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Abstract 

Data reliability of distributed brick storage systems 
critically depends on the replica placement policy, and 
the two governing forces are repair speed and sensitiv-
ity to multiple concurrent failures. In this paper, we 
provide an analytical framework to reason and quantify 
the impact of replica placement policy to system reli-
ability. The novelty of the framework is its considera-
tion of the bounded network bandwidth for data main-
tenance. We apply the framework to two popular 
schemes, namely sequential placement and random 
placement, and show that both have drawbacks that 
significantly degrade data reliability. We then propose 
the stripe placement scheme and find the near-optimal 
configuration parameter such that it provides much 
better reliability. We further discuss the possibility of 
addressing the problem of correlated brick failures in 
our analytical framework. 

1. Introduction 

Storage solution using clustered “smart bricks” con-
nected with LAN is becoming an increasingly attractive 
alternative to the more expensive SAN (storage-area 
network) solution. Some of the exemplary systems in-
clude Petal [11], NASD [9], GFS [8], FAB [7], Rep-
store [22], and Boxwood [14]. A smart brick is essen-
tially a stripped down PC with a CPU, memory, net-
work card, and a large disk. For these systems, 
providing strong data reliability is confronted with new 
challenges, because inexpensive commodity disks are 
more prone to permanent failures and failures are far 
more frequent in large systems. To guard against per-
manent loss of data, replication is often employed. If 
some replicas are lost due to disk failures, other replicas 
are still available and can be used to regenerate new 
replicas to maintain the same level of reliability.  

Replica placement refers to the strategy of placing 
replicas among the participating bricks. The two widely 
used replica placement schemes are staggered sequen-
tial placement like in chained declustering [10] used by 

Petal [12] as well as in many proposals based on DHT 
(distributed hash table) [4][17], and the totally random 
placement like in GFS [8]. Mirroring can be viewed as a 
degenerated special case of sequential placement. 

Replica placement can significantly affect the reli-
ability of the system due to two factors. The first is the 
repair speed: the more bricks participate in the data 
repair process, subject to the available network band-
width, the sooner that the reliability level returns. The 
second is the sensitivity to multiple and concurrent fail-
ures: the more permutation choices that the placement 
generates, the more likely a random failure of several 
bricks will wipe out some data permanently. These two 
factors are conflicting in nature. For instance, the ran-
dom placement has very fast repair speed, but is prone 
to concurrent failures, whereas the sequential placement 
is precisely the opposite. 

The contributions of the paper are mainly two folds. 
First, we provide a systematic framework not only to 
identify, but also to reason and quantify the impact of 
the replica placement policy to system reliability. In 
particular, our result points out that under different pa-
rameters, random and sequential placement can have 
vastly different results. Our framework captures the 
bounded available network bandwidth for data mainte-
nance, something no other models have done. 

Second, the insight that we gain from the first result 
leads us to propose the stripe placement scheme which 
attempts to achieve the best balance between the two 
competing forces. While it is difficult to derive a closed 
form, we do provide the near-optimal configuration 
parameter verified with simulations. This is the second 
contribution of this paper. 

Moreover, we also sketch a proposal to extend our 
framework to deal with correlated failures that fre-
quently occur in practice. 

The roadmap of the paper is as follows. In Section 2, 
we discuss the replica placement schemes and the data 
reliability metric. In Section 3, we present the analytical 
framework for the reliability study. In Section 4, we 
apply the framework to the two placement schemes and 



 

compare the results. In Section 5, we describe the stripe 
placement scheme, and find the near-optimal parameter 
for the scheme. We discuss how to deal with correlated 
failures in Section 6. Related work is summarized in 
Section 7, and we conclude the paper in Section 8. 

2. Replica Placement and Reliability Metric 

Without loss of generality, we consider an ordered 
array of N bricks on which replicas are placed. The 
number of replicas of an object is called the replication 
degree of the object, and it is denoted by k. Replication 
degree may differ from object to object, but for simplic-
ity we assume all objects have the same k. The respon-
sibility of replica placement is to designate the bricks on 
which the replicas are hosted. All other issues, such as 
the interface of the system, are orthogonal to the reli-
ability study.  

Each individual brick may fail permanently and lose 
all replicas stored on the brick. In this paper, we equate 
brick failures with disk failures, since disk failures ulti-
mately cause data loss. When a brick fails, to keep data 
reliability of the system at the same level, the system 
needs to automatically regenerate the lost replicas at the 
remaining bricks. This replica regeneration process is 
called data repair.  

2.1 Data reliability metric MTTDL 

To measure the data reliability of a system, we use 
the metric MTTDL – mean time to data loss in the entire 
system. MTTDL indicates, after the system is loaded 
with data objects, how long on average the system can 
sustain before it permanently loses the first data object 
in the system. This is a metric widely used in storage 
literature, e.g. on RAID storage [2].1 

There are two important factors that affect data reli-
ability. The first one is the speed of data repair. Fast 
data repair means that the lost replicas are likely to be 
repaired before further brick failures, so it reduces the 
time window in which concurrent brick failures occur 
and wipe out all replicas of some object.  

The second factor is the likelihood of data loss when 
concurrent brick failures do occur. When k random 
bricks fail concurrently in the system, the likelihood that 
some object whose k replicas are located on the k failed 
bricks depends on the placement scheme used, as we 
will discuss shortly. In general, the more likely the con-
current brick failures happen to wipe out all replicas of 
an object, the less reliable the system is.  

                                                 
1 One may also consider the amount of data loss when it happens. 
However, when the goal of a storage system is to provide nearly no-
data-loss reliability, MTTDL is a more important metric than the 
amount of data loss. Thus the paper focuses on the analysis of 
MTTDL. 

2.2 Sequential placement 

Sequential placement is simple in nature: one of the 
brick acts as the lead brick, and the k replicas are placed 
on the lead brick and its k-1 followers.  This is what the 
chained declustering [10] does and is employed in Petal 
[11]. This scheme is also a common strategy in peer-to-
peer wide-area storage systems like CFS [4] and PAST 
[17], in which the lead brick is typically identified by 
the hash of the object.  

With sequential placement, when a brick fails, the k 
neighboring bricks on each side of the failed brick can 
participate in brick repair (Figure 1). The limited paral-
lel repair degree leads to slow repair speed, which then 
negatively affects the data reliability of the system. 

However, the restrictive nature of placement reduces 
the sensitivity to concurrent failures. If and only if k 
simultaneous failures occur on k consecutive bricks in 
the ordered array can any object be lost. This is unlikely 
when N is much larger than k. Thus, sequential place-
ment has a low likelihood of data loss when concurrent 
failures occur, which improves data reliability. 

 

Note: Replication degree is 3. When brick 3 fails, 
data repair can be carried out as brick 1 copying 
Dataa to brick 4, brick 2 copying Datab to brick 5, 
and brick 4 copying Datac to brick 6. 

Figure 1. Data repair in sequential placement. 

2.3 Random placement 

In random placement, replicas are placed randomly 
among the N bricks, and this is used in the work of 
[8][19]. 2  The main objective here is to improve the 
speed of data repair. With random placement, when a 
brick fails, the replicas on the failed brick can be found 
on many other bricks, and thus many bricks can partici-
pate in data repair in parallel, resulting in faster data 
repair speed. This is its main advantage over sequential 
placement in improving data reliability.  

However, crashing k random bricks will likely re-
move all the replicas of some objects with random 

                                                 
2 An indexing scheme is needed for random placement to access all 
objects in the system. However, indexing is orthogonal to our study 
of reliability, so we will not discuss it in detail.  



 

placement. In the extreme case when there is a large 
volume of objects in the system and therefore the actual 
placement choices have exhausted all possible combina-
tions, any k crashes cause data loss. High sensitivity to 
multiple and concurrent failures, therefore, is the draw-
back of the random placement scheme. 

It is intuitive to see that neither placement scheme is 
perfect. As we will reveal in Section 4, under different 
circumstances their difference can be dramatic. 

3. Analytical Framework 

In this section, we present the analytical framework 
for the data reliability analysis. The framework shows 
how to derive MTTDL from known system parameters. 
This framework can be applied to different object 
placement schemes, as we will show in the next section.  

The novelty of the framework is its consideration of 
the bounded network bandwidth available for data re-
pair, which directly affects data repair speed.  

3.1 System model for analysis 

We consider a system with N bricks and the replica-
tion degrees of all objects are k. The average amount of 
data stored on each brick is c. We assume a reasonable 
amount of free space on each brick for data repair. 
Brick failures follow an exponential distribution with 
MTTF (mean time to failure) as its mean. We first as-
sume that each brick fails independently, and later we 
will consider a model for correlated brick failures. We 
do not model transient failures of bricks that only affect 
data availability but not affect data loss. When a brick 
fails, we assume a new brick is added into the system 
immediately to keep the system scale at N all the time. 

All bricks are connected in a LAN with a root switch. 
The network provides certain bandwidth for data repair 
traffic, and the bound of which is given by B, which is 
called the backbone bandwidth. The backbone band-
width can be viewed as a certain percentage of the 
bandwidth of the root switch that is allowed for data 
repair traffic, because in many simple topologies, all (or 
nearly all) data repair traffic goes through the root 
switch.  

We do not separately consider network failures. A 
network failure does not cause data loss directly, but it 
may reduce the data repair speed, and thus affect data 
reliability. We fold this aspect into the available data 
repair bandwidth B. 

3.2 Analysis 

3.2.1. Introducing MTTDLobj. To conduct the analysis 
for MTTDL, we first introduce an intermediate metric 
MTTDLobj, which is the mean time to data loss for an 
arbitrary object. MTTDLobj measures the data reliability 

of an individual object stored in the system. If the sys-
tem contains m objects, and these m objects have inde-
pendent data loss distributions, then we have MTTDL = 
MTTDLobj / m. Intuitively, this is because that each ob-
ject has a data loss rate of 1/MTTDLobj, and when they 
are considered together in a system, the total data loss 
rate is m/MTTDLobj since their individual data loss be-
haviors are independent. 

Of course, when object replicas are placed in the sys-
tem, their data loss behaviors depend on the failures of 
the bricks, and thus may not be independent of each 
other. In particular, if the replicas of two objects are co-
located at the same set of bricks, their data loss behav-
iors are perfectly correlated. In this case, they should be 
considered as one object instead of two independent 
objects. 

For the above reason, we only consider objects 
whose replica placements are different. Let m be the 
total number of different replica placement combina-
tions under a placement scheme. We thus have 3 

MTTDL = MTTDLobj / m.  (1) 
In a system with N bricks, m could be as large as 

C(N,k).4  

3.2.2. Markov Chain Model. To analyze MTTDLobj, 
we introduce a Markov model as in Figure 2 to model 
the evolution of the system with brick failures and data 
repair. In the model, state i represents the state of the 
system where exactly i bricks have failed, and the lost 
replicas on the failed bricks have not been completely 
repaired. 

The arcs in the figure represent the transitions be-
tween different states in the system. From state i to i+1, 
one more brick failure occurs, and this could occur on 
any of the N-i remaining bricks. Thus, the rate of transi-
tion is (N-i)/MTTF, since the brick failures are inde-
pendent. Transition from state i to state 0 represents that 
data repair is completed before a new brick fails.  Let 
MTTR(i) denote the mean time to repair all the failed 
replicas in state i. Thus the transition rate from state i to 
state 0 is 1/MTTR(i). MTTR(i) depends on the size of 
data to be repaired and the available bandwidth for re-
pair, and it will be determined shortly. In the next sec-
tion, we will show the advantage of random placement 

                                                 
3 The formula is still an approximation, because different objects may 
have some but not all their replicas co-located on the same set of 
bricks and thus their data loss behaviors are correlated. However, 
such co-locations are dictated by the replication degree k. Thus, when 
the system scale N is much larger than the replication degree k, the 
correlated data loss of objects caused by partial co-locations can be 
ignored. For sequential placement, we compared the approximation 
with an accurate analysis and the result shows that the approximation 
matches with the accurate analysis very well. 
4 C(x,y) denotes the total number of combinations of picking y ob-
jects from x objects. 



 

over sequential placement in that random placement has 
a much smaller MTTR(i). 

 

Figure 2. Markov model for reliability analysis 

The Markov model of Figure 2 assumes that there is 
no transition from state i back to state j with 0<j<i, 
which means that data repair for all failed bricks com-
plete at the same time. In reality, data repair for a brick 
that failed early is likely to be completed early, even 
without centralized scheduling of data repair. Hence the 
assumption is a conservative one.  

The Markov model of Figure 2 models the evolution 
of the entire storage system, as opposed to other models 
(e.g. [20]) that only model the evolution of one object. 
The reason is that in our environment, data repair traffic 
is limited by the backbone bandwidth. Thus, more brick 
failures are likely to slow down data repair because 
more data repair traffic are sharing the limited band-
width. Therefore, we have to look at the state of the 
entire system to determine the speed of data repair. 

3.2.3. Deriving MTTDLobj. This section briefly de-
scribes the derivation of MTTDLobj using the Markov 
model. The full technical derivation is available in [13]. 

Let MTBF(i) be the mean time between two consecu-
tive occurrences of state i in the Markov model. Let L(i) 
be the probability that the object is lost when i bricks 
fail concurrently. Let P(i) be the probability of the sys-
tem staying in state i. The formula below shows that 
MTTDLobj can be calculated from the harmonic sum of 
mean time between data loss in each individual state i. 
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Probability L(i) is easily derived from a combinatorial 
calculation: 
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The derivation of MTBF(i) is more involved and is de-
tailed in [13]. The idea is to consider a compressed 
timeline with only time segments when the system is in 
state i-1. In the compressed timeline, when any of the 
remaining (N-i+1) bricks fails, the i-th failure occurs, 

and the mean time between two consecutive events of 
the i-th failures is MTTF/(N-i+1). Since the system is in 
state i-1 with probability P(i-1), the compressed time-
line compresses time period from the original timeline 
with the ratio P(i-1). Therefore, in the original timeline, 
we have 
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The value of P(i) can be computed from the following 
balance equation for the Markov model: 
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The term that we have not addressed is MTTR(i), 
which is an important one discussed separately below. 

3.2.4. Deriving MTTR(i). MTTR(i) depends on both 
the amount of data to repair and repair bandwidth. Let 
D(i) and rb(i) be the amount of data to repair and the 
repair bandwidth in state i, respectively. Let T be the 
time to detect a failure in the system (10sec is used for 
all analysis and simulation). Then  

MTTR(i)= T + D(i)/rb(i). (2) 

The amount of data to repair D(i) depends on both c 
(the amount of data in the last failed brick), and the 
amount of the un-repaired data left from the previous 
state ur(i).  

ciuriD += )()( . 

The amount of un-repaired data left from the previ-
ous state ur(i) depends on (a) the total amount of the 
previous state’s data to be repaired D(i-1), (b) the mean 
time to the next failure in the previous state mf(i-1),  
and (c) the previous state’s repair bandwidth rb(i-1).  
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In state i-1, the mean time to next failure mf(i-1) is 
MTTF/(N-i+1). So we have 

ciNMTTFirbiDiD ++−⋅−−−= ]0),1/()1()1(max[)(  

Once rb(i) is known, D(i) can be calculated itera-
tively by the above formula. 

The repair bandwidth rb(i) at state i varies with dif-
ferent placement schemes. In the next section we will 
determine this value for both sequential placement and 
random placement.  

4. Comparing Sequential Placement with 
Random Placement 

The previous section provides the general framework 
to analyze the data reliability of a distributed brick stor-
age system with a bounded backbone repair bandwidth. 



 

The two terms undecided in the analysis are: (a) m, the 
possible replica placement combinations in the system; 
and (b) rb(i), repair bandwidth at state i. It is not hard to 
see that the larger the m, the worse the data reliability, 
while the larger the rb(i), the faster the data repair can 
be completed and thus the better the data reliability.  

Table 1. Key differentiating quantities for se-
quential placement and random placement 

 m rb(i) 
Sequential  N )2/,min( ikbB ⋅⋅  

Random ))/()(),,(min( skcNkNC ⋅⋅  )2/)(,min( iNbB −⋅  

These two terms vary among different placement 
schemes. In this section, we determine the two terms for 
both sequential placement and random placement and 
compute the reliability of the two schemes. Table 1 lists 
the results and the explanation follows, where s denotes 
the average object size, and b denotes the brick band-
width. 

4.1 Sequential placement 

In sequential placement, replicas are restricted to be 
placed on k consecutive bricks in the ordered array of 
bricks. This restriction leads to only N possible place-
ment combinations, i.e. m=N, which benefits the reli-
ability of the system.  

To calculate the repair bandwidth, let b be the maxi-
mum bandwidth of a brick. When one brick fails, the 
replicas on the failed brick need to be regenerated on 
the k consecutive bricks after the failed brick. So the 
repair bandwidth could reach b·k. However, among 
these k bricks, at least one brick would also serve as the 
source for data repair (e.g., brick 4 in Figure 1), bring-
ing the effective bandwidth only to a half, i.e. b·k/2. 
When i concurrent failures occur, this gives b·k·i/2 (we 
ignore the situation when multiple failures are within 
the range of k, and this makes the result optimistic). 
Also, the maximum repair bandwidth cannot exceed the 
backbone bandwidth B. Therefore, we have 

)2/,min()( ikbBirb ⋅⋅= . 

4.2 Random placement 

In random placement, replicas are scattered ran-
domly among the bricks in the system. When one brick 
fails, many other replicas contain the replicas that are 
lost on the failed brick. So many replicas can act as the 
source of data repair, vastly bringing up the degree of 
parallel repair and hence the repair bandwidth. 

Quantitatively, the repair bandwidth of the random 
placement scheme is given by rb(i)=min(B, b(N-i)/2). 
The term b(N-i)/2 means that when a brick fails, half of 
the remaining bricks contain the replicas need to be 
generated, and they copy the replicas to the other half of 

the bricks, which is a good-case scenario but can be 
closely approximated.  

Comparing rb(i) of the two schemes as listed in 
Table 1, it is clear that the repair bandwidth of the ran-
dom placement is much higher than that of sequential 
placement, for relatively small i’s that are mostly rele-
vant to the data reliability. This is the advantage of the 
random placement scheme. 

For the possible placement combination m, it de-
pends on the number of objects, which is determined by 
the size of the object in our environment. Let s denote 
the average size of an object in the system. When the 
system has N bricks with the amount of data stored on 
each brick being c and the replication degree of k, the 
number of objects in the system is N·c/(k·s). Thus, the 
possible placement combination m is given by  

))/(),,(min( skcNkNC ⋅⋅ .5 This value could be much 

larger than N, the corresponding value of m in sequen-
tial placement, especially when the object size is small. 
This is the major drawback of the random placement 
scheme that significantly reduces the reliability of the 
system. 
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Note: The user data capacity of the system is c·N/k. 
MTTF=1000days, k=3, B=3GB/s, b=20MB/s, 
c=500GB.The object size of 4KB in random place-
ment is when m reaches C(N,k). 

Figure 3. MTTDL of a system vs. the system 
scale, with sequential placement and random 
placement.  

4.3 Comparison 

Using the result in Table 1, we can calculate the 
MTTDL given a set of system configuration parameters. 
Figure 3 shows the analytical result comparing Sequen-
tial placement with random placement.  

                                                 
5 More rigorously, m is the expected number of possible placement 
combinations for random placement, and it is slightly smaller than 

))/(),,(min( skcNkNC ⋅⋅ . We ignore this minor difference in our calcu-

lation. 



 

The figure shows several results. First, after the sys-
tem scale passes a certain point, all schemes essentially 
stop working: bricks fail so frequently that, with the 
network bandwidth staying the same, data repair cannot 
keep up with the brick failures, and the data reliability 
drops significantly. This means that given a certain 
backbone bandwidth, the system has a scalability limit. 

Second, given the same user capacity, random 
placement is sensitive to object sizes. The sequential 
placement scheme is better than random placement for 
small object size but is worse than that with large object 
size. 
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Note: The user capacity of the system is fixed at 
1PB=1000TB. Other system parameters are the 
same as in Figure 3. 

Figure 4. Comparing sequential placement with 
random placement when varying object size.  

Figure 4 further illustrates the effect of object size on 
the reliability of the system under the same system scale. 
In sequential placement, reliability is not affected by 
object size, because data loss is determined only by the 
concurrent failures of k consecutive bricks. However, in 
random placement small object size means a large num-
ber of objects, and thus they are more likely to exhaust 
the possible placement combinations, giving low reli-
ability. When the object size is large, the possible com-
binations are small, and the benefit of parallel data re-
pair wins over and thus the data reliability is better than 
sequential placement. But if the object size continues to 
grow larger, the benefit of parallel repair diminishes and 
the reliability in random placement returns to the same 
level as sequential placement. 

The figure also compares the result of replication 
degree of 3 versus 4. Replication degree of 4 provides 
close to four orders of magnitude better reliability. In 
general replication degree of 3 or 4 is suffice to provide 
enough reliability for most systems. 

Overall, no single placement scheme wins in all 
cases. Random placement gains in fast parallel repair 
but resulting in too many possible placement combina-
tions when the objects are small, while sequential 

placement restricts possible placement combinations but 
is much slower in data repair. 

5. Stripe Placement for Near-Optimal Reli-
ability 

Ideally, what we want is the optimal reliability pro-
vided by the random placement scheme at its optimal 
object size, but extending it such that the reliability re-
mains at the same level even for small object sizes. To 
achieve this effect, we need to group small objects to-
gether to make them behave like a large object in terms 
of placement and repair. Then we can significantly re-
duce the possible placement combinations that the ran-
dom placement suffers from, while maintaining a good 
repair speed. This is the stripe placement scheme we 
introduce in this section. 

5.1 Stripe placement 

We group small object replicas together to form a 
large chunk, which is the unit for placement and repair. 
The sizes of the chunks are the same and will be deter-
mined later. The k replicated chunks of the same set of 
objects form a set called a stripe. A stripe migrates 
among the bricks in the system with brick failures and 
data repairs. Figure 5 illustrates the concept of stripe 
and its repair.  

Let stripe number ns be the number of different 
stripes that can be hosted by one brick. Stripe number 
determines the degree of parallel data repair. When a 
brick hosting ns stripes fails, ns different chunks need to 
be repaired and thus the parallel repair degree is at most 
ns. We will determine the optimal ns shortly. Intuitively, 
ns should be related to the backbone bandwidth B such 
that the backbone bandwidth can be fully utilized. 

 

Figure 5. Stripe placement and stripe repair.  

We use random placement of chunks and randomly 
selecting chunk repair sources and destinations to man-
age the stripes, which is simple in a distributed envi-
ronment to allow the parallel repair degree to be close 



 

to ns in spite of brick failures and repairs. In addition to 
managing random placement of chunks, stripe place-
ment also needs to manage the grouping of objects into 
stripes. The grouping needs to guarantee that when a 
new object is added into a stripe, every chunk within the 
stripe should have enough space to accommodate one 
replica of the object. To do so, when the stripe is first 
created, every chunk in the stripe should pre-allocate 
enough space for the entire chunk. Other management 
details are omitted here. 

5.2 Finding the optimal ns 

We now need to find the optimal ns so that the reli-
ability of the system is the highest. To do so, we use the 
analytical framework to calculate the reliability of the 
system for different ns, and then locate the ns that pro-
vides the optimal reliability. 
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Note: The dotted lines represent the ideal cases 
where there is no bottleneck brick. The Monte-Carlo 
simulation is basically throwing ns balls (chunks) into 
N-1 slots (remaining bricks) and look for the slot with 
the largest number of balls. 

Figure 6. Bottleneck load vs. the stripe number  

First, for the number of possible placement combina-
tions, we have m=ns·N/k, since each brick hosts ns 
stripes and each stripe is hosted by k bricks. Second, for 
the repair bandwidth, ideally all ns chunks on the failed 
brick will be repaired by ns different pairs of sources 
and destinations, in which case the repair bandwidth is 
rb(i) = min(B, b·ns). However, with random chunk 
placement the repair load may not be even: Some bricks 
may have more chunks to repair than others. The bot-
tleneck brick is the one with the highest repair load. Let 
H be the number of stripes to be repaired in the bottle-
neck brick. We call H/ns the bottleneck load, and denote 
it as lb. We use a Monte-Carlo simulation to calculate lb, 
and the result is shown in Figure 6. The key result is 
that when ns is close to N, the bottleneck load could be 
one order of magnitude larger than 1/ns, the load in the 
ideal case. 

Given the bottleneck load, we can have the repair 
time based on the bottleneck load, which is c·lb/b, where 
c is the amount of data in a brick, and b is the brick 
bandwidth. Combining this with the repair time calcula-
tion in the framework (formula (2)), we have the follow-
ing repair time formula for the stripe placement scheme: 

]/),,min(/)(max[)( blcnbBiDTiMTTR bs ⋅⋅+=  

Plugging in the above formula in the analytical frame-
work, together with m=ns·N/k, we can compute the reli-
ability of the stripe placement scheme.  

The results of the analysis are shown here as a series 
of contour plots (Figure 7). In Figure 7(a), we see that 
when the stripe number increases while fixing the back-
bone bandwidth (walking up vertically through the con-
tour), MTTDL increases first because the repair band-
width increases when more bricks are involved in repair. 
After reaching a peak MTTDL drops, because the repair 
bandwidth is restricted by the backbone bandwidth so 
that repair speed has no further improvement, but the 
number of possible placement combinations continues 
to increase as ns increases. So for each backbone band-
width value, there is an optimal stripe number to give 
the best MTTDL. From the plot, we can see that the best 
MTTDL values are located along the ridge in the con-
tour plot, and along this ridge, the stripe number ns in-
creases proportionally to the backbone bandwidth. 

Figure 7(b) shows the contour plot of MTTDL with 
different brick bandwidth and stripe numbers. Similar to 
Figure 7(a), we can see that the optimal MTTDL values 
are also located on the ridge of the plot. However, in 
this case, the optimal stripe number is reverse-
proportional to the brick bandwidth. Figure 7(c) shows 
that the optimal stripes number does not rely on the 
system scale.  

Therefore, from the three plots, the conclusion we 
reach is that the optimal stripe number ns should be 
proportional to the backbone bandwidth B, reverse-
proportional to the brick bandwidth b, and not related to 
the system scale N. Based on this result, we propose that 
the optimal stripe number ns can be given by B/b. In the 
above three plots, the dash-dotted lines correspond to 
the stripe numbers with B/b. We can see that they are all 
very close to the ridges, i.e., the best MTTDL values. 

The formula ns=B/b is a “guideline” formula. Given 
a set of system parameters, one can use our analytical 
framework and some numerical method to find the true 
optimal ns, and the result may be a little different from 
B/b. However, from our analysis, we see that B/b pro-
vides near-optimal system reliability. Thus, the optimal 
chunk size is c·b/B as a function of disk bandwidth, 
backbone bandwidth and disk capacity. 



 

The recommendation of ns=B/b allows a simple and 
intuitive explanation. In the ideal situation, ns pairs of 
sources and destinations participate in data repair in 
parallel, and each pair can have maximum bandwidth of 
b. If ns=B/b, then the overall repair bandwidth is nsb=B, 
which means the repair exactly saturates the available 
network bandwidth. This is the best that one can expect. 
Therefore ns=B/b provides near optimal reliability.  

With ns=B/b, stripe placement provides much better 
reliability than sequential placement and random 
placement. As a numerical example, with our typical 
setting of B=3GB/s, b=20MB/s, k=3, c=500GB, and 
total user capacity of 1PB, our optimal stripe placement 
achieves an MTTDL of 9.41·104 years, and this does not 
vary with object size. In contrast, the sequential place-
ment has an MTTDL of 7.66·103 years, and the random 
placement has MTTDL values worse than sequential 
placement when the average object size is less than a 
few tens of megabytes, and its MTTDL is only getting 
close to the optimal value when the average object size 
is in the gigabyte range, as shown in Figure 4.  

Furthermore, Figure 7 shows that a reasonable range 
around the optimal stripe number (e.g. within an order 
of magnitude change) still permits good reliability that 
is close to the optimal MTTDL. This means that the 
guideline of B/b is reasonably robust and may still be 
applicable even when the network or disks are upgraded 
over the years.  

5.3 Simulation results 

To verify our analytical results, we run simulations 
of a brick storage system to see if the reliability matches 
with the theoretical prediction and if stripe placement 
indeed provides better reliability. 

The simulation is done in an event-driven model. 
There are two kinds of events pushing the virtual time 
forward. One is brick failure events, which are triggered 
by exponentially distributed and independent brick fail-
ures. The other is stripe repair finish events, which are 
triggered at the time when the first stripe repair session 

is finished. When any event occurs, simulator re-
calculates the repair bandwidth for every remaining 
stripe repair session based on the brick and backbone 
bandwidth constraints. All stripes have the same weight 
when competing for bandwidth. 

Figure 8 shows the results of both the simulation and 
the theoretical analysis on stripe placement and sequen-
tial placement. The main results are: (a) stripe place-
ment is better than sequential placement, and (b) for 
stripe placement, simulation results match well with 
theoretical results, while for sequential placement, 
simulation results show much lower MTTDL because 
the theoretical analysis on sequential placement is opti-
mistic. 
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Note: Each simulation result is computed as the average from 
50 simulations, with 99% confidence interval shown in the 
figure. MTTF=30days, B=1GB/s, b=20MB/s, c=500GB, k=3. 
The artificially small value of MTTF is to shorten the MTTDL of 
the system so that the simulations can end within a reasonable 
amount of time. 

Figure 8. Simulation result on MTTDL compar-
ing with the theoretical analysis.  

For pure random placement, the simulation with 
large object size is relatively close to sequential place-
ment, while the simulation with small object size is not 
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(a) Vary with backbone bandwidth. 
MTTF=1000days, b=20MB/s, 
c=500GB, k=3, user capacity = 1PB. 
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(b) Vary with brick bandwidth. 
MTTF=1000days, B=3GB/s, 
c=500GB, k=3, user capacity = 1PB. 
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(c) Vary with system scale. 
MTTF=1000days, B=3GB/s, 
b=20MB/s, c=500GB, k=3. 

Figure 7. Contour plot for system MTTDL 



 

done because the bandwidth allocation calculation in 
this case is prohibitively slow. 

6. Discussion on Correlated Failures 

So far, our analysis assumes that brick failures are 
independent of each other. However, correlated failures 
are frequently observed in practice, because bricks are 
usually from the same manufacturer, and they are oper-
ated under the same environment with similar access 
patterns. The primary difficulty here is how to model 
correlated failures. In our full report [13], we provide a 
simple proposal that adapts our framework to deal with 
correlated failures. The proposal is still preliminary and 
requires further validation. In this section, we sketch our 
approach of dealing with correlated failures. 

Our assumption is that correlated failures do not 
change the MTTF of each individual brick, because 
MTTF is measured in a typical operational environment.  
However, when looking at a large number of bricks, 
their failures are correlated in the sense that when one 
brick fails, more bricks are likely to fail soon. Thus, the 
overall failure behavior is the clustering of failures 
events separated by a quiet period with few failures. 

Accordingly, we convert the failure behavior of the 
independent failure model into the behavior of corre-
lated failure model by compressing failure events in the 
independent model into a short period of time, which is 
followed by a quiet period with no failures. Thus, in the 
correlated failure model, the failure events are more 
clustered, but the overall failure rates remain the same, 
which means that individual MTTF remains the same. 

The computation of MTTDL still uses the framework 
developed for independent failures but it is on the com-
pressed timeline for correlated failures. The result is 
then stretched back to the original timeline.  

This approach allows us to analyze data reliability in 
the environment that exhibits clustered and correlated 
failures. However, its correctness and usefulness re-
quires further validation in practice.  

7. Related Work 

Reliability is one of the key aspects of storage sys-
tems, and it has been studied extensively, especially for 
disk arrays like RAID systems [15]. Reliability studies 
on disk arrays investigate the impact of disk organiza-
tions on MTTDL, and typically use Markov models to 
study the system with independent and exponentially 
distributed disk failures, e.g. [2] [20]. Our work can be 
viewed as an extension of these studies into distributed 
brick storage systems as a generic object store. The 
important new addition to previous models is the con-
sideration of bounded network bandwidth to data repair.  

Many studies [12][1][8][22][14][18] are on similar 
brick storage systems, but their focuses are not on the 
systematic study of data reliability. Many of them do 
address replica placement issues for various reasons. 
The sequential placement strategy has been widely used. 
For example, Petal [12] uses chained declustering [10] 
mainly as a way to improve load balancing, and many 
P2P systems such as PAST [17] and CFS [4] use it to 
simplify management. GFS [8] uses random placement 
to improve data repair performance, but it does not pro-
vide a study on the resulting reliability of the system. In 
our paper, we study the tradeoff to reliability between 
sequential and random placement.  

Several works have investigated the impact of rep-
lica placement on availability, not reliability. In Farsite 
[1], Douceur and Wattenhofer studies dynamic replica 
placement strategies that improve the overall availabil-
ity of files [5][6]. In [18][19], van Renesse and Schnei-
der study DHT-based placement (which is categorized 
as sequential placement in this paper) and random 
placement and their effects on the availability of a dis-
tributed storage system. They use simulation methods 
and do not consider the effect of available network 
bandwidth on data reliability.  

We have proposed the stripe placement policy with 
near optimal configuration parameters. Grouping ob-
jects is not a new concept. The 64MB chunk size in 
GFS is based on its workload and read/write perform-
ance considerations, while the work in [18] groups a set 
of objects into volumes but it is not clear how the num-
ber of volumes is determined. This study points out that, 
from a reliability point of view, the chunk size should 
be a function of available bandwidth, disk bandwidth 
and disk capacity.  

Many coding schemes, in particular Reed-Solomon 
coding [16], are used in RAID-like storage systems. We 
do not incorporate such coding schemes into the analy-
sis of reliability, partly because brick storage systems 
can typically afford more bricks to support simple repli-
cation and avoid the complexity and performance pen-
alty associated with the coding schemes. 

Some previous work (e.g. [3]) studies the effect of 
correlated failures, but we do not find a generic model 
that can facilitate the analysis of system reliability. Our 
model is simple enough to incorporate into our frame-
work for reliability study, but its effectiveness needs to 
be further validated in practice. 

8.  Concluding Remarks 

With an analytical framework that incorporates 
available network bandwidth consideration, we study 
the reliability of distributed storage systems with differ-
ent replica placement schemes. We show that both se-
quential placement and pure random placement have 



 

their drawbacks and propose the stripe placement 
scheme to achieve near-optimal reliability.  

We wish that this study could serve as a guideline for 
system designers and administrators to determine a 
number of system parameters when building such brick 
storage systems, including the root switch bandwidth, 
the stripe number, the replication degree, etc. We be-
lieve that, even though our calculations are based on an 
idealized framework, the recommendations derived (e.g. 
using B/b as the stripe number) are applicable to many 
practical situations, because a reasonable range of val-
ues around the computed values provide the same level 
of reliability as shown by our results. Furthermore, after 
removing the backbone bandwidth constraint, the 
framework should be able to adapt to wide-area peer-to-
peer storage settings. 

As the next step, we plan to implement stripe place-
ment in BitVault [21], a data retention platform built 
with a large number of storage bricks. Future research 
also includes the study on the reliability with heteroge-
neous brick components, and the reliability of place-
ment schemes that are aware of network topologies.  
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