

On the Impact of Replica Placement to the
Reliability of Distributed Brick Storage Systems

Qiao Lian, Wei Chen, Zheng Zhang
Microsoft Research Asia

{t-qiaol, weic, zzhang}@microsoft.com

Abstract

Data reliability of distributed brick storage systems
critically depends on the replica placement policy, and
the two governing forces are repair speed and sensitiv-
ity to multiple concurrent failures. In this paper, we
provide an analytical framework to reason and quantify
the impact of replica placement policy to system reli-
ability. The novelty of the framework is its considera-
tion of the bounded network bandwidth for data main-
tenance. We apply the framework to two popular
schemes, namely sequential placement and random
placement, and show that both have drawbacks that
significantly degrade data reliability. We then propose
the stripe placement scheme and find the near-optimal
configuration parameter such that it provides much
better reliability. We further discuss the possibility of
addressing the problem of correlated brick failures in
our analytical framework.

1. Introduction

Storage solution using clustered “smart bricks” con-
nected with LAN is becoming an increasingly attractive
alternative to the more expensive SAN (storage-area
network) solution. Some of the exemplary systems in-
clude Petal [11], NASD [9], GFS [8], FAB [7], Rep-
store [22], and Boxwood [14]. A smart brick is essen-
tially a stripped down PC with a CPU, memory, net-
work card, and a large disk. For these systems,
providing strong data reliability is confronted with new
challenges, because inexpensive commodity disks are
more prone to permanent failures and failures are far
more frequent in large systems. To guard against per-
manent loss of data, replication is often employed. If
some replicas are lost due to disk failures, other replicas
are still available and can be used to regenerate new
replicas to maintain the same level of reliability.

Replica placement refers to the strategy of placing
replicas among the participating bricks. The two widely
used replica placement schemes are staggered sequen-
tial placement like in chained declustering [10] used by

Petal [12] as well as in many proposals based on DHT
(distributed hash table) [4][17], and the totally random
placement like in GFS [8]. Mirroring can be viewed as a
degenerated special case of sequential placement.

Replica placement can significantly affect the reli-
ability of the system due to two factors. The first is the
repair speed: the more bricks participate in the data
repair process, subject to the available network band-
width, the sooner that the reliability level returns. The
second is the sensitivity to multiple and concurrent fail-
ures: the more permutation choices that the placement
generates, the more likely a random failure of several
bricks will wipe out some data permanently. These two
factors are conflicting in nature. For instance, the ran-
dom placement has very fast repair speed, but is prone
to concurrent failures, whereas the sequential placement
is precisely the opposite.

The contributions of the paper are mainly two folds.
First, we provide a systematic framework not only to
identify, but also to reason and quantify the impact of
the replica placement policy to system reliability. In
particular, our result points out that under different pa-
rameters, random and sequential placement can have
vastly different results. Our framework captures the
bounded available network bandwidth for data mainte-
nance, something no other models have done.

Second, the insight that we gain from the first result
leads us to propose the stripe placement scheme which
attempts to achieve the best balance between the two
competing forces. While it is difficult to derive a closed
form, we do provide the near-optimal configuration
parameter verified with simulations. This is the second
contribution of this paper.

Moreover, we also sketch a proposal to extend our
framework to deal with correlated failures that fre-
quently occur in practice.

The roadmap of the paper is as follows. In Section 2,
we discuss the replica placement schemes and the data
reliability metric. In Section 3, we present the analytical
framework for the reliability study. In Section 4, we
apply the framework to the two placement schemes and

compare the results. In Section 5, we describe the stripe
placement scheme, and find the near-optimal parameter
for the scheme. We discuss how to deal with correlated
failures in Section 6. Related work is summarized in
Section 7, and we conclude the paper in Section 8.

2. Replica Placement and Reliability Metric

Without loss of generality, we consider an ordered
array of N bricks on which replicas are placed. The
number of replicas of an object is called the replication
degree of the object, and it is denoted by k. Replication
degree may differ from object to object, but for simplic-
ity we assume all objects have the same k. The respon-
sibility of replica placement is to designate the bricks on
which the replicas are hosted. All other issues, such as
the interface of the system, are orthogonal to the reli-
ability study.

Each individual brick may fail permanently and lose
all replicas stored on the brick. In this paper, we equate
brick failures with disk failures, since disk failures ulti-
mately cause data loss. When a brick fails, to keep data
reliability of the system at the same level, the system
needs to automatically regenerate the lost replicas at the
remaining bricks. This replica regeneration process is
called data repair.

2.1 Data reliability metric MTTDL

To measure the data reliability of a system, we use
the metric MTTDL – mean time to data loss in the entire
system. MTTDL indicates, after the system is loaded
with data objects, how long on average the system can
sustain before it permanently loses the first data object
in the system. This is a metric widely used in storage
literature, e.g. on RAID storage [2].1

There are two important factors that affect data reli-
ability. The first one is the speed of data repair. Fast
data repair means that the lost replicas are likely to be
repaired before further brick failures, so it reduces the
time window in which concurrent brick failures occur
and wipe out all replicas of some object.

The second factor is the likelihood of data loss when
concurrent brick failures do occur. When k random
bricks fail concurrently in the system, the likelihood that
some object whose k replicas are located on the k failed
bricks depends on the placement scheme used, as we
will discuss shortly. In general, the more likely the con-
current brick failures happen to wipe out all replicas of
an object, the less reliable the system is.

1 One may also consider the amount of data loss when it happens.
However, when the goal of a storage system is to provide nearly no-
data-loss reliability, MTTDL is a more important metric than the
amount of data loss. Thus the paper focuses on the analysis of
MTTDL.

2.2 Sequential placement

Sequential placement is simple in nature: one of the
brick acts as the lead brick, and the k replicas are placed
on the lead brick and its k-1 followers. This is what the
chained declustering [10] does and is employed in Petal
[11]. This scheme is also a common strategy in peer-to-
peer wide-area storage systems like CFS [4] and PAST
[17], in which the lead brick is typically identified by
the hash of the object.

With sequential placement, when a brick fails, the k
neighboring bricks on each side of the failed brick can
participate in brick repair (Figure 1). The limited paral-
lel repair degree leads to slow repair speed, which then
negatively affects the data reliability of the system.

However, the restrictive nature of placement reduces
the sensitivity to concurrent failures. If and only if k
simultaneous failures occur on k consecutive bricks in
the ordered array can any object be lost. This is unlikely
when N is much larger than k. Thus, sequential place-
ment has a low likelihood of data loss when concurrent
failures occur, which improves data reliability.

Note: Replication degree is 3. When brick 3 fails,
data repair can be carried out as brick 1 copying
Dataa to brick 4, brick 2 copying Datab to brick 5,
and brick 4 copying Datac to brick 6.

Figure 1. Data repair in sequential placement.

2.3 Random placement

In random placement, replicas are placed randomly
among the N bricks, and this is used in the work of
[8][19]. 2 The main objective here is to improve the
speed of data repair. With random placement, when a
brick fails, the replicas on the failed brick can be found
on many other bricks, and thus many bricks can partici-
pate in data repair in parallel, resulting in faster data
repair speed. This is its main advantage over sequential
placement in improving data reliability.

However, crashing k random bricks will likely re-
move all the replicas of some objects with random

2 An indexing scheme is needed for random placement to access all
objects in the system. However, indexing is orthogonal to our study
of reliability, so we will not discuss it in detail.

placement. In the extreme case when there is a large
volume of objects in the system and therefore the actual
placement choices have exhausted all possible combina-
tions, any k crashes cause data loss. High sensitivity to
multiple and concurrent failures, therefore, is the draw-
back of the random placement scheme.

It is intuitive to see that neither placement scheme is
perfect. As we will reveal in Section 4, under different
circumstances their difference can be dramatic.

3. Analytical Framework

In this section, we present the analytical framework
for the data reliability analysis. The framework shows
how to derive MTTDL from known system parameters.
This framework can be applied to different object
placement schemes, as we will show in the next section.

The novelty of the framework is its consideration of
the bounded network bandwidth available for data re-
pair, which directly affects data repair speed.

3.1 System model for analysis

We consider a system with N bricks and the replica-
tion degrees of all objects are k. The average amount of
data stored on each brick is c. We assume a reasonable
amount of free space on each brick for data repair.
Brick failures follow an exponential distribution with
MTTF (mean time to failure) as its mean. We first as-
sume that each brick fails independently, and later we
will consider a model for correlated brick failures. We
do not model transient failures of bricks that only affect
data availability but not affect data loss. When a brick
fails, we assume a new brick is added into the system
immediately to keep the system scale at N all the time.

All bricks are connected in a LAN with a root switch.
The network provides certain bandwidth for data repair
traffic, and the bound of which is given by B, which is
called the backbone bandwidth. The backbone band-
width can be viewed as a certain percentage of the
bandwidth of the root switch that is allowed for data
repair traffic, because in many simple topologies, all (or
nearly all) data repair traffic goes through the root
switch.

We do not separately consider network failures. A
network failure does not cause data loss directly, but it
may reduce the data repair speed, and thus affect data
reliability. We fold this aspect into the available data
repair bandwidth B.

3.2 Analysis

3.2.1. Introducing MTTDLobj. To conduct the analysis
for MTTDL, we first introduce an intermediate metric
MTTDLobj, which is the mean time to data loss for an
arbitrary object. MTTDLobj measures the data reliability

of an individual object stored in the system. If the sys-
tem contains m objects, and these m objects have inde-
pendent data loss distributions, then we have MTTDL =
MTTDLobj / m. Intuitively, this is because that each ob-
ject has a data loss rate of 1/MTTDLobj, and when they
are considered together in a system, the total data loss
rate is m/MTTDLobj since their individual data loss be-
haviors are independent.

Of course, when object replicas are placed in the sys-
tem, their data loss behaviors depend on the failures of
the bricks, and thus may not be independent of each
other. In particular, if the replicas of two objects are co-
located at the same set of bricks, their data loss behav-
iors are perfectly correlated. In this case, they should be
considered as one object instead of two independent
objects.

For the above reason, we only consider objects
whose replica placements are different. Let m be the
total number of different replica placement combina-
tions under a placement scheme. We thus have 3

MTTDL = MTTDLobj / m. (1)
In a system with N bricks, m could be as large as

C(N,k).4

3.2.2. Markov Chain Model. To analyze MTTDLobj,
we introduce a Markov model as in Figure 2 to model
the evolution of the system with brick failures and data
repair. In the model, state i represents the state of the
system where exactly i bricks have failed, and the lost
replicas on the failed bricks have not been completely
repaired.

The arcs in the figure represent the transitions be-
tween different states in the system. From state i to i+1,
one more brick failure occurs, and this could occur on
any of the N-i remaining bricks. Thus, the rate of transi-
tion is (N-i)/MTTF, since the brick failures are inde-
pendent. Transition from state i to state 0 represents that
data repair is completed before a new brick fails. Let
MTTR(i) denote the mean time to repair all the failed
replicas in state i. Thus the transition rate from state i to
state 0 is 1/MTTR(i). MTTR(i) depends on the size of
data to be repaired and the available bandwidth for re-
pair, and it will be determined shortly. In the next sec-
tion, we will show the advantage of random placement

3 The formula is still an approximation, because different objects may
have some but not all their replicas co-located on the same set of
bricks and thus their data loss behaviors are correlated. However,
such co-locations are dictated by the replication degree k. Thus, when
the system scale N is much larger than the replication degree k, the
correlated data loss of objects caused by partial co-locations can be
ignored. For sequential placement, we compared the approximation
with an accurate analysis and the result shows that the approximation
matches with the accurate analysis very well.
4 C(x,y) denotes the total number of combinations of picking y ob-
jects from x objects.

over sequential placement in that random placement has
a much smaller MTTR(i).

Figure 2. Markov model for reliability analysis

The Markov model of Figure 2 assumes that there is
no transition from state i back to state j with 0<j<i,
which means that data repair for all failed bricks com-
plete at the same time. In reality, data repair for a brick
that failed early is likely to be completed early, even
without centralized scheduling of data repair. Hence the
assumption is a conservative one.

The Markov model of Figure 2 models the evolution
of the entire storage system, as opposed to other models
(e.g. [20]) that only model the evolution of one object.
The reason is that in our environment, data repair traffic
is limited by the backbone bandwidth. Thus, more brick
failures are likely to slow down data repair because
more data repair traffic are sharing the limited band-
width. Therefore, we have to look at the state of the
entire system to determine the speed of data repair.

3.2.3. Deriving MTTDLobj. This section briefly de-
scribes the derivation of MTTDLobj using the Markov
model. The full technical derivation is available in [13].

Let MTBF(i) be the mean time between two consecu-
tive occurrences of state i in the Markov model. Let L(i)
be the probability that the object is lost when i bricks
fail concurrently. Let P(i) be the probability of the sys-
tem staying in state i. The formula below shows that
MTTDLobj can be calculated from the harmonic sum of
mean time between data loss in each individual state i.

11])()([−

=

−
∑ ⋅=

N

ki
obj iLiMTBFMTTDL .

Probability L(i) is easily derived from a combinatorial
calculation:

),(/),()(kNCkiCiL = .

The derivation of MTBF(i) is more involved and is de-
tailed in [13]. The idea is to consider a compressed
timeline with only time segments when the system is in
state i-1. In the compressed timeline, when any of the
remaining (N-i+1) bricks fails, the i-th failure occurs,

and the mean time between two consecutive events of
the i-th failures is MTTF/(N-i+1). Since the system is in
state i-1 with probability P(i-1), the compressed time-
line compresses time period from the original timeline
with the ratio P(i-1). Therefore, in the original timeline,
we have

)1()1(
)(

−⋅+−
=

iPiN

MTTF
iMTBF .

The value of P(i) can be computed from the following
balance equation for the Markov model:

=
+−

+−=
−

∑ 1)(
)(/1/)(

/)1(

)1(

)(

iP
iMTTRMTTFiN

MTTFiN

iP

iP
, for all i≥1.

The term that we have not addressed is MTTR(i),
which is an important one discussed separately below.

3.2.4. Deriving MTTR(i). MTTR(i) depends on both
the amount of data to repair and repair bandwidth. Let
D(i) and rb(i) be the amount of data to repair and the
repair bandwidth in state i, respectively. Let T be the
time to detect a failure in the system (10sec is used for
all analysis and simulation). Then

MTTR(i)= T + D(i)/rb(i). (2)

The amount of data to repair D(i) depends on both c
(the amount of data in the last failed brick), and the
amount of the un-repaired data left from the previous
state ur(i).

ciuriD +=)()(.

The amount of un-repaired data left from the previ-
ous state ur(i) depends on (a) the total amount of the
previous state’s data to be repaired D(i-1), (b) the mean
time to the next failure in the previous state mf(i-1),
and (c) the previous state’s repair bandwidth rb(i-1).

−⋅−≤−
−⋅−>−−⋅−−−

=
))1()1()1((0

))1()1()1(()1()1()1(
)(

imfirbiDwhen

imfirbiDwhenimfirbiD
iur

In state i-1, the mean time to next failure mf(i-1) is
MTTF/(N-i+1). So we have

ciNMTTFirbiDiD ++−⋅−−−=]0),1/()1()1(max[)(

Once rb(i) is known, D(i) can be calculated itera-
tively by the above formula.

The repair bandwidth rb(i) at state i varies with dif-
ferent placement schemes. In the next section we will
determine this value for both sequential placement and
random placement.

4. Comparing Sequential Placement with
Random Placement

The previous section provides the general framework
to analyze the data reliability of a distributed brick stor-
age system with a bounded backbone repair bandwidth.

The two terms undecided in the analysis are: (a) m, the
possible replica placement combinations in the system;
and (b) rb(i), repair bandwidth at state i. It is not hard to
see that the larger the m, the worse the data reliability,
while the larger the rb(i), the faster the data repair can
be completed and thus the better the data reliability.

Table 1. Key differentiating quantities for se-
quential placement and random placement

 m rb(i)
Sequential N)2/,min(ikbB ⋅⋅

Random))/()(),,(min(skcNkNC ⋅⋅)2/)(,min(iNbB −⋅

These two terms vary among different placement
schemes. In this section, we determine the two terms for
both sequential placement and random placement and
compute the reliability of the two schemes. Table 1 lists
the results and the explanation follows, where s denotes
the average object size, and b denotes the brick band-
width.

4.1 Sequential placement

In sequential placement, replicas are restricted to be
placed on k consecutive bricks in the ordered array of
bricks. This restriction leads to only N possible place-
ment combinations, i.e. m=N, which benefits the reli-
ability of the system.

To calculate the repair bandwidth, let b be the maxi-
mum bandwidth of a brick. When one brick fails, the
replicas on the failed brick need to be regenerated on
the k consecutive bricks after the failed brick. So the
repair bandwidth could reach b·k. However, among
these k bricks, at least one brick would also serve as the
source for data repair (e.g., brick 4 in Figure 1), bring-
ing the effective bandwidth only to a half, i.e. b·k/2.
When i concurrent failures occur, this gives b·k·i/2 (we
ignore the situation when multiple failures are within
the range of k, and this makes the result optimistic).
Also, the maximum repair bandwidth cannot exceed the
backbone bandwidth B. Therefore, we have

)2/,min()(ikbBirb ⋅⋅= .

4.2 Random placement

In random placement, replicas are scattered ran-
domly among the bricks in the system. When one brick
fails, many other replicas contain the replicas that are
lost on the failed brick. So many replicas can act as the
source of data repair, vastly bringing up the degree of
parallel repair and hence the repair bandwidth.

Quantitatively, the repair bandwidth of the random
placement scheme is given by rb(i)=min(B, b(N-i)/2).
The term b(N-i)/2 means that when a brick fails, half of
the remaining bricks contain the replicas need to be
generated, and they copy the replicas to the other half of

the bricks, which is a good-case scenario but can be
closely approximated.

Comparing rb(i) of the two schemes as listed in
Table 1, it is clear that the repair bandwidth of the ran-
dom placement is much higher than that of sequential
placement, for relatively small i’s that are mostly rele-
vant to the data reliability. This is the advantage of the
random placement scheme.

For the possible placement combination m, it de-
pends on the number of objects, which is determined by
the size of the object in our environment. Let s denote
the average size of an object in the system. When the
system has N bricks with the amount of data stored on
each brick being c and the replication degree of k, the
number of objects in the system is N·c/(k·s). Thus, the
possible placement combination m is given by

))/(),,(min(skcNkNC ⋅⋅ .5 This value could be much

larger than N, the corresponding value of m in sequen-
tial placement, especially when the object size is small.
This is the major drawback of the random placement
scheme that significantly reduces the reliability of the
system.

10
1

10
2

10
3

10
4

10
5

10
0

10
2

10
4

10
6

system scale in user data capacity (TB)

M
T

T
D

L
(y

ea
r)

random placement, object size=3.3GB
sequential placement
random placement, object size=4KB

Note: The user data capacity of the system is c·N/k.
MTTF=1000days, k=3, B=3GB/s, b=20MB/s,
c=500GB.The object size of 4KB in random place-
ment is when m reaches C(N,k).

Figure 3. MTTDL of a system vs. the system
scale, with sequential placement and random
placement.

4.3 Comparison

Using the result in Table 1, we can calculate the
MTTDL given a set of system configuration parameters.
Figure 3 shows the analytical result comparing Sequen-
tial placement with random placement.

5 More rigorously, m is the expected number of possible placement
combinations for random placement, and it is slightly smaller than

))/(),,(min(skcNkNC ⋅⋅ . We ignore this minor difference in our calcu-

lation.

The figure shows several results. First, after the sys-
tem scale passes a certain point, all schemes essentially
stop working: bricks fail so frequently that, with the
network bandwidth staying the same, data repair cannot
keep up with the brick failures, and the data reliability
drops significantly. This means that given a certain
backbone bandwidth, the system has a scalability limit.

Second, given the same user capacity, random
placement is sensitive to object sizes. The sequential
placement scheme is better than random placement for
small object size but is worse than that with large object
size.

KB MB GB
10

0

10
2

10
4

10
6

10
8

10
10

10
12

object size

M
T

T
D

L
(y

ea
r)

k=4 sequential placement
k=4 random placement
k=3 sequential placement
k=3 random placement

Note: The user capacity of the system is fixed at
1PB=1000TB. Other system parameters are the
same as in Figure 3.

Figure 4. Comparing sequential placement with
random placement when varying object size.

Figure 4 further illustrates the effect of object size on
the reliability of the system under the same system scale.
In sequential placement, reliability is not affected by
object size, because data loss is determined only by the
concurrent failures of k consecutive bricks. However, in
random placement small object size means a large num-
ber of objects, and thus they are more likely to exhaust
the possible placement combinations, giving low reli-
ability. When the object size is large, the possible com-
binations are small, and the benefit of parallel data re-
pair wins over and thus the data reliability is better than
sequential placement. But if the object size continues to
grow larger, the benefit of parallel repair diminishes and
the reliability in random placement returns to the same
level as sequential placement.

The figure also compares the result of replication
degree of 3 versus 4. Replication degree of 4 provides
close to four orders of magnitude better reliability. In
general replication degree of 3 or 4 is suffice to provide
enough reliability for most systems.

Overall, no single placement scheme wins in all
cases. Random placement gains in fast parallel repair
but resulting in too many possible placement combina-
tions when the objects are small, while sequential

placement restricts possible placement combinations but
is much slower in data repair.

5. Stripe Placement for Near-Optimal Reli-
ability

Ideally, what we want is the optimal reliability pro-
vided by the random placement scheme at its optimal
object size, but extending it such that the reliability re-
mains at the same level even for small object sizes. To
achieve this effect, we need to group small objects to-
gether to make them behave like a large object in terms
of placement and repair. Then we can significantly re-
duce the possible placement combinations that the ran-
dom placement suffers from, while maintaining a good
repair speed. This is the stripe placement scheme we
introduce in this section.

5.1 Stripe placement

We group small object replicas together to form a
large chunk, which is the unit for placement and repair.
The sizes of the chunks are the same and will be deter-
mined later. The k replicated chunks of the same set of
objects form a set called a stripe. A stripe migrates
among the bricks in the system with brick failures and
data repairs. Figure 5 illustrates the concept of stripe
and its repair.

Let stripe number ns be the number of different
stripes that can be hosted by one brick. Stripe number
determines the degree of parallel data repair. When a
brick hosting ns stripes fails, ns different chunks need to
be repaired and thus the parallel repair degree is at most
ns. We will determine the optimal ns shortly. Intuitively,
ns should be related to the backbone bandwidth B such
that the backbone bandwidth can be fully utilized.

Figure 5. Stripe placement and stripe repair.

We use random placement of chunks and randomly
selecting chunk repair sources and destinations to man-
age the stripes, which is simple in a distributed envi-
ronment to allow the parallel repair degree to be close

to ns in spite of brick failures and repairs. In addition to
managing random placement of chunks, stripe place-
ment also needs to manage the grouping of objects into
stripes. The grouping needs to guarantee that when a
new object is added into a stripe, every chunk within the
stripe should have enough space to accommodate one
replica of the object. To do so, when the stripe is first
created, every chunk in the stripe should pre-allocate
enough space for the entire chunk. Other management
details are omitted here.

5.2 Finding the optimal ns

We now need to find the optimal ns so that the reli-
ability of the system is the highest. To do so, we use the
analytical framework to calculate the reliability of the
system for different ns, and then locate the ns that pro-
vides the optimal reliability.

10
0

10
2

10
4

10
6

10
−4

10
−3

10
−2

10
−1

10
0

stripe number n
s

bo
ttl

en
ec

k
lo

ad

N=100
N=1000
N=10000

Note: The dotted lines represent the ideal cases
where there is no bottleneck brick. The Monte-Carlo
simulation is basically throwing ns balls (chunks) into
N-1 slots (remaining bricks) and look for the slot with
the largest number of balls.

Figure 6. Bottleneck load vs. the stripe number

First, for the number of possible placement combina-
tions, we have m=ns·N/k, since each brick hosts ns
stripes and each stripe is hosted by k bricks. Second, for
the repair bandwidth, ideally all ns chunks on the failed
brick will be repaired by ns different pairs of sources
and destinations, in which case the repair bandwidth is
rb(i) = min(B, b·ns). However, with random chunk
placement the repair load may not be even: Some bricks
may have more chunks to repair than others. The bot-
tleneck brick is the one with the highest repair load. Let
H be the number of stripes to be repaired in the bottle-
neck brick. We call H/ns the bottleneck load, and denote
it as lb. We use a Monte-Carlo simulation to calculate lb,
and the result is shown in Figure 6. The key result is
that when ns is close to N, the bottleneck load could be
one order of magnitude larger than 1/ns, the load in the
ideal case.

Given the bottleneck load, we can have the repair
time based on the bottleneck load, which is c·lb/b, where
c is the amount of data in a brick, and b is the brick
bandwidth. Combining this with the repair time calcula-
tion in the framework (formula (2)), we have the follow-
ing repair time formula for the stripe placement scheme:

]/),,min(/)(max[)(blcnbBiDTiMTTR bs ⋅⋅+=

Plugging in the above formula in the analytical frame-
work, together with m=ns·N/k, we can compute the reli-
ability of the stripe placement scheme.

The results of the analysis are shown here as a series
of contour plots (Figure 7). In Figure 7(a), we see that
when the stripe number increases while fixing the back-
bone bandwidth (walking up vertically through the con-
tour), MTTDL increases first because the repair band-
width increases when more bricks are involved in repair.
After reaching a peak MTTDL drops, because the repair
bandwidth is restricted by the backbone bandwidth so
that repair speed has no further improvement, but the
number of possible placement combinations continues
to increase as ns increases. So for each backbone band-
width value, there is an optimal stripe number to give
the best MTTDL. From the plot, we can see that the best
MTTDL values are located along the ridge in the con-
tour plot, and along this ridge, the stripe number ns in-
creases proportionally to the backbone bandwidth.

Figure 7(b) shows the contour plot of MTTDL with
different brick bandwidth and stripe numbers. Similar to
Figure 7(a), we can see that the optimal MTTDL values
are also located on the ridge of the plot. However, in
this case, the optimal stripe number is reverse-
proportional to the brick bandwidth. Figure 7(c) shows
that the optimal stripes number does not rely on the
system scale.

Therefore, from the three plots, the conclusion we
reach is that the optimal stripe number ns should be
proportional to the backbone bandwidth B, reverse-
proportional to the brick bandwidth b, and not related to
the system scale N. Based on this result, we propose that
the optimal stripe number ns can be given by B/b. In the
above three plots, the dash-dotted lines correspond to
the stripe numbers with B/b. We can see that they are all
very close to the ridges, i.e., the best MTTDL values.

The formula ns=B/b is a “guideline” formula. Given
a set of system parameters, one can use our analytical
framework and some numerical method to find the true
optimal ns, and the result may be a little different from
B/b. However, from our analysis, we see that B/b pro-
vides near-optimal system reliability. Thus, the optimal
chunk size is c·b/B as a function of disk bandwidth,
backbone bandwidth and disk capacity.

The recommendation of ns=B/b allows a simple and
intuitive explanation. In the ideal situation, ns pairs of
sources and destinations participate in data repair in
parallel, and each pair can have maximum bandwidth of
b. If ns=B/b, then the overall repair bandwidth is nsb=B,
which means the repair exactly saturates the available
network bandwidth. This is the best that one can expect.
Therefore ns=B/b provides near optimal reliability.

With ns=B/b, stripe placement provides much better
reliability than sequential placement and random
placement. As a numerical example, with our typical
setting of B=3GB/s, b=20MB/s, k=3, c=500GB, and
total user capacity of 1PB, our optimal stripe placement
achieves an MTTDL of 9.41·104 years, and this does not
vary with object size. In contrast, the sequential place-
ment has an MTTDL of 7.66·103 years, and the random
placement has MTTDL values worse than sequential
placement when the average object size is less than a
few tens of megabytes, and its MTTDL is only getting
close to the optimal value when the average object size
is in the gigabyte range, as shown in Figure 4.

Furthermore, Figure 7 shows that a reasonable range
around the optimal stripe number (e.g. within an order
of magnitude change) still permits good reliability that
is close to the optimal MTTDL. This means that the
guideline of B/b is reasonably robust and may still be
applicable even when the network or disks are upgraded
over the years.

5.3 Simulation results

To verify our analytical results, we run simulations
of a brick storage system to see if the reliability matches
with the theoretical prediction and if stripe placement
indeed provides better reliability.

The simulation is done in an event-driven model.
There are two kinds of events pushing the virtual time
forward. One is brick failure events, which are triggered
by exponentially distributed and independent brick fail-
ures. The other is stripe repair finish events, which are
triggered at the time when the first stripe repair session

is finished. When any event occurs, simulator re-
calculates the repair bandwidth for every remaining
stripe repair session based on the brick and backbone
bandwidth constraints. All stripes have the same weight
when competing for bandwidth.

Figure 8 shows the results of both the simulation and
the theoretical analysis on stripe placement and sequen-
tial placement. The main results are: (a) stripe place-
ment is better than sequential placement, and (b) for
stripe placement, simulation results match well with
theoretical results, while for sequential placement,
simulation results show much lower MTTDL because
the theoretical analysis on sequential placement is opti-
mistic.

10
1

10
2

10
3

10
−2

10
0

10
2

system scale in user data capacity (TB)

M
T

T
D

L
(y

ea
r)

stripe placement theoretical
sequential placement theoretical
stripe placement experimental
sequential placement experimental

Note: Each simulation result is computed as the average from
50 simulations, with 99% confidence interval shown in the
figure. MTTF=30days, B=1GB/s, b=20MB/s, c=500GB, k=3.
The artificially small value of MTTF is to shorten the MTTDL of
the system so that the simulations can end within a reasonable
amount of time.

Figure 8. Simulation result on MTTDL compar-
ing with the theoretical analysis.

For pure random placement, the simulation with
large object size is relatively close to sequential place-
ment, while the simulation with small object size is not

0.1 1 10
1

10

100

1K

10K

100K

1M

10M

backbone bandwidth B (GB/s)

nu
m

be
r

of
 s

tr
ip

es
 p

er
 b

ric
k

n s

MTTDL (years)

0.1
1

1

10

10

10

100

100

100

100

1000

1000

1000
1000

1000 1000 1000 10

1000

10000

10000

10000
10000 10000 1000

50000

50000

50000 5000

n
s
=B/b

(a) Vary with backbone bandwidth.
MTTF=1000days, b=20MB/s,
c=500GB, k=3, user capacity = 1PB.

1 10 100
1

10

100

1K

10K

100K

1M

10M

brick bandwidth b (MB/s)

nu
m

be
r

of
 s

tr
ip

es
 p

er
 b

ric
k

n s

MTTDL (years)

1
10

10 10 10

100

100

100 100 100

1000

1000

10
00

1000 1000 1000

10000

10000

10000

10000 10000

50000

50000

50000 50000

n
s
=B/b

(b) Vary with brick bandwidth.
MTTF=1000days, B=3GB/s,
c=500GB, k=3, user capacity = 1PB.

1 10 100
1

10

100

1K

10K

100K

1M

10M

system scale in user data capacity (PB)

nu
m

be
r

of
 s

tr
ip

es
 p

er
 b

ric
k

n s

MTTDL (years)
0.11

1

1

10

10

10

10
100

100

100
100

100

100

1000
1000

1000

1000

1000

1000

10000
10000

10000

10000

1000050000
50000

50000

50000

n
s
=B/b

(c) Vary with system scale.
MTTF=1000days, B=3GB/s,
b=20MB/s, c=500GB, k=3.

Figure 7. Contour plot for system MTTDL

done because the bandwidth allocation calculation in
this case is prohibitively slow.

6. Discussion on Correlated Failures

So far, our analysis assumes that brick failures are
independent of each other. However, correlated failures
are frequently observed in practice, because bricks are
usually from the same manufacturer, and they are oper-
ated under the same environment with similar access
patterns. The primary difficulty here is how to model
correlated failures. In our full report [13], we provide a
simple proposal that adapts our framework to deal with
correlated failures. The proposal is still preliminary and
requires further validation. In this section, we sketch our
approach of dealing with correlated failures.

Our assumption is that correlated failures do not
change the MTTF of each individual brick, because
MTTF is measured in a typical operational environment.
However, when looking at a large number of bricks,
their failures are correlated in the sense that when one
brick fails, more bricks are likely to fail soon. Thus, the
overall failure behavior is the clustering of failures
events separated by a quiet period with few failures.

Accordingly, we convert the failure behavior of the
independent failure model into the behavior of corre-
lated failure model by compressing failure events in the
independent model into a short period of time, which is
followed by a quiet period with no failures. Thus, in the
correlated failure model, the failure events are more
clustered, but the overall failure rates remain the same,
which means that individual MTTF remains the same.

The computation of MTTDL still uses the framework
developed for independent failures but it is on the com-
pressed timeline for correlated failures. The result is
then stretched back to the original timeline.

This approach allows us to analyze data reliability in
the environment that exhibits clustered and correlated
failures. However, its correctness and usefulness re-
quires further validation in practice.

7. Related Work

Reliability is one of the key aspects of storage sys-
tems, and it has been studied extensively, especially for
disk arrays like RAID systems [15]. Reliability studies
on disk arrays investigate the impact of disk organiza-
tions on MTTDL, and typically use Markov models to
study the system with independent and exponentially
distributed disk failures, e.g. [2] [20]. Our work can be
viewed as an extension of these studies into distributed
brick storage systems as a generic object store. The
important new addition to previous models is the con-
sideration of bounded network bandwidth to data repair.

Many studies [12][1][8][22][14][18] are on similar
brick storage systems, but their focuses are not on the
systematic study of data reliability. Many of them do
address replica placement issues for various reasons.
The sequential placement strategy has been widely used.
For example, Petal [12] uses chained declustering [10]
mainly as a way to improve load balancing, and many
P2P systems such as PAST [17] and CFS [4] use it to
simplify management. GFS [8] uses random placement
to improve data repair performance, but it does not pro-
vide a study on the resulting reliability of the system. In
our paper, we study the tradeoff to reliability between
sequential and random placement.

Several works have investigated the impact of rep-
lica placement on availability, not reliability. In Farsite
[1], Douceur and Wattenhofer studies dynamic replica
placement strategies that improve the overall availabil-
ity of files [5][6]. In [18][19], van Renesse and Schnei-
der study DHT-based placement (which is categorized
as sequential placement in this paper) and random
placement and their effects on the availability of a dis-
tributed storage system. They use simulation methods
and do not consider the effect of available network
bandwidth on data reliability.

We have proposed the stripe placement policy with
near optimal configuration parameters. Grouping ob-
jects is not a new concept. The 64MB chunk size in
GFS is based on its workload and read/write perform-
ance considerations, while the work in [18] groups a set
of objects into volumes but it is not clear how the num-
ber of volumes is determined. This study points out that,
from a reliability point of view, the chunk size should
be a function of available bandwidth, disk bandwidth
and disk capacity.

Many coding schemes, in particular Reed-Solomon
coding [16], are used in RAID-like storage systems. We
do not incorporate such coding schemes into the analy-
sis of reliability, partly because brick storage systems
can typically afford more bricks to support simple repli-
cation and avoid the complexity and performance pen-
alty associated with the coding schemes.

Some previous work (e.g. [3]) studies the effect of
correlated failures, but we do not find a generic model
that can facilitate the analysis of system reliability. Our
model is simple enough to incorporate into our frame-
work for reliability study, but its effectiveness needs to
be further validated in practice.

8. Concluding Remarks

With an analytical framework that incorporates
available network bandwidth consideration, we study
the reliability of distributed storage systems with differ-
ent replica placement schemes. We show that both se-
quential placement and pure random placement have

their drawbacks and propose the stripe placement
scheme to achieve near-optimal reliability.

We wish that this study could serve as a guideline for
system designers and administrators to determine a
number of system parameters when building such brick
storage systems, including the root switch bandwidth,
the stripe number, the replication degree, etc. We be-
lieve that, even though our calculations are based on an
idealized framework, the recommendations derived (e.g.
using B/b as the stripe number) are applicable to many
practical situations, because a reasonable range of val-
ues around the computed values provide the same level
of reliability as shown by our results. Furthermore, after
removing the backbone bandwidth constraint, the
framework should be able to adapt to wide-area peer-to-
peer storage settings.

As the next step, we plan to implement stripe place-
ment in BitVault [21], a data retention platform built
with a large number of storage bricks. Future research
also includes the study on the reliability with heteroge-
neous brick components, and the reliability of place-
ment schemes that are aware of network topologies.

References

[1] A. Adya, W. J. Bolosky, M. Castro, et al, “FARSITE:
Federated, Available, and Reliable Storage for an In-
completely Trusted Environment”, in Proc. of the 5th
OSDI, December 2002.

[2] W. A. Burkhard, J. Menon, “Disk Array Storage System
Reliability”, in Proc. of Symposium on Fault-Tolerant
Computing, 1993.

[3] P. Corbett, B. English, A. Goel, et.al., “Row-diagonal
parity for double disk failure correction”, in Proc. of 3rd
Usenix conference on File and Storage Technologies
(FAST’04), April 2004.

[4] F. Dabek, M. F. Kaashoek, D. Karger, et al, “Wide-area
cooperative storage with CFS”, Proc. of the 18th ACM
Symposium on Operating System Principles, 2001.

[5] J. R. Douceur and R. P. Wattenhofer. “Competitive hill-
climbing strategies for replica placement in a distributed
file system”, in Proc. of the 15th Symp. on Distributed
Computing. Oct. 2001.

[6] J. R. Douceur and R. P. Wattenhofer, “Optimizing file
availability in a secure serverless distributed file system”,
in Proc. Of the 20th Symp. on Reliable Distributed Sys-
tems. IEEE, 2001

[7] S. Frolund, A. Merchant, Y. Saito, et al, “FAB: enter-
prise storage systems on a shoestring”, HOTOS’03.

[8] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
Google File System”, in Proc. of the 19th ACM Sympo-
sium on Operating System Principles, Oct. 2003

[9] G. A. Gibson, D. F. Nagle, K. Amiri, K., et al. “A Cost-
Effective, High-Bandwidth Storage Architecture”, AS-
PLOS, October, 1998.

[10] H-I. Hsiao and D. J. DeWitt, “Chained declustering: a
new availability strategy for multiprocessor database

machines”, Technical Report CS TR 854, University of
Wisconsin, Madison, June, 1989.

[11] J. Kubiatowicz, D. Bindel, Y. Chen, et al, “OceanStore:
An Architecture for Global-Scale Persistent Storage”,
ASPLOS 2000.

[12] E. K. Lee and C. A. Thekkath, “Petal: Distributed Vir-
tual Disks”, ASPLOS 1996.

[13] Q. Lian, W. Chen, and Z. Zhang, “On the impact of
replica placement to the reliability of distributed storage
systems”, Microsoft Research Technical Report, to ap-
pear.

[14] J. MacCormick, N. Murphy, M, Najork, et.al, “Boxwood:
Abstractions as the Foundations for Storage Infrastruc-
ture”, In Proc. of OSDI’04, Dec. 2004.

[15] D. A. Patterson, G. Gibson, R. H. Katz, “A case for re-
dundant arrays of inexpensive disks (RAID)”, In Proc.
of the 1988 ACM SIGMOD international conference on
Management of data, 109 - 116, 1988.

[16] J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software --- Prac-
tice and Experiene, 27(9):995-1012, Sept. 1997.

[17] A. Rowstron and P. Druschel, “Storage management and
caching in PAST, a large scale, persistent peer-to-peer
storage utility. In Proc. Of the 18th ACM Symp. On Op-
erating Systems Principles, October 2001.

[18] R. van Renesse, F. B. Schneider, “Chain replication for
Supporting High Throughout and Availability”, In Proc.
of OSDI’04, Dec. 2004.

[19] R. van Renesse, “Efficient Reliable Internet Storage”,
Workshop on Dependable Distributed Data Manage-
ment. Oct., 2004.

[20] Q. Xin, E. L. Miller, D. D. E. Long, S. A. Brandt, T.
Schwarz, W. Litwin, “Reliability Mechanisms for Very
Large Storage Systems”, in Proc. of 20th IEEE/11th
NASA Goddard Conference on Mass Storage Systems &
Technologies, Apr., 2003

[21] Z. Zhang, Q. Lian, S. D. Lin, et al, “BitVault: A highly
reliable distributed data retention platform”, submitted
for publication.

[22] Z. Zhang, S. D. Lin, Q. Lian, et al, “RepStore: A Self-
Managing and Self-Tuning Storage Backend with
SmartBricks”, In Proc. Of the first IEEE International
Conference on Autonomic Computing, May 2004.

