

Supporting Live Development of SOAP and CORBA Servers

Sajeeva L. Pallemulle, Kenneth J. Goldman, and Brandon E. Morgan
Washington University in St. Louis

Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA

{sajeeva, kjg, bem2}@cse.wustl.edu

Abstract

We present middleware for a Server Development
Environment that facilitates live development of SOAP and
CORBA servers. As the underlying implementation
platform, we use JPie, a tightly integrated programming
environment for live software construction of Java
applications. JPie provides dynamic classes whose
signature and implementation can be modified at run time,
with changes taking effect immediately upon existing
instances of the class. We extend this model by automating
the server deployment process, allowing developers to
devote their full attention to the implementation of server
logic. Moreover, the live development model enables the
construction of server applications while they are running,
connected, and communicating with test clients. Combined
with our Client Development Environment, these features
facilitate the live, simultaneous construction of both the
client and server applications.

1. Introduction

Remote method invocation (RMI) using the client
server paradigm has become a prominent model for
developing distributed applications. The Simple Object
Access Protocol (SOAP) [1] and the Common Object
Request Broker Architecture (CORBA) [2] are two leading
technologies that support this model. Although SOAP and
CORBA differ significantly in design and usage, the
implementation of RMI applications using these
technologies follows a similar pattern.

The development of client-server applications using
the RMI model requires the creation of separate client and
server applications. Therefore, simultaneous development
depends upon both endpoints having a consistent view of
the common interface. The traditional approach to this
problem has been to interleave the editing and testing
phases through the deployment of the two applications at
various stages of development. However, an approach that
combines client and server development into a single
unified activity is attractive in streamlining application

development and ensuring interface consistency between
the client and server.
 We present a Server Development Environment
(SDE) as an extension of JPie, a tightly integrated
development environment supporting live construction of
Java applications. JPie embodies the notion of a dynamic
class whose signature and implementation can be modified
at run time, with changes taking effect immediately upon
existing instances of the class [3]. We build upon JPie to
support live server development. Namely, we
automatically detect additions, deletions and mutations in
the set of server operations to update the server interface
description as needed. Further, we completely abstract
away the low level deployment details by automating the
publication of the server interface description and the
creation of server backend components, so developers can
concentrate on the server logic. In conjunction with our
Client Development Environment (CDE) [4], this results in
a live integrated development process in which the client
and server applications can be developed simultaneously.
To preserve consistency, live changes in the server’s
interface are reflected in the running client program.

Our architecture supports technologies such as SOAP
and CORBA that use an interface definition language
(IDL) to communicate the server interface to the clients.
SDE supports SOAP by building upon the Apache Axis [5]
implementation and supports CORBA using OpenORB
[6]. Our design can be extended to support other
technologies that use IDLs.

This paper makes several contributions. We introduce
techniques for automated server deployment, automated
publication of the server interface, and the detection of
stable changes in the server implementation. In addition,
we present the design and implementation of a mechanism
implemented jointly by SDE and CDE, which facilitates
live, simultaneous client-server development.

The remainder of the paper is organized as follows.
Section 2 provides background on distributed application
development in SOAP and CORBA and presents brief
overviews of JPie and CDE. Section 3 provides an
overview of related work. Section 4 focuses on the SDE

Client Machine

Server Machine

user interaction mechanism for creating server
applications. In Section 5, we present the SDE architecture
and discuss the mechanisms used to create backend
components and automate the publication of the server
interface. Section 6 focuses on live, simultaneous client
server development and the interaction between SDE and
CDE. In Section 7 we discuss the performance and
overhead of using SDE. We conclude, in Section 8, with a
summary and directions for future work.

2. Background

For our initial implementation of SDE, we decided to
concentrate on SOAP and CORBA. We chose two
technologies to ensure that the design was sufficiently
extensible to support multiple technologies. Both SOAP
and CORBA use interface definition languages yet have
different overall frameworks. This section presents
background on SOAP and CORBA, as well as on JPie and
CDE.

2.1. SOAP

Servers that use SOAP are popularly known as Web
Services. Web Services use the Extensible Markup
Language, (XML) [7] to present the server interface to the
clients as well as to communicate with those clients.

As shown in Figure 1, when a Web Service is
established, it uses the Web Services Definition Language
(WSDL) [8] standard to publish a WSDL document that
potential client applications can use to gather information
required to invoke methods on the Web Service.

WSDL is an XML-based schema that contains
information such as the Web Service location, the methods
available for remote invocation on that Web Service, and
details on invoking those methods. The WSDL standard
supports direct encoding of a small subset of Java object
types and permits the encoding of complex data structures
using XML. These complex types enable Web Services to
exchange user defined objects or data structures with
clients as parameters and/or return values.

The client applications use the information published
in the WSDL document to form an XML document known
as a SOAP Request that encapsulates the remote method
call in a standard textual format. The SOAP Request is
then sent to the Web Service.

The Web Service uses the method and parameter
information encoded in the SOAP Request to invoke the
method call with the appropriate parameters. It then
constructs a SOAP Response that encapsulates the data
returned from the method call in a standard XML format.
The SOAP Response is then sent back to the client. The
client receives the SOAP Response, decodes it, and returns
the data to the calling program.

Figure 1: The client-server interaction using SOAP
proceeds in three steps. First, the server interface
definition is obtained by the client. Then the client
parses this definition and uses the resulting method
stubs to make remote method requests using SOAP.

The underlying transport medium that supports this

publish-request-response mechanism is provided by the
Hyper Text Transport Protocol (HTTP) [9].

2.2. CORBA-RMI

The Common Object Request Broker Architecture
(CORBA) defines a high-level communication model for
distributed computing. In this paper, we consider only the
RMI aspect of CORBA. The most important notion in the
CORBA-RMI specification is an Object Request Broker
(ORB) [3]. In a client-server system that uses CORBA-
RMI, the Client ORB and the Server ORB form the
communication endpoints. They direct invocations and
results between remote objects located on client and server
sides. ORBs use IIOP (Internet Inter-Orb Protocol) [3] to
communicate over a network. Unlike HTTP, which only
allows text to be transported over it, IIOP supports a wide
range of primitives, data structures, and object references.

Unlike SOAP, CORBA decouples the interface
definition from the location information. CORBA-RMI
servers use CORBA Interface Definition Language
(CORBA-IDL) [10, 11] to describe object interfaces and
an Interoperable Object Reference [3] (IOR) declaration to
encode and provide the server URL and port data to the
clients. A CORBA-RMI client must attain both a CORBA-
IDL document as well as an IOR in order to establish a
communication link with a server.

The module element is the root element of any
CORBA-IDL document. An interface element, similar to a
Java class, encapsulates instance variable declarations and
method declarations. The module may contain uniquely
identified interfaces.

WSDL
Compiler

SOAP Client

Server Method
Stubs

Server Method
Implementation

WSDL Document

(2)
SOAP

Request
Message

(3)
SOAP
Reply

Message

 HTTP

(1)
WSDL

Document

SOAP End Point

Server Machine

Client Machine

Figure 2: Initially the CORBA-IDL and IOR definitions
are retrieved from the server. Using the IOR the client
ORB is initialized. Remote methods defined in the
CORBA-IDL are invoked on the client ORB, which
contacts the CORBA Servant though the server ORB
to obtain the return object.

 The CORBA-IDL to Java mapping permits the type of
the instance variables, method parameters, and return
values to be Java Strings and primitive types int, double,
float, char, and boolean, or any Java type that is declared
by an interface element within the module element of a
CORBA-IDL document.

As shown in Figure 2, to establish a communication
link to the server, a client uses an IOR to initialize the
client ORB. The client ORB then establishes a
communication link with the server ORB described by the
IOR. After initialization, the client application invokes the
methods defined in the CORBA-IDL document. When
such an invocation is made, the call is intercepted by the
client ORB and sent to the server ORB over an IIOP
connection. The server ORB intercepts the call, finds the
object that can handle the request, invokes the
corresponding method with the parameters passed in, and
returns the results to the client ORB. The client ORB then
passes the return object back to the calling program.

2.3. JPie

JPie is a tightly integrated programming environment
for live construction of Java applications [12]. JPie treats
programming as an application in its own right, providing
a visual representation of class definitions and supporting
direct manipulation of graphical representations of
programming abstractions and constructs. Exploiting
Java's reflection mechanism, JPie supports the notion of a

dynamic class that can be modified while the program is
running. Dynamic classes are built from components such
as dynamic methods and dynamic fields, which directly
correspond to the respective classes in the Java’s reflection
mechanism. However, the dynamic versions can be
instantiated and mutated. This functionality can be used to,
among other things, change method signatures within live
object instances. Dynamic classes fully interoperate with
compiled classes, including polymorphism, and methods
may be overridden on the fly.

Of particular interest is the fact that JPie maintains
consistency of declaration and use. For example, if the
name or parameter list of a method is changed, JPie
automatically updates all calls to that method accordingly.
This is different from typical textual programming
environments, in which the programmer must take
additional steps to update the calls. One of the important
goals of the present work is to offer this level of
consistency among the client and server applications
through a live, simultaneous client-server development
methodology.

2.3. Client Development Environment (CDE)

 CDE [1] supports the live construction of SOAP and
CORBA clients. In CDE, we extend JPie’s live
development model to automate addition, mutation, and
deletion of dynamic server methods within dynamic
clients. CDE simplifies distributed application
development by masking technical differences between
local and remote method invocations. Moreover, the live
development model allows server-side changes to be
dynamically integrated into a running client. The current
CDE implementation uses Apache Axis for SOAP support
and the Dynamic Invocation Interface (DII) [3]
implementation of OpenORB [6] as the basis for its
CORBA support. In Section 6, we discuss a protocol
jointly implemented by both CDE and SDE to support live,
simultaneous client-sever development.

3. Related Work

Although RMI is a natural extension of standard
method call semantics, setting up the development tools
for technologies such as SOAP and CORBA can be
daunting. Therefore, development environments that
encapsulate the low-level details and the execution
environment have proven popular. In this section, we
discuss several existing approaches for streamlining
distributed application development using RMI.
 Visual Studio.Net [13] builds upon the Microsoft
.NET framework [14] to provide a number of mechanisms
that reduce the Web Services development time. Visual
Studio.Net provides automatic generation of a rudimentary
Active Server Pages (ASP) [15] web client at each

IDL Compiler

CORBA-RMI
Client

Server Method
Stubs

Server Method
Implementation

CORBA-RMI Servant

(2)
Send

Parameters

(3)
Return
Value

 IIOP

(1)
CORBA

IDL
Client ORB

 HTTP
(1) IOR

Server ORB

deployment step of the Web Service. Through this
rudimentary web client, developers can test the server
manually prior to creating a client program. Since there is
no actual client program at that point, dynamic server
interface updates are not needed. However, once an actual
client program is under development, the automatic ASP is
no longer useful. Instead, whenever the server interface
changes, the developer must obtain the new interface,
manually change the client code to reflect the new
interface, and then recompile and restart the client to
continue testing.
 Apache Axis can be combined with the Apache
Tomcat Servlet Engine [16] to achieve a fast, automated
deployment process for Web Services. The Axis
implementation provides the Java2WSDL and
WSDL2Java tools that can be used to generate the WSDL
document, deployment descriptors used by Tomcat, and
the server-side stub classes. The server stub classes can be
modified to include the server method definitions. Finally,
the source file can be included in the appropriate path
within the Servlet engine to take advantage of the
Axis/Tomcat automated Web Service deployment
mechanism. Although the Axis implementation does not
directly address the issue of dynamic changes, its design is
flexible enough to incorporate this feature, and both CDE
and SDE employ Axis tools.

WebObjects [17] is another platform that facilitates
simplified development of Web Services. The Direct to
Web Service [18] component of WebObjects incorporates
a Web Services Assistant based on the Apache Axis
implementation of SOAP. This tool supports defining
methods using a provided GUI. Direct to Web Service is
particularly suited for building a Web Services front end to
a database. The Web Services Assistant provides tools that
help developers map database calls into Web Service
operations. WebObjects is designed for development of
Web Services against a fixed interface and does not
address the issue of dynamic server interface changes.

The BEA Tuxedo [19] development environment
simplifies CORBA server development by providing a
number of tools that automatically generate backend
components as well as method stubs that can be mutated to
implement server logic. It provides a number of additional
tools such as a naming service and secure communication
mechanisms. However, the deployment process is much
more involved and requires a thorough understanding of
low level details. Therefore, Tuxedo can be considered as a
tool geared toward experienced programmers for
developing robust CORBA applications. The design of
Tuxedo does not allow for dynamic server interface
upgrades due to the lack of automation in the deployment
process and the presence of static server classes.

 The technologies that we have discussed hide
low-level details of the RMI model by using an Integrated
Development Environment (IDE) and/or a well-defined

API to abstract away deployment details. Our SDE furthers
this goal by completely relieving the programmer of the
need to deploy the application. In addition, SDE employs a
publication strategy (See Section 5.6) to automate the
publication of the server interface as needed. Moreover,
the combination of SDE and CDE provides the additional
functionally of live, simultaneous development.

4. Developing Servers with SDE

Before discussing the middleware implementation
details, we describe the interaction between JPie users and
SDE in developing server applications.

To create a server application that uses SOAP, the
JPie-SDE user extends a provided class, called
SOAPServer that acts as a gateway to the SDE system.
When the new subclass of SOAPServer is being loaded
into JPie, the SDE subsystem detects this and creates the
required backend components for deployment and
immediately publishes a basic WSDL definition that is
useful in live, simultaneous client-server development (See
Section 6).

To create a CORBA-RMI server, the JPie-SDE user
must extend a different provided SDE gateway class called
CORBAServer. As soon as the class is created, a basic
CORBA-IDL document and an IOR are published to
enable live, simultaneous client-server development. The
rest of the user interaction parallels the SOAP client
development scenario.

To add a method declared in the dynamic class to the
server interface, the user selects the ‘distributed’ modifier
from the modifier list as shown in Figure 3.

Figure 3: Live class modifications in JPie are by
direct manipulation of graphical representation of
programming constructs. To include a method in the
server interface the user selects the ‘distributed’
modifier.

Client Machine

Server Method
Stubs

Server Machine

 JPie

 SDE is able to detect distributed methods by
inspecting the ‘distributed’ modifier. New server interface
descriptions are published as changes are made to the
method signatures of these distributed methods. To remove
a method from the server interface, the user can either
delete the method or deselect the ‘distributed’ modifier.
 Once SDE starts monitoring a subclass of
SOAPServer or CORBAServer, the user can control the
automated server interface publication using the SDE
Manager Interface. The user can control the publication
frequency by specifying a timeout value (see Section 5.6).
In addition, the SDE Manager GUI allows users to control
the integrated HTTP server used to publish server
interfaces. The user may also view the WSDL/CORBA-
IDL that corresponds to each server under development.

5. SDE Architecture

 SDE has three main responsibilities. It must detect the
presence of server classes within JPie, construct and
deploy the RMI call handlers for each of those classes, and
automate the publication of the server interface in an
intelligent manner. In conjunction with CDE, SDE must
also provide concurrency control between the RMI call
path and the server interface update mechanism.

In this section, we first introduce the high-level
components of SDE by focusing on initialization and
information flow in method invocations. We present the
SOAP and CORBA-RMI subsystems separately and
compare them with the generic architecture models
discussed in Section 2. We proceed with a description of
the implementation details in the context of SDE’s class
hierarchy, which accommodates the two subsystems into a
single framework. We then discuss the concurrency
control mechanisms that we employ to handle interleaving
of server method updates and server method calls. Finally,
we present the strategy for detecting server interface
changes and determining the frequency of publication.

5.1. SOAP Subsystem Overview

 As seen in Figure 4, the SOAP subsystem consists of
five high-level client components. The SDE Manager
oversees the subsystem initialization and acts as the central
point of communication between the other components.
 The SOAP Server acts as the base class for dynamic
classes that interact with the SOAP subsystem. The WSDL
Generator is in charge of detecting the addition, deletion,
and mutation of server methods within the SOAP Server
instance and creating new WSDL documents as required.
The Interface Server acts as a simple HTTP server that
publishes the WSDL documents to the public domain.
Finally, the SOAP Call Handler acts as the communication
end point that performs the translation between SOAP and
Java for remote method invocations.

Figure 4: The SOAP Subsystem has three main
information paths. The dashed lines represent the
path used in publishing the server interface. The solid
lines represent the path used in servicing remote
method calls. The dotted lines represent the flow of
control information within the subsystem.

5.1.1. Initialization. When a user extends the SOAP
Server to create a dynamic class within JPie, an event is
generated to signal the SDE Manager to include the new
dynamic class in its list of managed classes. Then the SDE
Manager creates both a WSDL Generator and a SOAP Call
Handler, passing a reference to the SOAP Server to each
component. The WSDL Generator registers itself as a
listener to changes in the method signatures within the
SOAP Server and creates a minimal WSDL document1 by
obtaining the endpoint address from the SOAP Call
Handler through the SDE Manager.

5.1.2. Server Interface publication. To determine
whether to update the WSDL definition, we employ a
notification mechanism where the WSDL Publisher listens
for changes being made on the SOAP Server instance. This
mechanism is discussed in detail in Section 5.6. As
discussed in Section 5.7, outdated RMI calls may also
trigger updates to the WSDL document. Once the new

1 The minimal WSDL document contains the SOAP Endpoint

address but does not contain any server operation definitions.

SOAP
Request

HTTP SOAP
Response

WSDL
Compiler

Client
Application

WSDL
Generator

WSDL
Document

SOAP
Call Handler

Method
Call

SOAP Server

SDE
Manager

Interface
Server

Server
Methods

Return
Object

WSDL
Document

Control
logic

Control
logic

Control
logic

Client Machine

Server Method
Stubs

Server Machine

 JPie

WSDL Document is produced it is simply forwarded to the
Interface Server for publication.

5.1.3. Request/Response Handling. The RMI call path
within both SOAP and CORBA subsystems was designed
to maximize the separation of concerns as described in
Section 5.4. In the SOAP subsystem, if calls arrive before
an instance of the SOAP Server class has been created, the
SOAP Call Handler immediately sends a reply containing
a SOAP Fault with a ‘Server not initialized’ message.
After initialization, the SOAP Call Handler parses
incoming SOAP Requests to create method calls that can
be invoked on the SOAP Server instance. If the SOAP
Request is malformed, a SOAP Fault with a ‘Malformed
SOAP Request’ message is sent to the client. If a method
call is successfully created, the SOAP Call Handler
searches for a matching method in the current server
interface. If a match is found, then that method is invoked
on the SOAP Server instance, and if an exception is not
thrown, the result is encoded in a SOAP Response and sent
to the client. If an exception is thrown during the execution
of the server method, a SOAP Response containing a
SOAP Fault that encapsulates the exception is sent to the
client. If the method call does not match any method in the
current server interface, the SOAP Call Handler forces a
server interface update if necessary (See Section 5.7) and
then sends a “Stale Method” fault to the client.

5.2. CORBA-RMI Subsystem Overview

The CORBA subsystem is structurally similar to the
SOAP subsystem. However, there are differences in the
interaction among components. In the CORBA subsystem,
the CORBA Call Handler is a simple wrapper around the
Server ORB, and the low level communication details are
handled by making OpenORB API calls. The same
Interface Server is used by both subsystems for simplicity.
Figure 5 shows the structure and information flow in the
CORBA subsystem.

5.2.1. Initialization. Initialization of the SDE manager is
performed under the same circumstances described in
Section 5.1.1. When a user extends the CORBA Server to
create a dynamic class within JPie, an event is generated to
signal the SDE Manager to include the new dynamic class
in its list of managed classes. The SDE Manager creates
both an IDL Generator and a CORBA Endpoint, passing a
reference to the CORBA Server to each component. The
IDL Generator registers itself as a listener to changes in
the method signatures within the CORBA Server and
creates a minimal CORBA-IDL document2. The Server
ORB is initialized by the CORBA End Point and finally
the IOR is published via the Interface Server.

2 The minimal IDL document only contains a module element.

Figure 5: There are three main information paths in
the CORBA Subsystem. The dashed lines represent
the path used in publishing the server interface. The
solid lines represent the path used in servicing
remote method calls. The dotted lines represent the
flow of control information within the subsystem.

5.2.2. Server Interface Updates. We chose our update
model to mirror the SOAP subsystem since the concerns
discussed in Section 5.1.2 also apply to the CORBA
subsystem. The IDL Publisher listens for changes being
made on the CORBA Server instance to determine whether
to update the CORBA-IDL definition (See Section 5.6.) As
discussed in Section 5.7, outdated RMI calls also trigger
updates to the CORBA-IDL document. Once the new
CORBA-IDL Document is produced, it is simply
forwarded to the Interface Server for publication.
 The Dynamic Skeleton Interface (DSI) [3] technology
allows applications to provide implementations of the
operations on CORBA objects without static knowledge of
the object’s interface. We use DSI to avoid reinitializing
the Server ORB when the server methods or types change.

5.2.3. Request/Response Handling. The components used
in making RMI calls also mirror the components used in
the SOAP subsystem. In this case, the incoming calls are
received by the Server ORB. Unlike in the SOAP

CORBA
Remote call

HTTP CORBA
Response

IDL
Compiler

Client
Application

IDL
Generator

IDL
Document

CORBA
Call Handler

Method
Call

CORBA Server

SDE
Manager

Interface
Server

Server
Methods

Return
Object

IDL
Document

Control
logic

Control
logic

Control
logic

Client ORB
IOR

 IIOP

subsystem, the Server ORB implementation handles all
malformed requests. The wrapper logic in the CORBA
Call Handler component determines the validity of the call.
If it is a valid call, a method call is made on the CORBA
Server, and the return value is sent to the client through the
Server ORB. If a call is not valid, a server interface update
is triggered, if necessary (See Section 5.7), before a ‘Stale
Method’ exception is sent back to the client. As in the
SOAP subsystem, any exceptions thrown during the
invocation of the method call is wrapped in a generic
exception type and sent back to the client.

5.3. Representing Server Methods in JPie

 As discussed in Section 4, when a user extends a class
of type SDEServer, the list of possible modifies for all
methods defined in that class is augmented with the option
of a ‘distributed’ modifier. Users add or remove methods
from the published interface by selecting or deselecting
this modifier within JPie. With this approach, we were able
to develop SDE as an optional plug-in to JPie.

5.4 Class Hierarchy

To implement the components described in Sections
5.1 and 5.2, we designed a class hierarchy that allows
multiple technologies to be easily integrated into the
system. This allows key components such as the SDE
Manager to be technology independent. Figure 6 shows
three interfaces, each of which provide the blueprint to a
component that performs a critical role within the SDE
architecture.

 Implements
 Has–many

Figure 6: Each technology incorporated into SDE
must implement a generator to publish the server
interface, a communication backend that handles
incoming requests and sends reply messages, and
an extensible class that will serve as the base type
for dynamic classes using that technology.

5.5. Concurrency in Server Applications

In SDE, at most one instance of each dynamic class
that extends SOAPServer or CORBAServer can exist at a
time. Also, our Call Handlers are designed to be
completely multithreaded. This allows the server to handle
incoming calls efficiently and eases the performance
bottleneck created by the mechanism described in Section
5.7 that attempts to maintain the consistency of the
published server interface and the actual implementation in
the server class.

5.6. Detection of Server Interface Changes

When a change is made to the server logic within the

server dynamic class, those changes take immediate effect
globally within JPie. When method signatures in the server
application change, SDE needs to make the corresponding
changes in the published server interface description to
maintain consistency of the server interface on both the
client and the server. On the other hand, since the
generation and publication of the server interface
description is a relatively expensive operation, eliminating
unnecessary operations within the DL Publisher is
important for overall system performance. One possible
approach is change-driven: publish a new server interface
description with each change. However, this approach
would often lead to publishing transient server interface
descriptions (those that occur while the developer is in the
middle of editing the class), which is not only expensive at
the server, but also may lead to unnecessary changes at the
client. Another approach is to poll: check the interface at
regular intervals, publishing if necessary. However, the
periodic approach could still publish a transient interface.
Moreover, that transient interface could persist at the client
side until the next polling interval. Therefore, we have
developed a mechanism that is change driven, but waits for
a stable interval to avoid overly aggressive publishing. In
addition, we incorporate a reactive mechanism that forces
publication of the current interface whenever a client
attempts to make a call on a stale method.

Our mechanism uses a timeout, which can be changed
by the user through the SDE Manager GUI. Each DL
Publisher listens to changes in the corresponding dynamic
class by monitoring the JPie undo/redo stack. Each change
to the server class restarts a timer. When the timer expires,
the DL Publisher generates the new server interface. In
addition, the user may manually prevent or trigger the
publication of the server interface description at any time
through the SDE Manager GUI. The control of the timer
and the actual IDL generation is independent of each other,
and there may be a running timer while an IDL generation
is in progress. In that case, if the timer expires before the
completion of the IDL generation, then another IDL
generation will take place as soon as the current IDL

SOAPCallHandler CORBACallHandler

CallHandler

DLPublisher

SDEServer

IDLPublisher WSDLPublisher

SOAPServer CORBAServer

SDEManager

generation finishes. Client calls for stale method signatures
may also trigger updates as described in Section 5.7.

This heuristic effectively publishes the server interface
as needed while reducing the chance of publishing
transient interfaces.

5.7. Client Invocations of Stale Methods

 When a Call Handler receives a client request for a
stale method, we must guarantee that the published server
interface description is current before replying to the client
with an exception. This is because if the client inspects the
server interface description upon receiving the exception,
the change in the method signature must be apparent. This
mechanism enhances the server interface publication
frequency by taking the frequency of client calls into
consideration.
 When a Call Handler receives a call to a stale method,
it notifies the SDE Manager and delays the processing of
incoming messages. The SDE Manager then prompts the
corresponding DL Publisher to publish a new server
interface description as needed. If the timer is not running
and if there is no ongoing IDL generation, then we are
guaranteed that the published server interface description
is already current. If the timer is not running and there is
an IDL generation in progress, then we are guaranteed that
at the end of that publication operation, we will have the
most current server interface description. In this case, we
simply wait until the end of the operation before the SDE
Manager is notified. If there is an ongoing IDL generation
and the timer is running, we must wait until the current and
the next IDL generations are completed to guarantee that
the most current server interface description is published.
The DL Publisher notifies the SDE Manager of the
completion of the operation. The SDE Manager passes the
notification back to the Call Handler. The Call Handler
then sends an exception with the ‘Stale Method’ message
to the client and resumes processing incoming messages.
In CDE, this message is handled as described in Section 6.
 Since publication is triggered only when the published
interface is out of date, a rouge client cannot overwhelm
the server by sending multiple calls to stale methods to
trigger needless IDL generations.

6. Live Client-Server Development

 In live, simultaneous client-server development, both
the RMI call path and the server interface update path may
be active concurrently. Therefore, when the server
interface changes, a race condition may arise between the
two paths leading to inconsistent behavior in the CDE (e.g.
the server reports that a method is stale, but the client has
not yet the updated interface).

Client Server

Figure 7: Active publishing - The server interface
update path and the RMI call path are completely
independent of each other. Only cases (1, i), (1, ii),
(2, ii) produce the desired behavior of making the
error obvious when the exception is reported back to
the client developer.

 The gray bars in Figure 7 illustrate the possible points
at which the server interface is published (1, 2 or 3) and
the client stub is updated (i, ii, iii). Only combinations (1,
i), (1, ii), and (2, ii) ensure that the client developer is
clearly able to see changes in the server interface when
they are prompted by a server exception. In all other cases,
the lack of a visible error in the client code will make
resolution impossible until the client performs an update.

Client Server

Figure 8: Reactive publishing - The server interface
update path and the RMI call path have points of
synchronization at both the client and server sides. In
this case, for any combinations of (1-4, i-iv) the
recency guarantees will be met.

Publish Server Interface (1)

 (2)

 (3)

Server Interface changes

Processes method call

Send exception

Send method call

Receive exception

Display error

Update client stub (i)

(ii)

(iii)

Regular publication (1)

(2)

(3)

Server Interface changes

Processes method call

Send exception

Send method call

Receive exception

Display error

Regular update (i)

(ii)

(iv)

Publish if needed

Update if needed

(4)

(iii)

Figure 9: When the “Stale Method” exception is
received by the client dynamic class, the JPie
debugger detects the exception and prompts the
user. The goal of SDE and CDE is to make the error
apparent to the client programmer.

 To overcome the inconsistency shown in Figure 7, we
developed the mechanism shown in Figure 8 that is
implemented jointly by CDE and SDE.
 In CDE, when a “Stale Method” exception is received
by the client backend, the client view of the server
interface is updated to the currently published one. The
exception is then sent to the dynamic class that made the
original RMI call. The JPie Debugger [12] detects the
exception and displays it to the user as shown in Figure 9.
When the user inspects the error, the server interface
change is clearly visible. At this point, the user may make
the necessary changes and resume normal execution.
 After the server sends a “Stale Method” exception
back to the client, there is a possibility that the server
method signature is subsequently changed (during forced
publication) to match the original call. In this case, we do
not want the user to see the exception since the method call
is actually consistent with the server interface. Therefore,
when CDE receives a “Stale Method” exception from the
server, it first compares the relevant method signature in
the latest server interface description with the signature of
the RMI call that trigged the update. If the signatures are
identical, the call is silently re-invoked. Otherwise, the
exception is propagated to the JPie debugger.

7. Performance

 SDE adds some overhead to the RMI call structure, so
an increase in the round trip time (RTT) of a RMI call is
inevitable. Experimentation has shown that this overhead
is within 15% (shown in Table 1) in comparison to static
RMI servers, which is reasonable for development work.

Table 1: RTT times for client-server communication
 Average RTT (seconds)
Number of Parameters 1 5 10
SDE SOAP/Axis 0.45 0.46 0.46
Axis-Tomcat/Axis 0.40 0.40 0.41
SDE CORBA/OpenORB 0.35 0.35 0.36
OpenORB/OpenORB 0.31 0.31 0.31

 To determine the performance of SDE, we measured
the average round trip time (RTT) of SOAP calls between
a SDE SOAP server running within JPie and a simple
static Axis client. We compared these figures with the
RTT between the same Axis client and a static Axis server
running within Apache Tomcat. We repeated the
experiment using a SDE CORBA server, a static
OpenORB server and a static OpenORB client. We used
Java’s getTimeInMillis system call, and the average time
was calculated over a thousand calls. We used an Apple
Powerbook running OS 10.3 with a 1 GHz PowerPC
processor and 512 MB of RAM as the client and a Dell
Optiplex running Windows XP Professional with a 3.2
GHz Intel Pentium 4 processor with 1 GB of RAM as the
server. The two machines were connected to the same T1
Local Area Network. All RMI calls returned a string value,
and the parameters were also strings.
 At the end of the development phase, the dynamic
SDE server can be converted into a static SOAP or
CORBA server through JPie’s built-in application export
mechanism [20].

8. Conclusion

 This paper introduced live server development using
the RMI model as well as live, simultaneous client-server
development. We also presented mechanisms that abstract
away server deployment details, allowing SOAP and
CORBA-RMI server development to become a natural
extension of ordinary Java application development.
 One of our goals for SDE was to reduce the learning
curve involved in developing distributed applications using
the RMI model. By eliminating the setup and deployment
steps, we provided an environment where developers can
devote their complete attention to the creation of server
logic. SDE extends JPie to provide an appealing interactive
environment in which novice RMI application developers
can create and modify clients and servers.
 Our second goal of supporting live client-server
development has also been successfully implemented with
the combination of CDE and SDE. Our experience
indicates a significant reduction in development time from
the traditional modes of distributed application
development. We plan to use CDE-SDE as the basis for a
client-server project in Washington University CSE 123, a
course that uses JPie to provide a hands-on introduction to

computer science for non-majors without programming
background [21].
 An additional feature that is being investigated is the
ability to switch, at runtime, the technology being used to
communicate between the client and the server in a
deployed system. Although some SOAP to CORBA
bridging technologies [22, 23] offer static bridging
capabilities, we feel that live modification will result in a
more fluid development experience. We are currently
implementing a medium-sized mail service application in
JPie using CDE and SDE. Our experience with that
application will help motivate future work on CDE, SDE,
and JPie in general.

Acknowledgements

We thank Chris Gill and Michael Plezbert for support
during our background study. We thank Vanessa Clark for
her contribution in the design and implementation of CDE.
This work was supported in part by National Science
Foundation grant 0305954.

References

[1] Simple Object Access Protocol (SOAP) 1.1, World Wide
 Web Consortium, June 2003. http://www.w3c.org/TR/SOAP
[2] Common Object Request Broker Architecture (CORBA):
 Core Specification 3.0.3, Object Management Group,
 March 2004. http://www.omg.org/docs/formal/04-03-01.pdf
[3] K. J. Goldman, “Live Software Development with
 Dynamic Classes,” Washington University, Department of
 Computer Science and Engineering, Technical Report TR-
 2004-81, August 2004
[4] S. L. Pallemulle, V. H. Clark, and K. J. Goldman,
 “Supporting Live Development of SOAP and CORBA
 clients,” Department of Computer Science and Engineering,
 Washington University in St. Louis, Tech. Rep. TR-2004-
 56, September 2004.
[5] Apache Axis Users Guide, Apache Software Foundation,
 2004. http://ws.apache.org/axis/java/user-guide.html
[6] C. Wood, J. Daniel, and M. Rumpf, The Community
 OpenORB Manual, The Community OpenORB
 Project, 2004. http://openorb.sourceforge.net/docs/1.4.0/Ope
 nORB/doc/orb.html
[7] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler,
 Extensible Markup Language (XML), 1st ed., World Wide
 Web Consortium, October 2000. http://www.w3c.org/TR/
 RECxml
[8] E. Christensen, F. Curbera, G. Meredith, and S.
 Weerawarana, Web Services Description Language
 (WSDL), 1st ed., World Wide Web Consortium, March
 2001. http://www.w3c.org/TR/wsdl
[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
 Leach, and T. Berners-Lee, “Hypertext transfer protocol
 (HTTP)/1.1,” June 1999.
[10] IDL to Java Language Mapping Specification, 1st ed.,
 Object Management Group, August 2002.
 http://www.omg.org/docs/formal/02-08-05.pdf

[11] Java to IDL Language Mapping Specification, 1st ed.,
 Object Management Group, September 2003.
 http://www.omg.org/docs/formal/03-09-04.pdf
[12] K. J. Goldman, “An Interactive Environment for Beginning
 Java Programmers,” Science of Computer Programming,
 vol. 53, no. 1, pp. 3–24, October 2004.
[13] Using Visual Studio .NET, Microsoft Corporation, 2004.
 http://msdn.microsoft.com/vstudio
[14] Microsoft .NET Framework, Microsoft Corporation, 2004.
 http://msdn.microsoft.com/netframework/technologyinfo/
[15] Microsoft ASP.NET Overview, Microsoft Corporation,
 2004. http://msdn.microsoft.com/asp.net/technologyinfo/
[16] The Apache Jakarta Tomcat 5.5 Servlet/JSP Container,
 Apache Software Foundation, 2004. http://jakarta.apache.or
 g/tomcat/tomcat-5.5-doc/index.html
[17] WebObjects Overview, Apple Computer Inc., 2004.
 http://developer.apple.com/documentation/WebObjects/
[18] Developing Direct to Web Services Applications,
 Apple Computer Inc., November 2002.
[19] BEA Tuxedo Product Overview, BEA Systems Inc., 2001.
 http://edocs.bea.com/tuxedo/tux80/overview/index.htm
[20] B. H. Brinckerhoff, K. J. Goldman, “Learning Curve
 Management in Educational Programming Environments,”
 September 2004, submitted for publication
[21] K. J. Goldman, “Washington University CS123:
 Introduction to Software Concepts,” December 2003.
 http://www.cse.wustl.edu/~kjg/cs123
[22] Orbix 6.1 Technical Overview, IONA Technologies,
 December 2003, http://www.iona.com/whitepapers/Orbix6.1
 TechOverview.pdf
[23] Atrix Technical Brief, IONA Technologies, April 2004,
 http://www.iona.com/whitepapers/0404ArtixTechBrief.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

