optimal,

the master lease should not be larger than the time t it takes to exe
ute the lo
al set S

i

for a

master i, sin
e the master immediately starts exe
uting tasks in R

i

on
e S

i

is 
ompleted. Hen
e, t

seems like a reasonable upper bound for the master lease. For long-lasting partitions, though, t is

unrealisti
ally large to use for master leases, sin
e doing so will 
ause the total exe
ution time to

be
ome very large. The question is then, how small 
an the master lease be to make the number

of redundant tasks small while at the same time to avoid blo
king the 
omputation unne
essarily.

One obvious value for a master lease is the expe
ted duration of a partition. In general, su
h

19



a value is impossible to establish, but we 
an use a value based on our tra
es. Partition durations

in the RON tra
e were less than 2 minutes for nine out of 11 partitions. For the exp1 tra
e,

one partition lasted �ve minutes and one for over an hour. Hen
e, if we disregard the very long

partitions, partition in the tra
es typi
ally endured for �ve minutes or less. We thus set the master

lease to ten minutes for our experiments to mask the majority of partitions while ensuring that the


omputation does not blo
k for long periods during long-lasting partitions.

The value for the worker lease is based on the expe
ted exe
ution time of a given task. We

assume that for most 
ases when a worker sends a RENEW LEASE message to the master, the

message get to the master su

essfully and in a timely manner, sin
e all 
ommuni
ation between

workers and masters is within LANs with small laten
y and low pa
ket loss. Thus the a

ura
y of

the worker lease is not important, as workers 
an periodi
ally renew the lease if it is an underesti-

mate. In our simulations we assume that workers do not 
rash, and hen
e the worker lease has no

signi�
an
e for our results.

5.4 Simulation

We used the RON tra
es to determine whether a message 
ould be su

essfully sent from one host

to another during an unreliable broad
ast. If a message sent from node i to node j in the RON

tra
e fails, then we assume that all subsequent messages sent in WAMW from node i to node j fail

until a message is su

essfully sent from node i to node j in the RON tra
e.

Sin
e the task exe
ution times are identi
al, we added a small random jitter in the interval

[0; 2℄ to the exe
ution time of the tasks to avoid unrealisti
 syn
hronous behavior in master to

master 
ommuni
ation. Adding jitter 
auses a master state broad
ast for all task 
ompletions

(and 
orresponding allo
ations). Sin
e network jitter was not part of the simulation for AX, we

normalized the exe
ution time for WAMW to ex
lude the additional time 
aused by the jitter.

To in
rease toleran
e to 
ommuni
ation failures when doing the state broad
asts in the master,

additional broad
asts are sent every pmax se
onds. In our experiments, tasks have lengths 100i

se
onds where i = 1; : : : ; 5 and to ensure we have at least one additional broad
ast between every

task 
ompletion broad
ast we set pmax to 100=2 = 50. Note that we do not in
rease pmax for

i > 1 to avoid master leases from expiring due to temporal 
ommuni
ation failures. We assume

20



Sim(1) Sim(2) Sim(3) Sim(4) Sim(5)

Fastest running time 700 1,400 2,100 2,800 3,500

Start Slowdown 1 1 1 1 1

at Total msgs 18,360 21,720 25,080 28,440 31,800

500,000 P
t msgs failed 0.02% 0.02% 0.06% 0.08% 0.11%

Start Slowdown 1 1 1 1 1

at Total msgs 18,360 21,720 25,080 28,440 31,800

510,000 P
t msgs failed 0.08% 0.10% 0.19% 0.23% 0.28%

Start Slowdown 1 1 1 1 1

at Total msgs 18,360 21,720 25,080 28,440 31,800

520,000 P
t msgs failed 0.20% 0.16% 0.19% 0.21% 0.24%

Start Slowdown 1 1 1 1 1.01

at Total msgs 18,360 21,720 25,080 28,440 31,830

530,000 P
t msgs failed 7.40% 6.07% 6.38% 6.15% 6.02%

Start Slowdown 1 1 1 1.02 1

at Total msgs 18,360 21,720 25,080 28,485 31,800

540,000 P
t msgs failed 6.14% 6.05% 6.36% 6.03% 5.69%

Start Slowdown 1.07 1.04 1.02 1.02 1

at Total msgs 18,405 21,765 25,125 28,485 31,800

550,000 P
t msgs failed 11.82% 11.72% 11.79% 11.95% 11.82%

Table 7: WAMW simulation results from tra
es with no partitions.

that there is one master and ten workers on ea
h of the 16 nodes monitored by RON, and that

there are 1,000 tasks to be exe
uted totally. The 
omputation terminates when all masters know

the results of all tasks. As with AX (see Table 2) we �rst ran the simulations over the same periods

of time in the RON tra
es that we used for AX and reported in Table 2. The results are shown in

Table 7.

We also report in the simulation results the number of messages that WAMW sends. The values

are signi�
antly larger than the number sent with AX. The average rate of message transmission is

Partn 1 Partn 2 Partn 3 Partn 4 Partn 5

Start time 652,700 905,365 922,027 1,071,235 1,140,363

Duration 27,700 71 28 98 92

Exe
ution time 10,000 700 700 700 700

Slowdown 14.3 1 1 1 1

Redundant tasks 1,000 0 0 0 0

Total msgs 78,480 18,360 18,360 18,360 18,360

P
t msgs failed 28.19% 3.56% 2.64% 4.85% 1.38%

Table 8: WAMW simulation results from tra
es with partitions.

21



faster for shorter tasks. With Sim(1) the rate is about 26 messages/se
ond and with Sim(5) it is

about 9 messages/se
ond. If the messages are large, then the message overhead would most likely

pose a s
alability issue when task length is short.

The number of redundantly exe
uted tasks is always zero, as expe
ted given that there were no

partitions. 80% of the slowdown fa
tors are 1, and the maximum value is 1.07 whi
h is mu
h better

than the performan
e of AX, where the largest slowdown was 11.17 and the smallest slowdown

greater than 1 was 1.49. For the results where the slowdown is larger than 1, the exe
ution time

is always optimal plus pmax, where pmax is 50 se
onds. In these 
ases, the last task 
ompletion

broad
ast from a 
ontroller failed to rea
h all other 
ontrollers, but the su

essive broad
ast whi
h

happens pmax se
onds later 
ompleted the broad
ast.

We then ran Sim(1) over the �ve di�erent time intervals in Table 5. The results are shown

in Table 8. Sin
e the network is partitioned during the whole exe
ution in the �rst simulation,

all the tasks are exe
uted redundantly, as they are with AX. For the other simulations, no tasks

are exe
uted redundantly, sin
e the duration of the partitions are less than the master lease. The

slowdown fa
tor of the �rst simulation is 14.3, and that of all the other simulations are 1, all of

them optimal.

To summarize, in most 
ases WAMW runs faster than AX, sin
e it does not blo
k during non-

transitive 
ommuni
ations. And in pra
ti
e, the number of redundant tasks exe
uted by WAMW

is not greater than AX. Attaining this performan
e requires using good values for the lease times.

In pra
ti
e, a user might set the master lease times to balan
e o� his or her own parti
ular trade

o� between running time and redundant task exe
ution.

6 Con
lusions

We started this resear
h be
ause we wanted to know if we should use wide-area group 
ommuni-


ations in 
onstru
ting a wide-area master-worker framework for GriPhyN. We 
hose a proto
ol

that had been developed to minimize the amount of redundant tasks exe
ute and evaluated it both

with a simple analyti
al model and via simulation. The proto
ol was not meant to be a pra
ti
al

one, but on the surfa
e it does not appear hard to make it more pra
ti
al. We also 
ompared it's

performan
e under simulation against a simple proto
ol that does not use group 
ommuni
ations

22



and that has a signi�
antly higher upper bound on the amount of redundant work.

We were surprised by the frequen
y of nontransitive or asymmetri
 
ommuni
ations. In an

earlier study [14℄ one of us had found signi�
antly less periods of poor 
ommuni
ations 
onne
tivity,

but the network we 
onsidered 
ontained only �ve nodes. From the tra
es we used to evaluate AX, it

appears that as the number of nodes grow, the more likely it will be that one will en
ounter periods

of nontransitive or asymmetri
 
ommuni
ations. Hen
e, using group 
ommuni
ations systems upon

whi
h to build wide-area master-worker does not seem a good idea.

One 
an redu
e the impa
t of poor 
ommuni
ations 
onne
tivity in two ways. One way is

to identify o�-line whi
h 
ommuni
ation links will prove to be unreliable and then 
on�gure the

ba
kbone of the group 
ommuni
ations system to avoid these links. An example of doing this is

shown in [14℄. The drawba
ks of this approa
h are (1) it isn't 
lear how a

urately and 
ompletely

troublesome links 
an be identi�ed in advan
e, and (2) the graph may have small node and link


ut-sets, thereby in
reasing the 
han
es of a partition. For example, in [14℄ to avoid a relatively

unreliable link, we set up the ba
kbone as a tree. The failure of one node subsequently 
aused a

long-lasting partition.

The other way to redu
e the impa
t of poor 
ommuni
ations 
onne
tivity would be to relay

information a
ross better-performing links. This is what overlay networks like RON do [2℄ and one

group membership proto
ol did [19℄. S
alability of su
h overlay networks is not 
lear and is an

ongoing resear
h problem; if it 
an be addressed, then this would be a possible approa
h. However,

our initial results with the simple algorithm indi
ate that the kind of poor 
onne
tivity that exists

is masked quite well by limited 
ooding (and presumably by gossip proto
ols). Hen
e, it isn't


lear that the generality of an overlay network is required. If one had other reasons for wanting

partitionable group 
ommuni
ations, then it would be worth 
onsidering using very limited gossip

or 
ooding underneath.

What group 
ommuni
ations o�ers for wide-area master-worker 
omputation is a me
hanism

to ensure that in the worst 
ase, the number of redundantly exe
uted tasks is small. Our initial

experien
e with a simple proto
ol, though, indi
ates that the expe
ted number of redundantly exe-


uted tasks 
an be kept quite small without using group 
ommuni
ations. If the worst-
ase s
enario

were more dire|for example, as it is in the Ban
omat problem [20℄, then it would be worthwhile

23



running a group 
ommuni
ations system over a 
ommuni
ations layer that relayed information to

avoid poor links. For wide-area master-worker, it is hard to justify su
h an expenditure of e�ort to

avoid a highly unlikely worst-
ase behavior.

We believe, though, that group 
ommuni
ations has a role in wide-area master-worker. One

would wish to repli
ate masters to a small degree within ea
h lo
al area network. This would be

done both to balan
e load and to mask 
rash failures of masters. Sin
e 
ommuni
ations is more

reliable in a lo
al area network, using a tightly-repli
ated state approa
h within a lo
al-area network

should work well.

A
knowledgments

We would like to thank David Anderson, Frans Kaashoek, Omar Bakr, and Idit Keidar for giving us

a

ess to their tra
es. We would also like to thank Omar Bakr, Idit Keidar, and Alex Shvartsman

for fruitful dis
ussions about the resear
h reported here.

Referen
es

[1℄ Spe
ial Issue on Group Communi
ation Systems. In Communi
ations of the ACM, volume

39(4), April 1996.

[2℄ David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Resilient

Overlay Networks. In Symposium on Operating Systems Prin
iples, pages 131{145, 2001.

[3℄ David G. Anderson. Personal 
ommuni
ation, June 2002.

[4℄ O. Babaoglu, A. Bartoli, and G. Dini. Enri
hed View Syn
hrony: A Paradigm for Program-

ming Dependable Appli
ations in Partitionable Distributed Sytems. In IEEE Transa
tions on

Computers, volume 46(6), pages 642{658, June 1997.

[5℄ Ozalp Babaoglu, Alberto Bartoli, and Gianlu
a Dini. Programming Partition-Aware Network

Appli
ations. In Advan
es in Distributed Systems, pages 182{212, 1999.

[6℄ Ozalp Babaoglu, Renzo Davoli, Alberto Montresor, and Roberto Segala. System Support for

Partition-Aware Network Appli
ations. In International Conferen
e on Distributed Computing

Systems, pages 184{191, 1998.

[7℄ Omar Bakr and Idit Keidar. Evaluating the Running Time of a Communi
ation Round over

the Internet. In 21st ACM Symposium on Prin
iples of Distributed Computing, pages 243{252,

2002.

[8℄ Kenneth P. Birman. Building Se
ure and Reliable Network Appli
ations. Manning, 1996.

24



[9℄ Kenneth P. Birman, Mark Hayden, Oznur Ozkasap, Zhen Xiao, Mihai Budiu, and Yaron

Minsky. Bimodal Multi
ast. In ACM Transa
tions on Computer Systems, volume 17, May

1999.

[10℄ F. Cristian and C. Fetzer. The Timed Asyn
hronous Distributed System Model. In IEEE

Transa
tions on Parallel and Distributed Systems, pages 642{657, June 1999.

[11℄ C. Georgiou, A. Russell, and Alex A. Shvartsman. The Complexity of Distributed Cooperation

in the Presen
e of Failures. In Pro
eedings of the International Conferen
e on Prin
iples of

Distributed Computing, 2000.

[12℄ C. Georgiou and Alex A. Shvartsman. Cooperative Computing with Fragmentable and Merge-

able Groups. In 7th International Colloquium on Stru
tural Information and Communi
ation

Complexity, pages 141{156, 2000.

[13℄ Cary G. Gray and David R. Cheriton. Leases: An EÆ
ient Fault-Tolerant Me
hanism for Dis-

tributed File Ca
he Consisten
y. In 12th ACM Symposium on Operating Systems Prin
iples,

pages 202{210, 1989.

[14℄ Idit Keidar, Jeremy B. Sussman, Keith Marzullo, and Danny Dolev. Moshe: A Group Mem-

bership Servi
e for WANs. In ACM Transa
tions on Computer Systems, August 2002.

[15℄ Leslie Lamport. Time, Clo
ks and the Ordering of Events in a Distributed System. In Com-

muni
ations of the ACM 21, volume 21, pages 558{565, July 1978.

[16℄ Meng-Jang Lin, Keith Marzullo, and Stefano Masini. Gossip Versus Deterministi
ally Con-

strained Flooding on Small Networks. In 14th International Symposium on Distributed Com-

puting, 2000.

[17℄ Grzegorz Greg Malewi
z, Alexander Russell, and Alex A. Shvartsman. Distributed Coop-

eration During the Absen
e of Communi
ation. In International Symposium on Distributed

Computing, pages 119{133, 2000.

[18℄ Grzegorz Greg Malewi
z, Alexander Russell, and Alex A. Shvartsman. Optimal S
heduling

for Dis
onne
ted Cooperation. In Pro
eedings of VIII International Colloquium on Stru
tural

Information and Communi
ation Complexity, 2001.

[19℄ C. P. Malloth, P. Felber, A. S
hiper, and U. Wilhelm. Phoenix: A toolkit for building fault-

tolerant, distributed appli
ations in large s
ale. In Workshop on Parallel and Distributed

Platforms in Industrial Produ
ts, O
tober 1995.

[20℄ Jeremy B. Sussman and Keith Marzullo. The Ban
omat Problem: An Example of Resour
e

Allo
ation in a Partitionable Asyn
hronous System. In International Symposium on Distributed

Computing, pages 363{377, 1998.

25



A WAMW Pseudo
ode

def worker:

result = NULL

while true:

task = request work from master(result)

if task == NO MASTER:

terminate()

lease timeout = extra
t lease timeout(task)

fork(task)

task 
ompleted = false

while not task 
ompleted:

result = blo
k until(expired(lease timeout) or task 
ompleted)

if result == LEASE EXPIRED:

lease timeout = renew lease(task)

else:

task 
ompleted = true

Pseudo
ode A.1: Worker main loop.

def request work from master(result):


ontroller = �rst available master for this worker

while true:

task = task request(master, result)

if task == NETWORK FAILURE:

mark as unavailable(master)

master = next available master for this worker

if not master:

return NO MASTER

else:

return task

Pseudo
ode A.2: Worker to master request handler.

26



def master:

pmax interval = interval between ea
h master state update

pmax = 
urrent time() + pmax interval

idle workers = [℄

while true:

state update = false

type, worker, result = get worker request()

if type == RENEW LEASE:

set worker lease(worker)

if type == TASK REQUEST:

idle workers.append(worker)

if result ! = NULL:

state update = true

mark task as done(result)

while len(idle workers) > 0 and num unallo
ated tasks() > 0:

task = allo
ate task()

worker = idle workers.pop()

set worker lease(worker)

send task to worker(task; worker)

state update =true

update master state(state update)


he
k leases()

if all tasks 
ompleted():

terminate()

Pseudo
ode A.3: Master main loop.

def update master state(state update):

if 
urrent time() > pmax or state update:

pmax = 
urrent time() + pmax interval

send lo
al state to masters()

state = re
eive state from masters()

if state:

update lo
al state(state)

Pseudo
ode A.4: State updates from master to the other masters.

def 
he
k leases:

forea
h master lease:

if expired(master lease):

unallo
ate all tasks allo
ated by master()

forea
h worker lease:

if expired(worker lease):

unallo
ate task allo
ated by worker()

Pseudo
ode A.5: Che
king for expired leases in the master.

27



B Worst-
ase Analysis of WAMW

Let:

M be the number of masters.

K

i

be the number of workers asso
iated with master i; K

i

> 0.

K be the number of workers: K =

P

M

i=1

K

i

.

N be the number of tasks.

W be the total number of tasks exe
uted.

Sin
e 
ommuni
ation is asyn
hronous, we 
an delay messages for an arbitrary amount of time

without having a partition (assuming that we de�ne a \partition" to mean 
ommuni
ations is

broken for an even longer time, perhaps forever). In this model, W 
an be as large as NK: Delay

all messages between masters so that the master leases expire. Thus, ea
h master will 
ompute

all N tasks. Consider master i. Sin
e it is work-
onserving, it will assign K

i

tasks in ea
h round.

Number the workers as w

1

through w

x

where x = K

i

. We 
an delay the replies long enough so that

the worker leases expire. The master will not assign a task until a worker responds with results of

a task; let this worker be w

1

. Thus, the task that w

1


omputed will not be redone. We 
an reassign

all the other previously assigned tasks, for example, by assigning W

s


' task to w

1

, w

3

's tasks to

W

s


, and so on.

The total number of tasks that master i 
omputes is the number of tasks w

1


omputes plus the

number of tasks W

s



omputes ... plus the number of tasks w

x


omputes, whi
h gives a worst 
ase

of:

N + (N � 1) + (N � 2) + : : :+ (N �K

i

+ 1) = K

i

(2N �K

i

+ 1)=2)

The total number of tasks W

w


is thus:

W

w


=

P

M

i=1

K

i

(2N �K

i

+ 1)=2 = NK +K=2 �

P

M

i=1

K

2

i

=2

From this it follows that W

w


is maximized when 8i : K

i

= 1 in whi
h 
ase W

w


= NK.

Suppose we adopt a stronger model: Communi
ations 
an be arbitrarily delayed only if there

is a partition, and partitions are dete
ted by timeouts of master leases. For example, if a set of

masters 


1

; 


2

; 


3

; 


4

send messages to ea
h other and then partition into two 
omponents 


1

; 


2

and




3

; 


4

, then by the time the partition is dete
ted 


1

and 


2

have re
eived ea
h other's messages

(but not ne
essarily 


3

and 


4

's messages). We also assume that workers 
ommuni
ate with their

masters in a timely manner and so no worker leases expire

Under this model, W still depends on more than the number of installed views. Consider the

simple 
ase of the M masters partitioning into two: One side, A, 
onsists of M

1

masters and the

other side, B, 
onsists of M

2

masters. Assume that ea
h master has the same number of workers.

Have the masters ea
h 
omplete their sli
es, but delay all messages they send among themselves.

After the partition, ea
h master in A will redo the tasks that were 
omputed in B and vi
e versa.

So, before the partition the A side 
omputed NM

1

=M tasks and the B side 
omputed NM

2

=M

tasks. Afterwards, the A side 
omputesM

1

�NM

2

=M tasks and the B side 
omputesM

2

�NM

1

=M

tasks. Summing these, we get the total number of task 
omputations as, and so the work is:

W

s


= N + 2NM

1

M

2

=M

W

s


is maximized when M

1

=M

2

=M=2, giving in the worst 
ase W

s


= (1 +M=2)N . Even with

only only two views installed, the worst-
ase of W

s


s
ales with the number of masters and is thus

not optimal.

28




