
Robust Information Dissemination in Uncooperative Environments∗

Seung Jun Mustaque Ahamad Jun (Jim) Xu

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332–0280

{jun,mustaq,jx}@cc.gatech.edu

Abstract

The open nature of peer-to-peer systems has played an
important role in their growing popularity. The current
file-sharing applications, for instance, have been widely
used largely because they allow anyone to participate in
them. This openness, however, brings up new issues be-
cause selfish, malicious, faulty, compromised, or resource-
constrained peers may degrade a system. We explore the
case for large-scale information dissemination through the
design of the Trust-Aware Multicast (TAM) protocol. Nodes
in TAM can exhibit uncooperative behavior such as delay-
ing, discarding, modifying, replaying, and fabricating mes-
sages. While detecting such behaviors, TAM computes a
level of trust for each node and adapts the underlying multi-
cast tree according to trustworthiness of nodes, which leads
to performance improvement in the system. The results from
our simulation and PlanetLab experiments show that even
with a significant portion of nodes being uncooperative,
TAM is able to build a stable dissemination tree that pro-
vides lower message delay to well-behaved nodes.

1 Introduction

As the Internet becomes more pervasive, new appli-
cations will allow users to participate in common activ-
ities even when the users do not trust each other com-
pletely [10, 7]. This observation is already evident in the
peer-to-peer environment. For example, the users of file-
sharing systems such as Kazaa and Gnutella exchange files
without knowing or caring who they are dealing with. This
grassroots openness has brought great success to these ap-
plications because users make minimal assumptions about
other users in the system. Indeed, we believe that future
applications will increasingly require interactions among
users who have varying degrees of trustworthiness.

∗This paper was supported in part by NSF grant ITR-0121643.

The open nature of a peer-to-peer system, while it can
attract users more easily, has generated new issues, one be-
ing that the system opens its doors to both good peers and
bad peers. Nodes controlled by some users can be resource-
constrained and may not be able to execute the agreed-upon
protocols, or worse, they can be faulty, selfish, malicious,
or compromised. We use the term “uncooperative” to re-
fer to such undesirable behavior. Uncooperative nodes can
degrade the system’s ability to meet application needs. In
file-sharing systems, some users can inject malware or bo-
gus files disguised as good ones. Peers come and go eas-
ily, and many of them are selfish [2]. Even when a certain
fraction of user nodes exhibit uncooperative behavior, the
system must be designed to work properly.

In this paper, we explore the case for large-scale informa-
tion dissemination using application-level multicast, which
is challenging because end hosts are more liable to be un-
cooperative than network routers. To address the challenge,
we consider a multicast tree in which nodes are mutually
suspicious except the root node, which is trusted by all other
nodes. In this setting, some nodes will follow the protocol
faithfully while others may be uncooperative for aforemen-
tioned reasons. As a result of uncooperative behavior, for
instance, messages can be illicitly modified or blocked on
the way. In this paper, we address the following question:
how can we provide efficient and reliable information dis-
semination to well-behaved nodes when the messages are
relayed via possibly uncooperative nodes?

To address this question, we propose Trust-Aware Mul-
ticast (TAM). TAM is designed to deliver data in a reliable
and timely manner, even in the presence of uncooperative
nodes in the system. We achieve this goal by detecting un-
cooperative behavior, evaluating nodes based on their be-
havior history, and adapting the multicast tree in such a way
that more trusted nodes are located closer to the root node.
In this way, the system becomes more robust over time. The
property of TAM not only improves robustness but also fa-
cilitates deployment because the system admits any user

{jun,mustaq,jx}@cc.gatech.edu


without establishing a trust relationship beforehand. We
emphasize the necessity of trust awareness as a design prin-
ciple for emerging overlay and peer-to-peer applications.

The rest of the paper is organized as follows. Section 2
explains the assumptions we make in this work and its
scope. Section 3 proposes our TAM protocol, which en-
ables the system to detect uncooperative behavior. Section 4
discusses how to evaluate the trust levels for nodes based
on the behaviors of nodes. Section 5 discusses what con-
stitutes a good multicast tree in our context and how such
a tree can be built. Section 6 shows the evaluation results
from 95-node PlanetLab experiments and 10,000-node sim-
ulation experiments. We show related work in Section 7 and
conclude in Section 8.

2 Assumptions

The threat model of TAM does not restrict the behav-
ior of application nodes; they can modify, fabricate, delay,
block, replay, or do anything to the messages that they are
relaying. In fact, Section 3 shows how to detect such be-
haviors. On the other hand, TAM does not directly handle
impersonation or Sybil attacks [14].

We focus on data integrity and availability while we do
not address data confidentiality. After all, TAM is designed
to disseminate freely available data as broadly as possible
rather than deliver sensitive data to only selected nodes.

As we build an overlay system, we assume that the un-
derlying network is sufficiently robust to support it. We
do not attempt to directly address network failures such as
packet loss and network partitioning. Nevertheless, TAM
is still able to handle such network failures in an indirect
manner as they will affect the trustworthiness of the rele-
vant nodes. For example, if a node is unreachable from the
rest of the system because of physical link failure, it will
eventually be recognized as untrustworthy. We focus on the
trustworthiness of application nodes in this work.

3 Trust-Aware Multicast Protocol

TAM is a single-source multicast system working at ap-
plication level. As each node participating in TAM runs as
an application process, links between nodes are virtual (e.g.,
TCP connections) as opposed to physical. Thus, links can
be added or deleted easily. A multicast group consists of
one root node and many user nodes. The root node is the
source of disseminated information and takes control of the
group. Although the root node can be replicated internally
to avoid the single point of failure, it looks as if there exists
only one root from the view point of a user node. Later in
this section, we discuss how to expand the JOIN protocol so
as to have multiple root nodes. All user nodes are function-

ally equivalent. They may cooperate fully or behave in a
manner that is inconsistent with the protocol.

3.1 Message Delivery

The unit of delivery in TAM is a message. As is the case
with the layered architecture, the interpretation of TAM
messages depends on the upper layer application that con-
sumes the messages. We deliberately separate the transport
mechanism from the message semantics and focus only on
the former in this paper. Our concern is to ensure that each
user node receives messages from the moment it joins a
group until it leaves the group.

Uncooperative nodes can modify, fabricate, replay,
block, and delay messages. To detect such uncooperative
behaviors, we construct a TAM message as a tuple of four
fields: sequence number, timeout period, payload (service
data unit), and cryptographic signature. The first field, the
sequence number, is used to order messages and detect du-
plicate or missing messages, which can result when a node
has an uncooperative parent or when it is moved to a dif-
ferent position in the tree while message transmission is in
progress. The second field, the timeout period, specifies a
timeout value for the next message; if a node does not re-
ceive any message within the specified amount of time, it
suspects that a message may be delayed or lost. The root
transmits a null message if it does not have new data avail-
able until the timeout. The third field, the payload, con-
tains actual data and optionally meta-data that specifies how
the data should be demultiplexed or interpreted. The fourth
field is the cryptographic signature of the message. The sig-
nature is generated by a standard signature algorithm such
as the Digital Signature Standard (DSS) [21]. We assume
that the public key of the root node is publicly available to
the user nodes.

The message, constructed as above, allows nodes to de-
tect misbehavior of other nodes. Illicitly modified or fab-
ricated messages are detected by the message signature.
Replayed messages are detected by the sequence number,
which is incremented for every message so that every mes-
sage is unique and not reusable. Note that even null mes-
sages increment the sequence number. We assume that the
sequence number does not wrap around (by making the field
sufficiently large or concatenating it with a timestamp). De-
layed or blocked messages are detected by the timeout field.

The timeout value should be chosen carefully. If it is
too long, the system may become unresponsive. If it is
too short, null messages may waste network bandwidth and
other resources. Holbrook et al. discuss a similar issue [16].
In many cases, timeout values can be reasonably estimated.
For example, when data are collected from some sensors
periodically, the timeout value can be set to that period. As
another example, if the root node has large amount of data



that will be sent in several messages (e.g., bulk transmis-
sion), it can determine when to send the next message and
set the timeout value appropriately. If it is hard to control
the timeout value, however, we can use an adaptive scheme
in which a timeout value is doubled each time a null mes-
sage is sent consecutively until the value exceeds a prede-
fined limit.

Since message delivery is subject to jitter, the difference
in message delays, due to the fluctuation of network and
end host conditions, an additional amount of time, referred
to as timeout slack, should be allowed before a timeout oc-
curs. The timeout slack can be implemented on either side;
either the root node sends messages earlier than the time-
out, or the user nodes wait longer than the timeout values.
In any case, a straightforward implementation could be vul-
nerable to a subtle attack. Suppose the timeout slack is set
to one second. A malicious node could accumulate these
slacks over, say, 1000 messages, and delay the last mes-
sage by no less than 1000 seconds from the time it was sent
from the root without violating the protocol. We address
this vulnerability by making each user node keep a variable
that accumulates the slacks over the messages while mak-
ing the root node adhere to the timeout value. A slack may
have a negative value when a message arrives earlier than
scheduled in the timeout field of the previous message. If
the slack-accumulating variable for a node tends to increase
over time, it implies that the node undergoes the attack or
that the condition of the path is worsening. While TAM
does not require clock synchronization among nodes, it as-
sumes that clock skew (first derivative of clock offset with
respect to true time [22]) is bounded by a certain value so
that any slack larger than the value is considered abnormal.

3.2 Group Operations

A subprotocol that executes a multicast group operation
is referred to as a command. TAM has four commands:
JOIN, LEAVE, REPORT, and RELOCATE. While the first
three are initiated by a user node, the last is initiated by
the root node. The purposes of JOIN and LEAVE are self-
explanatory. The REPORT command is a means of notifying
the root of a significant event such as the detection of an
uncooperative behavior. The RELOCATE command is used
when the root node wants to move a user node to a differ-
ent place in the tree. For example, a node will receive a
RELOCATE when its parent leaves the group.

Figure 1 shows the protocol for JOIN, where C is a join-
ing node, R the root node, and P the parent node chosen
by the root. In the first step, C sends R its intention to join
along with Cinfo, the information about C, such as its ad-
dress and maximum number of children it is willing to sup-
port. We assume that C knows the address and public key
of R. In the second step, R chooses a parent P for C. Sec-

C → R : “join”, Cinfo

R → C : Pinfo, ticketP = [timestamp, C, P ]KR−1

C → P : ticketP

P → C : messagei

Figure 1. Join protocol. KR−1 denotes the root’s
private key, and [x]K denotes x concatenated with
the signature signed by K.

tion 5 discusses how to determine a parent. The root sends
back the address of P and the ticket that will be handed to
P . This ticket contains the identities of P and C, and a
nonce (a random number to avoid replay attack), which is
then signed by the root. The timestamp is used as a nonce to
guarantee the freshness of the ticket, which avoids a replay
attack. Thus, the ticket prevents C from connecting to an
unauthorized parent. In the third step, C sends this ticket
to P , which accepts C as a child if C submits a legitimate
ticket, and is expected not to accept C otherwise. What if
P accepts an unqualified node? Since confidentiality is not
a concern, P would not be deemed uncooperative even if
it did more work than required. In the last step, if C has
been accepted as a child, P sends the last-received message
to C. After the JOIN command is completed, C becomes
part of the tree. Note that, although we omit the detail, a
shared session key that is used by subsequent RELOCATEs
and REPORTs can be established between C and the root, as
public-key operations are more costly than shared-key op-
erations.

The LEAVE command simply sends the request to the
root before the node leaves the group. Upon the receipt of
the request, the root node sends RELOCATE to each child of
the node that just left the group.

The RELOCATE command is similar to the JOIN com-
mand except that the former is initiated by the root node.
That is, RELOCATE starts from the second step of JOIN. By
moving a node, we mean moving a subtree that is rooted
at the node. The RELOCATE command can also be used
when well-behaved nodes are relocated up the tree or when
misbehaving nodes are relocated down the tree. In such a
non-leave context, RELOCATE requires additional work; the
root should disconnect the relocated node r from its current
parent. Otherwise, r might keep the link to the old parent
as well as the new one in order to take advantage of having
two parents or to simply waste system resource by filling up
an otherwise free position.

When a node moves in the tree, a synchronization issue
arises because the new parent’s last message may not be the
first message that the moving node is missing. The prob-
lem is likely to occur when a node is moving from a node
with high latency to one with low latency. To address this



problem, each node is required to log the last n messages.
To estimate n, we consider the latency difference d and the
inter-message time t, the time interval between two con-
secutive messages. To simplify, we define the system-wide
latency difference d as the maximum latency from the root
to a node in the tree. Then, n can be expressed as d/t.

The REPORT command is used by a user node that re-
ports any type of problem from which it is suffering. This
command is also similar to JOIN except that a subtree, in-
stead of a reporting node alone, is moving and that the first-
step message specifies one of the predefined problem de-
scriptions (e.g., “message delayed”) in a field. According
to the description, if the problem is likely to be persistent,
the reporting node is relocated to a new place. Note that a
node can report about only its parent. This restriction, to-
gether with the fact that a node cannot choose a parent on
its own, makes the protocol robust against collusion or se-
lective attacks in which a node or a group of nodes selects
a well-behaved node and attempts to make it appear to be a
bad one.

If a node that has many descendants delays a message,
its descendants will report the problem at the same time,
which results in the root node being overwhelmed by re-
ports. Such an avalanche of reports is referred to as an re-
port implosion. The report implosion problem is mitigated
in two ways. First, if a node has many descendants, it is
likely that the node has been acting reliably for a long time.
Thus, the possibility that such a node causes the report im-
plosion is relatively low. Second, when an overwhelming
volume of reports occurs, the root can ignore most of them
except for a few top-level ones. As a report request contains
the sequence number that the reporting node is missing, the
root node serves the reporting node only if no ancestor of
the node has previously reported the problem for the partic-
ular sequence number. The rest of nodes are forced to wait
until messages are forwarded from the node that the root
just served. To further alleviate the report implosion, we
prevent all related reports from occurring simultaneously.
Whenever a user node moves, it is informed of a time tx. If
tm is the timeout value specified in the last message m, and
ts is the timeout slack discussed above, the node sends a re-
port after tm + ts + tx from the receipt of m in the absence
of subsequent messages. The value of tx should be propor-
tional to the level of a node in the tree so that any delaying
experienced by an ancestor is likely to be handled during
the additional wait. On the other hand, tx should also be
randomized to prevent an adversary from deducing its level
in the tree.

4 Trust Assignment

Following the discussion about how to detect and report
uncooperative behaviors in the previous section, we discuss

how to evaluate the individual level of trust in this section.
A sound trust evaluation scheme must have several proper-
ties. First, the evaluation scheme should increase the level
of trust slowly, as it reflects how long a user stays in the
system so that users have incentive to stay long. Second,
it must react to negative feedback quickly to minimize the
damage. Third, it should be resistant to collusion. Last, it
need not be secret to work properly. That is, revealing the
evaluation scheme should not give any advantage to attack-
ers.

According to the behavior a node n manifests in the sys-
tem, the root node updates n’s quality, or trustworthiness,
attribute q(n). Positive behavior is often implicit as the ab-
sence of REPORTs from or against a node suggests that the
node behaves well. Another positive sign is willingness that
a node shows to maintain other nodes as children. To reward
the positive behavior, TAM periodically increases q(n) by
αc+β, where α and β are the system parameters, and c the
number of children that n maintains at the moment.

In contrast to implicit positive behavior, negative behav-
ior can and should be detected by the nodes that suffer the
consequences of such a behavior. Although negative feed-
back via REPORT indicates a violation of protocol, it is un-
certain whom to blame from a single report. That is, it is
uncertain whether the event actually happened as the report
indicates, or the reporter is falsely accusing its parent. To
address this problem, the root node should keep track of
behavior history of the nodes. For this purpose, the root
maintains two per-node attributes (hs and hr) in addition to
the quality attribute q. Suppose there is a user node n and
its parent node p. The attributes hs(n) and hr(n) are real
numbers that reflect the recent behavior of n as a sender
and a receiver, respectively. Lower values of the attributes
indicate that the node behaved better. When n REPORTs
against p, the root increases hs(p) by γsq(n)+δs and hr(n)
by γrq(p)+ δr, where γ’s and δ’s are the system param-
eters. Both p and n pay a penalty because it is uncertain
which one, or possibly both, is the cause of the problem.
Because of γ’s, nodes are penalized more if they accuse or
are accused by more trustworthy nodes. Note that these at-
tributes are maintained internally in the root node and are
not publicly available. To prevent adverse effects on the
long-residing nodes, hs and hr values are decremented pe-
riodically.

When a node initially joins the system, it is labeled
“trusted,” and each of the attributes q, hs, and hr is set to
zero. There are two levels of the system thresholds for each
of hs and hr (hence, a total of four thresholds). If a node’s
history value hs(n) or hr(n) exceeds the corresponding soft
threshold, ths

s or ths
r, the quality attribute q(n) is multi-

plicatively decreased. When it exceeds the hard threshold,
thh

s or thh
r , the node is labeled “distrusted,” and its chil-

dren are relocated. Distrusted nodes that do not actively



damage the system may be allowed to stay in the system as
leaf nodes if the system has enough capacity. They can be
evicted at any time, however, when the system is overloaded
and decides not to accommodate less trusted nodes.

The thresholds are adjusted based on the runtime sys-
tem load. This dynamic adjustment not only helps the sys-
tem adapt itself to the workload but also prevents malicious
nodes from managing to stay “right below” the thresholds.
Since the evaluation scheme may be known to anyone, if
the thresholds were fixed, malicious nodes might manage to
cause trouble without exceeding the thresholds (i.e., being
penalized). With the dynamic, nondeterministic thresholds,
if they behave right below the thresholds, they become the
first to be punished when the thresholds become lowered.

During the trust assignment, false positives may occur.
A false positive is the case in which a cooperative node is
labeled “distrusted” falsely. A cooperative node may en-
counter many uncooperative parents or children in a rela-
tively short time. If such children falsely complain about
this node, or the parents force it to complain about them, the
increased hr and hs values of the node may cause it to be
labeled “distrusted.” However, the likelihood of false pos-
itives is low with a sufficient number of cooperative nodes
in the system. Suppose f denotes the fraction of uncoop-
erative nodes in the population. If a node encounters m
nodes that are randomly selected, a random variable X , de-
noting the number of uncooperative nodes among m, fol-
lows a binomial distribution with parameters m and f , pro-
vided the population is sufficiently large. Plotting Pr{X >
a} =

∑m
i=a+1

(
m
i

)
f i(1 − f)m−i against a = 0, . . . ,m−1

shows that this probability decreases quickly. For example,
with m = 20 and f = 0.1, Pr{X > a} is 0.133, 0.043,
0.011, and 0.002 for a = 3, 4, 5, and 6, respectively. With
f = 0.05, Pr{X > a} is 0.016, 0.003, 0.0003, and 0.00003
for the same a’s, respectively. The assumption that a node
encounters randomly chosen nodes is a simplification; in
fact, as shown in Section 5, a better node is more likely to
encounter good nodes. Thus, the false positive rate is even
less than it is in this binomial analysis. Our experiment re-
sults in Section 6 also corroborate TAM’s low false positive
ratio (less than 0.5% for aggressive thresholds and no false
positives for conservative ones).

5 Trust-Associated Tree

Since TAM propagates data through a multicast tree,
its performance relies largely on the quality of the tree.
In this section, we rigorously define the notion of quality,
which serves two purposes. First, it provides a criterion
for evaluating the trustworthiness of a constructed multi-
cast tree. Second, it leads to an algorithm that maintains a
high-quality multicast tree despite the dynamic change in
trustworthiness of the nodes.

We introduce several notations in order to characterize a
good tree. Let n denote a node and q(n) be the quality of n.
The attribute q(n) captures how well n behaves as expected
by the protocol. Specifically, we interpret this attribute as
the likelihood that a message goes through this node safely
in any given attempt. Therefore, q(n) has a value between
zero and one. The assumption behind a single quality at-
tribute for each node is that a node exhibits the same be-
havior for all other nodes with which it interacts. Although
a node may exhibit bad behavior to only selected nodes,
the problem is limited because our protocol does not allow
nodes to select their parents or children. We believe that the
notion of quality we define is reasonable for evaluating our
protocol even in the presence of such “smart” attacks.

The quality is associated with nodes rather than with
links for three reasons. First, we are more concerned with
uncooperative node behavior than network failures, which
would be captured by link trust. Second, a link at the appli-
cation level is a complex entity as it may consist of many
physical links and interposed routers. In addition, virtual
links can be created and destroyed easily. Third, a link fail-
ure can be captured indirectly into the quality of the relevant
nodes.

To capture the root-to-node reliability, we denote as r(n)
the likelihood that the node n receives the packet the root
node has sent in the first transmission without retransmis-
sion or any reliability mechanism. Thus, it is defined as
r(n) =

∏
k∈P q(k), where P is the set of all nodes on the

path from the root, inclusive, to the node n, exclusive. The
node n is excluded from the path P because q(n) represents
the forwarding probability as opposed to the delivering (to
upper layer) probability. For simplicity, we assume that if
the parent of n forwards a message, n is sure to receive
it. Note that r(n) is not dependent on q(n); it is position-
dependent. As a special case, r(root) is defined to be 1.0.
We define the quality of a multicast tree T as

q(T ) =
∑
n∈N

r(n),

where N is the set of all nodes in T . The normalized quality
of a tree can be obtained after dividing q(T ) by the cardi-
nality of N .

The quality of subtrees can be defined in the same way.
We denote q(Tn) as the quality of the subtree Tn, rooted
at n. Consistent to the previous definition, the quality of a
subtree can also be defined recursively:

q(Tn) = 1.0 + q(n)
∑

m∈Cn

q(Tm),

where Cn is the set of n’s children and Tm is the subtree
rooted at child m.

The quality of a tree reflects the expected number of
nodes that would receive a packet that is sent by the root



and forwarded by nodes in the tree. The higher quality value
a tree has, the more nodes receive a message in the initial
transmission. Since the nodes that do not receive a message
from the initial transmission are relocated in our protocol
(see Section 3.2), a tree with low quality value is suscepti-
ble to more structural change, which in turn leads to poor
stability and latency. Thus, we regard the tree with a higher
value of quality as a better one not only from a message
delivery perspective but also from a stability perspective.

Figure 2. Quality-reliability reversal pair. While the
positions in the tree are denoted by A and B, the
nodes themselves are denoted by n1 and n2. That
is, n1 is currently located at A, and n2 at B.

To improve the quality of the tree, we should find points
that can be improved. Suppose there exist two nodes n1

and n2 in the multicast tree such that r(n1) > r(n2) and
q(n1) < q(n2), which means that despite its lower quality,
n1 is located at a more reliable position that is suitable for a
node with higher quality. Such a pair of nodes is referred to
as a quality-reliability reversal pair. The following theorem
gives an idea of how to improve the quality of the tree.

Theorem 5.1 (reversal pair). Given a tree T and a quality-
reliability reversal pair of nodes, swapping either these two
nodes or two subtrees rooted at them always increases q(T ).
Furthermore, we can always decide whether to swap nodes
or subtrees.

Proof. From the recursive definition of q(T ), we can derive
the equation for change of quality ∆q(·):

∆q(T ) =
∑

n∈N ′

r(n) ·∆q(Tn),

where N ′ is the set of nodes that satisfies two conditions:
(1) Tn for all n ∈ N ′ covers all the changes in T , and (2)
for any two nodes in N ′, one is not an ancestor of the other.

In Figure 2, q1 is short for q(n1) and q2 for q(n2); and
Q1 =

∑
m∈Cn1

q(Tm) and Q2 =
∑

m∈Cn2
q(Tm). Recall

that the values of rA and rB are unchanged, no matter what
node substitutes the positions of A and B, as long as their
ancestors remain the same. We divide the problem into two
cases.

For Case 1, where Q1 ≥ Q2, swapping the two nodes
increases the quality because

∆q(T ) = rA(q2Q1 − q1Q1) + rB(q1Q2 − q2Q2)
= (rAQ1 − rBQ2)(q2 − q1) > 0.

For Case 2, where Q1 < Q2, swapping the two subtrees
increases the quality because

∆q(T ) = rA(q2Q2 − q1Q1) + rB(q1Q1 − q2Q2)
= (rA − rB)(q2Q2 − q1Q1) > 0.

Noteworthy are two special cases for the quality-
reliability reversal pair. First, for a reversal pair, one is the
parent of the other. In this case, swapping these two nodes
always increases the quality. Second, in the case that A in
Figure 2 is empty, moving the node at B to A increases the
quality.

The optimal tree is one that maximizes the quality, given
a set of nodes and their quality values. For simplicity, we
assume that the quality values of the nodes are all distinct.1

Without loss of generality, the siblings are ordered from left
to right in the decreasing order of their quality values so that
we can avoid isomorphic trees. We denote as ni the i-th
visited node by the left-to-right breadth-first traversal from
the root, i.e., n1. Recall the constraint that the maximum
degree of a node is d.

Theorem 5.2 (optimal tree). The optimal tree T , in which
every node has a unique quality value and the maximum
out-degree d, must have the following two properties. First,
the quality value of the nodes is monotonically decreasing.
That is, for any i and j (i < j), q(ni) > q(nj). Second, T
is a complete d-ary tree. That is, there exists an index k such
that degree(ni) = d for all i < k, 0 ≤ degree(nk) ≤ d,
and degree(nj) = 0 for all j > k.

Proof. It suffices to show that a tree violating either prop-
erty is suboptimal. Suppose a tree violates the first prop-
erty. Then, there must exist the smallest index i such that
q(ni−1) < q(ni). Note that the parents of ni−1 and ni must
differ according to our convention for the order of siblings.
Since the quality values are decreasing before ni, r(ni−1)
must be greater than r(ni). Thus, the two nodes are a rever-
sal pair, and the tree is suboptimal by Theorem 5.1.

If a tree satisfies the first property but violates the second
property, there must exist two indexes i and j (i < j) such
that degree(ni) < d and degree(nj) > 0. Since moving
one of nj’s children under ni increases the quality of the
tree (the second special case of the reversal pair), the tree is
suboptimal.

From Theorems 5.1 and 5.2, we can conclude the follow-
ing:

1If quality values of nodes can be equal, more than one optimal tree
that have the same q(T ) can exist. Our theorem can be easily extended to
find all such optimal trees.



Corollary 1. Nonexistence of quality-reliability reversal
pairs is the sufficient and necessary condition for a tree be-
ing optimal.

Proof. Nonexistence of quality-reliability reversal pairs is a
necessary condition because if there exists such a pair in a
tree, the tree cannot be optimal according to Theorem 5.1.
It is also a sufficient condition because any suboptimal tree
must be different from the optimal tree that is defined in
Theorem 5.2 and therefore must have at least one reversal
pair (contrapositive).

When nodes constantly join and leave, and their quality
values frequently change, it is difficult to remove all rever-
sal pairs. Nevertheless, we can approximately achieve the
goal of maximizing the quality of tree. We adapt the tree in-
crementally by moving subtrees, each of which is rooted at
the reporting node, one at a time. Thus, selecting appropri-
ate new parents is the only means that achieves the goal of
keeping the tree in a good shape. When the root node picks
up a new parent for a node n, it retrieves the rank r(n) by
the descending order of the quality values q’s for all nodes.
Its appropriate level l is computed as logd r, where d is the
average out-degree. Then, the root node chooses randomly
a node that is at or near level l−1. To support this operation,
we periodically sort the list of nodes in the descending or-
der of quality. The sorted list may be inconsistent because
nodes join and leave, and the quality of nodes can change
at any time. To mitigate this inconsistency, TAM records a
major event such as a node being labeled “distrusted” in a
temporary storage until the next sort.

6 Evaluation

We evaluated how TAM performed in both 95-node
PlanetLab experiments and 10,000-node simulation exper-
iments. The parameters for the experiments are listed in
Table 1, in which N is the total number of nodes, f is
the fraction of uncooperative nodes, and d is the maximum
out-degree of each node. The rest are used for assigning
trust values to nodes and are explained in Section 4. Up-
dating trust for implicit positive feedback occurred every
ten seconds for the PlanetLab experiments or every round,
explained later, for the simulation experiments. The param-
eters were set to the values in the table during the experi-
ments unless otherwise stated.

We model the behavior of nodes by assigning each node
two behavior parameters. The forward parameter, rang-
ing [0,1], is the probability that a node forwards a message
each time it receives one. The report parameter, also rang-
ing [0,1], is the probability that a node does not generate a
false report each time it receives a message. Thus, a lower
value for both parameters results in uncooperative behavior
more frequently. When a node is instantiated, if a node’s

Table 1. Experiment parameters. The numbers in
parentheses are the default values for the simula-
tion experiments.

Param. Description Value
N Total number of nodes 95 (10,000)
f Fraction of uncooperative nodes 0.1
d Maximum capacity of children 2 (5)
α Weight factor for children 0.01
β Trust increment parameter 0.01

γ{s,r} Multiplicative parameters 4.0
δ{s,r} Additive parameters 1.0
thh

{s,r} Hard thresholds 40.0
ths

{s,r} Soft thresholds 20.0

forwarding behavior is chosen to be uncooperative, the for-
ward parameter is chosen uniformly randomly from [0,0.5];
otherwise, it is set to one in the PlanetLab experiments or
uniformly randomly chosen from [0.995,1] in the simula-
tion experiments to simulate natural failure. The report pa-
rameter is chosen in the same way as, but independently of,
the forward parameter. We classify a node as uncoopera-
tive if either or both of the parameters are chosen from the
lower range. Since a node is instantiated as uncooperative
with the probability f , the fraction of uncooperative nodes
in the population is probabilistically equal to f . The actual
fractions were very close to f in all the experiments.

6.1 PlanetLab Experiments

We implemented the protocol in C++ with the cryptlib
toolkit [15] for cryptographic operations. We ran the root
node on a Linux machine equipped with an Intel Pentium
4 2.4 GHz processor and 512 MB memory. For the user
nodes, we selected one machine from each of 95 Planet-
Lab [23] sites. Although the machines of PlanetLab tend to
have higher network capacity than those that comprise the
typical peer-to-peer environments [5], the testbed enabled
us to subject the experiment to the real Internet characteris-
tics. We controlled user nodes through SSH remote execu-
tion.

To compensate for the relatively small number of nodes,
we set the value of the maximum degree d to 2 so that the
tree could be sufficiently deep. We tested three cases, each
of which represented a different value of the uncooperative
node ratio f (0.1, 0.2, and 0.4). We randomized the order
of three runs to reduce the impact of uncontrollable effects
such as node loads and background traffic. Then, we repli-
cated a set of three cases three times (hence, a total of nine



runs). The plots show the results averaged over the three
replicated runs. We looked into the individual results, and
the variations within the same case were sufficiently small
for us to be confident in the consistency of the results.

10 50 100 500 1500
0

20

40

60

80

100

Time in seconds

N
um

be
r o

f n
od

es
 in

 s
ys

te
mnumber of nodes

f=0.1
f=0.2
f=0.4

0

1

2

3

4

number of reports

N
um

be
r o

f r
ep

or
ts

 p
er

 s
ec

on
d

(a) Report rate and system size

10 50 100 1000 3000
0.4

0.5

0.6

0.7

0.8

0.9

1

Message sequence

P
or

tio
n 

of
 n

od
es

 th
at

 re
ce

iv
e 

m
es

sa
ge

f=0.1
f=0.2
f=0.4

(b) Message delivered

Figure 3. PlanetLab experiment. Note that the x-
axes of both graphs are in log scale. In (a), The
three Γ-shape lines represent the individual num-
ber of nodes in the system, corresponding to the
right y-axis.

The three Γ-shape lines in Figure 3(a) represent the num-
ber of nodes in the system plotted against time, correspond-
ing to the right y-axis. The lines show sharp increase in
the beginning and slight decrease afterwards. Note that the
x-axis is in log scale. While the sharp increase occurs be-
cause we invoked all user nodes remotely at the same time,
the slight decrease occurs because some nodes were identi-
fied as uncooperative and eliminated. Although we reserved
95 nodes on PlanetLab, some nodes did not respond occa-
sionally. That is why the f=0.2 line stays on top of the f=0.1
line. The former case had more nodes to begin with on aver-
age than the latter case. The remaining lines in Figure 3(a)
show the report rates plotted against time. All cases show
that the system stabilized quickly and stayed stable. The
difference between the f=0.4 case and the f=0.2 case in the
report rates is noticeably larger than between the f=0.2 case
and the f=0.1 case. In a balanced tree of out-degree two,
roughly half of the nodes are non-leaf. As the uncoopera-
tive factor f approaches this extreme, the cost to stabilize
the system becomes even larger than the increase of f .

The PlanetLab experiments ran in an unreliable delivery
mode, which means that missing messages were not retrans-
mitted. Figure 3(b) shows that as time progressed, messages
were delivered to more nodes. Between times 10 and 100,
which correspond to message sequences 20 and 200, many
nodes missed messages, which corresponds to high report
rate in Figure 3(a). After the system became stable, the suc-
cess rate of delivery stayed high.

6.2 Simulation Experiments

To complement the PlanetLab experiments, we set up
simulation to evaluate our system in terms of three met-

rics. First, the stability, measured by the number of relo-
cated subtrees, should increase over time in the presence of
uncooperative nodes. Second, the quality of the multicast
tree, defined in Section 5, should also increase over time.
Third, the quality-depth correlation indicates how TAM re-
wards cooperative nodes by locating them closer to the root
than uncooperative ones.

The time unit in simulation is a round, which represents
a delivery of a single message. Unlike the PlanetLab ex-
periments, in which several messages can be pipelined in
transit, only one message is delivered at a time. Thus, each
message corresponds to a round, and vice versa. In each of
the first ten rounds, 10% of the N nodes joined the system.
After that, no more nodes joined. Unlike the PlanetLab ex-
periments, the nodes that were identified as distrusted were
not eliminated from the system.

Two tree management schemes, the random and the tam
schemes, have been tested. In the random scheme, when-
ever a new parent has to be selected, it is chosen randomly
from the nodes whose out-degree is not saturated. The ran-
dom scheme serves as a baseline case. The tam scheme is
implemented as we describe TAM in this paper.

As each experiment was replicated three times, each line
in the graphs shows the average of the results. We also in-
spected individual results and confirmed that the variance
between replicated runs was sufficiently small.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

of
 m

ov
ed

 s
ub

tre
es

Round

f=0.20
f=0.10
f=0.05
f=0.01

(a) Random

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n 

of
 m

ov
ed

 s
ub

tre
es

Round

f=0.20
f=0.10
f=0.05
f=0.01

(b) TAM

Figure 4. Stability change. The y-value can exceed
1.0 because a node is allowed to move more than
once in a round.

Figure 4 plots against rounds the number of relocated
subtrees divided by the total number of nodes, as each line
represents a particular fraction of uncooperative nodes in
the population. We use this fraction of relocated subtrees as
a metric for stability of the system. Since a node can move
multiple times in a round until it receives, the y-value can
exceed 1.0. The random case shows no improvement over
time. Interestingly, the f=0.20 line continued to go up to 2.4
at the end of simulation, although clipped out in the graph.
This instability resulted from the nodes that continued to
cause the victims to move around without being punished
properly. In contrast, since TAM responded quickly, the
system became and stayed stable in all cases.



0 5 10 15 20 25 30
0

0.05

0.1

0.15

Fr
ac

tio
n 

of
 m

ov
ed

 s
ub

tre
es

Round

thh=80
thh=40
thh=20
thh=10

(a) Stability

10 20 40 80
0

0.1

0.2

0.3

0.4

0.5

thh

Fa
ls

e 
po

si
tiv

e 
ra

te
 (%

)

0.476

0.055
0.011 0.000

(b) False positive rate

Figure 5. Trade-off between the transient period
and the false positive rate. Note that the unit of (b)
is percent.

Figure 5 shows the effect of the threshold value on the
transient period and the false positive rate. Recall that TAM
labels the nodes that misbehave consistently as distrusted.
A false positive occurs when a node with behavior param-
eters chosen from the higher range (explained in the begin-
ning of this section) is identified as distrusted by TAM. In
every line in the graphs, both thh

s and thh
r were set to the

same value as indicated by thh. The soft thresholds were
set to half of the hard threshold values. Lower threshold
values stabilize the system more quickly, but also tend to
result in more false positives. In the thh=10 case, which cor-
responds to the first bar in Figure 5(b), 4 nodes, on the av-
erage of three runs, were labeled as distrusted among 8995
nodes whose parameters were chosen from the higher range
(hence, supposed to be cooperative) at the end of the simu-
lation. A threshold set to 40 led to no false positives.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1 f=0.01

f=0.05

f=0.10

f=0.20

N
or

m
al

iz
ed

 q
ua

lit
y

Round

(a) Random

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 q
ua

lit
y

Round

f=0.01
f=0.05
f=0.10
f=0.20

(b) TAM

Figure 6. Quality change.

Figure 6 shows how the quality of trees, as defined in
Section 5, changes for the two different schemes. The f=0.20
case of the random scheme shows degrading quality that
matches increasing instability in Figure 4. While the ran-
dom scheme shows decent performance when f is small,
the tam scheme shows good performance close to the limit
after round 10 even if f is large. The tam scheme performed
poorly in the beginning rounds in which a large number of
nodes were joining the system.

We analyzed the simulation data to see how many coop-
erative and uncooperative nodes occupied the bottom posi-
tions of the tree. The notation “bottom x%” refers to x% of
nodes that are the farthest from the root node. A tie was bro-

ken by random selection. In the beginning, we observe that
uncooperative nodes were evenly distributed throughout the
tree. At the end of the simulation, half of the uncooperative
nodes were located at the bottom 10%. In particular, 91%
of nodes among the bottom 5% were uncooperative. Some
uncooperative nodes, especially those that joined late, were
not identified as such because they remained leaf nodes. If
more nodes had joined, these uncaught nodes would have
been selected as parents and eventually identified as dis-
trusted. We believe that if the system works on an ongoing
basis, most uncooperative nodes will be identified correctly.

7 Related Work

Peer trust can provide robust service against uncoopera-
tive users in several different contexts: anonymous search
network [19], file sharing system [12], e-commerce [24],
and general settings [1]. In addition to peer trust, other
approaches consider redundancy (e.g., secure routing for
structured overlay [8]) and game theory (e.g., unicast ad-
hoc routing among selfish nodes [25]).

Diot et al. explain the deployment issues in IP multi-
cast [13]. To ease the deployment, recent research has
moved a step towards the application level [17, 18, 4].
Banerjee and Bhattacharjee explain and compare some of
them [3]. More recent application-level multicast systems
put emphasis on better utilizing available resources from
all participating nodes for both performance and fairness.
SplitStream [9] achieves this goal by using multiple trees.
Each peer serves as an internal node in only one of the trees
while being a leaf node in the rest of them. Bullet [20]
takes a hybrid approach; it relies on the tree for initial de-
livery, and then data are simultaneously disseminated via a
mesh of nodes. TAM has a potential weakness in that some
distrusted nodes, when becoming leaf nodes, may not con-
tribute as much as they should. However, the problem di-
minishes because such nodes are evicted first whenever the
system resource becomes limited.

Several reliable multicast systems have been proposed.
Holbrook et al. [16] propose the receiver-side (NAK-based)
reliability, which presumes that no problem exists until re-
ceivers complain. TAM shares the same reliability seman-
tics. Pbcast [6] provides the “almost all or almost none”
semantics, relaxed from total reliability, in favor of scala-
bility while it relies on a native multicast facility for initial
transmission. These reliable multicast systems primarily
deal with moderate packet loss or network failure. A dis-
tinct feature of TAM is its ability to deal with uncooperative
nodes.

BitTorrent [11] has complementing features as it is a
pull-based model while TAM is a push-based model.



8 Conclusion

This paper discusses a large-scale overlay multicast sys-
tem that works without having a priori knowledge about
trustworthiness of the participating nodes. Working without
such knowledge is becoming more important as it becomes
common for a system to work beyond a single administra-
tion boundary. TAM, using the reports from the nodes that
detect uncooperative behavior, evaluates the trustworthiness
of participating nodes. According to the evaluation, well-
behaved nodes are rewarded by moving closer to the source
while misbehaving nodes are punished by moving down in
the tree, or even being evicted, so that they impact fewer
nodes and contribute less to instability.

Peer-to-peer systems are gaining popularity largely be-
cause they appeal directly to a huge number of end users.
The direct appeal requires the systems to be robust against
uncooperative peers because individual peers have auton-
omy to act as they wish; their choice often leads to many
problems if the systems are not designed properly. Thus, we
argue that trust awareness must be inherently built in these
systems. We believe that our work demonstrates a concrete
instance of trust-aware computing.

References

[1] K. Aberer and Z. Despotovic. Managing trust in a peer-2-
peer information system. In Proc. the International Confer-
ence on Information and Knowledge Management, 2001.

[2] E. Adar and B. A. Huberman. Free riding on Gnutella. First
Monday, 5(10), Oct. 2000.

[3] S. Banerjee and B. Bhattacharjee. A compara-
tive study of application layer multicast protocols.
http://www.cs.umd.edu/projects/nice/
papers/compare.ps.gz.

[4] S. Banerjee and B. Bhattacharjee. Scalable application layer
multicast. In Proceedings of ACM SIGCOMM, 2002.

[5] S. Banerjee, T. G. Griffin, and M. Pias. The interdomain
connectivity of PlanetLab nodes. In Passive and Active Mea-
surements (PAM) Workshop, Apr. 2004.

[6] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu,
and Y. Minsky. Bimodal multicast. ACM Transactions on
Computer Science, 17(2), May 1999.

[7] M. S. Blumenthal and D. D. Clark. Rethinking the design
of the internet: The end-to-end arguments vs. the brave new
world. ACM Trans. Internet Technology, 1(1), 2001.

[8] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure routing for structured peer-to-peer overlay
networks. In Proc. the Symposium on Operating Systems
Design and Implementation, 2002.

[9] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh. SplitStream: High-bandwidth
multicast in a cooperative environment. In Proceedings
of ACM Symposium on Operating Systems and Principles,
2003.

[10] D. D. Clark, J. Wroclawski, K. R. Sollins, and R. Braden.
Tussle in cyberspace: Defining tomorrow’s internet. In Pro-
ceedings of ACM SIGCOMM, Aug. 2002.

[11] B. Cohen. Incentives build robustness in BitTorrent. http:
//bittorrent.com/bittorrentecon.pdf, May
2003.

[12] F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati. Choosing reputable servents in a P2P net-
work. In Proc. the international World Wide Web Confer-
ence, 2002.

[13] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balen-
siefen. Deployment issues for the IP multicast service and
architecture. IEEE Network, January/February 2000.

[14] J. R. Douceur. The sybil attack. In Proc. the 1st Interna-
tional Workshop on Peer-to-Peer Systems, 2002.

[15] P. Gutmann. cryptlib encryption toolkit. http://www.
cs.auckland.ac.nz/˜pgut001/cryptlib.

[16] H. W. Holbrook, S. K. Singhal, and D. R. Cheriton. Log-
based receiver-reliable multicast for distributed interactive
simulation. In Proceedings of ACM SIGCOMM, 1995.

[17] Y. hua Chu, S. G. Rao, and H. Zhang. A case for end system
multicast. In Proc. SIGMETRICS, 2000.

[18] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and
J. J. O’Toole. Overcast: Reliable multicasting with an over-
lay network. In Proc. OSDI, 2000.

[19] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The
EigenTrust algorithm for reputation management in p2p net-
works. In Proc. the International World Wide Web Confer-
ence, 2003.

[20] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet:
High bandwidth data dissemination using an overlay mesh.
In Proceedings of ACM Symposium on Operating Systems
and Principles, Oct. 2003.

[21] National Institute of Standards and Technology. Digital sig-
nature standard (DSS). FIPS PUB 186, May 1994.

[22] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis. RFC
2330. framework for ip performance metrics, May 1998.

[23] PlanetLab. http://www.planet-lab.org.
[24] L. Xiong and L. Liu. A reputation-based trust model for

peer-to-peer eCommerce communities. In Proc. IEEE Con-
ference on E-Commerce, 2003.

[25] S. Zhong, J. Chen, and Y. R. Yang. Sprite: A simple, cheat-
proof, credit-based system for mobile ad-hoc networks. In
Proc. INFOCOM, 2003.

http://www.cs.umd.edu/projects/nice/papers/compare.ps.gz
http://www.cs.umd.edu/projects/nice/papers/compare.ps.gz
http://bittorrent.com/bittorrentecon.pdf
http://bittorrent.com/bittorrentecon.pdf
http://www.cs.auckland.ac.nz/~pgut001/cryptlib
http://www.cs.auckland.ac.nz/~pgut001/cryptlib
http://www.planet-lab.org

