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Abstract

The provisioning of Ambient Servicesis gaining impor-
tance as users become more and more embedded in envi-
ronments that are saturated with electronic devices. In our
previous work, we have proposed the Ad hoc Service Grid
(ASG) approach as a means for deliberately setting up an
infrastructure for providing Ambient Services at medium-
sized locations like shopping malls. In this paper, we in-
troduce a self-repairing Lookup Service architecture that is
able to handle dynamic services in an AGS. These services
can autonomously replicate and migrate within an ASG to
optimize resource usage and message latency. Our Lookup
Service is able to cope with the inconsistencies caused by
service migrations efficiently by applying a lazy, request-
driven update protocol. We discuss the architecture and the
protocols employed by the Lookup Service. Moreover, we
provide experimental results that show the efficiency and
effectiveness of our approach.

1 Introduction

Mobile computing technologies pervade our every-day
life with increasing speed. The mainstream in the area
of mobile service provisioning is represented by cellular
phone networks and WLAN hot spots. Both technologies
currently enjoy wide-spread commercial usage. While cel-
lular networks are used to cover wide areas with services
that are meaningful on a global or regional scale, WLAN
provides Internet access on a small scale (restaurants, air-
port lounges etc.). However, a third technology builds on
ad hoc networking (MANET) principles [1] to seamlessly
provide services that are hidden in our immediate environ-
ment. These are calledAmbient Services. Typically, Am-
bient Services enable the user to interact with resources in
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his vicinity. One example is a user using the nearest printer
without prior configuration. Other scenarios foresee more
complex services that support the user’s actions at his cur-
rent location in an unobtrusive way.

We have proposed a specific infrastructure for provid-
ing arbitrary Ambient Services at medium-sized locations
like shopping malls, hospitals, and construction sites [2].
This infrastructure together with the supporting software
platform for enabling service provisioning is calledAd Hoc
Service Grid (ASG). An ASG uses MANET technology to
connect individual PC-class devices (called Service Cubes)
dispersed over the location. Together, the Service Cubes
provide the basic infrastructure and the resources for service
provisioning. The communication within this infrastructure
is free of charge and at the same time the installation is
quick and easy. Moreover, through the addition or removal
of Service Cubes during runtime, the ASG can be scaled up
or down with minimal effort to fit the current requirements
of the facility. However, the highly distributed nature of this
approach, requires that an ASG has to self-organize many
aspects of its operation. In particular, an ASG service must
be able to find the best Service Cubes for its execution au-
tonomously. Additionally, it needs to be able to replicate
dynamically to meet the current demand encountered in the
ASG. Therefore, ASG services are mobile and replicated.

In this paper, we present the architecture and the pro-
tocols of the ASG Lookup Service. This service is dis-
tributed in nature and employslazy propagation to dissem-
inate lookup information among the distributed lookup ser-
vice instances. The result is a system that can deal with
service location information which is inconsistent and out-
dated due to service migration and replication. We show
that our update protocol is self-repairing with respect to
temporarily inconsistent lookup information. Moreover, our
lazy, usage-driven update propagation minimizes network
load by updating only those parts of the network that are
currently used to access services. Other regions remain out-
dated until they actively take part in interactions between
clients and services. We argue that thissoft definition [3]



of what acorrect or acceptable state of the overall lookup
system is, makes the system flexible and adaptable while
clients still have hard guarantees to rely upon.

The rest of this paper is organized as follows. In Section
2 we discuss other lookup systems and explain their short-
comings with respect to service dynamics. Section 3 intro-
duces the Ad hoc Service Grid infrastructure. The Lookup
Service architecture, its components, and its protocols are
detailed in Section 4. Section 5 covers several possible fail-
ure situations and shows how the lookup protocol recovers
from them to preserve its self-repair feature. Experimen-
tal results, that show the effectiveness and efficiency of the
lookup system, are presented in Section 6. In Section 7, we
discuss open issues and possible drawbacks of the current
system. Finally, Section 8 concludes the paper.

2 Related Work

Any service infrastructure that involves a certain degree
of dynamics has to provide some means for discovering and
looking up services. Therefore, a wide variety of different
lookup architectures have been proposed and implemented
by research and industry. The most prominent industrial
standards are Jini [4], UPnP [5], and Salutation [6]. Jini
was designed to support nomadic, Java-enabled environ-
ments where mobile devices join an existing network and
use services in an ad hoc manner. A Jini lookup service is
discovered using multicast. It may offer Java-based service
interfaces that are downloaded to a mobile device in order
to interact with a given service. Jini lookup services can
form a hierarchy and requests may be passed up this hier-
archy for resolution. Universal Plug and Play (UPnP) is a
framework defined at a much lower level than Jini. It offers
IP address allocation and DNS name assignment for mobile
devices and builds, for example, on DHCP. UPnP’s Sim-
ple Service Discovery Protocol (SSDP) supports registra-
tion and discovery of devices. This may involve dedicated
directory services but does not rely on them. In Salutation,
devices use a Salutation Manager (SLM) for the lookup pro-
cess. SLMs may exchange registration information and sup-
port clients by mediating data transport that covers different
transport protocols. A client queries a near-by SLM in a
similar way as is done in the ASG Lookup Service. How-
ever, none of these industry standards support service repli-
cation and mobility explicitly. The dynamics covered by
these approaches is related tophysical mobility (device mo-
bility) rather thanlogical mobility (software mobility).

In mobile agent research, several lookup mechanisms
have been devised that explicitly support logical mobility
[7, 8, 9]. They either use brute force mechanisms to find a
mobile agent, log current positions at a more or less central-
ized server, or they set up forwarding chains to follow the
route taken by agents [10]. However, maintaining replicated

agents and mediating adequate replicas upon client requests
is not an issue in this area.

3 Ad hoc Service Grid Architecture

WLAN access points and cellular phone networks
present two wide-spread technologies for providing mobile
services to customers. While cellular phone networks are
ideal for covering wide areas with services that may also
be location-based, WLAN is popular for setting up local
hot spots with a very limited geographical extension. Thus,
large-scale as well as small-scale coverage are relatively
straight forward. However, there are locations that range be-
tween these two extremes in terms of scale. Suchmedium-
scale locations include, for example, shopping malls, hos-
pitals, and construction sites. These locations may benefit
from a complete coverage using wireless access technology
in order to provide services to users. Typically, such ser-
vices are provided by local providers (e.g. shop owners) and
accessed by local users. Thus, the bulk of communication
between clients and services is inherently local. Cellular
phone networks introduce unnecessarily expensive, global
communication via some network provider with a relatively
low bandwidth. On the other hand, a coverage based on
access points requires these devices to be wired to some ex-
isting infrastructure. This introduces enormous costs that
often exceed the costs for the wireless equipment by far.

To fill the gap that exists between large-scale and small-
scale coverage, we have introduced theAd Hoc Service Grid
(ASG) [2]. In an ASG, inexpensive, PC-class devices are
dispersed over a medium-scale location (in the order of a
few thousand square meters). These devices (calledSer-
vice Cubes) have a power plug and a wireless network in-
terface that is capable of setting up an ad hoc network con-
nection to the devices in its vicinity. The Service Cubes
(also calledCubes or nodes in the remainder of this paper)
represent the modules of the ASG infrastructure providing
both the access network and the computing resources for
mobile location-specific services. Service Cubes may be
dynamically added or removed to scale the system accord-
ing to the demand. The control and management of this
infrastructure is difficult due to its dynamics and distributed
nature. Therefore, a software platform (calledServiceware)
is required that enables the ASG to self-organize different
aspects of its operation. In the rest of this section, we ex-
plain the key aspects of the ASG infrastructure and its Ser-
viceware before we turn to the ASG Lookup Service.

3.1 Dynamic Service Positioning

A number of uncertainties in the ASG environment pre-
vent services from being placed in fixed, predefined posi-
tions. Even if a Service Cube is chosen that seems to be
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Figure 1. Clustered network topology: Three
clusters with cluster heads 4, 7, and 11.

ideal for a given service replica, the addition of new nodes,
for example, may render it suboptimal over time. Moreover,
the request patterns generated by users may change. Thus,
a single service placed statically on one node may lead to
network congestion and high latencies perceived by users,
if their requests have to be routed through the whole net-
work to reach the service.

Therefore, we introduced different dynamic service posi-
tioning algorithms that are able to migrate and replicate ser-
vices during runtime to react to changes in user demand [2].
These algorithms essentially reduce the distances between
requesting clients and services. Thus, the network load is
reduced and the processing load is shared between the in-
dividual services through replication. This also reduces the
latency perceived by users.

The fact that services may replicate and migrate at run-
time poses special requirements on the ASG Lookup Ser-
vice. It has to be able to deal with this dynamics and still
mediate valid information on how to access services.

3.2 Clustered Network Topology

In order to enforce a basic structure on the otherwise
unstructured ASG network, we adapted a clustering algo-
rithm proposed by Basagni [11]. This distributed algorithm
elects cluster heads and partitions the network into small
clusters (see Figure 1). As a result, each ordinary node
(none-cluster-head) is directly connected to its cluster head.
Cluster heads play a special role in the ASG Serviceware
since they provide infrastructure services like the Lookup
Service.

The clustered topology is also used to simplify the rout-
ing of messages. Each node has a unique ID and a node’s
address consists of its node ID and the ID of its cluster head.
For example, node 1 in Figure 1 has the address “1.4”. The
routing tables hold a next hop node for each cluster head
ID and the node ID in the destination address is used by the

destination’s cluster head to find the node within its cluster.

3.3 Middleware Model

We employ the basic middleware mechanisms of
MESHMdl [12]. This middleware for mobile ad hoc net-
works builds on the abstraction of mobile agents. A
MESHMdl application consists of a group of interacting
agents that may use their mobility to adapt to dynamic
changes in their environment. Moreover,MESHMdl offers
an asynchronous communication mechanism that is based
on tuple spaces [13] to decouple applications and render
them more autonomous and less susceptible to the destruc-
tive effects of device mobility.

3.4 Service Properties

The services running in an ASG are not limited in their
complexity. It should be noted that it is not mandatory for
a service to be able to replicate or migrate at all. The deci-
sion to enable these features is up to the service program-
mer. The Serviceware provides a mechanism and protocols
for achieving data consistency among the replicas of state-
ful services. It implements an eventual consistency model
that is inspired by the one found in Bayou [14]. An ASG
service consists of an arbitrary number of replicas that have
the sameservice type. A Customer Navigation Service and
a Product Information Service in a shopping mall scenario
would be two different service types. Several replicas may
exist for each of them.

3.5 Client Access

Client applications (simply calledclients) are running
on the mobile devices of users. These clients may be pre-
installed on the user’s devices or they may be downloaded
on-demand from the Lookup Service in a similar way as
it is done in Jini [4]. We assume that, as the user moves
through the ASG, his device can always connect to at least
one Service Cube. Through one of these Cubes, the client
may access any services running in the ASG irrespective of
its location.

4 Lookup Service Architecture

One instance of the distributed Lookup Service is run-
ning on each cluster head. Consequently, each ordinary
node has a Lookup Service running on one of its neigh-
bor nodes. Wherever a client connects to the ASG net-
work, it can quickly discover services, lookup service repli-
cas, and download client applications. However, this also
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Figure 2. Request-driven update process.

means that information about the positions of service repli-
cas needs to be disseminated across the Lookup Service in-
stances to make it available locally when needed. Since the
ASG supports service replication and migration, this poses
special problems not present in other lookup systems like
Jini, UPnP, or Salutation.

4.1 Update Process Overview

Before we go into the details of the architecture and its
elements, we give a high-level overview of the basic mecha-
nisms employed. In the ASG, there is a fundamental trade-
off between the network load caused by Lookup Service
updates and the accuracy of the information provided by
the Lookup Service. Keeping all Lookup Service instances
up to date all the time causes a large message overhead.
Not doing so may cause clients to fail because they rely on
outdated location information. To solve this problem, we
employ a lazy, request-driven update strategy.

Figure 2 depicts the basic idea of the update scheme. We
assume that, initially, a service replicaS is running on node
12 and a requesting clientC is connected to node 4. At
that point, the Lookup Services at the cluster heads 1, 2, 9,
and 11 have the correct location ofS. This information gets
outdated asS moves from node 12 to node 3. A reason for
this migration could be a shift of request load that can be
compensated by moving towards this direction. However,
for the update protocol, this is not relevant. Immediately af-
ter the service migration,C still has the old service location
information and continues sending its requests to node 12.
A so-calledProxy Agent on node 12 has been informed by
S about its migration beforeS left. This Proxy forwards
the requests to the new location ofS (node 3). The Proxy
stores meta information in the forwarded requests, mark-
ing them asforwards and containing the new location of
S. S gets a forwarded request and generates a reply. The

meta information from the request message is automatically
copied into the reply. After that,S sends the reply back to
C. As depicted in Figure 2 the reply message may take
a different route than that traveled by the request. As the
reply is routed through the network, the so-calledLookup
Snooper Agents on that route inspect the message and ex-
tract its meta information. One Lookup Snooper Agent is
running on each node. When such an agent detects a service
reply message whose meta information marks it as belong-
ing to a forwarded request, it sends aservice location update
message to its cluster head (depicted as arrows in Figure 2).
This message is read by the cluster head’s Lookup Service,
which in turn updates its location information base with the
new location ofS. Thus, triggered by the reply, all Lookup
Services along the way, including the one used by the re-
questing clientC on node 1, will eventually be updated.
We assume thatC regularly requests the current location
of S at the Lookup Service. As a consequence, after some
requests have been forwarded by the Proxy Agent on node
12,C finally gets the updated information and sends its re-
quests directly to node 3. At that point, normal operation is
restored and the Lookup Services at nodes 1, 2, 9, and 11
are up-to-date again.

Note how only those parts of the lookup infrastructure
are updated that are close to the reply path. Lookup Ser-
vices that are further away, are not involved. They will only
be updated when they are directly involved with requests
sent toS. Moreover, the update information is carried by
reply messages. Only a small number of additional mes-
sages are necessary (“LS update” arrows in Figure 2, also
calledsnooping messages hereafter). In this way, the net-
work load caused by update messages is minimized, but at
the same time, the active parts of the network are kept up-
to-date. This lookup architecture is self-repairing since the
lazy updating process is active throughout the network at
any time, and it is automatically triggered only if location
changes occur. The Lookup Services themselves are only
passively involved in this process.

An active propagation phase precedes this process of
continuous self-repair. This active propagation is triggered
when a service replica is initially started. After its start,S
registers with its local Lookup Service, that in turn propa-
gates this new registration once to all other Lookup Services
to establish this information throughout the system. This is
necessary since a Lookup Service needs at least the infor-
mation about which replicas are running to be able to return
the most adequate one upon a client query. This initial prop-
agation uses acluster head broadcast mechanism offered
by the routing system. A similar propagation is done to re-
move information from the system when a service replica
dissolves (removes itself).

It should be noted that even in remote regions of the
network, where no update arrives over extended periods of
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Figure 3. Establishing forwarding shortcuts.

time, the initial, outdated location information is sufficient
to find a service replica (via forwarding) and update its lo-
cation. This replica may be much further away then initially
estimated by the Lookup Service. This, in turn, is likely to
cause a different replica to be chosen if the client poses the
next query. After a few of these cycles, the local Lookup
Service has sufficiently up-to-date information to return an
appropriate replica to the client.

4.2 The Proxy Agents

Even though the Proxy Agents are not merely dedicated
to the lookup update process, they play an important role.
At each node one Proxy Agent is responsible for relaying
requests to services, analyzing request patterns, triggering
migrations or replications, and forwarding requests to ser-
vices that migrated away. The forwarding process may in-
volve more than one Proxy if the service has gone through
several migrations. Each Proxy only has the information
about the service’s next location. When it forwards a re-
quest, the Proxy at that next location may also have to for-
ward it because the service has already left for the next
node. Thus, a chain of forwards may occur. Note that for-
warding loops can be avoided by removing any existing for-
ward for a serviceS if S revisits a node.

An simple additional mechanism reduces the length of
forwarding chains. This can save transmissions and reduce
latency. Figure 3 depicts how shortcuts can be made in for-
warding chains that eventually eliminate any intermediate
Proxies between the one receiving the original request and
the one currently hosting the service. This can be achieved
by introducing one additional message type. If a Proxy re-
ceives a forwarded message from the previous Proxy in the
chain, it sends aredirect forward message back to the send-
ing Proxy to set that Proxy’s next hop to its own next hop.
For example, node 3 in Figure 3a sends aredirect forward

message back to node 2 when it receives the forwarded re-
quest. The redirect contains the next forward hop of node
3 (which is node 4). Now, node 2 uses node 4 as its next
hop and bypasses node 3 (Figure 3b). Next, node 4 redi-
rects node 3 directly to node 5. Figure 3c shows the situ-
ation after the first request has been forwarded to the ser-
vice’s new location (node 5). When the second request is
forwarded, node 4 redirects node 2 to use node 5 as its next
hop. At that point, all forwards point directly to the ser-
vice’s new location and the chain is resolved (Figure 3d).
This approach does not require any additional state in the
forwarded messages. Moreover, it has the nice feature of
reducing chains based on their usage. If a chain is not really
used, no resources will be wasted to make it shorter. The
more messages pass through it, the shorter it gets. An alter-
native would be to let the Proxy at the new service location
send messages to all forwarding nodes and redirect them in
one step. However, this requires the complete forwarding
path to be put into the forwarded messages.

4.3 The Lookup Snooper Agent

A Lookup Snooper Agent (LSA) is running on each node
and uses the snooping API provided by the middleware to
inspect all messages that originate at or pass through the
node. Its snooping filter matches all messages whose meta
data marks them asforwards and asservice replies. Ev-
ery Proxy that forwarded the respective request, put the last
knownservice record1 of the requested service into the re-
quests meta data. Thus, when the request eventually ar-
rives at the service, it contains the correct service record.
Upon snooping a reply message, a LSA extracts theservice
record and send it to its own cluster head where it is re-
ceived by the local Lookup Service. The Lookup Service,
in turn, replaces its outdated service record with the new
one. To avoid multiple redundant messages, the LSA uses
two mechanisms:

1. It inspects the route taken by the reply message and
discards it, if it has already passed through one or
more nodes in the same cluster. Since the first of these
nodes has already sent the update to the Lookup Ser-
vice, there is no need to resend it. If we assume that
nodes 6 and 7 are both in the cluster of cluster head
2 in Figure 2, then node 6 does not send the update
message to node 2 since it recognizes that node 7 must
have already done so.

2. Each LSA keeps a limited history of service record
uuids sent to the Lookup Service. If it finds a newly
received record in this list, it does not resend it. For a
network of 100 nodes, it turns out that a history of 10

1A service record is the data structure used by the Lookup Service to
store all data pertaining to a registered service replica.



records suffices to avoid unnecessary retransmissions
almost completely.

4.4 The Lookup Service

The actual Lookup Service is rather simple. A client may
query it in one of two ways:

1. It may request a specific service replica via its unique
identifier or

2. it may request a service type.

In the latter case, the Lookup Service will choose themost
appropriate replica and return its service record to the
client. In the current implementation, the “most appropri-
ate” replica is always the one closest to the requesting client.
However, it is also conceivable that other criteria are applied
and that clients specify these criteria in their queries. When
a service registers at a Lookup Service, a service record is
created that holds all the information needed for accessing
the service. A copy of this record is returned to a client as a
result of a successful query.

4.5 Maintaining other Dynamic Data

The ASG Lookup Service is designed to handle dynamic
data (mainly service replica locations) efficiently and ef-
fectively. As a by-product, it is straightforward to update
and maintain additional dynamically changing data and to
provide it to clients. For example, we use this to dissem-
inate the current load experienced by the service replicas
throughout the ASG network. Each service stores its load
(e.g. number of requests processed during a certain time
period) in the meta data of everyn-th reply messages. The
Lookup Snooper Agents listen for messages carrying load
information and propagate it to their Lookup Services. This
enables clients to choose services not only based on their
distance, but also on their load.

5 Self-Repair Properties

We argue that the described system is self-repairing.
That is, it can compensate the inconsistencies caused by
service mobility and preserve alegal state without manual
intervention. For the system’s normal mode of operation,
discussed in the preceding sections, this is obvious. How-
ever, in a system like the ASG, there are also several ex-
ternal influences that may lead to erroneous states beyond
those caused by mobility. In this section we will investi-
gate possible disturbances and explain how the system au-
tonomously returns to a legal state. We start by defining the
term “legal state”.

Definition 1 The state of the lookup system is legal if and
only if any client query

1. yields location information that eventually leads to
the proper delivery of requests to an adequate service
replica, or

2. results in a respective notification if and only if no ad-
equate service replica is present in the system.

Any configuration that does not satisfy this definition is
considered anillegal state. Note that this is a very weak def-
inition. However, it offers a sufficient guarantee to clients
by stating that their requests will arrive. For the client, it
is indeed irrelevant whether the result of its query is out-
dated. A stronger definition is not required. For the lookup
system, however, this weak definition does not enforce rigid
and brittle mechanisms, and it leaves room for flexible solu-
tions. The idea ofsoftening definitions in software systems
to avoid brittleness was first brought forward by Shaw [3].

5.1 Topology Changes

The ASG topology changes if a new node is added or a
node is removed or crashes. Note that the clustering and
routing algorithms are able to compensate such events at
the networking layer. The mechanisms used to achieve this
are well-known and will not be explained for spatial restric-
tions. The question that we discuss here is, how does such a
change effect the lookup information in the system and how
can it recover from illegal states caused by these changes?

If a new node is added and has a cluster head within
transmission range, it simply joins this cluster head. This
has no effect on lookup information. If the new node can-
not join any existing cluster head, it has to become a cluster
head itself and starts its own Lookup ServiceL. To get valid
lookup information, it queries the local routing table for the
closest other cluster head until it finds one that has an op-
erational Lookup ServiceL′. Then,L requests the entire
service table ofL′ and uses it. Even if this service table is
not up-to-date, this information is sufficient for the request-
driven update scheme to work properly. Thus, the system is
in a legal state again.

We assume that there is a regular way of removing a node
which gives the system the opportunity to prepare (e.g. mi-
grate services to other nodes). A harder problem is occur-
ring if a node crashes. If the crashed nodev was a cluster
head, then one of two situation may occur:

1. All the ordinary nodes that were inv’s cluster before
have other cluster heads as neighbors and can join
these clusters. In this case, their addresses change.
While the network routes will be fixed by the rout-
ing algorithm, the outdated addresses stored in Lookup



Services must be fixed by the lookup system. There-
fore, the Lookup Service on each cluster head that in-
tegrates new nodes broadcasts the address changes to
all other Lookup Services.

2. At least one ordinary nodeu that was inv’s cluster
before has no other cluster head as a direct neighbor.
In this case, a new cluster head is selected that starts
its own Lookup Service and updates its empty service
table in the same way explained above for newly added
cluster heads.

If the crashed node was an ordinary node, the cluster
structure is not damaged. Thus, no such repair processes
have to be started. However, irrespective of whether the
crashed node was a cluster head or an ordinary node, there
are basically two problems that may arise for the lookup
system.

1. The node may have been part of a forward chain,
which is now broken, or

2. the node may have hosted service replicas.

We will explain how to cope with both of these problems
in the next two subsections.

5.2 Repairing Broken Forwarding Chains

A forwarding chain is broken if one Proxy in the chain
does not have a valid next forward hop. Either this informa-
tion is missing or the next forwarding hop is not reachable
(has crashed). In addition to missing next hops, loops may
occur in the chain if a service fails to remove old forward-
ing pointers. Missing forward pointers, loops and crashed
nodes can be detected by the last valid Proxy in the chain.
This Proxy sends a notification about the error back to the
client that sent the request. This client, in turn, notifies its
Lookup ServiceL about the problem2. Note that, a bro-
ken forwarding chain means that at least one service replica
is not reachable using the information provided byL. De-
pending on the nature of the service, this may violate def-
inition 1 of a legal state, if no other replica exists or if
other replicas are not adequate. Therefore,L tries to fix
the problem. It removes its invalid lookup entry for the un-
reachable service and broadcasts areset message containing
the replica uuid to all other Lookup Services (cluster head
broadcast). Any Lookup Service that receives this message
and does not know the whereabouts of the replica in ques-
tion, also removes its entry for it. Only the Lookup Ser-
vice that has the replica in its cluster reacts by propagating
the correct information to all other Lookup Services. To

2This can also be made transparent for the client by introducing a client-
side proxy that takes care of such faults. For the sake of simplicity, this is
not the case in the current implementation.

avoid race conditions (propagation messages overtaking re-
set messages), each reset message contains a unique id. A
propagation message that is sent as a response to a reset
messages is tagged with the same id. Thus, if a replica re-
ceives the propagation message first, it is able to recognize
that the respective reset message is missing, and it may ig-
nore the message if it arrives later. Thus, the service’s loca-
tion is updated throughout the ASG. Note that the remain-
ing forward pointers of the broken chain do not present a
problem. Since all Lookup Services in the system have the
correct location after the repair, none of these pointers will
be used again. Moreover, if the service returns to one of
these nodes, it will remove the old pointer anyway.

5.3 Dealing with Service Crashes

If a service replica crashes due to a software error and
its Proxy remains operational, then the Proxy can unregis-
ter the replica properly3. If, however, a replica vanishes, for
example, due to a node crash, different measures have to
take effect. To purge the system from location information
pertaining to replicas that have crashed, each replica has to
periodically send aregistration refresh message to its local
Lookup Service. If a Lookup Service does not receive this
message for an extended period of time, it assumes that the
replica has crashed and was unable to unregister properly.
It reacts by broadcasting areset message (see Section 5.2)
to its fellow Lookup Services which will remove the replica
completely from the lookup system if it has really crashed.
However, if it resides in a different location (failed to unreg-
ister properly before leaving), the correct location informa-
tion will eventually be propagated. If a replica is unable to
send itsregistration refresh message (e.g. due to high load)
and the Lookup Service accidentally assumes a crash, then
the replica will eventually be able to send messages again,
which results in a new system-wide registration.

5.4 Avoiding False Negative Query Results

If, for some reason, a Lookup Service failed to gather
the information about a new service type being introduced
in the system, it would falsely answers client queries neg-
atively, stating that nothing is known about any replica of
that type. This would clearly violate our definition of legal
states. Thus, before a Lookup Service returns a negative
query result, it starts an incremental search to verify its cor-
rectness. It queries the routing table to find all existing clus-
ter heads and their hop distances from its own node. Then it
starts sending queries for the service type in question, grad-
ually increasing the radius of its requests. The assumption
here is that in most cases a near-by Lookup Service will
have the desired information. If, for example, the service

3Note that the replicas of a service may crash independently.



registration propagation for some reason failed at its source,
this protocol will traverse the entire network. In this case,
a normal cluster head broadcast would be much more effi-
cient. Note that in both cases, malicious clients may use this
feature to run denial of service attacks by repeatedly query-
ing for unknown services to overload the network. Resolv-
ing these problems is subject to our current research.

6 Experimental Results

To evaluate the ASG Serviceware and in particular the
distributed Lookup Service, we have conducted a simula-
tion of an ASG network with 100 Service Cubes and three
distinct service types. The clustering algorithm yields 23
clusters on average for a network of 100 nodes. Different
numbers of clients have been simulated (see Figure 4). On
average, each client sends one request every 4 ticks. The
number of mobile clients remains constant throughout the
simulation, and they are started at 250 ticks. The simula-
tion is discrete, and time is measured in ticks. Every 5000
ticks, an adaptation algorithm is run that tries to select better
service locations to reduce the overall network load.
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Figure 4. Lookup correctness measure for the
overall lookup system with broadcast update
propagation (top chart) and snooping update
propagation with different numbers of clients
(bottom three charts).
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Figure 5. Single recovery phase of the snoop-
ing protocol.

The first result is depicted in Figure 4. It presents a com-
parison of a simple broadcast update protocol (first chart)
with our lazy update protocol that is based on snooping (lat-
ter three charts). The lookup correctness measure (LC) in-
troduced in this comparison is simply given as

LC =
∑

C∑
A

where
∑

C is the sum of correct service entries in all
Lookup Services and

∑
A is the sum of all service entries

(correct and incorrect) in all Lookup Services.
The reference broadcast protocol propagates location

changes immediately to all Lookup Services by perform-
ing a cluster head broadcast of the new information. There-
fore, after a small drop inLC whenever a migration takes
place, the system recovers completely in a very short time.
The other three charts in Figure 4 show theLC measure
of three simulation runs with the same initial setup but dif-
ferent numbers of clients. Due to the random initial ser-
vice replica placement (one per service type), the system
performs suboptimal at the start in terms of network load.
Therefore, many adaptations take place in the early stages
on the simulation. After a few adaptation steps, the system
manages to find a good service placement. Thus, the num-
ber of adaptations decreases due to a lack of better place-
ments. Moreover, a single migration has less of an effect
on the correctness as more replicas are added. Therefore,
the drops in theLC measure (at multiples of 5000 ticks)
become less significant over time.

For a small number of clients, the snooping protocol re-
covers relatively slowly from every drop in lookup correct-
ness and only reaches up to about a 95% correct overall
state. This is due to the fact that only the active areas in
the network participate in the update process. In all four
runs, no adaptations where allowed after 50000 ticks. The
smaller the number of clients in the system is, the lower
the final correctness level. This is due to the fact that more
clients produce more requests per time unit, and they pene-
trate the system more completely. Thus, more Lookup Ser-
vices get correct information.
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Figure 6. Lookup update messages.

A single recovery phase of the snooping update protocol
is depicted in Figure 5. It shows the typical behavior of the
protocol. After a sharp drop in correctness due to service
mobility (at 5000 ticks), the protocol very quickly recovers
to a correctness level of about 0.9. This is due to the ini-
tial dissemination of updates along the currently used reply
paths. After that, the curve asymptotically approaches the
theoretical maximum correctness of 1. Thus, the system is
very quick in repairing those regions of the lookup system
that are currently in use and as clients move to different re-
gions, the correctness slowly increases further.

In Figure 6, the upper two charts present a comparison
of the overall update protocol messages transmitted. This
includes broadcast messages and snooping messages. Re-
member that our lazy snooping protocol also uses broad-
casts for registration of new replicas and unregistrations.
The significant reduction in update traffic becomes evident
from the first two charts. The broadcast protocol produces
1050 messages over the 60000 ticks depicted in the chart,
while the snooping protocol produces only 507 messages.
This is a significant improvement of over50%. The third
chart shows only the snooping messages sent. Note how
the sharp peaks in snoop messages corresponds with the
high initial repair rate after each adaptation step (every 5000
ticks) in Figures 4 and 5. The volume of messages quickly
decreases as less Lookup Services need to be updated.

7 Discussion

While the proposed lookup system in its current form
achieves the desired goals in terms of adaptability, effective-

ness, and efficiency, it also has some drawbacks and limi-
tations. In this section we shall briefly discuss some of the
advantages and disadvantages not presented thus far.

Services Replies The general concept of the ASG lookup
system only works for services that generate replies. This
does not present a general problem as any service can send
a reply even if it was only for the sake of keeping the lookup
system up-to-date. Suchnon-functional replies could be
produced and consumed by the Proxy Agents transparently.

Snooping Overhead Message snooping and the general
concept of implementing routing and transport mechanisms
at the middleware layer may introduce additional over-
head. We still need to quantify this overhead. However,
resolving the strictly layered structures of classical dis-
tributed systems is necessary when it comes to achieving
self-organization at the higher layers. Thus, this problem is
of a more general nature and not solely a consequence of
our approach.

Overhead through Forwarding Chains The lazy update
scheme, trades off efficiency of updating with the increased
latency of initial updates passing through long forwarding
chains. However, if a system is heavily used, forward-
ing chains rarely get longer than one or two hops. Thus,
the longer route has only a minimal effect. On the other
hand, if the system is lightly loaded (few clients), then for-
warding chains may get longer since updates happen more
infrequently. However, in these situations the additional
networking resources needed are also available since few
requests have to be transported through the system. This
presents a nice feature as the network adapts to the request
load, minimizing forwarding chains automatically as the
load increases.

Security Self-organizing software systems in general re-
quire new paradigms for achieving security, privacy, and
integrity. Security is, in most cases, associated with ex-
plicit manual configuration and control. This is in stark
contrast with the idea of letting a software system structure
and control itself autonomously. The nature of adequate
security paradigms is currently an open issue and a tough
problem. Therefore, we consciously avoided this topic in
the design of our system thus far. It seems obvious that
some self-repair mechanisms like sending areset message
when a query for an unknown service type is received, open
the gates for denial of service attacks. Such problems will
have to be resolved before platforms like the ASG become
commercially exploitable.



8 Conclusions

As the trend of rendering our every-day environment
more intelligent progresses, Ambient Services that seam-
lessly offer new ways of interacting with the world around
us become more important. To handle the dynamics exhib-
ited by such environments, software platforms need to be
adaptable and able to cope with frequent structural changes
in the supporting infrastructures. In this paper, we have
proposed a new request-driven Lookup Service that is ca-
pable of dealing with service mobility and replication. It
is self-repairing and relies on a request-driven lazy update
protocol to update only those regions of the network that
actively participate in service interactions. Our experimen-
tal results show that the overall lookup system manages to
recover from inconsistent states caused by service mobil-
ity. Moreover, it does so very efficiently by transporting
meta information in regular service replies, and by employ-
ing message snooping to disseminate update information.

This lookup system is a vital ingredient for rendering
service provisioning for mobile users more adaptable. To-
gether with intelligent, dynamic service placement algo-
rithms [2], it enables an ambient service infrastructure like
the ASG to adapt to current client demand to achieve better
resource usage and improved quality of service.

However, our work in the ASG area are only initial steps
towards truly self-organizing software systems for seamless
Ambient Services. As we discussed in Section 7, there are
still some tough questions to be answered and some basic
research to be done. The basic idea of rendering systems re-
active instead of proactive, however, seems to be a promis-
ing general model for self-organizing systems. Moreover,
our approach for building a lookup system, is in line with
the call for soft and homeostatic systems [3]. In our view,
this principle is fundamental for future self-organizing soft-
ware platforms as it broadens the range of acceptable sys-
tem states and enables gradual degradation and autonomous
recovery instead of sudden failure.
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