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Abstract

We consider the problem of handling similarity queries
in peer-to-peer databases. We propose an indexing and
searching mechanism which, given a query object, returns
the set of objects in the database that are semantically re-
lated to the query. We propose an indexing scheme which
clusters data such that semantically related objects are par-
titioned into a small set of clusters, allowing for a sim-
ple and efficient similarity search strategy. Our indexing
scheme also decouples object and node locations. Our
adaptive replication and randomized lookup schemes ex-
ploit this feature and ensure that the number of copies of
an object is proportional to its popularity and all replicas
are equally likely to serve a given query, thus achieving
perfect load balancing. The techniques developed in this
work are oblivious to the underlying DHT topology and can
be implemented on a variety of structured overlays such as
CAN,CHORD, Pastry, and Tapestry. We also present DHT-
independent analytical guarantees for the performance of
our algorithms in terms of search accuracy, cost, and load-
balance; the experimental results from our simulations con-
firm the insights derived from these analytical models.

1 Introduction

Distributed Hash Table (DHT) based peer-to-peer sys-
tems such as CAN, CHORD, Pastry, and Tapestry [12, 18,
14, 20] support a basic abstraction: the lookup. Given a
query for a specific key, the lookup efficiently locates the
node which owns the key. Although all DHTs implement
the basic lookup functionality efficiently, most real-life ap-
plications demand more. For instance, consider an Informa-
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tion Retrieval (IR) application where nodes publish a collec-
tion of text documents. Each document is characterized by a
d-dimensional vector. The field of IR is replete with vector-
space methods for such document representations (for e.g,
see [2, 5]). A query consists of a vector and the user needs
all documents in the database which match this vector or
which are semantically related to it.

DHTs do not support information retrieval applications
like the one above. The fundamental reason which renders
DHTs ineffective in these situations is that data objects in a
DHT are distributed uniformly at random across the net-
work nodes. While this ensures that no node stores too
many objects, it also scatters semantically related objects
across the network. Thus, when a query is issued, the only
way a DHT can return all objects relevant to it would be to
flood the entire network, leading to unacceptable network
loads.

Our focus in this work is to efficiently support simi-
larity queries for text information retrieval in DHT based
overlay networks. We introduce a new query model where
users issue queries of the form (x, δ). Here x is a data
object and δ is a distance measure. The search algorithm
needs to return all data objects y in the network such that
f(x, y) ≤ δ, where f is an application specific distance
function. The schemes presented in this paper are geared
towards the Cosine distance metric which is defined as fol-
lows: f(x, y) = cos−1 x·y

|x||y| , where x · y is the dot product
between the vectors and | · | is the Euclidean (l2) norm. The
Cosine distance is a widely used distance function in text
retrieval applications.

The key technical challenges which we attempt to ad-
dress in this work are as follows:

1. Developing an efficient object placement and search
mechanism such that given a query for an object, the
search returns all objects in the DHT which are similar
to the query object.



2. Developing efficient mechanisms for adaptive replica-
tion of popular objects so that query loads are uni-
formly distributed across network nodes. This is par-
ticularly relevant for systems which support similarity
searching: similar objects tend to be co-located with
each other and if an object is popular, then other ob-
jects similar to it can also be expected to be popular.

3. Developing mechanisms which are oblivious to the un-
derlying DHT technology so that the resultant system
can be implemented over a variety of DHT topologies,
making it possible to leverage other advantages spe-
cific to each DHT.

The techniques developed in this work address all the chal-
lenges identified above. In particular, we view the following
as the main contributions of our work.

• We develop an indexing scheme which clusters data
such that a group of closely related objects belong to
a small set of clusters. This in turn paves the way for
an efficient search mechanism for answering similarity
queries.

• Our indexing scheme decouples object and node loca-
tion in the DHT, allowing popular objects to be adap-
tively replicated in the DHT. We propose simple adap-
tive replication and randomized lookup algorithms to
exploit this feature of our indexing algorithm. Our
adaptive replication scheme ensures that the number of
copies of a key in the DHT is proportional to its pop-
ularity and the randomized lookup scheme guarantees
that a query is equally likely to be served by any of the
replicas of that key in the DHT. Thus, the replication
and randomized lookup algorithms together guarantee
perfect load-balancing.

• We present precise analytical guarantees for the per-
formance of our algorithms in terms of search accu-
racy, cost, and load-balancing. All the algorithmic and
analytical results presented here are oblivious to the
underlying DHT topology, thus making it possible for
implementation over any DHT.

The key driver behind our techniques is the notion of
similarity preserving hash functions (SPHs) [4]. SPHs pro-
vide a powerful and interesting property in the context of
our work: given a set of points which are at a small distance
from each other, with high probability, an SPH maps these
points onto a “small” set of related indices. Such a mapping
leads to a simple search strategy as follows: a node u which
has a query (x, δ), computes the set of indices which are
relevant to object x; u then queries all the nodes which own
these indices. The queried nodes return the set of relevant
objects back to u. The use of SPHs for developing provably

good similarity search algorithms is one of the key innova-
tions of this work.

The rest of the paper is organized as follows. We sur-
vey related work in Section 2. Section 3 formally describes
our data and query model and Section 4 presents a detailed
description of the major techniques developed in this work.
Section 5 presents analytical performance evaluation of our
schemes and Section 6 presents the results of our experi-
mental studies.

2 Related Work

Several researchers have proposed mechanisms to extend
the scope of DHTs beyond the traditional lookup. Vahdat
et al. [13], Liu et al. [10], and Shi et al. [16] address effi-
cient keyword searching in DHTs. The work of Gupta et
al. [8] and Schmidt et al. [15] use SPHs to distribute high
dimensional data vectors on top of a CHORD overlay. The
former supports approximate range queries while the latter
supports exact range queries. The work of Gopalakrishnan
et al. [3] supports efficient set intersection operations using
view trees. The pSearch system [19] comes closest to
our work, since this is the only system prior to our work
which supports similarity searching in any DHT.

2.1 The pSearch System

The pSearch system [19] supports similarity queries
for real-valued data vectors for the Cosine distance metric
(see Section 3). It is built on top of the CAN DHT [12] and
uses Lexical Semantic Indexing (LSI) [5] for indexing text
documents. Object coordinates derived from these indices
are used for routing and object location. Although the ba-
sic goals of pSearch is the same as ours, the techniques
presented here differ significantly from those developed in
pSearch. We outline some of the key differences and the
resulting trade-offs below.

1. pSearch uses projections of object coordinates de-
rived from the LSI algorithm as object indices. This re-
stricts object indices to only real vectors which makes
it implementable only on the CAN DHT and precludes
its implementation over other popular DHTs such as
CHORD, Pastry and Tapestry. This is due to the fact
that all DHTs invoke customized object-to-node map-
ping functions for mapping a given object onto a node
in the DHT. While the range of this mapping function
is a real vector for CAN, this is not the case in other
DHTs (for CHORD it is a real number in the range
[0, 360); for Pastry or Tapestry it is a bit string). In con-
trast, our indexing scheme simply partitions the data
into clusters and assigns the same index to each object
in the cluster; we allow the underlying DHT mapping



functions to assign indices to nodes in the DHT. Thus,
our schemes can be implemented over any underlying
DHT topology.

2. The object placement algorithm in pSearch converts
the CAN physical overlay into a semantic overlay such
that nodes within a small physical neighborhood store
data objects which are similar to each other. This
has an implicit advantage since similar objects can be
retrieved by flooding a small neighborhood of nodes
within a region. This physical locality is not always
possible with our object location technique, since we
allow the underlying DHT mapping functions to assign
object clusters to nodes. Hence, a single-hop neighbor-
hood query in the pSearch system may correspond to a
DHT lookup in our scheme resulting in increased net-
work traffic. However, the tight coupling of object and
node location in pSearch virtually makes it impossible
for adaptive replication of highly popular objects in the
system for effective query load balancing. Our index-
ing scheme provides for adaptive replication of pop-
ular clusters and avoids hotspots; this is one of most
significant flexible features offered by our techniques
vis-a-vis the pSearch system.

3. Our indexing scheme relies on the notion of Similar-
ity Preserving Hash functions which hash a group of
related objects onto a small set of indices. While the
primary motivation for our work is supporting cosine
similarity for use in text retrieval applications, the ba-
sic techniques developed here can be generalized to
a large class of data and query models and similarity
metrics which support SPHs. One such important cat-
egory is image and multimedia retrieval which can be
supported by the SPHs developed by Indyk et al. [9].
The use of SPHs also allows us to model the behav-
ior of our system in terms of the search accuracy vs.
search cost using precise analytical models which are
independent of the underlying DHT. Thus, unlike the
pSearch system, the use of SPHs make our tech-
niques applicable to a variety of data models and sim-
ilarity metrics, allows for precise analytical modeling,
and is oblivious to the underlying DHT topology, thus
staking a strong claim for widespread acceptance in
peer-to-peer database applications.

2.2 Adaptive Replication

Object placement algorithm within DHTs typically place
objects uniformly at random on one of the DHT nodes in
an attempt to balance query load. While this is reasonable
under assumptions of uniform query-rate for all objects, in
practice, query behaviour tends to follow very skewed zipf-
like distributions [17]. This behaviour is even more acute

in systems which co-locate related objects to support simi-
larity searching, since objects close to popular objects also
tend to be popular. Most DHTs provide only for static repli-
cation where each object in the DHT is replicated a fixed
number of times and hence do not deal with non-uniform
query distributions.

The Lightweight Adaptive Replication (LAR) protocol
of Gopalakrishnan et al. [7] addresses this problem by mea-
suring the load on individual servers and using the load
measurements to create appropriate number of copies of
a key. They also modify the DHT lookup primitive by
augmenting nodes in the DHT with information about the
newly created copies. We note that the adaptive replica-
tion technique presented in this work is similar in spirit to
this scheme, since our technique also relies on server load
information for spawning and retracting copies of a key.
However, our scheme differs from that of LAR in signifi-
cant ways: a query node in our scheme is required to have
a good estimate of the current number of copies of a key in
the system (failing which the query may incur more than a
single DHT lookup; however the query is still guaranteed
to be successful even without a good estimate). However,
unlike LAR, our scheme does not require nodes in the DHT
to be augmented with ”routing hints” to direct the lookups
to the appropriate replicas. We also note that, like LAR,
our scheme is also oblivious to the underlying DHT topol-
ogy and can be implemented on top of any DHT. Finally,
our techniques are also interoperable with LAR or any other
adaptive replication protocol specific to any DHT.

3 Data and Query Model

Information Retrieval (IR) applications frequently model
text documents as term vectors. A term vector is a vector of
real numbers; coordinates in the vector correspond to terms
and the value of each coordinate represents the relative fre-
quency of the corresponding term within the document. In
general, terms may correspond to keywords or a combina-
tion of keywords found within the documents. It is also
usual to normalize the term vectors so that vectors are of
unit length, in order to account for the variable sizes of the
documents. Several techniques exist in the IR literature for
representing documents as term vectors, most of which are
variants the Vector Space Model (VSM) [2] and the Latent
Semantic Indexing (LSI) schemes [5].

For the rest of this paper, we assume that all data ob-
jects are unit vectors in a d-dimensional Euclidean space.
Equivalently, the data objects may also be viewed as points
on the surface of the d-dimensional unit hyper-sphere. Two
objects are considered similar, if they lie close to each other
on the surface of the unit sphere. Formally, let x and y be
two objects and let θ be the angle between them. The sim-
ilarity between x and y is defined by the function f , where



f(x, y) = cos(θ) = x · y, the so called dot-product or the
inner-product of x and y. The distance between x and y
is defined as the angle θ. The greater the value of f , the
smaller the angle θ, and the more similar are the objects x
and y. We note that the pSearch system also works with
this data and similarity model.

We assume that user queries of the form q = (x, δ),
where x is a d-dimensional unit vector and 0 ≤ δ ≤ π

2
is the distance measure. An object y matches query q if y is
sufficiently close to x: i.e., cos−1 x · y ≤ δ. The search ac-
curacy is defined as the fraction of matching objects in the
system that are returned by the search. The search cost is
defined as the number of lookups performed by the system
during the search. The algorithms presented in this paper
trade-off search accuracy with respect to search cost.

4 Design Details

Four basic techniques underlie the mechanisms devel-
oped in this paper. Following is a brief description of these
techniques.

• The Indexing Scheme partitions the data-space into
several clusters. Each data object is assigned an index
and clustering is achieved implicitly by assigning all
objects which have the same index to the same clus-
ter. The indexing scheme guarantees that any set of
objects which are sufficiently similar to each other are
assigned either to the same cluster or to a small group
of clusters. The indices are treated as keys by the DHT;
each index is owned by some node and all objects with
this index are stored by the node which owns the index.

• The Search Algorithm computes a set of indices S
which are relevant to the given query q = (x, δ); it then
performs a lookup for each index in S. These lookups
terminate at a set of nodes, which return all objects
owned by them that match the query q. In general, a
higher search accuracy would require the algorithm to
compute a larger set of indices S resulting in higher
search costs.

• The Adaptive Replication algorithm ensures that the
number of copies of each key in the network is pro-
portional to its popularity. Specifically, the number of
copies of each key in the DHT is proportional to the
rate at which queries arrive for this key. The creation
and retraction thresholds, which are global system-
wide parameters determine how aggressively copies
are created or retracted in the system.

• The Randomized Lookup algorithm guarantees that
the lookup for a specific key terminates uniformly at
random at one of the copies of this key. Thus, the

lookup and the replication algorithms together guaran-
tee that the load is balanced uniformly across all copies
of all keys in the system.

In the following sections, we present the details involved
in each of these techniques.

4.1 Indexing

Each data object in the peer-to-peer database is assigned
an index. We now propose a hash function h which takes a
d-dimensional data object x as input and computes a k-bit
string h(x) as output. The string h(x) is the index of object
x. Let r be a d-dimensional unit vector. Corresponding to
this vector, we define the binary function br as follows:

br(x) =
{

1 if r · x ≥ 0
0 if r · x < 0 (1)

br(x) defines the orientation of x w.r.t. r. This function
was proposed by Charikar [4] for estimating cosine dis-
tances between points in high dimensional space. He also
observed that if r is chosen uniformly at random from all
d-dimensional unit vectors, then for any two vectors x and
y, Pr [[]br(x) �= br(y)] = δ

π , where δ = cos−1 x·y
|x||y| is the

angle between the two vectors in radians. Our hash func-
tion h is parametrized by a set of unit vectors r1, . . . , rk,
each of which is chosen uniformly and independently at
random from the set of all d-dimensional unit vectors. The
hash value h(x) is simply the concatenation of the bits
br1(x), . . . , brk

(x). Objects with the same index belong to
the same cluster. Object x is stored at the node which owns
the DHT key h(x).

The above hashing scheme essentially attempts to group
nearby objects to indices with low hamming distance. How-
ever, there is still a reasonable chance that nearby objects
can differ in some bit positions in their indices. In order to
reduce the probability of this bad event from occurring, we
construct t hash functions h1, . . . , ht as described above,
which yields t sets of object indices. This ensures that there
is a high probability of two related objects hashing onto in-
dices with low hamming distance in at least one of these
sets. We note that we can treat these sets of indices as a
static replication of objects; the static replicas are also anal-
ogous to the ”rolling indices” in the pSearch system. Fur-
ther, we show both using theoretical analysis (see Section 5)
and using simulations (see Section 6) that static replication
boosts the search accuracy. However, it does not address the
problem of load balancing, which we deal with in Sections
4.3 and 4.4. We emphasize again that these static replicas of
objects are not the same as multiple copies of the DHT keys.
For the remainder of the paper, we use the term replicas to
denote the static replicas and the term copies to denote the
multiple copies of a DHT key created by the adaptive repli-
cation algorithm.



4.2 The Search Algorithm

The search algorithm is parametrized by a radius r,
which is a non-negative integer. A node u which generates a
query (x, δ) first computes the index h(x). It then computes
the set S of all indices whose hamming distance from h(x)
is at most r (i.e., the set of indices which differ from h(x) in
at most r bit positions; note that S always includes h(x)).
Let V be the set of nodes in the network which own the keys
in S. Node u queries each of the nodes in V . Nodes in V
return all data objects which match u’s query.

How is the search radius r determined? The search ra-
dius r is affected by various parameters such as k, t, the
query parameter δ, and the desired search accuracy. Fixing
all other variables, an increase in the value of r would re-
sult in more objects which match the query being returned.
Of course, the increased accuracy is also achieved at an
increased search cost. We examine the effect of r on the
search accuracy and cost in Section 5. We note that the
search algorithm may be easily extended to the case where
we have t static replicas of the objects in the system.

4.3 Adaptive Replication

We now present the details of our adaptive replication
scheme which creates and retracts keys adaptively depend-
ing on load conditions. Keys in our system refer to indices
within a specific static replication, although, in general, the
replication scheme is oblivious to what the keys may refer
to. Recall that in a DHT, each key y is mapped onto a ran-
dom value m(y) using a mapping function m; a lookup for
m(y) terminates at a specific node u which is said to own
m(y); this node stores a copy of the key y. Our replication
scheme parametrizes the mapping function m with a posi-
tive integer i. Specifically, let s = m(i, y). Then, the node
which owns s is responsible for storing the ith copy of the
key y. We now describe how to a create a new copy and
retract an existing copy of a key in the DHT.

Consider a key y which currently has l copies. The
main invariant maintained by the replication algorithm
is that the copies are contiguous, ranging from 1 to l:
i.e., the l copies are placed at nodes which own values
m(1, y),m(2, y), . . . ,m(l, y) respectively. The copies can
be visualized as nodes of a complete binary tree, with copy
i being the parent of copies 2i and 2i + 1. We note that
the binary tree abstraction is completely implicit and there
are no pointers associated with children or parents of copies
in reality. All nodes in the system maintain two thresholds
rhigh and rlow and a periodic local timer. A node which
owns a copy of y performs the following check at the end
of each period: let the number of queries it received for key
y in the previous time period be q; if q ≥ rhigh, it creates
copies l + 1 and l + 2 of y. If q < rlow, it retracts copies

l and l − 1 of y. Creation and retraction are both achieved
by sending a message to the parent of the nodes which own
the corresponding copies; if the parent has not already per-
formed the creation (retraction) it performs this action after
receiving a creation (retraction) message. These messages
are routed using the standard lookup primitives of the DHT.
We observe that the creator or retractor of a copy need not
know the node which owns the last copy l of y, or its parent,
but just the value of l.

How does a creator (or a retractor) of a copy know the
value of l? We note that a simple solution is to notify all
nodes which own a copy of y, whenever a copy is created or
retracted in the system. Yet another solution is to perform a
simple binary search in the range 1, . . . , lmax, where lmax is
the maximum number of replicas allowed for any key within
the DHT. We note that the latter discovers the value of l after
O(log(lmax)) lookups with high probability.

4.4 Randomized Lookup

Let node u generate a query for key y and let there be
l copies of y currently in the system. If node u knows the
exact value of l, it chooses a random number i in the range
1, . . . , l and performs a lookup for m(i, y). This ensures
that all copies of the key are equally likely to serve this
query. However, in general, nodes can not be expected to
have exact information about the number of replicas for a
specific key in the DHT. We now show how our random-
ized lookup solves this problem in two scenarios. In the
first scenario, node u does not have any information about
l. In this case, it performs a randomized binary search in the
range 1, . . . , lmax to obtain a copy of y. Specifically, u se-
lects a random number l1 uniformly in the range 1, . . . , lmax

and performs a lookup for m(l1, y). If this lookup returns a
copy of y, the lookup terminates. Else, the node repeats the
randomized binary search in the range 1, . . . , l1 − 1. The
randomized lookup terminates whenever any of these DHT
lookups returns a copy of y. Observe that the randomized
lookup is guaranteed to terminate for any initial estimate of l
since the successive DHT lookups are in strictly decreasing
ranges and a lookup for m(1, y) is guaranteed to terminate
successfully.

Fixing the initial estimate of l at lmax results in at most
O(log(lmax)) DHT lookups with high probability. How-
ever, this increased lookup latency may be unacceptable for
many applications. One way to avoid this problem is for
each node to estimate the value of l using counting bloom
filters [6]. Counting bloom filters are compact data struc-
tures for checking set membership in distributed environ-
ments. In our setting, the entries in the counting bloom
filter are of the form (i, y). If such an entry exist, it indi-
cates that the ith copy of key y exists in the system. These
bloom filters are updated periodically to reflect any changes



in the number of copies of any key. We note that an ex-
act estimate for the number of copies is not required for the
correctness of our lookup algorithm. Hence, one possible
optimization in the bloom filter design is to just store en-
tries of the form (i, y) where i is a power of two, instead of
all values of i in the range 1, . . . , lmax. This results in an es-
timate of l which is at most within a factor of two from the
correct value, thus only slightly increasing the randomized
lookup latency while decreasing the size of the bloom filter
substantially (from O(lmax) to O(log(lmax)). The work of
Mitzenmacher [11] discusses several techniques for updat-
ing counting bloom filters in distributed settings with low
message overhead.

5 Analysis

Consider a query q = (x, δ). Let S be the set of all
objects in the database which matches this query. Let S′ be
the set of objects returned by the search algorithm. Recall
that t is the number of static replications, k is the the number
of bits in the index and r is the search radius. We define the
accuracy of the search to be |S′|/|S|, i.e., the fraction of
objects in the database which match the query and which
are returned by the search. E[|S′|/|S|] denotes the expected
accuracy. Due to lack of space, we present the following
theorems without proof and defer the detailed proofs to the
journal version of this paper.

Theorem 1

E[|S′|/|S|] ≥ 1−
(

1 −
r∑

i=0

(
k
i

) (
δ

π

)i (
1 − δ

π

)k−i
)t

(2)

Theorem 2 Let the number of keys being looked up be C.
Then,

C = t
r∑

i=0

(
k
i

)
(3)

We note that in general, the search cost could potentially
be greater than C. This is because, each key lookup could
result in more than a single DHT node lookup in the ran-
domized lookup algorithm. However, we show in Section
6 that this is not the case: each key lookup on an average
incurs only slightly more than one node lookup even with a
bloom filter of small size.

Theorem 3 Let the number of copies of a key y at time t be
l. Then a lookup for key y at time t will terminate at one of
these l copies uniformly at random.

6 Experiments

Our experiments assume an underlying CHORD net-
work that provides lookup, insert and delete primitives. The
number of nodes in the network is fixed throughout all our
experiments.

6.1 Similarity Search

Data objects in our simulations are sampled uniformly at
random from the surface of the d-dimensional unit hyper-
sphere. This is achieved by sampling each coordinate of the
vector independently from a standard normal distribution.
A k-bit index of a data object is created using k random unit
vectors. We use static replication with t hash functions. We
use the publicly available CHORD simulator [1] for evalu-
ating the accuracy results. Initially all nodes and keys are
inserted into the CHORD simulator. Each query object is a
randomly sampled d-dimensional unti vector. We observe
the effect of the number of replicas t, the search radius r,
the size of the index k, the dimensionality of the data d,
the number of nodes n, the number of data objects N , and
the query parameter δ on the search accuracy and storage
load. The default values of these parameters are in the table
below. Results are averaged over 100 trials.

N d k t r δ n

50,000 15 10 1 1 0.75 2k=1024

Table 1. Default values for network parameters
used in the similarity search experiments

To evaluate storage load, we sort the nodes in decreas-
ing order of number of objects they store and group them
into 20 buckets. For each of the buckets, we plot the per-
centage of the total number of objects stored in the nodes
of the bucket. The baseline for comparison is the uniform
distribution where each bucket stores 5 percent of the ob-
jects. Figure 1 (a)-(g) plot the effect of the various system
parameters on accuracy. We plot both the experimentally
observed values as well as the analytically predicted ones.
The accuracy increases as a function of the number of repli-
cas t and the search radius r. It does does not vary much as
a function of the data dimension d or the number of nodes
n or the number of data objects N in the system. How-
ever, the accuracy decreases with the size of the index k as
well as the query parameter δ. Our analysis predicts the ex-
perimental trends accurately in all the trials. This suggests
that the accuracy guarantees provided by our analysis do
not only hold in expectation, but also with high probabil-
ity. Also note that the experimentally observed values are
always higher than the analytically predicted ones. This is
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Figure 1. Experimental Results for Accuracy and Storage Load Balance

explained by the fact that our analysis always yields a lower
bound on the expected accuracy rather than the exact value.

Figure 1 (h)-(i) plot the effect of the number of replicas
and the size of the index on the storage load across nodes.
We observe that increasing the size of the index k adversely
affects the storage load balance while increasing the number
of replicas t aids load balance. Varying other parameters
does not seem to change the storage distribution across the
nodes.

6.2 Adaptive Query Load Balancing

In our adaptive query load balancing experiments, we
have 100,000 data objects distributed over a network with
5000 nodes. The data and keys are generated as mentioned
in the previous section. We generate 100,000 queries for
these objects according to a Zipf distribution. The skew in

the distribution causes a small number of keys in the net-
work to become load hot-spots while most other keys re-
ceive very few queries. The queries arrive according to an
exponential distribution with an expected inter-arrival time
of 1 time unit . Local timer events occur every 1000 time-
units.

All nodes maintain a query log (since the last local timer
event) for each copy of a key assigned to it. At a local
timer event, a node calculates the query rates for each of the
keys assigned to it and then decides for each key whether
to create a copy or retract an existing copy. This deci-
sion in determined by global creation and retraction thresh-
olds. We study the effect of load balance with respec to the
thresholds. In all our experiments, retraction is turned off
(rlow = 0). This also makes analyzing the results easier.
We set lmax, the maximum number of copies of a key to
250.
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Figure 2. Experimental Results for Adaptive Replication

When querying a key y, a node needs to estimate the
number of active copies of y. The query converges to an
active copy using randomized binary search over the range
[1, est(y)], where est(y) is the estimated number of cur-
rent copies of y. This range determines the number of DHT
lookups before the query terminates. We compare two dif-
ferent schemes for estimating the number of copies. First,
we use a global counting bloom filter that has 4-bit coun-
ters, 2 hash functions and whose size is 3 × 2k × lmax,
where k is the size of each key (10 in our case). This
bloom filter experimentally generates a false positive rate
of 0.237. We compare this with the pessimistic estimate
est(y) = lmax. We also compare with the ideal (hypotheti-
cal) scenario where every node has perfect knowledge about
the number of copies for each key.

In Figure 3 and 4(a) respectively, we compare load bal-
ance across nodes with and without adaptive balancing and
with different creation thresholds. Both figures show the top
20 percent of the nodes that have the highest loads. Clearly,
the load on the hot-spot nodes is alleviated by spreading
the load over other nodes. It can be observed that nodes
that had low load with no adaptive replication have pro-
gressively higher loads with more aggressive copy creation.
However, the load balancing does not come for free. We
can see from Figure 4(b) that the lower the threshold, the
more the number of copies created, which explains the re-
duced load on hot-spots. It can also be seen from the plot
that the number of copies created is not uniform over the

keys. Some keys have significantly more copies than others
for all thresholds. Ideally, we would like the popular keys
to have more copies. This is confirmed by Figure 6. Figure
6(b) shows the query rate over the 1024 keys in the net-
work. Note the significant spikes which denote the popular
keys. Figure 6(a) shows the number of copies created for
the same keys when using the most aggressive threshold of
3. We can see that the replica creation correlates with query
rates. Specifically, the following table presents the correla-
tion coefficient of the distribution of requests over keys and
the distribution of number of copies created for the keys for
different creation thresholds. We can see that in all cases
the distributions are very strongly correlated, and the more
aggressive the creation threshold, the stronger the correla-
tion.

thresh 3 5 10 20 50
CorCoeff 0.975 0.971 0.939 0.899 0.724

Table 2. Correlation Coefficients between
query rate on keys and number of replicas
created for key when using different creation
thresholds. 1.00 indicates perfect correlation

In Figure 5, we compare the average number of DHT
lookups for a query on a key when estimating the current
number of copies for the key using a bloom filter with the
pessimistic estimate of lmax and the hypothetical scenario
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Figure 4. Effect of Varying Replication Threshold
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Figure 6. Replication Response to Query Rate
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Figure 3. Effect of Adaptive Replication on
Load Balance.

when the correct number of copies in known. We observe
that the use of the bloom filter with a small false positive
rate reduces the number of lookups to 1 per query, which
is the case for perfect knowledge. However, without the
bloom filter, the average number of lookups is about 5.
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