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Abstract

In this paper, we propose a novel approach for efficiently
sensing a remote field using wireless sensor networks. Our
approach, the infer algorithm, is fully distributed, has low
overhead and saves considerable energy compared to using
just the data aggregation communication paradigm. This is
accomplished by using a distributed algorithm to put nodes
into sleep mode for a given period of time, thereby trading
off energy usage for the accuracy of the data received at the
sink. Bayesian inference is used to infer the missing data
from the nodes that were not active during each sensing
epoch. As opposed to other methods that have been consid-
ered, such as wavelet compression and distributed source
coding, our algorithm has lower overhead in terms of both
inter-node communication and computational complexity.
Our simulations show that on average our algorithm pro-
duces energy savings of 59% while still maintaining data
that is accurate to within 7.9%. We also show how the pa-
rameters of the algorithm may be tuned to optimize network
lifetime for a desired level of data accuracy.

1. Introduction

Recent technological advances have made the develop-
ment of low cost sensor nodes possible. This has allowed
the deployment of large-scale networks of these sensor
nodes to become feasible. The multitude of possible uses
for large-scale sensor networks has resulted in the field of
wireless sensor networks (WSN) being actively researched.
A survey of current research and open challenges in wire-
less sensor networks is provided in [1].

Many of the possible applications for wireless sensor
networks, such as habitat monitoring [14] and target track-
ing [5], involve sensing a remote field. In such applica-
tions, the sensor nodes are randomly and densely deployed
into the remote field to collect the required data, such as

temperature or pressure readings. The hundreds to thou-
sands of nodes often used in a typical scenario generate
large amounts of sensed data which need to be sent to a
centralized authority (via a sink node) for processing and
analysis.

The inaccessibility of the sensor nodes during deploy-
ment for such applications, due to being located in remote,
hostile or otherwise hard to access locations, requires that
the nodes function unattended and untethered. Therefore,
the longevity of the sensor nodes (the time until the battery
is depleted) becomes a key consideration. This necessitates
the careful use of the limited battery power that each sensor
node is equipped with when sensing and transmitting data
to a centralized authority.

Motivated by the need of extending network lifetime and
constrained by limited resources, such as bandwidth and
power, there has been considerable research in the area of
energy-efficient data gathering and information processing
in sensor networks. In dense sensor networks, the data
from geographically close nodes is often highly correlated.
Several of the proposed methods of energy conservation in
sensor networks attempt to take advantage of this spatial
redundancy through distributed signal processing. For ex-
ample, Intanagonwiwat et al. use wavelet based compres-
sion [7], while Chou et al. use distributed source coding,
based on the work of Slepian and Wolf [17], to reduce
the spatio-temporal redundancy of the data to be transmit-
ted to the sink [4]. In essence, both of these approaches
increase network lifetime by using compression to reduce
the amount and accuracy of the data received by the sink
node. A more detailed discussion of these and other energy-
reduction techniques is presented in Section 5.

We propose an alternative decentralized approach to in-
creasing network longevity through the use of Bayesian in-
ference techniques. Our approach is also based on the trade-
off of the accuracy of the data received by the sink for in-
creased network lifetime. However, instead of compressing
the data collected by the sensor nodes, we instead choose
a subset of the nodes in the network to sense and transmit
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their data to the sink node at any given time. This approach
is based on the principle of diminishing marginal returns. If
we were to add an additional node to the subset of sensing
nodes chosen, it would result in a large increase in energy
usage while only providing a small gain in the accuracy of
sensing the field, due to the highly correlated nature of the
sensed data. Although our approach may be used to sense
any attribute from a remote field, we will use air tempera-
ture data in all examples in the remainder of this paper. Air
temperature has been the most commonly sensed attribute
in real world applications to date (e.g., [3], [14]), therefore,
making it the most logical choice for our examples and ex-
periments.

Finally, using our algorithm the sink node performs
Bayesian inference on the data which it did receive to infer
values for the entire sensed field. We show that our algo-
rithm is able to produce dramatic energy savings while only
marginally decreasing the accuracy of the sensed data. The
decreased accuracy should be well within tolerable ranges
for most applications.

The remainder of the paper is organized as follows: Sec-
tion 2 presents background information on Bayesian infer-
ence techniques. In Section 3, we present our solution to
the problem of efficiently sensing a remote field, the infer
algorithm. We present the results of our simulations in Sec-
tion 4. In Section 5, we discuss related work in the areas of
inference and data compression in sensor networks. Finally,
Section 6 discusses future work and concludes that paper.

2. Bayesian Inference

Bayesian inference is the practice of making inferences
from data using probability models for quantities that we
observe and for those that we are unable to observe but wish
to gain information about. Many instances of Bayesian in-
ference involve using collected data to obtain the probabil-
ity that a hypothesis regarding the nature of the data is true.
To accomplish this, Bayes’ theorem is used as the basis for
adjusting the degrees of belief in the hypothesis given the
observed evidence.

The branch of Bayesian inference of most importance to
the problem of efficient data gathering in sensor networks is
referred to as posterior predictive distributions. With poste-
rior predictive distributions we wish to infer unknown ob-
servables given some known observed data and the prior
probability distribution. This is exactly the case in sensor
networks in which we have observed data from some sen-
sor nodes and wish to infer data values for nodes which we
chose not to observe. We are also able to obtain at least a
reasonable approximation of the prior probability distribu-
tion of the complete data (both observed and unobserved)
based on a priori knowledge of the field being sensed or
previously observed data.

Specifically, in posterior predictive distributions, we at-
tempt to draw probabilistic conclusions about unobserved
data ỹ, also referred to as unknown observables, condi-
tional on the observed data y. That is, we wish to determine
p(ỹ|y). For example, suppose y = (y1, . . . , yn) is a vector
of recorded measurements for a quantity sensed n times and
θ = (µ, σ2) is the unknown true measurement for the quan-
tity and the measurement variance of the sensing device.
Let ỹ be the yet-to-be recorded next sensor measurement.
The distribution of ỹ, p(ỹ|y) is called the posterior predic-
tive distribution and is expressed by the following equation:

p(ỹ|y) =
∫

p(ỹ, θ|y)dθ =
∫

p(ỹ|θ)p(θ|y)dθ (1)

We will illustrate this concept with an example. Consider
the problem of predicting whether the next toss of a possibly
biased coin will be heads or tails, given only the results of
previous tosses. The coin was previously tossed N times
and we observed a sequence s of heads and tails, which we
will denote using the symbols h and t. Let Nh and Nt be
the number of heads and tails that appear in the observed
sequence, respectively. We wish to predict the probability
that the next toss will be a head. Therefore, we have y =
(s,N) and we wish to infer p(ỹ = h|s,N). Let ph be the
unknown probability that the next toss is an h. That is, θ =
ph. Therefore, using Equation (1) we have

p(h|s,N) =
∫

p(h, ph)p(ph|s,N)dph

Integrating over ph has the effect of taking into account
our uncertainty about ph. Since the probability of h given
ph is ph, we simplify the expression and compute the inte-
gral as follows:

p(h|s,N) =
∫

ph
ph

Nh(1 − ph)Nt

p(s|N)
dph

=
Nh + 1

Nh + Nt + 2

Therefore, if we observed 10 tosses of the coin and the
result was a head 6 times we would predict that the next toss
would be a head with probability 0.58.

This concept can be extended to the case when we
choose to only observe some data, but wish to have knowl-
edge of the complete data. In Section 3.1 we will show how
Bayesian inference can be used to solve this problem.

We will now proceed in Section 3 to discuss the step by
step development of our algorithm, infer, for decreasing en-
ergy usage in dense wireless sensor networks.



3. Data Collection Approaches

In this section we will discuss two of the current ap-
proaches to sensing a remote field, which will lead into the
development of our approach. We begin by discussing a
naive approach of sensing a field and then progress to data
aggregation.

A naive approach to sensing a remote field is to have
every sensor record its measurement of the quantity being
sensed, in our case the air temperature, and send that data
to the sink node via multi-hop communication. It is easy to
see that this approach is very inefficient and does not scale
well. For example, in the small example network shown in
Fig. 1, nodes 1, 2 and 3 all attempt to send their sensed data
to the sink. This requires nodes 2 and 3 to use multi-hop
communication by sending their data to the sink via node 1.
As a result, node 1 must transmit three times each time the
nodes attempt to send their data back to the sink. Node 1
must transmit once to send its own data to the sink and then
another two times to forward the data from nodes 2 and 3 to
the sink.

SINK

(1)

1

2 3

(3)(2)

(2) (3)

Figure 1. Sensing a remote field: Naive ap-
proach

One approach to improve upon the the naive method of
sensing a remote field, and the most common in practice to-
day, is to limit the number of times each node has to trans-
mit. This is accomplished by using the data aggregation
communication paradigm, also referred to as data fusion
[12]. In a sensor network using data aggregation, the nodes
form a reverse multicast tree to the sink. Each node then
waits to receive data from all of its child nodes in the tree
and then combines the received data with its own data. This
aggregated data is then forwarded towards the sink.

For example, in the network shown in Fig. 2 Node 1
waits to receive the data from nodes 2 and 3, aggregates
the data from all three nodes and transmits the aggregated
data to the sink. In this example, node 1 only has to transmit
once, compared to three times in the naive approach. This
did require node 1 to perform additional data processing,
but since the energy used by a sensor node to perform com-
putations is much less than the energy used to transmit, the
energy used to perform the additional computations is more
than offset by the energy saved by reducing the number of

transmissions. However, using data aggregation alone still
requires every node to sense the field and send its data to the
sink, which leads to the possibility of further improvements.
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Figure 2. Sensing a remote field: Data Aggre-
gation approach

3.1. The infer Algorithm

Our approach to efficiently sensing a remote field, the
infer algorithm, builds upon the data aggregation communi-
cation paradigm. The infer algorithm is fully distributed and
improves upon data aggregation by having some nodes stop
sensing and transmitting data to the sink for a given period
of time, thereby allowing them to go into sleep mode. We
are able to leverage the dense deployment of sensor nodes
and the inherent redundancy in the data by using Bayesian
inference to infer the missing data from the nodes which
did not sense and send data to the sink. Using Bayesian
inference does introduce errors into the remote sensing pro-
cess. However, the small errors introduced are insignificant
for most applications and are offset by the dramatically in-
creased lifetime of the sensor network.

The infer algorithm consists of two distinct phases:

(1) Node selection phase In this phase the nodes use a
distributed algorithm to determine which nodes must sense
the remote field and which may go into sleep mode for the
next sensing epoch.

(2) Bayesian inference phase In this phase, the task man-
ager or sink node uses Bayesian inference and the data re-
ceived from nodes which are sensing the field to obtain the
average sensor reading for all nodes in the network.

The simplest approach for the node selection phase is
to use a randomized algorithm. For this approach, a tar-
get for the percentage of nodes that should remain active
for each sensing epoch is set. We define a sensing epoch
to be the number of data collection rounds after which all
nodes must again decide whether to sense or not. Typically,
there would be 20 or 30 data collection rounds per epoch.
Next, nodes randomly determine by themselves whether
they should sense for the next epoch. Using this method,
the percentage of nodes that sense for a given epoch will



be very close to the desired target percentage. For exam-
ple, if we wish to have 80% of the nodes active for a given
epoch then each node individually will remain active with
probability 0.8 resulting in approximately 20% of the nodes
in the network going into sleep mode for the next sensing
epoch. Since we are dealing with densely deployed sensor
networks, choosing a suitable target percentage of nodes to
sense should ensure network connectivity is maintained [6].

The benefits of this approach are its simplicity and that
it does not require any communication overhead. However,
this simple approach does not attempt to balance the power
usage in the network to ensure that network lifetime is fully
maximized. It also does not consider the relative impor-
tance of the data from different sensors.

The simple randomized algorithm we have just presented
can be improved by having each node incorporate its re-
maining energy and the importance of its data into the
node selection process. Incorporating remaining energy
into the algorithm is important because we would like to
distribute energy usage as evenly as possible throughout the
network to maximize network lifetime. The Bayesian in-
ference techniques used in the second part of the process
cause some data to become more valuable. In an area in
which all the sensor readings are very similar, receiving data
from each sensor is approximately equal in importance to
the inference process. However, if one of the sensors in
the area has a reading which varies significantly from those
around it, then ensuring that the sink node receives this data
will dramatically improve the accuracy of the inferred data.
An example of this would be the diffence in temperature
recorded by a node which is located in the shade of a forest
canopy compared to a node in a nearby clearing.

Incorporating this additional information into the deci-
sion process requires using a hybrid approach between data
aggregation and our simple randomized algorithm. At the
start of each data sensing epoch, each node will sense the
field and broadcast both its sensor reading and an estimate
of its remaining energy. Each node will then compile a list
of the sensor readings and energy remaining for its neigh-
bouring nodes. This data will then be used to determine
whether the node should remain active for the rest of the
sensing epoch. Therefore, data aggregation can be used at
the start of each sensing epoch to send complete data to the
sink. After this initial data collection round, only a subset
of the nodes will send data to the sink via data aggregation.
By choosing the number of data collection rounds in a sens-
ing epoch, we can vary between the two extremes of data
aggregation and the simple randomized algorithm in terms
of both accuracy and energy usage.

We now present the details of the node selection phase
of the infer algorithm. Let ρ be the target percentage for
the number of active nodes during the sensing epoch. Each
node sets its internal probability of staying on to ρ. First we

will incorporate the relative importance of data from differ-
ent nodes. For the case of sensing air temperatures we use
the following rule: if the temperature sensed varies by more
than α◦C from the average of the readings from its neigh-
bouring nodes, then set ρ = 1. That is, the node will be
guaranteed to sense during the next epoch. Different cri-
teria may be chosen for different data being sensed, such
as light or humidity. The main idea is to ensure that a node
senses, and therefore sends its data to the sink, when its data
is significantly different from that of its neighbours. Addi-
tionally, more sophisticated approaches that do not require
a predetermined threshold may be used if it is not possi-
ble to have a priori knowledge of the nature of the data be-
ing sensed. For example, it may be possible to adaptively
determine an appropriate value for α by having each node
analyze the mean and variance of its data and that of its
neighbours.

Secondly, we will incorporate the energy each node has
remaining into the decision process. We introduce a third
parameter, δ, into the algorithm. This parameter sets the
maximum deviation from ρ that the energy aware portion
of the algorithm may make. For any given node, let N be
the set of node IDs of neighbouring nodes it received data
from and its own node ID. Each node first calculates the
percentage of energy remaining, xi for each i ∈ N . Next
the average percentage of energy remaining is calculated.
This value will lie in the range (0, 1] assuming all nodes
began with the same amount of energy. Finally, the aver-
age percentage of energy remaining is subtracted from the
percentage of energy the node has remaining and this re-
sult, which lies in the range (−1, 1), is then multiplied by
δ. The result, which may be either positive or negative, is
then added to ρ. Therefore, if a node has the same amount
of energy remaining as all of its neighbours, it will not ad-
just its value of ρ. If the node has more energy remaining
than its neighbours it will increase its value of ρ, and there-
fore increase its probability of being active during the next
epoch. Similarly, if the node has less energy remaining than
its neighbours it will decrease its value of ρ, and therefore
its probability of being active during the next epoch. The
amount by which ρ is altered is expressed in Equation (2).
In this equation x refers to the xi for the node running the
algorithm.

δ(x − 1
|N |

∑
i∈N

xi) (2)

The node selection phase of the infer algorithm is pre-
sented in Table 1

There are many more complex node selection algorithms
that could be substituted for the one just presented. How-
ever, the node selection phase of the infer algorithm will
be shown to be effective even though it is not resource in-
tensive. Approaches which require more computational re-



Table 1. The infer algorithm: node selection
phase

Calculate average temperature of neighbour nodes
if (|average temperature − temperature| > α)

ρ = 1
else

ρ = ρ + δ(x − 1
|N |

∑
i∈N xi)

Generate a random number [0, 1]
if (random number > ρ)

Go into sleep mode for one epoch

sources, memory, or additional inter-node communication
will divert resources from their intended use and likely drain
more energy than they can save compared to the infer algo-
rithm.

3.2. The Inference Phase

The second phase of the infer algorithm involves using
Bayesian inference techniques to infer the average sensor
reading in the network. We now present the details of the
inference procedure. Let y = (y1, . . . , yN ) be the potential
data that can be observed from N total nodes. In our case,
each yi is the temperature reading from sensor i. Further,
let yobs be the collection of data actually observed by the
sink, i.e., the temperature readings from the nodes which
were on for the epoch. Let ymis be the missing data not
observed by the sink, i.e., the temperatures that would have
been recorded by the nodes which were in sleep mode for
the epoch. Therefore, an alternative expression for the com-
plete data is y = (y obs, ymis).

In our case, the objective of the inference procedure is
to obtain the average temperature of all the sensor nodes,
ȳ. We model the marginal distribution of y over the prior
distribution of underlying parameter θ by Equation (3):

p(y) =
∫ N∏

i=1

p(yi|θ)p(θ)dθ (3)

We will estimate ȳ from a sample of n of the yi-values in
order to save energy and extend the lifetime of the network.
An alternative expression for ȳ is

ȳ =
n

N
ȳobs +

N − n

N
ȳmis (4)

where ȳobs and ȳmis are the averages of the observed and
missing yi’s respectively. We then determine the posterior
distribution of ȳ using simulations of ȳmis from its posterior
predictive distribution. Simulations of the posterior predic-
tive distribution of ȳmis are necessary because the integrals
in this problem cannot be easily solved in closed form like

the examples in Section 2 were. These simulations are ac-
complished by using the reverse cdf method. First, we ob-
tain simulations of θ : θl, l = 1, . . . , L, where each θl is
an adjusted version of the assumed prior distribution of the
data. For each θl we then draw a vector ymis from

p(ymis|θl, yobs) = p(ymis|θl) =
∏

i:Ii=0

p(yi|θl) (5)

and then average the values of the simulated vector to ob-
tain a draw of ȳmis from its posterior predictive distribution.
Since ȳobs is known, we can then compute draws from the
posterior distribution of the mean, ȳ, using Equation (4) and
the draws of ymis.

We will illustrate this process with a simple example.
Consider the 10 node network depicted in Fig. 3 along with
the data readings from each sensor. The node selection
phase of the algorithm has already been run and has resulted
in 3 of the 10 nodes going into sleep mode for this epoch.
First, we calculate the actual ȳ to be 10.20 and ȳobs to be
9.86. Next, we need to simulate θ. For this simple example
we will only simulate θ once, i.e., L = 1, using our knowl-
edge of the prior distribution. We will assume that using the
simulation we produced the vector (9.5, 10, 11.5) for ymis.
This results in a simulated value of 10.33 for ȳmis. Using
these results and Equation (4) results in the following cal-
culation for ȳ:

ȳ =
7
10

· 9.86 +
3
10

· 10.33 = 10.00

The result of the inference is a predicted average value of
10.00 compared to the real average of 10.20. Using more
simulations of θ, i.e., a larger value for L should improve
the accuracy of the inference procedure. It is also possible
to improve the simulations of θ by adaptively adjusting the
assumed prior distribution using the data collected thus far.

In this section we have discussed three approaches to
sensing a remote field, including our approach, the infer al-
gorithm. In Section 4 we will compare the performance of
these approaches in terms of both energy usage and error
rate.

4. Simulations

In this section we present three different simulations.
These simulations will provide more insight into the work-
ings of the infer algorithm and how it may be tuned to
achieve a desired performance goal. The simulations also
compare the performance of infer, in terms of both energy
use and error rate, with the other approaches discussed in
Section 3. The simulations clearly show that there are many
benefits to using the infer algorithm.
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Figure 4. The effects of δ and ρ: Normal Distribution data scenario
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Figure 5. The effects of δ and ρ: Heat Source data scenario
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Figure 3. Network for inference phase exam-
ple

In all cases the objective of the inference process is to es-
timate the average temperature reading from all nodes in the
network. Two temperature scenarios were used in all sim-
ulations to test the robustness of the infer algorithm. The
first scenario, referred to as Heat Source, simulates the pres-
ence of a hot spot, an animal or other object, in the area be-
ing sensed and in which the temperature in the surrounding
area is related to the distance from the heat source. In these
simulations, the location of the heat source was randomly
chosen and its effect on the surrounding location decreased
exponentially with distance. The second scenario, referred
to as Normal Distribution, simulates typical conditions in
which the temperature readings in the field approximately
follow a Gaussian distribution.

In all simulations, the prior distribution of the data be-
ing sensed was assumed to be Gaussian. Therefore, the two
temperature scenarios also test the robustness of the infer
algorithm to this assumption. In the Heat Source scenario,
the data does not follow the assumption of the tempera-
ture readings following a Gaussian Distribution. This case
shows how the algorithm will perform when either the prior



distribution is unknown or improperly specified. However,
in many cases the user has at least a rough estimate of the
nature of the data that will be sensed. The Normal Distri-
bution temperature scenario, simulates this case since the
distribution of the data being sensed belongs to the same
class as the assumed prior distribution. In many ways, these
two scenarios represent the best and worst cases when at-
tempting to predict the prior distribution.

All simulations used 500 node networks which were ran-
domly distributed in a 100 square unit area. All results were
averaged over 100 such randomly generated networks. For
power usage, we consider only the power used to transmit
a packet, receive a packet, and record a sensor reading. We
have not included the power used by simple computations
since these use orders of magnitude less than packet trans-
missions. A summary of the power requirements of the
Berkeley motes used in [14] is presented in Table 2. Also,
through preliminary experimentation, a value of α = 3◦C
was found to produce the most consistent results. However,
values of α within a few degrees of the chosen value also
produced good results. This value of α was then used in all
simulations presented in this Section.

Sensor Task Energy Consumption

Packet transmission 20 nAh
Packet reception 8 nAh

Obtaining sensor reading 1.08 nAh

Table 2. Sensor node energy usage for com-
mon tasks

First, we study how the two parameters in the infer al-
gorithm, δ and ρ, affect its performance. We measure per-
formance in terms of both the energy used and the accuracy
of the inferred results. For each data scenario, 100 differ-
ent networks were generated. For each network, the value
of δ was varied between 0 and 50 while ρ was varied be-
tween 0.05 and 1. Note that the δ = 0 and ρ = 1.0 case
corresponds to normal data aggregation. The results for the
Normal Distribution data scenario are presented in Fig. 4,
while the results for the Heat Source scenario are presented
in Fig. 5. To more clearly see the effects of δ and ρ, refer
to Fig. 6 and Fig. 7. Fig. 6 shows how the energy used and
percentage error of the infer algorithm varies with δ when
ρ is fixed at 0.75. Similarly, Fig. 7 shows how the results
are affected by the value of ρ when δ is fixed at 30. These
fixed values of δ = 30 and ρ = 0.75 were then used in the
two subsequent simulations evaluating the performance of
the infer algorithm relative to the other approaches.

In both the Heat Source and Normal Distribution cases,
the energy usage is almost exactly the same. This is to be
expected since the energy usage for any given value of ρ
and δ is influenced most by the topology of the network.

For each of these cases, the energy usage decreases as both
ρ decreases and δ increases, as expected. However, as the
energy usage decreases the percentage error increases. This
is the expected tradeoff between energy usage and accuracy
of the inferred data. For the Normal Distribution case, the
percentage error reaches a plateau around 3% error. As ex-
pected, the results for the Heat Source case are much worse,
reaching a plateau around 10% error. However, for many
applications, this level of error may be acceptable, espe-
cially considering the substantial energy savings of 59%
that may be realized. In Fig. 4 and Fig. 5, it is also ap-
parent that the energy usage plots are much smoother than
the percentage error plots. This means that the energy usage
for a given network can be precisely tuned by changing the
values of ρ and δ. However, less stringent guarantees can
be made about the percentage error that will result from any
given choice of δ and ρ.

Next, we discuss in more detail how δ and ρ affect the
performance results. Fig. 6 shows how the results vary for
different values of δ with a fixed value of ρ = 0.75. While
the energy usage decreases significantly as δ is increased,
the percentage error increases only slightly. For example,
increasing δ from 5 to 30 results energy savings of approx-
imately 25% while increasing the percentage error by less
than 2% in both data scenarios. Also, as δ becomes large,
the energy savings appear to reach an asymptotic level. This
is because a very large value of δ will results in all nodes
with less energy than the average of their neighbours re-
maining on, while all nodes with less energy than the aver-
age of their neighbours will be forced to go into sleep mode.
Fig. 7 shows how the results vary for different values of ρ
with a fixed value of δ = 30. These results show that there
is a near linear increase in energy usage as the value of ρ in-
creases, while the there is a much more gradual near linear
decrease in the percentage error. Once again, by decreas-
ing ρ significant energy savings can be realized while only
incurring small decreases in the accuracy of the inferred re-
sults.

Next, we compare the infer algorithm to the three other
approaches discussed in Section 3 in terms of both energy
usage and accuracy of the data received by the sink. Once
again, this simulation uses 100 randomly generated 500
node networks. We also set ρ = 0.75, δ = 30 and had
an epoch size of 30. The results of this simulation are pre-
sented in Table 4.

Both the Naive approach and the Data aggregation ap-
proach deliver 100% accurate data to the sink (assuming
no data is lost along the way due to transmission errors,
packet collisions etc.). However, the data aggregation ap-
proach uses 94% less energy while providing the same data
accuracy. Applying inference on top of data aggregation
leads to even greater energy savings. The simple random-
ized algorithm (all nodes set to independently sense with
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Figure 6. The effect of δ: fixed ρ = 0.75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

3

4

5

6

7

8

9

10

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4400

4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

ENERGY USAGE PERCENTAGE ERROR

E
ne

rg
y 

(n
A

h)

Heat Source

Normal Distribution

P
er

ce
nt

ag
e 

E
rr

or

Normal Distribution

Heat Source

Rho Rho

Figure 7. The effect of ρ: fixed δ = 30

Energy Usage (nAh) Percentage Error
Heat Source Normal Distribution Heat Source Normal Distribution

infer 6616.35 5959.14 7.867 1.422
Randomized algorithm 6436.06 6023.12 8.837 1.473

Data aggregation 14520.00 14520.00 0.0 0.0
Naive 247597.75 246022.57 0.0 0.0

Table 3. Energy usage and percentage error comparison

probability 0.75) uses on average 56% and 59% less energy,
for the Heat Source and Normal Distributions data scenar-
ios respectively, than using just data aggregation. In return
for these significant energy savings, there is a degradation
in the quality of the data inferred at the sink. In the Heat
Source case, there is an 8.8% error introduced while in the
the Normal Distribution case the error is only 1.5%.

The infer algorithm also obtains dramatic energy savings
compared to using just data aggregation. While using 54%
and 59% less energy on average, for the Heat Source and

Normal Distribution data scenarios respectively, the infer
algorithm is able to infer the average temperature in the
network with only 7.9% error in the Heat Source case and
1.4% error in the Normal Distribution case. While using
roughly the same energy as the simple randomized infer-
ence algorithm, the infer algorithm is able to produce more
accurate results. While the difference is almost negligible
for the Normal Distribution case, the infer algorithm is sig-
nificantly better for the Heat Source scenario. This shows
that the infer algorithm is more robust in terms of the data



distribution. Whenever the prior distribution of the data be-
ing sensed is not accurately known, the infer algorithm is
clearly a better choice than the simple randomized inference
algorithm.

For uses in which network lifetime is an important fac-
tor and small errors in the recorded data are acceptable, it is
clear that the infer algorithm offers significant energy sav-
ings at the cost of only a small percentage error being in-
troduced into the data received by the sink. Furthermore, in
most cases the data aggregation and naive approaches will
not be error free themselves due to packet collisions and
other factors which influence data communication in wire-
less sensor networks. Therefore, the difference in accuracy
between the infer algorithm and these approaches will often
be even less.

Finally, we wish to validate the claim that the infer algo-
rithm will result in more evenly distributed power use and
therefore, extend network lifetime. In this simulation, we
compare the infer algorithm and the simple randomized in-
ference approach in terms of the time until the first node
runs out of power and the time until the network fails. We
define the network as having failed when 10% of the nodes
have run out of power. Although previous research has de-
fined network lifetime as being the time until all nodes in the
network run out of power, we do not feel that this is a use-
ful metric for wireless sensor networks. A sensor network
will become disconnected and inoperable well before all of
the nodes have run out of power. The actual operational
network lifetime will be determined by the intended task of
the network and will also vary from network to network.
Therefore, we chose a node failure rate of 10% to provide a
reasonable approximation to the actual usable network life-
time and to allow us to reasonably compare the performance
of different algorithms. The results of this simulation are
presented in Table 4.

The infer algorithm is able to provide modest improve-
ments in the time until the first failure compared to the sim-
ple randomized algorithm. In both data scenarios, the infer
algorithm is able to extend the time until the first failure by
just under 1%. However, when we consider network life-
time, the infer algorithm offers even greater benefits. In the
Heat Source scenario, the network lifetime is extended by
nearly 4%, while in the Normal Distribution scenario it is
extended by nearly 3%. This simulation shows that over the
short term and a small number of nodes, the simple random-
ized algorithm performs nearly identically. However, over
the longterm the infer algorithm is able to provide better
energy distribution and extend network lifetime.

In this section we have verified that using the infer algo-
rithm will significantly reduce the energy consumption in
the network while still providing reasonably accurate data to
the sink. We have also shown how the infer algorithm does
improve upon a simple randomized inference algorithm by

extending the overall network lifetime, in terms of both time
to first failure and time till 10% of nodes fail, and providing
more accurate results when the prior distribution of the data
is unknown.

5. Related Work

There has been much research in the area of efficient
data collection in wireless sensor networks (e.g [10], [11],
[12], [13], [18]). More recent work has attempted to build
upon these building blocks by introducing more sophisti-
cated schemes which employ some form of data compres-
sion. One such approach is to hierarchically use wavelet
compression to compress the data being sent to the sink [7].
However, having nodes perform wavelet compression re-
quires significant computational resources which may not
be available to every node.

Another approach is to apply distributed source coding
principles based on the work of Slepian and Wolf [17].
Chou et al. propose to exploit correlations in sensor reading
by compressing the data [4]. By using distributed source
coding, the sensor data is efficiently compressed without
the need for costly inter-node communication. However,
this approach requires a central node to adaptively track the
data and send a unicast message to every node in the net-
work once very K rounds specifying the its new coding pa-
rameters. This leads to questions of scalability which have
not been fully addressed.

Compression has also been used to solve two similar
problems. Scaglione et al. use source coding to efficiently
provide each node in the network with an estimate of the
entire field being sensed [16]. While Marco et al. discuss
the theoretical capacity of dense sensor networks in which
the data is first compressed [15].

Finally, inference techniques have been applied to other
wireless sensor network problems. Biswas et al. use
Bayesian inference to determine whether a friendly agent
is surrounded by a number of enemy agents [2]. Their ap-
proach is able to work even if the data is noisy or corrupted.
Hartl et al. use inference techniques to determine per node
loss rates while using only end-point measurements [9]. It
is certain that in the future, inference techniques will be ap-
plied to even more sensor network problems due incomplete
data that is often available in these resource constrained net-
works.

6. Conclusion

In this paper, we propose an algorithm to apply Bayesian
inference techniques to the task of sensing a remote field.
Specifically, we attempt to solve the problem of efficiently
obtaining the average sensor reading in the field. Our solu-
tion, the two phase infer algorithm, first selects a subset of



Network Lifetime First Failure
Heat Source Normal Distribution Heat Source Normal Distribution

infer 1.039 1.028 1.008 1.005
Randomized algorithm 1.0 1.0 1.0 1.0

Table 4. Normalized network lifetime and time to first failure for infer and randomized algorithm

the nodes in the network to go into sleep mode. Bayesian
inference techniques were then used to infer values for the
nodes which were in sleep mode. The infer algorithm is
fully distributed to allow for greater scalability and flexibil-
ity. Also, through the use of two parameters, the algorithm
may be tuned to provide desired energy savings or accuracy.
We believe that we are the first to use Bayesian inference to
solve this type of problem in wireless sensor networks.

Via simulations, we have shown how the parameters of
the algorithm affect both the energy usage and the accu-
racy of the inferred data. Our simulations also verified our
claims that the infer algorithm saves energy compared to
using just data aggregation, while maintaining a small per-
centage error. We have also shown that our approach can
provide reasonable results even when the prior distribution
of the data is not known.

In our future work, we intend to refine the inference pro-
cedure so that it may be used with other data gathering task.
We also intend to test our algorithm with different data sce-
narios and network configurations.
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