
Certificate Dispersal in Ad-Hoc Networks

Mohamed G. Gouda and Eunjin Jung

Department of Computer Sciences
The University of Texas at Austin

E-mail: {gouda, ejung}@cs.utexas.edu

Abstract

We investigate how to disperse the certificates, issued in
an ad-hoc network, among the network nodes such that the
following condition holds. If any node u approaches any
other node v in the network, then u can use the certificates
stored either in u or in v to obtain the public key of v (so
that u can securely send messages to v). We define the cost
of certificate dispersal as the average number of certificates
stored in one node in the network. We give upper and lower
bounds on the dispersability cost of certificates, and show
that both bounds are tight. We also present two certificate
dispersal algorithms, and show that one of those algorithms
is more efficient than the other in several important cases.
Finally, we identify a rich class of “certificate graphs” for
which the dispersability cost is within a constant factor from
the lower bound.

1. Introduction

We consider a network where each node u has a private
key rk.u and a public key bk.u. In this network, in order
for a node u to securely send a message m to another node
v, node u needs to encrypt the message m using the pub-
lic key bk.v, before sending the encrypted message, denoted
bk.v < m >, to node v. This necessitates that node u know
the public key bk.v of node v.

If a node u knows the public key bk.v of another node v
in this network, then node u can issue a certificate, called a
certificate from u to v, that identifies the public key bk.v of
node v. This certificate can be used by any node in the net-
work that knows the public key of node u to further acquire
the public key of node v.

A certificate from node u to node v is of the following
form:

rk.u < u,v,bk.v >

This certificate is signed using the private key rk.u of node
u, and it includes three items: the identity of the certificate

issuer u, the identity of the certificate subject v, and the pub-
lic key of the certificate subject bk.v. Any node that knows
the public key bk.u of node u can use bk.u to decrypt the cer-
tificate from u to v and obtain the public key bk.v of node
v.

The certificates issued by different nodes in a network
can be represented by a directed graph, called the certificate
graph of the network. Each node in the certificate graph rep-
resents a node in the network. Each directed edge from node
u to node v in the certificate graph represents a certificate is-
sued by node u for node v in the network.

a

c

d

eb

Figure 1. A certificate graph example

Figure 1 shows a certificate graph for a network with five
nodes: a, b, c, d, and e. According to this graph,

node a issued two certificates (a, b), and (a, d)
node b issued one certificate (b, c)
node c issued no certificate
node d issued one certificate (d, e)
node e issued one certificate (e, b).

Node a can use the two certificates (a, b) and (b, c) to
obtain the two public keys bk.b and bk.c, and so can se-
curely send messages to nodes b and c. Also, node a can
use the two certificates (a, d) and (d, e) to obtain the pub-
lic keys bk.d and bk.e, and can securely send messages to
nodes d and e. Node d can use the three certificates (d, e),
(e, b), and (b, c) to obtain the public keys bk.e, bk.b, and
bk.c, and can securely send messages to nodes e, b, and c.

We assume that the network is ad-hoc and its nodes are
mobile so move around. In this case, the issued certificates



need to be dispersed among the nodes in the network such
that if a node u approaches another node v and wishes to se-
curely send messages to it, then u can obtain the public key
of v from the set of certificates stored either in u or in v (pro-
vided there is a directed path from u to v in the certificate
graph).

As an example, assume that each node in the certifi-
cate graph in Figure 1 stores the certificates in the maxi-
mal, shortest-path, incoming tree rooted at the node:

node a stores no certificates
node b stores the certificates (a, b), (d, e), (e, b)
node c stores the certificates (a, b), (d, e), (e, b),

(b, c)
node d stores the certificates (a, d)
node e stores the certificates (a, d), (d, e)

Thus, if node a approaches node e, then a can use the two
certificates stored in e to obtain the public key of e and se-
curely send messages to e. (Note that node e can never ob-
tain the public key of node a because there is no directed
path from node e to node a in the certificate graph in Fig-
ure 1).

As an application of this situation, consider the tanks in
an armored division. Each tank has a computer and can be
viewed as a node in an ad-hoc network. Before the tanks
are deployed into the field, a certificate graph needs to be
designed to secure the future communications between the
tanks in the field. Then the certificates from this certificate
graph need to be dispersed amongst the tanks before they
are deployed. Later, the tanks are deployed into the field and
each of them has a number of certificates in its local stor-
age. Now, if two tanks approach each other in the field, then
the two tanks have enough certificates in their local stor-
age so that each of them can compute the public key of the
other and two tanks can securely exchange messages.

In this paper, we discuss three contributions to the prob-
lem of certificate dispersal in ad-hoc networks. First, we
present tight upper and lower bounds on the average num-
ber of certificates stored in one node. Second, we present
a somewhat efficient certificate dispersal algorithm that en-
sures that the average number of certificates stored in a node
is small (if not the smallest). Third, we identify rich classes
of certificate graphs for which the average number of cer-
tificates to be stored in a node approaches the lower bound.

2. Related Work

Several papers have investigated the use of certificates to
provide security in traditional and in ad-hoc networks. We
summarize the results of these papers in the following para-
graphs.

Architectures for issuing, storing, discovery, and validat-
ing certificates in traditional networks are presented in [14],

[2], [12], [5], [1], [4], [11], and [6]. There are several limi-
tations in ad-hoc networks that do not allow us to use these
results without significant overhead to the networks. In tra-
ditional networks, one can assume that the communication
between nodes is reliable and reasonably fast. In ad-hoc net-
works, finding routes between nodes itself is challenging,
let alone maintaining the relevant information of the found
routes. Also, nodes in ad-hoc networks often have very lim-
ited resources. For example, computational capability, stor-
age, and power supply are much less than what most nodes
have in traditional networks. To accommodate these limita-
tions, different architectures for issuing, storing, discovery,
and validating certificates in ad-hoc networks have been de-
veloped.

In [15], Zhou and Haas have presented an architecture
for issuing certificates in an ad-hoc network. According to
this architecture, the network has k servers. Each server has
a different share of some private key rk. To generate a cer-
tificate, each server uses its own share of rk to encrypt the
certificate. If no more than t servers have suffered from
Byzantine failures, where k ≥ 3t +1, then the resulting cer-
tificate is correctly signed using the private key rk, thanks to
threshold cryptography. The resulting certificate can be de-
crypted using the corresponding public key which is known
to every node in the ad-hoc network.

In [10], Kong, Perfos, Luo, Lu and Zhang presented
more distributed architecture for issuing certificates. Instead
of employing k servers in the ad-hoc network, each node in
the network is provided with a different share of the pri-
vate key rk. For a node u to issue a certificate, the node u
forwards the certificate to its neighbors and each of them
encrypt the certificate using its share of rk. If node u has at
least t +1 correct neighbors (i.e. they have not suffered from
any failures), the resulting certificate is correctly signed us-
ing the private key rk.

In our paper, we propose an architecture where every
node has both a public key and a private key so it can issue
certificates for any other node in the network. This archi-
tecture is very efficient in issuing and validating certificates
but cannot tolerate Byzantine failures. In particular, if one
node suffers from Byzantine failure, then this node can suc-
cessfully impersonate any other node that is reachable from
this node in the certificate graph of the network. This vul-
nerability to Byzantine failures is not unique to our certifi-
cate work in ad-hoc networks. In fact, many proposed cer-
tificate architectures, e.g. [14], [2], [12], [11], and [6] yield
similar vulnerabilities in traditional networks. Recently, we
have developed a technique for augmenting the certificates
with additional information to ensure that the network can
tolerate some degree of Byzantine failures[9].

Perhaps the closest work to ours is [8] where the au-
thors, Hubaux, Buttyán, and Capkun, investigated how to
disperse certificates in a certificate graph among the net-
work nodes under two conditions. First, each node stores



the same number of certificates. Second, with high proba-
bility, if two nodes meet then they have enough certificates
for each of them to compute the public key of the other.
By contrast, our work is based on two different conditions.
First, different nodes may store different number of certifi-
cates, but the average number of certificates stored in one
node is minimized. Second, it is guaranteed (i.e. with prob-
ability 1) that if two nodes meet then they have enough cer-
tificates for each of them to compute the public key of the
other.

Later, the same authors have showed in [3] that a lower
bound on the number of certificates to be stored in a node
is
√

n−1 where n is the number of nodes in the system. By
contrast, we show below that the tight lower bound on the
average number of certificates to be stored in a node is e/n,
where e is the number of edges in the system.

3. Certificate Dispersal

A certificate graph G is a directed graph in which each
directed edge, called a certificate, is a pair (u, v), where u
and v are distinct nodes in G. For each certificate (u, v) in
G, u is called the issuer of the certificate and v is called the
subject of the certificate.

Note that according to this definition a certificate graph
is a directed graph that does not have self-loops and does
not have multiple edges from any node to any other node.

A directed path (v0, v1), (v1, v2), · · · , (vk−1, vk) in a cer-
tificate graph G, where the nodes v0, v1, · · · , vk are distinct,
is called a certificate chain from v0 to vk. The length of a
chain is the number of certificates in the chain. A chain from
u to v is shortest iff its length is not larger than the length of
any other chain from u to v in the same certificate graph.

Let c denote the chain (v0, v1), · · · , (vk−1, vk). Then, each
of the chains (v0, v1), · · · , (v j−1, v j), where 1 ≤ j ≤ k, is
called a prefix of c that ends at node v j. Also, each of the
chains (v j, v j+1), · · · , (vk−1, vk), where 0 ≤ j ≤ k − 1, is
called a suffix of c that starts at node v j.

A certificate dispersal algorithm F is an algorithm that
takes as input any certificate graph G and computes a subset
of the certificates, denoted F.(G,v), for every node v in G
such that the following two conditions hold:

i. Connectivity :
For every distinct pair of nodes u and v in G, if there is
a chain from u to v in G, then there is a chain from u to
v in the set F.(G,u)∪F.(G,v).

ii. Completeness :
For every certificate in G, there is a node v in G such
that this certificate is in F.(G,v).

Let G be a certificate graph, and F be a certificate dis-
persal algorithm. The cost of using F to disperse the certifi-
cates in G among the nodes of G, denoted c.(F,G), is com-

puted as follows:

c.(F,G) =
1
n
( ∑

v in G

|F.(G,v)|)

where n is the number of nodes in G, and |F.(G,v)| denotes
the number of certificates in the set F.(G,v) assigned by F
to node v. Note that c.(F,G) is the average number of cer-
tificates assigned by F to a node in G.

The dispersability cost of a certificate graph G, denoted
d.G, is computed as follows:

d.G = min
F

c.(F,G)

A certificate dispersal algorithm Fe is efficient iff for ev-
ery certificate graph G,

c.(Fe,G) = d.G

It follows from this definition that if Fe is an efficient
certificate dispersal algorithm and F is a certificate disper-
sal algorithm then for every certificate graph G,

c.(Fe,G) ≤ c.(F,G)

Lemma 1 : (Upper Bound on Dispersability Cost)
For every certificate graph G with n nodes,

d.G ≤ n−1

Proof :
In the next section, we present a certificate dispersal algo-
rithm Ff ull that assigns to every node v in a certificate graph
G, the certificates in a maximal outgoing tree rooted at v.
Because each maximal outgoing tree in a certificate graph
G has at most n− 1 certificates, where n is the number of
nodes in G, we have

|Ff ull(G,v)| ≤ n−1

c.(Ff ull ,G) =
1
n
( ∑

v in G

|F.(G,v)|) ≤ (n−1)

Let Fe be any efficient dispersal algorithm; hence

d.G = c.(Fe,G) ≤ c.(Ff ull ,G)) ≤ n−1

2

Lemma 2 : (Lower Bound on Dispersability Cost)
For every certificate graph G with n nodes and e certificates,

d.G ≥ e
n

Proof :
Let Fe be any efficient certificate dispersal algorithm. From
the completeness condition of a dispersal algorithm, every



edge in a certificate graph G is assigned by Fe to some node
in G. Thus,

∑
v in G

|Fe.(G,v)| ≥ e

where e is the number of certificates in G. We conclude

d.G = c.(Fe,G) =
1
n
( ∑

v in G

|Fe.(G,v)|) ≥ e
n

2

Lemma 3 : (Achieving the two Bounds on Dispersability
Cost)
There is a certificate graph G with n nodes and e certificates
such that the following two conditions hold.

i. d.G = n−1

ii. d.G = e
n

Proof :
Let G be a fully connected certificate graph; i.e, for any two
distinct nodes u and v in G, there is a certificate from u to
v and a certificate from v to u. Thus, the number of certifi-
cates e in G is n(n−1), and the following relations hold in
G.

n−1 =
n(n−1)

n
=

e
n

Hence the upper and lower bounds on dispersability cost
meet at G, and d.G is equal to each of the two bounds.
Therefore, the two conditions of Lemma 3 hold for G.

2

It is also possible to construct certificate graphs that meet
the upper bound on dispersability cost but not its lower
bound, and to construct certificate graphs that meet the
lower bound on dispersability cost but not its upper bound.

As an example, consider a ring certificate graph G0 in
Figure 2. This graph has n nodes and n certificates arranged
in a directed ring. It is straightforward to show that any dis-
persal algorithm will assign to every node in the graph at
least n−1 certificates. Thus, d.G0 ≥ n−1, and G0 meets the
upper bound on dispersability cost but not its lower bound.

Figure 2. A ring certificate graph

As a second example, consider an hourglass certificate
graph G1 in Figure 3. This graph has n nodes and n−1 cer-
tificates, where n is odd, arranged in an hourglass shape with

Figure 3. An hourglass certificate graph

one center node, (n−1)/2 input nodes, and (n−1)/2 out-
put nodes. There is a certificate dispersal algorithm F that
assigns certificates to every node v in G1 as follows.

i. If v is the center node, then F.(G1,v) = {}.

ii. If v is an input node, then

F.(G1,v) = {(v,center node)}.
iii. if v is an output node, then

F.(G1,v) = {(center node,v)}.
Thus,

c.(F,G1) =
n−1

n
= the lower bound on dispersability cost
= d.G1

Hence, G1 meets the lower bound on dispersability cost but
not its upper bound.

The above discussion suggests the following two prob-
lems which we explore in the rest of this paper.

Problem 1 :
Develop an efficient certificate dispersal algorithm Fe.

2

Problem 2 :
Identify rich classes of certificate graphs whose dispersabil-
ity costs meet the lower bound or are within a constant fac-
tor of this lower bound.

2

Problem 1 remains open: Instead of solving Problem 1,
we present two certificate dispersal algorithms Ff ull and
Fhal f (in Sections 4 and 5 respectively), and show that in
several important cases Ff ull is not as efficient as Fhal f . We
then present a solution of Problem 2 in Section 6.

4. Full Tree Algorithm for Certificate Disper-
sal

Before we introduce our first certificate dispersal algo-
rithm, we need to introduce the following definition of chain
sets.

Let G be a certificate graph and v be a node in G. A chain
set for v, denoted S.v, is a set of chains in G that satisfies the
following three conditions.



i. If G has no chains that starts at v, then S.v is empty.

ii. If G has a chain from v to w, then S.v has exactly one
shortest chain from v to w.

iii. If S.v has a chain, then S.v also has every nonempty
prefix of this chain.

a

b c

d

e f

Figure 4. The diamond certificate graph

As an example, consider the diamond certificate graph in
Figure 4. In this graph, there are no certificate chains that
start at node e or f , and the chain sets for node e and f are
both empty:

S.e = {}, S. f = {}
The chain set for node d has two chains:

S.d = {< (d,e) >,< (d, f ) >}

Also the chain set for each of the two nodes b and c has
three chains:

S.b = {< (b,d) >,< (b,d);(d,e) >,< (b,d);(d, f ) >}

S.c = {< (c,d) >,< (c,d);(d,e) >,< (c,d);(d, f ) >}
The chain set for node a has five chains:

S.a = { < (a,b) >,< (a,c) >,< (a,c);(c,d) >,

< (a,c);(c,d);(d,e) >,< (a,c);(c,d);(d, f ) >}

The following two comments are in order. First, each chain
set S.v for a node v defines a maximal, shortest-path, out-
going tree rooted at node v in the certificate graph. Second,
it is possible to have two or more distinct chain sets for a
node. For example, a second chain set for node a in the cer-
tificate graph in Figure 4 is as follows:

{ < (a,b) >,< (a,c) >,< (a,b);(b,d) >,

< (a,b);(b,d);(d,e) >,< (a,b);(b,d);(d, f ) >}

Using the above definition of a chain set, we are now ready
to present our first certificate dispersal algorithm, called the
full tree algorithm and denoted Ff ull . This algorithm assigns
to every node v all the certificates in a chain set S.v for v. In
other words,

Ff ull .(G,v) = the set of all certificates that exist in a chain
set S.v for v.

Lemma 4 :
Ff ull is a certificate dispersal algorithm.

Proof :
We show that Ff ull satisfies the two conditions of a cer-
tificate dispersal algorithm, connectivity and completeness.
First, if there is a chain from u to v in G, then at least one of
the shortest chains from u to v is in S.u by condition ii in the
definition of chain set. Second, any certificate (u, v) in G is
in S.u since it is the shortest chain from u to v. By the defi-
nition of Ff ull , the certificate (u, v) is in Ff ull .(G,u). There-
fore, Ff ull satisfies two properties of connectivity and com-
pleteness. 2

Next, we show that the dispersal algorithm Ff ull is far
from being efficient. First, we show in Lemma 5 that the
cost of applying Ff ull to any strongly connected certificate
graph meets the upper bound on dispersability cost. Sec-
ond, we show in Lemma 6 that the cost of applying Ff ull

to any hourglass certificate graph is within a factor of four
from the upper bound on dispersability cost (even though
the dispersability cost of an hourglass graph meets the lower
bound).

Lemma 5 :
For any strongly connected certificate graph G with n nodes,

c.(Ff ull ,G) = n−1

Proof :
The certificate dispersal algorithm Ff ull assigns, to every
node v in a certificate graph G, the certificates in a maxi-
mal outgoing tree rooted at v. If G is strongly connected,
then any maximal outgoing tree is in fact a spanning tree
with (n−1) certificates, where n is the number of nodes in
G. Therefore, for any node v in G,

|Ff ull .(G,v)| = n−1

c.(Ff ull ,G) =
1
n
( ∑

v in G

|Ff ull.(G,v)|) = n−1

2

Lemma 6 :
For any hourglass certificate graph G with n nodes (see Fig-
ure 3),

c.(Ff ull ,G) =
n2 +2n−3

4n
∼ n

4
Proof :
Recall that any hourglass certificate graph G has one center
node, n−1

2 input nodes, and n−1
2 output nodes.

|Ff ull .(G,center)| = n−1
2

For every input node v,

|Ff ull .(G,v)| = n−1
2

+1 =
n+1

2



For every output node v,

|Ff ull .(G,v)| = 0

Thus,

c.(Ff ull ,G) =
1
n
(

n−1
2

+(
n−1

2
)(

n+1
2

))

=
n2 +2n−3

4n
∼ n

4

2

5. Half Tree Algorithm for Certificate Disper-
sal

Before we introduce our second certificate dispersal al-
gorithm, we need to introduce the following definition of
consistent chain sets.

Let S.u and S.v be two chain sets for nodes u and v, re-
spectively, in a certificate graph G. S.u and S.v are consis-
tent iff for every two nodes x and y in G, if S.u has a sub-
chain that starts at x and ends at y and S.v also has a sub-
chain that starts at x and ends at y then these two subchains
are identical.

A collection of chain sets {S.v|v is a node in G} is con-
sistent iff any two chain sets in the collection are consis-
tent.

We are now ready to present our second certificate dis-
persal algorithm, called the half tree algorithm and denoted
Fhal f . This algorithm takes as input a consistent collection
of chain sets {S.v|v is a node in a certificate graph G} and
computes a set of certificates Fhal f .(G,v) for every node v
in G. Algorithm Fhal f is defined as follows.

1: for every nonempty S.v in the consistent collection
of chain sets do

2: let c denote the longest chain < (v0,v1); · · · ;
(vk−1,vk) > in S.v: note that v0 = v;

3: let x := b k
2c;

4: find the largest y, 0 ≤ y ≤ k, such that all
certificates in the prefix < (v0,v1); · · · ;
(vy−1,vy) > are already in Fhal f (G,v);

5: if x ≤ y
6: then

store the certificates in every prefix of
the subchain < (vy,vy+1); · · · ;(vk−1,vk) >
in Fhal f .(G,w) where w is the node at
which the prefix ends;

7: else
7a: store the certificates in the prefix

< (vy,vy+1); · · · ;(vx−1,vx) > in Fhal f (G,v);

7b: store the certificates in every prefix of
the subchain < (vx,vx+1); · · · ;(vk−1,vk) >
in Fhal f .(G,w) where w is the node at
which the prefix ends;

endif;

8: remove chain c from S.v;
9: enddo;

Lemma 7 :
Fhal f is a certificate dispersal algorithm.

Proof :
First, if there is a chain between nodes u and v, then at least
one of the shortest chains from u to v is stored in S.u. All
the certificates in the chain from u to v will be stored in u
and v by the definition of Fhal f . Second, any certificate (u, v)
in G will be stored in S.u since it will be the shortest chain
from u to v. By the definition of Fhal f , the certificate (u, v) is
stored either in u or in v. Therefore, Fhal f satisfies two prop-
erties of certificate dispersal algorithm. 2

Next, we show in Lemma 8 that in the important case of
strongly connected certificate graphs, Fhal f is not less effi-
cient than Ff ull , and in some instances, Fhal f is in fact more
efficient than Ff ull . Then in Lemma 9, we show that in the
important case of tree certificate graphs, Fhal f is not less ef-
ficient than Ff ull , and in some instances, Fhal f is in fact more
efficient than Ff ull . In Lemma 10, we show that in the case
of the hourglass certificate graphs Fhal f achieves the lower
bound on dispersability cost which is much less than what
Ff ull achieves.

Lemma 8 :
For any strongly connected certificate graph G,

c.(Fhal f ,G) ≤ c.(Ff ull ,G)

For some strongly connected certificate graph G,

c.(Fhal f ,G) < c.(Ff ull ,G)

Proof :
Let G be any strongly connected certificate graph, and v be
any node in G. The certificates in the set Fhal f .(G,v) define
a graph G′, which is a subgraph of the original graph G. In
G′, there can be at most one path from any node to node v,
and at most one path from node v to any other node. Graph
G′ satisfies exactly one of the following two conditions.

i. G′ has no cycle.

ii. G′ has a cycle, but it has at most n−1 nodes.

In the first case, the number of certificates in G′ is at most
n− 1, since there is no cycle in G′. In the second case, the
number of certificates in G′ is also at most n− 1, which is



the number of certificates if all the n− 1 nodes participate
in the cycle. Therefore, |Fhal f .(G,v)| ≤ n−1.

c.(Fhal f ,G) =
1
n ∑

v in G

|Fhal f .(G,v)| ≤ n(n−1)

n
= n−1

Because G is strongly connected, c.(Ff ull ,G) = n − 1 by
Lemma 5. Therefore,

c.(Fhal f ,G) ≤ c.(Ff ull ,G)

This completes our proof of the first part of the lemma.

u v w

Figure 5. The two-ring certificate graph

To prove the second part of the lemma, consider the two-
ring certificate graph G′′ in Figure 5. This graph is strongly
connected and has three nodes. Then by Lemma 5,

c.(Ff ull ,G
′′) = n−1 = 2

By applying Fhal f to G′′, we get

Fhal f .(G
′′,u) = {(u,v),(v,u)}

Fhal f .(G
′′,v) = {}

Fhal f .(G
′′,w) = {(v,w),(w,v)}

Therefore,

c.(Fhal f ,G
′′) =

1
3
(2+0+2) =

4
3

< c.(Ff ull ,G
′′)

2

Lemma 9 :
For every tree certificate graph T ,

c.(Fhal f ,T ) ≤ c.(Ff ull ,T )

For any complete tree certificate graph G,

c.(Fhal f ,G) < c.(Ff ull ,G)

(Due to space constraints, the proof of Lemma 9 is in [7].)
2

Lemma 10 :
For any hourglass certificate graph G with n nodes and e
certificates (see Figure 3) where n is odd,

c.(Fhal f ,G) =
e
n

< c.(Ff ull ,G)

Proof :
Recall that an hourglass certificate graph G with n nodes has
one center node, n−1

2 input nodes, and n−1
2 output nodes.

Applying Fhal f to this certificate graph, we get

for every input node u, Fhal f .(G,u) = {(u,c)}
for the center node c, Fhal f .(G,c) = {}
for every output node w, Fhal f .(G,w) = {(c,w)}

Therefore,

c.(Fhal f ,G) =
n−1

n
=

e
n

<
n
4
∼ c.(Ff ull ,G)

2

6. Certificate Graphs with Small Dispersabil-
ity Costs

In this section, we consider Problem 2, stated in Sec-
tion 2, and identify a class of strongly connected certifi-
cate graphs that have small dispersability costs. This class
is based on the star certificate graph G in Figure 6.

Figure 6. A star certificate graph

The star graph consists of one center node and m satellite
nodes. In this graph, the center node is connected with each
of the satellite nodes by a directed ring. The best way to dis-
perse the certificates in this graph is to assign the two cer-
tificates in each ring to the satellite node in that ring, while
assigning no certificates to the center node. Thus,

d.G =
1

m+1
(2m)

Because the number of nodes in this graph is (m+1) and the
number of certificates in this graph is 2m, the dispersability
cost of this graph achieves its lower bound.

Unfortunately, the star certificate graph has a security
problem. If the private key of the center node is compro-
mised by an adversary, then this adversary can imperson-
ate any node as it communicates with any other node in
the system. Thus, although the dispersability cost of this
graph achieves the lower bound, the security problem of
this graph compels us to seek other certificate graphs. Next,
we discuss how to generalize this star graph into a class of
graphs whose dispersability costs are small and whose se-
curity problems are not so severe.

In our generalization of the star certificate graph, each
of the m rings in the graph has k satellite nodes (beside the



center node that exists in every ring). We refer to this gen-
eralized certificate graph as (m,k)-star. Figure 7 shows an
(m,2)-star.

Figure 7. An (m,2)-star certificate graph

An efficient way to disperse the certificates in the (m,k)-
star G is to assign the (k + 1) certificates in a ring to every
satellite node in that ring, while assigning no certificates to
the center node. Thus,

d.G =
1

mk +1
(mk(k +1))

The number of nodes in the (m,k)-star is mk+1, and the
number of certificates in this graph is m(k + 1). Thus, the
lower bound on the dispersability cost for the (m,k)-star is
m(k+1)
mk+1 . Therefore, the dispersability cost of an (m,k)-star is

within a factor of k from its lower bound.
It is straightforward to show that an (m,k)-star, where

k ≥ 2, has better security properties than the original (m,1)-
star. In particular, if the private key of the center node is
compromised by an adversary then this adversary will not
be able to impersonate any satellite node in a ring while
it communicates with any other satellite node in the same
ring.

7. Conclusion

In this paper, we introduce the problem of certificate dis-
persal. Tight lower and upper bounds on the cost of the
certificate dispersability are given along with example cer-
tificate graphs that achieve both bounds. Two certificate
dispersal algorithms, Ff ull and Fhal f , that can reach these
bounds for certain graphs are devised. The algorithm Ff ull

makes each node store a maximal shortest-path outgoing
tree, whereas Fhal f makes each node store half of an outgo-
ing tree and half of an incoming tree. We show that Fhal f

performs better than Ff ull in strongly connected certificate
graphs and in tree certificate graphs. We also present a class
of certificate graphs whose dispersability costs is within a
constant factor from the lower bound.

The dispersal algorithm discussed in this paper assume
that all the directed paths between two nodes are equally
good. In some applications this may not be true, as dis-
cussed in [13]. Further research is needed to adapt the dis-
persal algorithms in this paper to these applications.

Acknowledgement This work was supported in part by
the Defense Advanced Research Projects Agency (DARPA)
Contract F33615-01-C-1901, and in part by three IBM Fac-
ulty Partnership Awards for the academic years of
2000−2001, 2001−2002, and 2002−2003, and by the
Texas Advanced Research Program, Texas Higher Educa-
tion Coordinating Board, under Grant TARP 14-970823.

References

[1] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis.
The keynote trust-management system version 2. RFC 2704,
1999.

[2] S. Boeyen, T. Howes, and P. Richard. Internet X.509 pub-
lic key infrastructure operational protocols - LDAPv2. RFC
2559, 1999.

[3] S. Capkun, L. Buttyán, and J.-P. Hubaux. Self-organized
public-key management for mobile ad hoc networks. IEEE
Transactions on Mobile Computing, 2(1):52–64, 2003.

[4] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos,
and R. Rivest. Certificate chain discovery in SPKI/SDSI.
Journal of Computer Security, 9(4):285–322, 2001.

[5] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and
T. Ylonen. SPKI certificate theory. RFC 2693, 1999.

[6] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karam-
cheti. dRBAC: distributed role-based access control for dy-
namic coalition environments. In Proceedings. 22nd Interna-
tional Conference on Distributed Computing Systems, 2002,
pages 411–420, 2002.

[7] M. G. Gouda and E. Jung. Certificate disperal in ad hoc net-
works. Technical report, 2003.

[8] J.-P. Hubaux, L. Buttyán, and S. Capkun. The quest for secu-
rity in mobile ad hoc networks. In Proceedings of the 2001
ACM International Symposium on Mobile ad hoc network-
ing & computing, pages 146–155. ACM Press, 2001.

[9] E. Jung and M. G. Gouda. Strongly chained certificates. in
preparation, 2003.

[10] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Provid-
ing robust and ubiquitous security support for wireless mo-
bile networks. In Ninth Internation Conference on Network
Protocols (ICNP’01), pages 251–260, 2001.

[11] N. Li, W. H. Winsborough, and J. C. Mitchell. Distributed
credential chain discovery in trust management: extended ab-
stract. In Proceedings of the 8th ACM conference on Com-
puter and Communications Security, pages 156–165. ACM
Press, 2001.

[12] M. Myers, R. Ankney, A. Malpani, S. Galperin, and
C. Adams. X.509 internet public key infrastructure online
certificate status protocol - OCSP. RFC 2560, 1999.

[13] M. K. Reiter and S. G. Stubblebine. Authentication metric
analysis and design. ACM Transactions on Information and
System Security (TISSEC), 2(2):138–158, 1999.

[14] R. L. Rivest and B. Lampson. SDSI – A simple distributed
security infrastructure. Presented at CRYPTO’96 Rumpses-
sion, 1996.

[15] L. Zhou and Z. J. Haas. Securing ad hoc networks. IEEE
Network, 13(6):24–30, 1999.


