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Abstract

In recent years, data broadcasting becomes a promis-
ing technique to design a mobile information system with
power conservation, high scalability and high bandwidth
utilization. However, prior reseach topics in data broad-
casting are mainly based on the assumption that the dis-
seminated data items are of the same size. We explore in
this paper the problem of generating broadcast programs
in a diverse data broadcasting environment, in which
disseminated data items can be of different sizes. Given the
broadcast database and the channel number, we propose
algorithms DRP (Dimemsion Reduction Partitioning) to
perform the channel allocation for each data item. More-
over, a Cost-Diminishing Selection mechanism is also used
to help DRP achieve the local optimum with low complex-
ity. With the capability of generating effective broadcast
programs efficiently, the proposed mechanism can be prac-
tically used in a diverse data broadcasting environment.

1 Introduction

The advance in wireless communication enables users
to access information anytime, anywhere, via laptops,
PDAs and smart phones. In addition to conventional text-
based information like weather forecast and stock infor-
mation, an information system provides modern infor-
mation services including Web browsing and multimedia
access. In order to provide better services for mobile users,
researchers have encountered, and are endeavoring to over-
come challenges in various research areas such as mobile
data dissemination [4], location-dependent data manage-
ment [16], pervasive computing [15], and so on.
Data Broadcasting is a well-known mechanism to

disseminate data items from an information system to mo-

bile users. Such a mechanism is also known as a push-
based dissemination. In a push-based information sys-
tem, as shown in Figure 1, the server generates a broadcast
program by collecting the access patterns of mobile users,
and broadcasts data items periodically to mobile users via
multiple channels. The period of each broadcast channel
is viewed as a broadcast cycle. To retrieve a data item,
an user with a mobile device should listen to the broad-
cast channel and wait for the data of interest to appear
on the broadcast channel. The average waiting time of a
broadcast channel is composed of two components: the
probe time and the download time. The analytical model
is described as follows. Consider that N data items with
size z are broadcast periodically via a broadcast channel
with bandwidth b. The probe time, Wprobe, is the time
that an user should wait until the data of interest appears
in the channel and thus Wprobe =

1
2(broadcast cycle

time) = Nz
2b . The download time,Wdownload, is the time

that a user should spend for downloading the data item via
the broadcast channel, i.e., Wdownload = z/b. Therefore
the waiting time,Wb =Wprobe +Wdownload =

Nz
2b +

z
b .

There are many research topics in generating the broad-
cast programs to broadcast data items via multiple broad-
cast channels [1][7][8][9][10][11][14]. A flat broad-
cast program, which allocates data items within broadcast
channels with equal appearance frequencies, is a straight
forward way to generate a broadcast program. However,
it is ineffective since the waiting time of data items with
different access frequencies is the same. In order to over-
come the effectiveness problem, approaches are proposed
in [7][14] to generate broadcast programs in which the
waiting time of popular data items (i.e., with higher access
frequencies) is shorter than that of unpopular data items
(i.e., with lower access frequencies). The works in [9][10]
focus on broadcasting dependent data for ordered and un-
ordered queries. Moreover, the broadcast program allows
a data item to appear in different broadcast channels simul-
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Figure 1. The architecture of broadcast-
based data dissemination

taneously. Such a replication issue is addressed in [8].
Since the earlier wireless communication was bounded

by the channel bandwidth and the capability of mobile de-
vices, the disseminated data items were usually of text-
based information. As a result, the prior research re-
lated to mobile data dissemination was mostly based on
the assumption that each item is of the same size. How-
ever, in the advanced communication environment with
lager bandwidth, the mobile users can use their devices
with higher capability to access various information such
as still image, video and audio. The data items with
different sizes are disseminated in a modern information
system. The dissemination policies for a modern infor-
mation system based on conventional models hence suf-
fer from effectiveness issues. To differentiate our work
from those in the conventional broadcasting environment,
we use a term diverse data broadcasting1 to describe
the broadcast environment in which the data items with
different sizes are disseminated. In this paper, we fo-
cus on generating broadcast programs in a diverse data
broadcasting environment. The broadcast program is
generated according to the access frequency and the size
of each data item. Note that although the broadcasting
technique employed in video-on-demand systems in recent
years [3][12][13] allows each video object to be of differ-
ent sizes, the access frequency of each video object is not
considered in those areas. To the best of our knowledge,
there is no prior research allowing of different data item
sizes and access frequencies simultaneously. This feature

1Note that the term diverse data broadcasting is also referred to as het-
erogeneous data broadcasting [2], in which on-demand broadcast mech-
anism is discussed.

not only strengthens the practicality of our work but also
distinguishes this paper from others.
In this paper, we first derive the analytical model of

diverse data broadcasting. According to the analyti-
cal model, the channel allocating problem is transformed
to a grouping probmem with a specific cost function.
We next propose a heuristic approach to perform chan-
nel allocation (i.e., grouping) for each data item: DRP,
which stands for Dimension Reduction Partitioning. Al-
gorithm DRP is a top-down group-splitting approach, in
which the two-dimensional grouping problem is simpli-
fied as an one-dimensional partitioning problem. In ad-
dition, a Cost-Diminishing Selection mechanism, abbrevi-
ated as CDS, is also proposed to improve the effectiveness
to the local optimum. In essence, CDS checks the pos-
sible moving operations for a certain data item from one
group to another, and determines the best choice in each
iteration. In general, what we propose in this paper can be
viewed as a two-step allocation scheme. Algorithm DRP
provides rough allocation, which achieves satisfactory
quality, whereas CDS provides fine allocation, which
achieves suboptimum by refining the results of the rough
allocation. In order to verify the effectiveness of DRP and
CDS, several experiments are conducted. First, the pro-
posed algorithm is compared to the approach adopted in
the conventional broadcasting environment. Moreover, we
also compare our channel allocation results to the global
optimal ones, which shows that the local optimal results of
our approach are in fact very close to the global optimal re-
sults. Finally, by comparing the executing complexity with
algorithm GOPT, which achieves the global optimal solu-
tions by using the Genetic Algorithm, it is shown that our
approach has a much lower complexity than that of GOPT
and emerges as a powerful and practical solution to gener-
ating broadcast programs in a diverse data broadcasting
environment.
The rest of the paper is organized as follows. Prelimi-

naries are given in Section 2. In Section 3, the broadcast
program generating approach DRP is proposed with mech-
anism CDS. The experimental results are shown in Section
4. Finally, this paper concludes with Section 5.

2 Preliminaries

2.1 Model of Diverse Data Broadcasting

Given a database D with its size |D| = N and the
channel number K, the goal of the broadcast program is
to allocate each data item to a specific channel ci, where
1 ≤ i ≤ K. Each channel contains an item set Di with its
size |Di| = Ni, where

PK
i=1Ni = N , andDi∩Dj = {∅}

for i 6= j. In a diverse broadcast environment, each data
item has different item size. Therefore, a data item d(i)j ,

2



Table 1. Description of the symbols
Description Symbol

Number of the broadcast channels K
The i-th broadcast channel ci

The database of the broadcast data items D
Number of the broadcast data items N

The item set of the data items allocated to ci Di
Number of the data items allocated to ci Ni

The j-th data item in ci d
(i)
j

The size of the j-th data item in ci z
(i)
j

The access frequency of the j-th data item in ci f
(i)
j

The bandwidth of each broadcast channel b

which represents the j-th data item in ci, contains two fea-
tures: the access frequency f (i)j , and the item size z

(i)
j ,

where
PK

i=1

PNi

j=1 f
(i)
j = 1. Table 1 shows the descrip-

tion of symbols used in modeling the broadcast program.
Next, we consider the waiting time of each channel. Let

W (i) represent the average waiting time of ci. We derive
the analytical model of the diverse data broadcasting. For
the channel ci, the data items in Di are broadcast period-
ically. The aggregate size of Di is

PNi

j=1 z
(i)
j . Let b rep-

resent the bandwidth of the channel. The broadcast cycle
of ci can be derived by (

PNi

j=1 z
(i)
j )/b. The average probe

time of ci is (
PNi

j=1 z
(i)
j )/(2b). In addition to the probe

time, it also takes z(i)j /b to download the data item d
(i)
j .

Therefore, W (i)
j , the waiting time of the data item d

(i)
j in

the channel ci can be derived as follows:

W
(i)
j =

PNi

j=1 z
(i)
j

2b
+
z
(i)
j

b
. (1)

Also, we can obtain the average waiting time of ci, de-
noted asW (i), according to Eq. (1).

W (i) =

PNi

j=1 f
(i)
j W

(i)
jPNi

j=1 f
(i)
j

=
(
PNi

j=1 f
(i)
j )(

PNi

j=1 z
(i)
j )

2b
PNi

j=1 f
(i)
j

+

PNi

j=1 f
(i)
j z

(i)
j

b
PNi

j=1 f
(i)
j

.

Therefore, the waiting time of the broadcast program,
denoted asWb, can be viewed as the average value of the
waiting time of each channel ci. Thus,

Wb = E[W (i)] =
KX
i=1

(

NiX
j=1

f
(i)
j )W

(i)

=
KX
i=1

[
(
PNi

j=1 f
(i)
j )(

PNi

j=1 z
(i)
j )

2b
+

PNi

j=1 f
(i)
j z

(i)
j

b
]

=
1

2b

KX
i=1

[(

NiX
j=1

f
(i)
j )(

NiX
j=1

z
(i)
j )]

+
1

b

KX
i=1

NiX
j=1

f
(i)
j z

(i)
j (2)

2.2 Problem Formulation

The goal of this paper is to generate a broadcast pro-
gram, which allocates each data item to a specific chan-
nel, in such a way that Wb can be minimized. Follow-
ing Eq. (2), Wb is composed of two terms. The termPK
i=1[(

PNi

j=1 f
(i)
j )(

PNi

j=1 z
(i)
j )] results from the effect of

the probe time, while the term
PK
i=1

PNi

j=1 f
(i)
j z

(i)
j repre-

sents the effect of downloading the data item. The second
term can be viewed as the summation of the product value
of the access frequency and the size of all data item in the
databaseD. That is, given the databaseD and the number
of channelsK, the second term is thus determined regard-
less of the scheduling schemes employed. Moreover, the
channel bandwidth b is also a constant value. Therefore,
how the broadcast program is generated only affects the
term

PK
i=1[(

PNi

j=1 f
(i)
j )(

PNi

j=1 z
(i)
j )].

In order to simplify the problem, we define a cost func-
tion to model the first term in Eq. (2) as follows:

cost =
KX
i=1

cost(i) =
KX
i=1

[(

NiX
j=1

f
(i)
j )(

NiX
j=1

z
(i)
j )], (3)
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where cost(i) = (
PNi

j=1 f
(i)
j )(

PNi

j=1 z
(i)
j ). We can re-

formulate the broadcast program generating problem to a
grouping problem. Given the database D, we want to
group the data items in D into K different clusters so that
the value cost can be minimized. Since solving the group-
ing problem optimally is computationally prohibitive and
suffers from scalability issues, a heuristic algorithm DRP
is proposed to achieve the satisfactory results with much
lower complexity. Moreover, mechanism CDS is proposed
to refine the grouping results to the local optimum. As
shown in the experimental results in the later sections,
the local optimum will be very close to the global opti-
mum and can be achieved with much lower complexity. It
will be more suitable and practical to generate the diverse
broadcast program by using the proposed approach.

3 Generating Broadcast Programs

3.1 Dimension Reduction Partitioning

Algorithm DRP can be viewed as a top-down group-
splitting approach. Initially, there is only one group D.
In each iteration of DRP, a group is selected and split into
two disjoint subgroups, and the group number is increasing
by one. DRP continues until the group number reachesK.
Since each item contains two features, item size and access
frequency , splitting a group Di into two subgroups, Dj
andDk, optimally requires huge complexity because 2|Di|

possibilities have to be considered. Therefore, in order to
reduce complexity, we use the benefit ratio, denoted as
br, to model the features of the data items. The benefit ra-
tio bri of the data item di is defined as access frequency di-
vided by item size. i.e., bri = fi

zi
. The reason of using the

benefit ratio to describe the feature of a data item is that in
the diverse data broadcasting environment, the access
probability corresponds to the profit, whereas the item
size corresponds to the cost. The data item with a higher
access probability and smaller item size will tend to be put
in the broadcast channel with a shorter broadcast cycle.
The intuition of DRP is to consider the ratio br instead of
the item size and the access probability. Therefore, the two
dimensional group-splitting problem can be reduced to a
one-dimensional partitioning problem. Before describing
algorithm DRP, several definitions are given to facilitate
the description.
Definition 1: The cost of the group Di is defined as
cost(Di) = (

PNi

j=1 f
(i)
j )(

PNi

j=1 z
(i)
j ), where variablesNi,

f
(i)
j , and z

(i)
j are listed in Table 1.

Definition 2: MaxPQ is defined as a max priority queue
in which each element belongs to a subset of D. In such a
way that when one is to remove an element fromMaxPQ,
it will return the element with the maximal cost. The

method of returning the with the maximal cost, Dmax, is
defined as ReturnMax(MaxPQ).
The algorithmic form of DRP is outlined as follows.

Algorithm DRP:
Input: the number of broadcast channels K and the data-
base D with |D| = N , where the data item d1, d2, ..., dN
have been sorted in descending order according to bri, 1 ≤
i ≤ N .
Output: The grouping resultD1, D2, .., DK .
begin
1. Create a max priority queue MaxPQ and insert the
element D.
2. while (Number of elements inMaxPQ < K)
3. Dmax = ReturnMax(MaxPQ);
4. remove element Dmax fromMaxPQ;
5. {D0, D00}=Partition(Dmax);
6. insertD0 and D00 intoMaxPQ;
7. end while
8. return all elements inMaxPQ;
end

Procedure Partition(Dx)
Input: the selected item set Dx with |Dx| = Nx, where
the data item dx1, dx2, ..., dxNx have been sorted in de-
scending order according to bri, 1 ≤ i ≤ Nx.
Output: two disjoint item sets D0

x and D00
x , where D0

x +
D00
x = Dx

begin
1. Determine the index p, 1 ≤ p < Nx, such that
cost(D0

x) + cost(D
00
x) is minimized.

Where D0
x = {dx1, dx2, ...dxp}, D00

x =
{dxp+1, dxp+2, ..., dxNx};
2. return the correspondingD0

x andD00
x;

end

To generate a broadcast program by algorithm DRP. All
the data items in the database D are sorted according to
the br value in descending order. Initially, the database
D is viewed as an element stored in a max priority queue
MaxPQ. In each iteration,MaxPQ returns the element
with the largest cost. The returned element will be split
by the procedure Partition(Dx) into two elements, which
are disjoint subsets of the original element. The two ele-
ments are re-inserted intoMaxPQ. At the end of each it-
eration, the number of the elements inMaxPQ increases
by 1. Note that the procedure Partition(Dx) determines
the most suitable point p to partition the input sequence
dx1, dx2, ..., dxNx into two subsequence dx1, dx2, ...dxp,
and dxp+1, dxp+2, ..., dxNx , so that the summation of the
cost of the two sequences is minimized. Algorithm DRP
terminates when the number of elements in MaxPQ
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reaches K. The channel allocation is performed accord-
ing to the elements in MaxPQ. i.e., each items in the
same element is allocated to the same channel.

Lemma 1 The complexity of DRP can be expressed byK ·
(O(K logK) + O(N)), where K is the channel number,
and N is the size of the broadcast database.
Proof. The complexity of returning the element with the
largest cost for MaxPQ is K · O(K logK), while the
complexity of finding the most suitable point to partition is
K ·O(N).

Example 1: Consider the broadcast profile shown in Ta-
ble 2. A database D containing 15 data items needs to be
broadcast via 5 broadcast channels. i.e., N = 15, K = 5.
Before algorithm DRP executes, the data items are sorted
according to their br values in descending order. In the
beginning, there is only one data set D contained in the
max priority queueMaxPQ, as shown in Table 3(a). The
cost of the data set can be calculated from Definition 1,
i.e., cost(D) = 135.60. In each iteration, the data set
with maximum cost is removed from MaxPQ and two
disjoint data sets are inserted intoMaxPQ. The best par-
tition point is determined by Procedure Partition(Dx). In
Table 3(b), the best partition point lies between d12 and
d10. The original data set is replaced with two disjoint
item sets with their corresponding cost 29.04 and 28.62,
respectively. Likewise, in the next iteration, MaxPQ re-
move the data set with cost = 29.04, and inserted two
disjoint subsets of the removed data set, as shown in Ta-
ble 3(c). Algorithm DRP terminates when the number of
the elements inMaxPQ reaches 5. Table 3(d) shows the
grouping result. Finally, the broadcast program is gener-
ated according to the grouping result. i.e., items in the
same group will be put in the same channel.

3.2 Cost-Diminishing Selection

CDS (Cost-Diminishing Selection) is a tuning mech-
anism, which is used to refine a certain grouping result
so that the local optimum can be achieved. The intuition
of CDS is to consider the amount of cost reduction when
moving a data item from one group to another. By collect-
ing the reduction information of all possible moving oper-
ations, the best data item with its corresponding movement
is determined. The total cost diminishes after each itera-
tion. CDS terminates when the local optimum is achieved.
i.e., no data item can be moved from one group to another
with the reduction of the cost. Several special terms are
also defined before describing mechanism CDS.
Definition 3: The aggregate frequency of an item set Di,
denoted by Fi, is defined as the summation of the access
frequency of all data items inDi. i.e., Fi =

PNi

j=1 f
(i)
j .

Definition 4: The aggregate size of an item set Di, de-
noted by Zi, is defined as the summation of the item size
of all data items in Di. i.e., Zi =

PNi

j=1 z
(i)
j .

Consider a data item dx with its access frequency fx
and item size zx. Let dx be moved from Dp to Dq . The
total cost before the moving operation can be derived from
Eq. (3) as:

cbefore =
KX
i=1

[(

NiX
j=1

f
(i)
j )(

NiX
j=1

z
(i)
j )] =

KX
i=1

(FiZi).

Also, the total cost after the moving operation can be
derived as:

cafter = [
KX

i=1,i6=p,q
(FiZi)] + (Fp − fx)(Zp − zx)

+(Fq + fx)(Zq + zx).

Therefore, the cost reduction∆c, which represents the
amount of reduced cost after the moving operation is per-
formed, is obtained as:

∆c = cbefore − cafter
= [FpZp + FqZq]− [(Fp − fx)(Zp − zx)

+(Fq + fx)(Zq + zx)]

= fx(Zp − Zq) + zx(Fp − Fq)− 2fxzx. (4)

Using the result in Eq. (4), we are able to estimate the
cost reduction before a moving operation of a data item is
performed. Therefore, we can select the best movement
by examining the ∆c of all possibilities. The algorithmic
form of mechanism CDS is outlined below.

Mechanism CDS:
Input: the initial grouping resultD1, D2, .., DK
Output: the local optimal grouping result:
Dopt1,Dopt2, ..,DoptK
begin
1. while (true)
2. ∆cmax = 0, d

0
orig = Null,

3 D0
orig = Null,D

0
dest = Null;

4. for (p=1;p≤ K;p++)
5. Dorig = Dp;
6. for (x=1;x≤ Np;x++)
7. dorig = d

(p)
x ;

8. for (q=1;q≤ K and q6=p;q++)
9. Ddest = Dq;
10. ∆c = GetReduction(dorig, Dorig,Ddest);
11. if (∆c > ∆cmax)
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Table 2. Profile of the Broadcast Database
Item Freq. Size Item Freq. size Item Freq. Size
d1 0.2374 21.18 d6 0.0566 2.49 d11 0.0349 30.62
d2 0.1363 4.77 d7 0.0500 17.51 d12 0.0325 4.09
d3 0.0986 3.59 d8 0.0450 10.86 d13 0.0305 5.33
d4 0.0783 15.34 d9 0.0409 1.02 d14 0.0287 7.74
d5 0.0655 2.91 d10 0.0376 6.41 d15 0.0272 1.74

Table 3. Example of the Algorithm DRP
Group Member Cost Group Member Cost
1 {d9d2d3d6d5d15d1d12 *135.60 1 {d9d2d3d6d5d15d1d12} *29.04

d10d13d4d8d14d7d11} 2 {d10d13d4d8d14d7d11} 28.62
(a) The initial state of DRP (b) The first iteration of DRP

Group Member Cost Group Member Cost
1 {d9d2d3d6d5d15} 7.02 1 {d9d2d3} 2.59
2 {d1d12} 6.82 2 {d6d5d15} 1.07
3 {d10d13d4d8d14d7d11} *28.62 3 {d1d12} 6.82

4 {d10d13d4d8} 7.26
5 {d14d7d11} 6.35

(c) The second iteration of DRP (d) The grouping result of DRP

12. ∆cmax = ∆c, d
0
orig = dorig;

13. D0
orig = Dorig, D

0
dest = Ddest;

14. end if
15. end for
16. end for
17. end for
18. if (∆cmax == 0)
19. break
20. end if
21. move d0orig fromD0

orig to D0
dest;

22. end while
23. returnD1, D2, ..., DK ;
end

Given the grouping result, the goal of mechanism CDS
is to find out the best moving operation which can result
in the maximum cost reduction. According to the Eq. (4),
we can estimate the cost reduction ∆c of each possible
moving operation without performing it. The results of all
possible moving operations can be examined without mov-
ing the data items back and forth. Each moving operation
contains three parameters: the original group Dorig , the
destination group Ddest, and the data item dorig which is
moving from Dorig to Ddest. In each iteration of CDS,
from line 4 to line 17, the best moving operation is se-
lected after all possibilities are considered. At the end of
the iteration, as shown in line 21, the, best moving opera-

tion is performed and the grouping result is updated. The
next iteration is executed according to the updated group-
ing result. The total cost diminishes after each iteration
is executed. Mechanism CDS terminates when no mov-
ing operation can result in the cost reduction. The local
optimum is thus achieved. Note that in each iteration, the
complexity of mechanism CDS isO(K2N), whereK and
N represent the number of broadcast channel and the num-
ber of disseminated items. Mechanism CDS has two ad-
vantageous features. First, from the viewpoint of the com-
plexity, mechanism CDS can reach the local optimum in
polynomial time. Moreover, the iterative property makes
mechanism CDS give a progressive performance since the
moving operation with maximum cost reduction is selected
at the end of each iteration.

Example 2: Table 4 illustrates the procedure of mecha-
nism CDS. Consider the grouping results of the example
1, as shown in Table 4(a). The initial cost, denoted as
cinit, is 24.09. The goal of each iteration of mechanism
CDS is to find the moving operation for a data item from
one group to another, with the maximum cost reduction.
In Table 4(b), according to the formula in Eq. (4), we find
that moving d10 from group 4 to group 2 will result in the
∆cmax = 0.95. At the end of the iteration, such a moving
operation is performed. After that, in the next iteration, the
grouping result in the previous iteration is considered. Ta-
ble 4(c) shows the grouping result in which d12 is moved
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Table 4. Example of mechanism CDS
Group Member cinit Group Member cbefore
1 {d9, d2, d3} 24.09 1 {d9, d2, d3} 24.09
2 {d6, d5, d15} 2 {d6, d5, d15, d10} cafter
3 {d1, d12} 3 {d1, d12} 23.13
4 {d10, d13, d4, d8} 4 {d13, d4, d8} ∆c
5 {d14, d7, d11} 5 {d14, d7, d11} 0.95

(a) The initial state of CDS (b) The first iteration of CDS

Group Member cbefore Group Member cbefore
1 {d9, d2, d3} 23.13 1 {d9, d2, d3, d6} 22.29
2 {d6, d5, d15, d10, d12} cafter 2 {d5, d15, d10, d12, d14} cafter
3 {d1} 22.68 3 {d1} 22.29
4 {d13, d4, d8} ∆c 4 {d13, d4, d8} ∆c
5 {d14, d7, d11} 0.45 5 {d7, d11} 0
(c) The second iteration of CDS (d) The grouping result of CDS

from group 3 to group 2, and the maximum cost reduction
∆cmax = 0.45 is achieved. Mechanism CDS continues
until ∆cmax = 0, which means no more data item can
move from one group to another. Therefore, the local op-
timum is achieved with cost 22.29.

4 Experimental Results

To verify the quality and the practicability of the pro-
posed algorithm DRP and mechanism CDS, several ex-
periments are conducted to observe the performances. In
each experiment, we investigate the result of DRP-CDS
which represents algorithm DRP combined with CDS tun-
ing mechanism. For the comparing purposes, we imple-
ment an algorithm GOPT, which can reach the global opti-
mum, by using the concept of Genetic Algorithm2 [5][6].
The detail of the algorithm GOPT is omitted for interest of
space. Moreover, algorithm VFK [14], which is proposed
for the conventional broadcast environment, is also used
for the comparison purposes.

4.1 Simulation Environment

Table 5 lists the simulation parameters. The access fre-
quencies of the data items are generated by Zipf distrib-
ution [17] fi = ( 1i )

θ/
PN

j=1(
1
j )
θ, where θ is a skewness

parameter and 1 ≤ i ≤ N . The size of each data item is
represented by 10φ units, where the value φ is uniformly
distributed over the interval [0,Φ]. The value Φ deter-
mines the exponent range of the item sizes. We name it
the diversity parameter. More specifically, in Table 5,

2Although GOPT has a very good performance, since it is based on
Genetic Algorithm, the value derived is still viewed as a suboptimum.
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Figure 2. The channel number v.s. the aver-
age waiting time

the value of Φ varies from 0 to 3. The case of Φ = 0 im-
plies that all data items are of the same size (i.e., 1 unit).
WhenΦ = 3, the size of each data item is located in the in-
terval [100, 103] units. Therefore, the diversity of the item
size increases as the value Φ increases.

4.2 Scalability Analysis

The first experiment discusses the scalability issue of
the proposed approach. There are two scalability parame-
ters, the number of channels, K, and the number of the
broadcast items, N . The amount of waiting time Wb is
used to measure the effectiveness of broadcast program
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Table 5. Parameter used in the simulation
Parameters Values
Number of broadcast items (N) 60 ∼ 180
Number of channels (K) 4 ∼ 10
Diversity Parameter (Φ) 0 ∼ 3
Skewness Parameter (θ) 0.4 ∼ 1.6
Channel bandwidth 10 (unit size/sec)
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Figure 3. The number of broadcast items v.s.
the average waiting time

generation. First, in order to evaluate the impact of chan-
nel numbers, the value K varies from 4 to 10, as can be
shown in Figure 2. We observe that the average wait-
ing time decreases as the value K increases for all listed
approaches. It is found that VFK suffers from the scal-
ability issues since the discrepancy of VFK compared to
GOPT increases when K increases. The performance of
DRP can be improved to local optimal by adopting mech-
anism CDS. By observing the bars of DRP-CDS, the error
compared to the optimal waiting time is about 3% in most
of the situations. The error will be even lower as the in-
crease of the value K because the increase of the channel
numbers is helpful of distributing the data items. There
is an another interesting observation. DRP has excellent
performance without adopting CDS when K = 4 and
K = 8. That is, the improvement of DRP-CDS is subtle
compared to DRP whenK = 2n, where n belongs to inte-
gers. It is because DRP partitions one channel into two to
minimize the average waiting time of these two channels.
When the channel number can be expressed as K = 2n,
where n belongs to integers, the data items can be evenly
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Figure 4. The diversity v.s. the average wait-
ing time

distributed into K groups. Next, if we fix the value of
K and vary the number of N , the observed performances
is depicted in Figure 3. When the number of the broad-
cast items increases, the average waiting time for each ap-
proach increases because each channel should disseminate
more items. Here, the proposed approach still results in
better qualities than algorithmVFK . However, the increas-
ing value N degrades the performance of DRP if CDS is
not adopted by the previous two algorithms. When the sys-
tem needs to broadcast larger numbers of data items, it is
necessary to adopt mechanism CDS to achieve the effec-
tiveness. By observing the performances of DRP-CDS, it
is still very close to the optimum. The qualities of DRP-
CDS is not affected as the valueN increases. Therefore, it
is shown that mechanism CDS is scalable so that the qual-
ity can be maintained when larger numbers of data items
are broadcast.

4.3 Diversity Analysis

In this experiment, we discuss the diversity issue of
the proposed DRP-CDS. As shown in Figure 4, when the
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Figure 5. The skewness v.s. the average
waiting time

diversity increases, the average waiting time of each ap-
proach increases drastically. The reason is that the average
size of data item increases in highly diverse environment.
Since the bandwidth still remains the same, it takes more
time to disseminate each data item. In Figure 4, the per-
formances of VFK and DRP-CDS are very close to the
optimum when the value of Φ is low. Algorithm VFK ,
which is an algorithm suitable for the conventional broad-
cast environment, only considers the access frequency of
each data item. In the diverse broadcast environment, VFK
suffers from the the effectiveness issue and results in poor
performance. In the case of high Φ, it is obvious that our
approach outperforms algorithm VFK . The local optimal
points that DRP-CDS achieves are still very close to the
global optimal points that GOPT achieves. This experi-
ment shows the necessity of developing algorithms suit-
able for the diverse broadcast environment because the al-
gorithm used in the conventional environment is no longer
suitable in this environment.

4.4 Skewness Analysis

As depicted in Figure 5, this experiment shows the wait-
ing time of each approach as the value of skewness pa-
rameter θ varies. A larger value of θ implies the more
skewed access frequencies of the data items. There are
several observations made. First, the average waiting time
of each approach decreases as the increase of the skewness
parameter. This is because that the degree of request local-
ity is high when the access frequency is highly skewed.
The system can put the data items with higher access fre-
quencies together into a channel with fewer items in order
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Figure 6. The channel number v.s. the exe-
cution time

to reduce the average waiting time. Second, the discrep-
ancy of the proposed approach compared to GOPT be-
comes subtle. For example, there is an error of 0.04 be-
tween the DRP-CDS and the GOPT when θ = 0.4. The
error is reduced to 0.005 when θ = 1.6. The reason is that
under the same diversity, the increase of the skewness will
make the access frequencies of data items dominate the
channel allocation. The channel allocation will be more
precise when one feature (i.e., access frequency) of each
item is more important than the other (i.e., item size).

4.5 Complexity Analysis

The final experiment discusses the complexity among
both approaches. Since we implement these approaches
by Java language and execute the programs under the same
system platform, the execution time of the program will
reflect the relative complexity. We use mini-second as the
unit of execution time. Since the parameter θ and Φ do not
affect the complexity, in this experiment, we only consider
the parameter K and N . Figure 6 shows the execution
time of each approach as the number of channelK varies,
while Figure 7 depicts the execution times as the increase
of N . Compared to GOPT, algorithm DRP-CDS spends
much less time generating broadcast programs. The exe-
cution time of the GOPT increases as K or N increase.
Note that the execution time of GOPT is more sensitive to
N than to K. The reason is as follows. The GOPT is im-
plemented by the Genetic Algorithm. The increase of N
will increase the length of each chromosome, while the the
increase of K only changes the variety of the gene value
in a chromosome. By observing the above two figures, we
find that although the GOPT can achieve the global op-
timal solutions, it is computationally prohibitive. On the
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Figure 7. The number of broadcast items v.s.
the execution time

other hand, our approach DRP-CDS can result in quality
close to the optimum with significantly shorter execution
time. Therefore, the proposed DRP-CDS is very suitable
for generating broadcast programs practically.

5 Conclusion

In this paper, we focus on generating broadcast pro-
grams in a diverse data broadcasting environment.
First, we propose an effective algorithm DRP. After that,
we also use a mechanism called CDS to refine the result of
DRP to the local optimum. In order to verify the perfor-
mance, several experiments are conducted. These experi-
ments consider the important issues such as scalability, di-
versity and the complexity. From the experimental results,
we prove that the proposed DRP-CDS is very practical in
performing an effective channel allocation efficiently in a
diverse broadcast environment.
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