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Abstract— There is substantial interest in using SOAP (Simple
Object Access Protocol) in distributed applications’ inter-process
communications due to its promise of universal interoperability.
The utility of SOAP is limited, however, by its inefficient
implementation, which represents all invocation parameters in
XML, for instance. This paper aims to make SOAP useful for
high end or resource-constrained applications. The basic idea is
to replace SOAP’s XML/Ascii-based parameter representations
with binary ones. Using SOAP’s WSDL parameter descriptions,
XML-based parameters are automatically represented as corre-
sponding structured binary data, which are then used in all client-
server communications. Data is up- or down-translated to/from
XML form only if and when needed by end points. The resulting
SOAP-bin communication protocol exhibits substantially im-
proved performance compared to regular SOAP communications,
particularly when used in the internal communications occurring
across cooperating client/servers or servers. Gains are particu-
larly evident when the same types of parameters are exchanged
repeatedly, examples including transactional applications, remote
graphics and visualization, distributed scientific codes. A fur-
ther improvement to SOAP-bin, termed SOAP-binQ, addresses
highly resource-constrained, time-dependent applications like
distributed media codes, where scarce communication bandwidth,
for example, may prevent end users from interacting in real-time.
SOAP-binQ offers additional quality management functions that
permit SOAP to reduce parameter sizes dynamically, as and when
needed. The methods used in size reduction are provided by end
users and/or by applications, thereby enabling domain-specific
tradeoffs in quality vs. performance, for example. An adaptive
use of SOAP-binQ’s quality management techniques presented
in this paper significantly reduces the jitter experienced in two
sample applications: remote sensing and remote visualization.

I. INTRODUCTION

SOAP (Simple Object Access Protocol) is an XML-based
remote invocation protocol designed for flexibly composing
Internet applications [1]. Its use of text-based messaging
(XML) and of HTTP or SMTP for communication provides
universality and interoperability, but also creates substantial
performance limitations. This reduces the utility of SOAP for
large classes of applications. An example is the use of in-
vehicle camera sensors to report on traffic or emergency situ-
ations, using wireless links with limited bandwidths. Or con-
sider amateur astronomers who use wide-area networks (in-
cluding from remote sites) to share their captured images and
track, in real-time, low-light emitting objects like asteroids[2].
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Other examples include high end business applications like
the operational information systems presented in [3], [4] and
real-time collaborations in which scientists jointly visualize
simulation or sensor data to better understand or interpret
certain phenomena[5], [6], [7], or in which engineers jointly
design airplane wings or similar high performance parts[8].
These applications have in common the use of substantial
computation in conjunction with large-data communications,
in the presence of limited networking and/or CPU resources.
Computations include data selection, filtering, and transforma-
tion, as exemplified by image processing pipelines in sensor
systems and by the graph-structured data manipulations used
in scientific collaboration (e.g., to transform scientific data to
match a specific end user’s needs[9], [10]).

In all of the applications cited above, SOAP’s use of
XML with its ascii-based parameter representations can be
prohibitively expensive. Costs include server loads due to the
need to manipulate and translate ascii data and communication
overheads due to the relatively ‘bulky’ ascii representations
of invocation parameters. This paper describes how to attain
high performance and low overhead for SOAP-based com-
munications. The approach taken leverages previous work on
adaptable object communications [11], [12] and recent results
on efficient binary representations for XML-based data [13],
[14]. Specifically, the idea is (1) to associate with SOAP
communications application-specific handlers that can be used
to manipulate parameters used for invocations and transform
parameters into more suitable formats, and (2) to make such
handlers efficiently executable, even for large data volumes,
by using binary representations for both the handlers and the
XML data they manipulate. The outcomes are the SOAP-bin
and SOAP-binQ protocols described next.

The basic SOAP-bin protocol uses conversion handlers to
implement XML-to-binary conversions, if needed. It can be
used in multiple ways:

o SOAP-bin - high performance mode: SOAP-bin can be
used to implement server-based communications, as with
the internal communications used in web server front-to-
backend communications [15]. In such ‘internal’ commu-
nications, SOAP parameters never appear in XML forms.
Instead, they have already been converted to correspond-
ing binary forms, for request and for result parameters.
Measurements presented in this paper demonstrate that
the performance of SOAP-bin used in this mode is com-



petitive with the standard invocation mechanisms used in
today’s client-server interactions, like Sun RPC[16].

o SOAP-bin - interoperability mode: when servers receive
requests from and return data to external clients, clients
use standard XML data, but servers use binary data, in
order to reduce server loads. Measurements presented in
this paper demonstrate that the required ‘one-sided’, just-
in-time, client-side data conversions permit SOAP-bin to
outperform standard implementations of SOAP, both with
respect to the communication bandwidth consumed (in
particular for wide area links) and the load imposed on
Servers.

o SOAP-bin - compatibility mode: the lowest performance
case for SOAP-bin is where both end users, such as
clients operating in peer-to-peer mode, must translate
XML text to binary data, in order to be able to operate
on such data with standard tools. Adobe’s PDF format
and image formats used by graphics tools are typical
examples.

To evaluate such costs, we present measurements in
which XML data is first converted to binary form!,
transferred, then again converted back to XML, and we
compare the performance of SOAP-bin in this mode
with the performance of regular SOAP and of SOAP
that uses online compression to reduce data size. Both
communication overheads and client loads are reported.

An enhanced version of SOAP-bin, termed SOAP-
binQ(uality), permits applications to enrich basic conversion
handlers with configurable, application-specific functionality.
The resulting quality handlers are code modules that take as
inputs both the binary representations of SOAP parameters
and quality attributes that determine handlers’ behaviors.
Attributes may be changed on a per invocation basis, and
they may be provided by applications and/or by the underlying
network/system levels. An example from the scientific domain
is an application-provided data filter that adjusts the amounts
(and therefore, the quality — in terms of resolution) of the data
sent to the current needs of clients and/or also to currently
available network resources. Such client- and network-aware
data filtering has been shown useful for a variety of appli-
cations and platforms, including to control the data volumes
required for remote 3D visualizations across the Internet [18],
[19]. Another example is an image filter that crops images
provided by clients to focus on areas of current interest in
military applications [8], [20].

In measurements presented in this paper, we apply config-
urable quality handlers to filter both sensor data and scientific
data, and we demonstrate the performance improvements
derived from the adaptive use of such filters for end user
applications. Improvements are due to the improved ability
of SOAP-binQ compared to SOAP-bin to control the data
volumes exchanged as call or return parameters, thereby better
dealing with runtime variations in communication and server
resources. This is particularly important for versions of SOAP-
binQ used in interoperability or high performance modes.

Initial results of this work are encouraging. With the SOAP-
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binQ infrastructure in place, message transmission times are
improved by a factor of about 15 for IMByte message
sizes. Marshalling and unmarshalling times and therefore, the
loads imposed on server systems due to SOAP use are also
reduced significantly. Both improvements are due to the use of
binary formats for transporting SOAP parameters. Finally, the
distributed large-data applications evaluated in this paper ex-
perience more uniform response times in congested networks
when using SOAP-binQ, due to its ability to dynamically
adjust the data volumes sent to available network resources.

The remainder of this paper elaborates on the design,
implementation and behavior of SOAP-binQ and compares it
with XML-based SOAP implementations. Related work is de-
scribed in Section II. Section III deals with the overall design
and implementation details. Experimental results accompanied
by discussions are presented in Section IV. Conclusions and
future work appear in Section V.

II. RELATED WORK

The growth of XML-based web services is increasing the
interest of high performance end users in these technologies.
Efficiency issues with XML and with the SOAP protocol
that relies on it, however, have inhibited technology adoption.
Inefficiencies with XML are described in detail in [21],
which identifies ASCII conversions of digits as one of the
most significant bottlenecks associated with XML. A solution
approach first demonstrated in [13] is to use binary encodings
of XML for large-data objects [21], [22], with resulting perfor-
mance improvements of up to 75% in terms of reductions in
processing costs and message sizes achieved in [23]. We adopt
this approach [13], by automatically converting XML schema-
based data descriptions to binary forms (and vice versa) [14],
’just in time’ (i.e., when needed by end user applications).

Efforts to improve XML performance are complemented
by the development of efficient implementations of remote
invocation protocols, like [24], [25], [26], [27]. [28] imple-
ments a fast RMI protocol that is interoperable with Java/C++-
based SOAP implementations, with an RMI system that uses
SOAP for its communications. Performance gains rely in part
on the use of the XML Pull Parser [29], a stream-based
fast XML parser. However, this work targets interoperability,
by adopting XML for communication between heterogeneous
systems. Our work, in contrast, targets performance, while
retaining interoperability.

Interactive scientific applications, remote instrument usage,
remote sensing, and multi-media applications typically require
quality of service (QoS) support. The QoS mechanisms defined
for SOAP (version 1.2 [30]) focus on QoS guarantees pro-
vided by the transport level and/or by intermediaries involved
in SOAP processing. In accordance with ongoing research
on QoS in middleware [31], [19], our approach generalizes
such transport-focused QoS to enable applications to directly
specify and manipulate the data sent and received by SOAP
participants. This permits application-specific tradeoffs in the
amounts and therefore, quality of information sent and re-
ceived vs. the available network and processing resources on
participating machines[18]. The handlers and quality attributes
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Fig. 1. Software Architecture of SOAP-binQ.

used in SOAP-bin have been used in grid middleware to
implement client-specific behaviors[18] and in real-time object
systems [32], [33] to control the timing behavior of invoca-
tions. The contract-based quality support used in SOAP-binQ
is also used in [34], [35]. Within RMI and in object-based
distributed operating systems, related functionality, termed
subcontracts, has been used to control invocation behavior like
automatic replication and server selection [12], [36], but such
mechanisms do not support per invocation parameterization.

III. SOFTWARE ARCHITECTURE OF SOAP-BINQ
A. Architecture Description

Scientific computing in distributed environments must effi-
ciently deal with data heterogeneity, at the level of machine
architectures and for applications. In scientific visualizations,
for instance, the data produced by an application must typ-
ically undergo a sequence of transformations before it is
displayed to a particular end user [9]. Soap-binQ deals with
data heterogeneity by describing SOAP parameters with XML,
and by operating only on the binary representations of such
data. The intent is to eliminate or reduce serialization and
deserialization costs, while also maintaining the universality
implied by the use of XML.

Figure 1 shows the overall design of SOAP-binQ. It consists
of a WSDL compiler that generates the client and server
side stubs, with conversion handlers for XML/binary inter-
conversion. The specific binary format used is PBIO, which
in previous work, has been shown to efficiently represent
the structured XML that constitute SOAP parameters[13].
Quality attributes are specified in a quality file, which is
compiled jointly with the WSDL file to generate stub files.
The information contained in this file are the data types of
the parameters sent in SOAP messages in conjunction with
various quality attribute values. It also references the quality
handlers specified by end users (when present) or generates
trivial quality handlers otherwise.

Figure 2 illustrates the transformations a message can
undergo during a simple SOAP request/response interaction.
The figure also depicts the different options available for such
interactions. These options exist because the application layer
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Fig. 2. Data flow in Soap-binQ communications.

can communicate with the transport layer either via XML
data or via native data. In the first case, data is converted
to native form. Once this is done, handlers can perform data
transformations or filtering. This is discussed in more detail
in the following paragraphs. The data format used for data
transmission via an HTTP connection is PBIO[14], which
deals with heterogeneous machine architectures via a ‘receiver
makes right’ paradigm, thereby avoiding the symmetric up
and down translation used in most grid middleware. At the
receiving end, the entire process takes place in reverse order,
providing the data back to the application layer in the appro-
priate format.

B. SOAP-binQ Implementation

a) SOAP-bin.: Our prototype implementation of SOAP-
binQ is based on Soup [37], a version of SOAP developed
by Ximian, written in C. Soup is modified to read in both a
handler file and a WSDL file, and from these files, produces
the modified stubs and support files that implement the desired
quality management functionality. Specifically, the WSDL
compiler reads XML typecodes from the WSDL file, generates
the client-side and server-side stubs as well as a file with
support functions and a header. From these, server- and client-
side applications are built. The schema used in Soup identifies
the basic types as integer, char, string and float, and it allows
the user to build more complex types through the use of lists
and structs. Soup uses libxml2 for conversion from and to
XML. Our implementation alters this conversion to use the
PBIO binary data format.

PBIO allows the sender to send data in its native format,
using dynamic code generation to automatically generate code
that performs the format conversion at the receiver side. PBIO
data is defined through what is known as formats. The formats
are similar to XML schemas, in that they define how data is
structured. Every PBIO transaction begins with a registration
of the format with a “format server”, which collects and caches
PBIO formats. Whenever a new type is encountered, the
application consults the format server to interpret the message.
This transaction occurs only once, since the format is cached
locally thereafter.

The WSDL compiler generates PBIO formats based on the
description given in the WSDL file, and these formats are used
in the binary transmission of SOAP parameters. The example
in Figure 3 illustrates this conversion, for an example in which
raw sensor data represented in ppm format is transported to
servers that perform analyses on these images (note that in
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such cases, it is not suitable to use lossy compression methods
like JPEG).

b) SOAP-binQ: Quality Files.: The purpose of SOAP-
binQ’s quality support is to allow transformations to be applied
to messages, as when matching message sizes to available
resources. Since many applications face tradeoffs between data
accuracy and speed, it is useful to provide transport-level
support for varying the volume of data exchanged between
participants. SOAP-binQ implements this by permitting devel-
opers or end users to create a ‘quality’ file accompanying the
WSDL information. This file dictates the data precision to be
used under differing resource availabilities. For instance, data
with a specified number of array values could be replaced
by a smaller sized array, if the loss in precision is not as
critical as the time that could be lost serializing, transmitting
and deserializing a larger array. As an example, in this paper,
we demonstrate the tradeoffs existing for an image server used
in astronomy applications. Here, the resolution of the image
is adjusted based on the quality of the network link. Network
quality is represented by the cumulative RTT values for SOAP
requests.

Quality files are created by end users or provided by
domain-knowledgable developers. Such files contain handlers,
the QoS attributes in the form of intervals of quality attributes,
where round trip time - RTT - is the QoS attribute used in our
current implementation.

The template for a quality file, sample attributes, and the
corresponding message types is depicted below:

quality_attribute_1 quality_attribute_2 - message_type_0

quality_attribute_2 quality_attribute_3 - message_type_1
quality_attribute_3 quality_attribute_4 - message_type_2

Typically, a set of message types, described in the quality
file, corresponds to a single, larger message type, which is
the actual request/response message used by the application
layer. During the sending process, the transport looks up the
quality file to find the right message type to be sent. It then
copies the relevant fields (those fields that are common to
the data structure acquired from the application and those
to be sent) and ignores the rest. At the other end, the
application layer expects the original message sent out by the
sender. Hence, the relevant fields are copied from the message
received from the transport, and the remaining entries are

padded with zeroes. This feature permits legacy applications
to be integrated seamlessly with SOAP-binQ, but it could be
removed by transmitting quality attributes along with SOAP
communications[ 18] and then using them to match sender with
receiver actions.

In our applications, the message types with the largest sizes
are used along with small RTT intervals, and the smaller types
are used with larger RTT intervals. This reflects the assumption
that a lower RTT indicates good network conditions, and hence
larger message types can be sent, and vice-versa. Thus, the
quality file is used both by the server side and client side
stubs, to determine the message type and corresponding size
to be used under each circumstance.

When there is no direct correlation between message types
(for instance, there are fields in the smaller message type
that do not occur in the larger type), or if complex handlers
are to be used to transform data (applying resizing handlers
to images, for example), the necessary quality handlers are
specified by the user along with the quality file. Such handlers
are directly included in the stub code, and the ones used
as quality handlers in lieu of the basic conversion handlers
generated from WSDL files.

The policy-level information encoded in quality files is
formulated based on the requirements of the application. Since
this information consists of different data formats used in mes-
saging, the data types involved in messaging must be known
when the quality file is created. In the future, we foresee the
designer providing a quality file along with the WSDL file,
through UDDI or a similar WSDL repository. This would let
the user directly access the service, without knowledge of the
actual message types used in data transmission.

¢) Quality Attributes.: As described above, quality files
relate quality attributes to message types, where RTT is used
as the monitored value in our current examples. However, a
monitored attribute can use any value that is suitable for trig-
gering changes in data quality, including attributes specified
by end users, such as desired image resolution[18]. Quality
attributes can also be specific to an application, as demon-
strated with a web server in [38]. Other attributes suitable for
the sample applications and execution environments used in
this paper may capture CPU load, by measuring marshalling or
unmarshalling costs, memory consumption, or similar factors.
The reader is referred to [39] for a more detailed discussion
of how to link monitored attributes to changes in the quality
of service (QoS) or quality of information (Qol) in quality-
managed applications.

d) Dynamic Quality Changes.: Soup was modified to
read in a quality file and a WSDL file, and to turn out
the modified stubs and support files that implement runtime
quality management. While the quality file draws the corre-
spondence between quality attributes and message types in
the stubs, it may be necessary for the application to change
quality management at runtime. Our current implementation
does not permit runtime changes in the handlers or policies
used for quality management, but it does permit applications
to dynamically update the values of quality attributes. This
is done via the API call update_attribute(). This function
can be useful when, for instance, the application changes



its sensitivity. For example, an application that obtains stock
quotes over a period of time, from a server, might use an
attribute that dictates the granularity of the data. If the client
decides to get finer grain data at the expense of additional
tolerance for delay, the value of a quality attribute would be
changed accordingly. Note that in all such cases, while the
messages to be included in the quality policy are determined
by studying the application’s needs, performance testing is
required to determine suitable values of quality attributes.

IV. EXPERIMENTAL EVALUATION

We illustrate the performance of SOAP-binQ through mea-
surements obtained in the following experiments. First, we
demonstrate the performance of SOAP-bin by comparing it
with Sun RPC (which uses the XDR data representation).
The intent is to show that the basic performance of SOAP-
bin is competitive with that of standard client-server com-
munication mechanisms. Next, we systematically characterize
the marshalling, unmarshalling and transmission costs of bi-
nary SOAP and compare it with XML-based SOAP, thereby
evaluating SOAP-bin’s high performance and interoperability
modes. Next, these results are compared with XML-based
and with compressed XML implementations of SOAP, using
SOAP-binQ in compatibility mode. Last, the performance of
SOAP-binQ and the utility of runtime quality management are
evaluated with representative applications.

A. Sun RPC vs SOAP-bin

The overall performance of SOAP-bin is compared to TCP-
based Sun RPC. Experiments are conducted between a 2.2GHz
Pentium IV with 512MB RAM running Linux kernel 2.4.18-
27.7.x, and a dual 750MHz SPARC with 2560MB RAM
running SunOS 5.8, connected by a 100Mbps Ethernet link.
Overall cost for marshalling, transmission and unmarshalling,
of arrays and nested structs, of different sizes, are measured.
The justification for these data types appear in Section I'V-B.

The results shown in Figure 4 demonstrate that SOAP-bin’s
performance is close to that of Sun RPC when array data are
used, but that Sun RPC outperforms the former in the case
of nested structs (by about a factor of 5.4 in the worst case).
The delay is mainly due to SOAP-bin’s use of HTTP for its
transactions. It can hence be concluded that, while SOAP-bin
cannot compete with Sun RPC, the performance attained is
reasonable for Internet applications. However, since PBIO has
the added advantage that the sender can issue data in its native
binary format, servers dealing with PBIO data can scale better,
especially for large data sizes[14].

B. SOAP-bin: Microbenchmarks

A series of microbenchmarks evaluate the performance of
SOAP-bin with different data types and sizes. Two sets of
entirely different data types are used, one representing scien-
tific applications via arrays of different sizes, and a second
representing business applications via a nested structure of
varying depth. Arrays are at one end of the spectrum, where
marshalling simply means enumerating the elements - enclos-
ing them with tags in the case of XML and simple enumeration

in the case of PBIO. At the other end of the spectrum are
nested structs, since marshalling and unmarshalling require
recursive function calls and the addition of tags (in the case
of PBIO, this involves traversing the struct and copying the
fields to a send buffer).

Experiments also use different network links, one repre-
senting a high end link in a company’s intranet and the
other a low end, remote Internet link. The high end link is a
100Mbps LAN link in one of our laboratories; the low end link
connects a laboratory machine to a home machine via ADSL.
In both cases, the client machines are 2.2GHz Pentium IV
with 512MB RAM running Linux version 2.4.18-27.7.x. The
server has the same configuration as the client in the case of
the 100Mbps link, but it is a 1.9GHz Pentium IV with 512MB
RAM, running Linux kernel 2.4.18-3 for the ADSL link.

Measurements are derived from sets of 10-1000 experi-
ments, reporting the averages over all readings, after discard-
ing the first set (to eliminate cold start effects). Variances are
less than 1% on the average and are therefore, not reported.

e) SOAP-bin: Marshalling/Unmarshalling Costs.: Figure
?? shows the overall costs for conversion of data between
native and PBIO, XML compression and XML and PBIO, and
also the sizes of the resultant data. Compression is achieved us-
ing Lempel-Ziv encoding. The figure indicates the inordinately
large sizes for XML data as compared to equivalent PBIO
messages. The XML parameters generated are about 4-5 times
the size of the corresponding PBIO messages, in part due to
redundant tags (i.e., tags enclosing every element of an array).
The difference is even greater for the nested structure, since
its document size increases exponentially, where elements are
enclosed within tags at each level of the struct. This results
in a ninefold increase in the size of the XML document vs.
the corresponding PBIO message. This result agrees with the
observations in [40]. Compressed XML is mostly the same
size as, and sometimes smaller than the equivalent PBIO data.
This is in part due to the highly structured nature of the data.
Compression, however, may not be the solution if the data
available to the transport is in the native format of the sender.

The time taken for PBIO encoding and decoding is relatively
small when compared to data transmission costs, especially
with larger data sizes. This is due to the fast nature of the
participating machines, making communication latency the
restricting factor. This effect is more pronounced in the case
of a slower connection, the ADSL, where the gap between
PBIO encoding/decoding and the transport costs is quite high,
even in a log scale graph.

The encoding and decoding times for the nested struct are
perceptibly high compared to an array of equivalent size. One
factor that doesn’t appear in the graph is the initial cost of
registering a format. As noted before, PBIO needs to “register”
a format with a format server, during the first message transfer.
This acts as a hand shake between the sender and the receiver,
so the receiver knows what type of message it gets and how
to decode it. The additional cost incurred for the first message
is negligible when small formats are used, and it becomes
significant only for very deeply nested structures. Subsequent
exchanges of messages are compared against cached formats,
resulting in much faster decoding.
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f) SOAP-bin: Costs with XML data.: A second set of
experiments conducted with the same setup assumes that data
is available to the transport in XML rather than in native
format. A typical scenario is the use of SOAP by an end user
application interacting with a database, for instance. In such
cases, additional work is needed to perform data conversion
from and to XML. Experiments demonstrate that the time
spent on conversion (especially on fast machines) is slightly
offset by the time saved due to reductions in communication
costs, due to the use of binary vs. text messages.

Experimental results in Figure 6 depict the times taken for
conversion from XML to PBIO (and then back to XML),
the overall time taken for such conversion plus the transport
time, and the time taken to send XML messages (i.e., without
conversion). The advantages of using binary data encodings
for SOAP parameter transmission are less evident in this case.
This is principally due to the need to explicitly parse XML.
In addition, we have not optimized the XML-PBIO conversion
handlers. In the case of the 100Mbps link, for instance, data
conversion takes more time than simply sending raw XML,
for both the array data and the nested structs, the latter being
more pronounced (as can be expected). In contrast, with the
ADSL link with its peak bandwidth of about 1Mbps, XML-
PBIO conversion has clear advantages, for both data sets, since
this conversion is equivalent to compressing XML to about 1/4
of its original size. However, it is even more advantageous to
compress XML using some standard compression methods,
as evident from the fact that this method is the fastest for all
cases. Note, however, that compression is not a suitable choice
if the application at either end (client or server) produces or
consumes data in binary form (as with typical large-scale web
servers that use backend machines). In addition, if data must
be transformed or otherwise operated on, XML-based data
representations again require parsing, leading to substantial
computational costs.

g) Comparison among the Modes of Operation.: Based
on these measurements, it is possible to characterize the
performance of each of the three modes of SOAP-bin operation
discussed in Section I.

Figure 7 shows the overall costs incurred from the three
modes of operation. It is evident that, for high bandwidth
links, the differences in performance increase as higher size
data are involved, whereas the costs over low bandwidth links
are similar. This is because of the large delay introduced
by slow links, which overshadows any smaller delays due to
XML conversion at either end. This leads us to conclude that
the high performance mode of operation should be used in
"internal" communications between back-end servers, whereas
the interoperable or compatible modes of operation should be
used if the data is required to be in, or available as XML
format.

C. SOAP-binQ: Sample Applications

We present three applications - a scientific application, an
image application, and a commerical application , and describe
a fourth, a visualization application, that are adapted to use
SOAP-binQ.

h) Continuous Quality Management.: In all experiments,
RTT is measured during each request using the same method
proposed in [41] for RTT estimation, with future work
planning to use more complex and effective estimators like
those described in [42]. Specifically, in the current imple-
mentation, a client sends a timestamp to the server along with
the message, and the server sends back the same timestamp
along with the reply. The client then computes the difference
to determine the RTT for that request. This RTT value is used
to update the client’s measure of the cumulative RTT value
through exponential averaging, using R = a- R+ (1—a)- M,
where R is the current estimate of RTT, M the new estimate
and « a value between 0 and 1. Most estimators use a value
of 0.875. Note that this RTT value calculation also includes
the time spent by the server to prepare the data. This can be
rectified by the server setting the timestamp back by the time
taken to prepare its response data.

The information given in the quality file is used by both
the client and the server just before sending the message.
Based on the estimated RTT value, the corresponding interval
in the policy is selected and the appropriate message type is
chosen for transmission. The current message is then copied
onto the chosen type through a single copy and then sent for
marshalling. Every time the RTT is estimated by the client, the
server is informed of the new value during the next request.
Note that this approach may cause SOAP-binQ to oscillate
between two message types. This can happen when the larger
message causes some undue delay, which forces the transport
to choose a smaller message. This may in turn decrease the
RTT, thus causing it to alternate between the two sizes. A
simply history-based mechanism of RTT estimation is used to
prevent this.

1) Image Application: We have created a real-time imaging
code similar in structure to the Skyserver [2] application
developed by researchers from Johns Hopkins University and
Microsoft. The application consists of a collection of servers,
each of them possessing a set of images collected by remote
telescopes. One of these servers acts as the primary server, in
that it is directly accessible by a web user. The client requests
a specific image, along with a transformation that must be
applied to it. Requests for images are directed at the web
server, which then reroutes the request to an appropriate server
among the collection of image servers.

The image application used in our experiments emulates this
behavior, in that remote clients request images and transforma-
tions on these images from an image server. Transformations
include routines like scaling, edge detection, etc. The image
server receiving a request responds with the appropriate image,
modified based on the quality file.

For the image server application, due to its wide area
nature, we evaluate its behavior in response to changes in
network conditions. The server and client are run on two
PCs connected by a single-hop 100Mbps Ethernet link, each
with a 2.2GHz Pentium IV processor and 512MB RAM,
running Linux 2.4.18-27.7. The application starts with the
client sending a request to the server for an image, identified
by its filename, and an operation to be performed on it. In
this case, it is edge detection on PPM images (Skyserver
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uses JPEG images, for which we are currently implementing
suitable data transformations). The PPM images are 640x480
pixels in resolution, with 3 bytes per pixel, one for each color
value. Hence, the ideal response is close to 1MB in size. This
results in high response times, especially for slow network
connections.

For this application, the quality file is written to allow the
server to resize the output image to 320x240 resolution when
response times are high. In practice, more than two image sizes
and/or additional ways of reducing response data would be
used, but these experiments use only two image sizes, since the
intent is simply to demonstrate the utility of this functionality
offered by SOAP-binQ. To emulate network variations, cross-
traffic is introduced using the IPerf tool iperf, which sends
UDP packets at varying speeds. The resulting response times
are shown in Figure 8.

As evident from the measurements in Figure 8, runtime
quality management enables the application to send higher res-
olution images in good conditions, but once the response time
increases further than that specified in the policy, it changes to
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sending lower resolution images. When conditions improve, it
reverts to the original image sizes. As a result, the adaptative
method’s performance lies ‘between’ the performance attained
for large vs. small image files.

One point to be noted here is that higher response times need
not be caused by network congestion alone. They may also
be due to the data-dependent nature of application behavior,
i.e., the application itself may cause the delays if it spends
extra time in preparing the data. This may cause SOAP-binQ
to respond inappropriately. There are multiple ways in which
issues like these may be addressed. As shown in our work
on dynamic system monitoring[43], dynamic feedback from
network protocols and/or about other system resources can
more precisely identify the causes of performance degradation.
In addition, to prevent frequent oscillation and as explained in
Section IV-C, the use of history-based mechanisms can further
help offset such effects.

2) Scientific Application: Collaborative scientific appli-
cations can generate and consume substantial amounts of
data [9], [10]. The example used in this paper is from the
domain of molecular dynamics, where the application models
the behavior of the bonds between atoms within a molecule
over time. It consists of a “bond server” that constructs a
graph, where the vertices represent the atoms and the edges
represent bonds. This data is available for a sequence of
timesteps. Such a graph is constructed for every timestep
and sent to a remote client for processing/display. The size
corresponding to each of the timesteps for the response data
is about 4KB. The SOAP-binQ quality file is formulated such
that the server sends collective data corresponding to as many
timestamps (between 1 and 4) in its response, as indicated by
available network resources?.

Experiments with this application are performed on the
same machines as the previous application, but across an
ADSL link, with UDP cross-traffic introduced during the
course of the experiment. The intent is to emulate a situation

2 An alternative approach is to eliminate unnecessary application data using
user-defined data filters[43].



1600

1 timestam;‘:/send
4 timestamps/send -------
Adaptive -------

1400
1200
1000 |
800

600 f

Response time (microsec)

400 |

200 [

L L L
1.5e+08 2e+08 2.5e+08 3e+08

Time (microsec)

.
1e+08

Grogs ga_vrc |0, 200 0 200 0 200

Wps) (0, 10 100 150 200 0, 200 0, 200

Fig. 9. Response times for Molecular Dynamics Application.

in which a science end user interacts from her home with a
simulation running on a server farm.

Figure 9 shows the response times for various policies,
varying with time. In one case, the server sends four timesteps
per request, immaterial of the network conditions, and in the
other, it sends one timestep per request. In the third case, an
adaptive policy, which sends 1-4 timesteps for every request,
depending on the cross-traffic, is used. Again, the changes
in latency, in response to variations in network conditions, are
minimized. The quality file used for the experiment guarantees
that the response time never exceeds 900 psec, and at the same
time, it does not allow the network to be under-utilized - the
response time seldom goes below 200 usec. This can be made
more Vvs. less restrictive dynamically, as mentioned in Section
1I1-B.0.d.

3) Commercial Application: A third application emulates
the operational information systems used by airlines, trans-
port companies (e.g, FedEx), and others. In this application,
information is continuously produced, entered in a large,
memory-resident data set, business rules are applied to it, and
resultant data is shared with end users. In the specific scenario
used here, flight and passenger information is collected and
distributed, and excerpts of such information are shared with
relevant parties, such as flight caterers. The client, in that case,
requests specific detail about the meals to be served, and the
server responds with such detail.

Experiments assume an operational information system that
uses PBIO in its core communications, but must convert
catering information to XML for interoperability purposes.
Measurements compare the transport of XML vs. PBIO data to
end users, using the ADSL link. As seen in Table I, the smaller
data sizes used by PBIO result in improvements compared to
the direct use of XML, requiring a PBIO ‘plug-in’ at the client
side. Improvements would be more substantial if conversion to
XML was not performed at all, directly transmitting selected
PBIO data from the core system infrastructure to plug-in
capable end users. This in fact, is the way in which PBIO-
based communications are used by one of our collaborators,
Delta Technologies [3].

TABLE I
EVENT RATES FOR AIRLINE APPLICATION

Size Event rate (events per sec)
SOAP 3898 bytes 10.15
SOAP-bin 860 bytes 13.76
Native PBIO 860 bytes 14.06
SOAP (compressed XML) 1264 bytes 13.17
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Fig. 10. Remote Visualization Application - Architecture.

4) Experiments with Remote Visualization: One of the key
claims of our work is that the use of binary vs. XML data
with SOAP substantially broadens the utility of the SOAP
standard. As a concrete demonstration, we have developed a
remote visualization application with SOAP-bin middleware.
The application is based on the one discussed in Section I'V-
C.2, where the positions of the atoms and bonds in a molecule
are obtained by the client, which are then displayed. The
database on the server’s end stores data in the raw format, and
the display expects data in SVG format [44], which is just an
XML document. The overall architecture of this framework is
as shown in Figure 10.

The display client is connected to the service portal through
a HTTP connection. The service portal acts as a sink for the
‘ECho’? event source that generates bond data. The portal thus
has an ‘ECho’ bondserver as a backend. The service portal (1)
advertises its services through a set of WSDL files. These are
obtained by the display clients (2), which then construct the
appropriate request (3), with filter code and the desired output
format. Data arriving from the bondserver (4) is then modified
by the filter code, providing the output in the desired format,
which is then sent back to the client (5) as the response. The
client can dynamically change the filter code and the output
format desired. This has been successfully implemented, thus
providing more flexibility to the client in obtaining the data
it needs. Measurements over two Linux machines similar to
the one used in microbenchmarks, connected by a 100Mbps
link shows a response time of about 2400us for a data
size of 16Kbytes, indicating a response time low enough for
visualization purposes.

V. CONCLUSIONS AND FUTURE WORK
This paper describes the a software architecture for an
efficient realization of the SOAP protocol. The goal is to

3ECho is our own implementation of a publish/subscribe, event-based
communication system, focused on large-data applications[45].



make SOAP more broadly useful for end user applications,
particularly targeting large-data applications [3], [9]. The key
idea is to use SOAP’s XML-based parameter data as meta-
information, while actual data exchanges between clients and
servers utilize binary representations of such data. The SOAP-
bin protocol presented in this paper has substantial perfor-
mance advantages compared to SOAP, due to the reduced data
sizes for binary vs. XML data and due to reductions in process-
ing overheads for these two alternative data representations.

A generalization of SOAP-bin, termed SOAP-binQ, further
extends this protocol by associating runtime quality manage-
ment functions with SOAP parameters. The idea is to use
application-specific data manipulations, such as data down-
sampling, to adjust data volumes to available clients. The adap-
tive behavior implemented by SOAP-binQ further expands the
range of applications that can operate with the SOAP protocol.
Continuous quality management is particularly important in
resource-constrained environments, like international Internet
connections, for instance.

The implementation of SOAP-bin and of SOAP-binQ pre-
sented in this paper uses a C-based realization of SOAP. It
also uses an efficient binary structured data format suitable for
communications across heterogeneous machines developed in
our previous research (i.e., PBIO [14]). These choices affect
the specific performance results presented in this paper, but
similar results would be attained with alternative implementa-
tion approaches, including with Java-based implementations.
In fact, in other work, we have already implemented XML-
binary-Java translators, which permit us to efficiently trans-
form structured XML data (i.e., schemas) to corresponding
Java classes and vice versa [13].

While use of a binary format in place of a text standard
may be questioned, it must be noted that this approach is not
very different from various content types of binary nature (like
JPEG, GIF, etc.) being used in conjunction with text-based
HTML. With the growing trend seen in web services, it would
only be prudent to use binary messages along with XML.

Currently, Soap-binQ quality handlers manipulate only bi-
nary data. In future work, we will generalize handlers to
be able to manipulate XML data, binary data, or both. In
addition, our current implementation installs handlers stati-
cally, at compile-time. In other work [45], we have already
developed the technologies necessary to install binary handlers
at runtime, using dynamic binary code generation techniques
and/or using code repositories.

Our immediate future work will realize some of the im-
provements of SOAP-bin and SOAP-binQ described above,
most importantly focusing on the ability to dynamically define
and re-define quality management. We are also pursuing the
use of SOAP-binQQ with more complex end user applications,
the near-term goal being its use of interactive remote visu-
alization in scientitic codes like the SmartPointer application
described in [5]. The intent is to leverage SOAP’s promise of
interoperability for high end codes.
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