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Abstract

We present two transformations that convert a class
of local-spin mutual exclusion algorithms on the cache-
coherent model to local-spin mutual exclusion algorithms
on the distributed shared memory model without increasing
their time complexity. Our first transformation uses reg-
isters and test-and-set objects, and does not increase the
number of busy-waiting periods. The second transforma-
tion uses only registers, but contains two busy-waiting pe-
riods for each busy-waiting period of the input algorithm.
We carefully define the class of mutual exclusion algorithms
that are applicable to our transformations, and formally
prove the correctness of our transformations.

1 Introduction

For most mutual exclusion algorithms, busy-waiting is
inevitable since a process must wait in the entry section
while another process is in the critical section. In shared
memory systems, a waiting process keeps accessing shared
memory during a busy-waiting period. Such busy-waiting
results in an unbounded number of memory accesses, which
may cause unbounded network traffic. In shared memory
systems with processes having their own local memory, al-
gorithms can adopt a local-spinning strategy: all busy wait-
ing periods consist of only read events of local variables.
In such algorithms, a busy-waiting period does not generate
unbounded amount of network traffic. In shared memory
systems with local-spinning, the number of remote mem-
ory accesses (RMAs) performed is a major contributor to
the time taken by algorithms, and it is used as a measure of
time complexity.

There are two major shared memory models for distrib-
uted systems with local memory: the distributed shared
memory (DSM) model and the cache-coherent (CC) model.
In the DSM model, each process has its own local memory,
and each shared variable is physically located in the local
memory of one fixed process. Processes are connected with

each other via a network, and each time a process accesses
a shared variable that is local to another process, it must
traverse the network.

In the CC model, all shared variables are stored in a com-
mon memory that is accessible to all processes, but not local
to any process. In addition, each process has its own local
cache. When a process accesses a shared variable for the
first time, it copies the shared variable to its local cache, so it
generates network traffic. If the process accesses the shared
variable again without changing its value, more network
traffic is not generated, unless the shared variable was up-
dated by another process in the meantime. When a process
updates a shared variable, it invalidates all cached copies of
the shared variable except its own. The number of remote
memory accesses in the CC model is the number of accesses
of a shared variable that change the value of the variable or
is by a process that does not have a valid cached copy of the
shared variable.

In the CC model, the system must keep all caches con-
sistent, so the CC model is considered to be more expensive
than the DSM model. However, the CC model allows many
processes to locally read the same variable at the same time.
Therefore, it is usually easier to design a local-spin algo-
rithm on the CC model than on the DSM model. Also, if an
algorithm is local-spin on the DSM model, it is also local-
spin on the CC model.

A number of different � -process local-spin mutual ex-
clusion algorithms using different objects have been pro-
posed. Yang and Anderson presented a tree-based local
spin mutual exclusion algorithm on the DSM model using
only registers, in which each process performs������� re-
mote memory accesses to enter and leave a critical section
[1]. A lower bound proof by Anderson and Kim shows that
any local-spin mutual exclusion algorithm using only regis-
ters or comparison-based objects such as ��������	
��
requires ������� ��� ����� RMAs on the CC or DSM
model [2]. This impossibility result suggests that any
mutual exclusion algorithm with constant time complexity
must use objects other than registers and comparison-based
objects.
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There are several local-spin mutual exclusion algorithms
on the CC model using fetch�	���� or fetch��� that per-
form a constant number of RMAs for each entry to the crit-
ical section[3, 4]. These algorithms are based on the queue-
lock strategy: when a process enters the entry section, it is
enqueued at the end of the queue, and when the critical sec-
tion is available, the process at the head of the queue enters
the critical section. Thus, such an algorithm also satisfies
the first-come-first-serve (FCFS) property.

Anderson and Kim presented a constant RMA mutual
exclusion algorithm using fetch�� on the CC model and
converted it to the DSM model [5]. As part of their trans-
formation (Transformation AK), they use any instance of a
two-process mutual exclusion algorithm.

They claim that Transformation AK can be applied to a
class of mutual exclusion algorithms designed for the CC
model. However, we found that if Transformation AK [5]
using the two-process mutual exclusion by Yang and An-
derson [1] is applied to the constant RMA algorithm for the
CC model by T. Anderson [3], then the resulting algorithm
is incorrect. The problem is a race between the busy-waiting
process and the unlocking process: Suppose that process �
is waiting for � to unlock � using the spin variable �. Al-
though � is local to � on the CC model, it may not be local
to � on the DSM model. If � is not local to � on the DSM
model, then, in the transformed algorithm, � must spin on a
local spin variable �� instead of �. Process � must commu-
nicate with process �, so that � knows which spin variable
to access to unlock �. In the resulting algorithm, processes
� and � communicate with one another using a two-process
mutual exclusion algorithm. In the two-process mutual ex-
clusion algorithm by Yang and Anderson, it is possible that
process � does not busy-wait on the spin variable, but � ac-
cesses the spin variable. This unlocking event by � may
interfere with a later invocation of � that waits for another
process � to unlock � using the same spin variable, allowing
the resulting algorithm to violate mutual exclusion.

In this paper, we present two new transformations that
do not have this problem. Both convert a certain class of
local-spin mutual exclusion algorithm on the CC model to
local-spin mutual exclusion algorithms on the DSM model,
without increasing their time complexity.

Our first transformation (Transformation HL1) is based
on the modified version of T.Anderson’s algorithm [3] that
appeared in [6]. The only new objects introduced by Trans-
formation HL1 are registers and test�set objects. Many
mutual exclusion algorithms with constant time complexity
use some fetch�� object in addition to registers. Since any
fetch�� object can be used to implement a test�set object,
the transformed versions of these algorithms can be imple-
mented without using additional types of objects. Another
advantage of Transformation HL1 is that, unlike Transfor-
mation AK, any DSM algorithm resulting from Transfor-

mation HL1 does not have more busy-waiting periods than
the algorithm from which it originates.

Our second transformation (Transformation HL2) uses
only registers. Thus, if the original algorithm uses only reg-
isters, then the transformed algorithm also uses only regis-
ters. Transformation HL2 is the first such transformation
from the CC model to the DSM model.

An interesting question is whether there is a difference
between the CC model and the DSM model in terms of time
complexity. Recently [7], Danek and Hadzilacos showed
that the � -process two-session group mutual exclusion can
be solved with ������� RMAs on the CC model, but, on
the DSM model, an optimal group mutual exclusion algo-
rithm requires ���� RMAs. This result indicates that the
CC model is indeed more powerful than the DSM model for
this problem.

However, Kim and Anderson proved in [8] that, with
semi-synchrony (i.e. there is a bound on the time to exe-
cute an event), the ordinary mutual exclusion problem can
be solved on the DSM model with a constant number of
RMAs for each entry to the critical section, whereas the CC
model requires ����� ����� RMAs for each entry to the
critical section. Thus, we can see that the CC model is less
powerful than the DSM model in some circumstances. It is
not clear whether the CC model is more powerful than the
DSM model for solving the mutual exclusion problem in an
asynchronous environment.

We begin, in Section 2, by defining the models. In Sec-
tion 3, we carefully define the class of algorithms to which
Transformations HL1, and HL2 apply. We also present
Transformations HL1 and HL2, and prove that the mu-
tual exclusion algorithm produced by Transformation HL1
when applied to an algorithm in this class is correct and
does not perform more RMAs than the original algorithm.

2 Preliminaries

We only consider asynchronous shared memory systems
with no process failures. Let � be a set of all processes
and � � ���. There are private and shared variables in the
system. Private variables are accessed only by their owner,
but shared variables can be accessed by many processes.
In this paper, all private variables start with a lower case
letter, and all shared variables start with an upper case letter.
Process �’s private variable ��� is denoted by ����. On
the DSM model, each shared variable is local to only one
process. We use � ����	 to denote a shared variable that is
local to process � in the DSM model.

When a process accesses a shared variable, it performs
a certain operation on the variable. This is called an event.
Note that, in this paper, accessing a private variable is not
considered as an event. In this paper, only registers and
��	��	�� objects are considered. Registers have ���� and




��� operations, and ��	��	�� objects have ��	��	�� and
��	�� operations. All operations are atomic. The ��	��	��
operation returns the value of the object and sets the value
of the object to one. The ��	�� operation sets the value of
the object to zero. Fetch�� operations, also called read-
modify-write operations, are defined as follows.

fetch&� (� ��, �����) �
� 
� � ��
� �� 
� ���� ������
return � �

Here, � is a function whose range excludes the initial
value, NIL. The function � does not necessarily depend
on one or both of its parameters. For example, for the
fetch�inc operation, ���� ������ � �� �. For fetch�store,
���� ������ � �����, and for test�set, ���� ������ � �.
Test�set is the simplest fetch�� operation and can be sim-
ulated by any fetch�� object as follows:

test&set (� ��) �
� 
� fetch���� ��� ��
if � � NIL then return  else return � �

A configuration is a state of the system. It consists of
the state of all processes and shared variables. The state of
a process is the value of its private variables. A process’s
program counter is a private variable that indicates which
line of its algorithm the process performs next. The value
of variable � in configuration � is denoted by ��������,
and the program counter of process � in configuration � is
denoted by ����� ��.

Each line of our transformations contain exactly one
event. Thus, we can specify an event by a process and its
program counter. For example, ��� 1� indicates the event
in which process � performs line 1 of the algorithm. Since
a process can invoke a mutual exclusion algorithm several
times, event ��� 1� may occur several times. Therefore,
we need to distinguish different invocations by the same
process. In this paper, �� indicates the th invocation by
a process �.

An execution segment is an alternating sequence of con-
figurations and events starting and ending with a configura-
tion. An execution segment is admissible if, for each con-
tiguous subsequence �� ��� a�� � � that it contains, ����� ��
= a and � � is the configuration obtained by performing
��� a� in configuration �. An admissible execution segment
starting with an initial configuration is called an admissible
execution.

3 Transformations from the CC model to the
DSM model

Each of our transformations consists of two code frag-
ments. The transformation replaces any busy-waiting pe-

riod of the input algorithm with the first fragment, and re-
places any unlocking event of the input algorithm with the
second fragment. These new fragments introduce a new set
of variables, � . In this paper, � represents the set of all pri-
vate and shared variables in the input algorithm excluding
the program counters.

In the input algorithm, when a process waits for another
process to unlock its busy-waiting period, we call the for-
mer process the successor and the latter process the pre-
decessor. The predecessor and the successor communicate
with each other using a shared spin variable. The set of all
spin variables is � � ��� �  � � �. When a process en-
ters the entry section, it chooses the index  � � of the spin
variable it will use.

3.1 Requirement of the input algorithm

Our transformations, as well as Transformation AK, can
be applied to a certain class of mutual exclusion algorithms.
We describe this class of input algorithms by four require-
ments. Let ��, ��, �� be different invocations, where �, �,
and � may be the same or different processes. Let X de-
note the set of all lines in the input algorithm that contain
busy-waiting periods, and let Y denote the set of all lines in
the input algorithm that perform unlocking events. Let X+1
be the set of all lines in the input algorithm that follow a
busy-waiting period.

Requirement 1. All spin variables are registers.

Requirement 2. Each busy-waiting period in the algorithm
is a period of time during which a process performs “await
� � �”, where � � � and � is a non-NIL value. (Usually,
the initial value of � is NIL. However, one spin variable may
have an initial value �, so that the first invocation of “await
� � �” exits the busy-waiting period without waiting.)

Requirement 3. When two processes are in busy-waiting
periods at the same time, they use different spin variables
during those busy-waiting periods. In particular, if process
� performs “await � � �” while process � performs “await
�� � ��”, then � �� ��. This requirement is more formally
described as follows: For any admissible execution of the
input algorithm, there does not exist a configuration � such
that ����� ��, ����� �� � X and ������ �� = ������ ��,
where � and � are different processes and �, � � � .

Requirement 4. For each busy-waiting period, there is a
unique unlocking event that makes the busy-waiting period
terminate. More formally, consider an admissible execution
� = ��, ��, ��, � � � of the input algorithm. Suppose that
����� ��� � X for � � �� � � � � ��, and ����� ������ � X+1.
Let � � ������ ���. If � is the largest index less than � such
that ����� ��� � X+1 and ������ ��� � � for some process



�, then we require that there is a unique event �	 � ��� ��,
where � � Y, ������
� �	��� � �, and � � � � ��.

Now, suppose that there is no such index �. If
������� ��� � NIL, then we require that there is a unique
event �	 = (�, y) such that y � Y, ����
� �	��� � � and
 � � � ��; otherwise, there must be no such event �	.

Although these requirements look difficult to check,
most queue-based CC model mutual exclusion algorithms
[3, 4] satisfy the requirements. Requirement 2 can be
slightly generalized by replacing the condition � � � by
the disjunction of a finite number of such conditions. This
is called Requirement 2�. Transformation AK can be ap-
plied to some algorithms that satisfy Requirement 2� instead
of Requirement 2, e.g. the fetch�� mutual exclusion algo-
rithm by Anderson and Kim [5]. If we modify Transforma-
tion HL1 and HL2 slightly, then they can also be applied to
the same class of algorithms.

A process only reads a spin variable in its busy-waiting
period. Until that process writes to some shared variable,
no other process can detect whether it has finished spinning.
Therefore, we have the following observation.

Observation 1. Let �, �, � � be an admissible execution
segment of the input algorithm, and let � = (��, x), where
x � X. Then, for all processes � �� �, � 	� � �.

The next result follows from this observation and Re-
quirement 3.

Lemma 2. For any admissible execution of the input al-
gorithm, there does not exist a configuration � such that
����� ��, ����� �� � X 
 X+1 and ������ �� = ������ ��,
where � and � are different processes and �, � � � .

Requirement 4 and the definition of admissible execution
imply the following lemma.

Lemma 3. Let � � ��, ��, ��, � � � be an admissible execu-
tion of the input algorithm. Suppose that there exist a con-
figuration�� and a process � such that ������ ��� � � and
����� ����X. If there exists a process � and a configuration
�� before �� such that ����� ��� � X+1 and ������ ��� � �,
then let �� be the last configuration among such ��; other-
wise let �� = ��.

Then, there does not exist more than one invocation ��

for which there exists a configuration � between �� and ��

in � such that ����� �� � Y and ����
� �� � �. Moreover,
if the initial value of �� is �, then there do not exist an
invocation �� and a configuration � between �� and �� in
� such that ����� �� � Y and ����
� �� � �.

Proof. Let �� and 	� be two invocations. Suppose, to obtain
a contradiction, that there exist configurations � and � � be-
tween �� and �� in � such that ����
� �� � ������ �

�� �
�, ����� �� = y � Y, and ���	� � �� = y� � Y.

Let �� be the prefix of � that ends with �� . Let ��� be
the extension of �� after (��, y) and (	�, y�) are added to the
end of �� if they are not already in ��. Then, ��� is also an
admissible execution.

Since the input algorithm satisfies lockout freedom, there
exists a configuration �� in the extension of ��� such that
������ ��� � � and ����� ��� � X+1. Then, there exist
two events (��, y) and (	�, y�) between �� and ��. However,
this contradicts Requirement 4.

Similarly, if the initial value of �� is � and there exists
such ��, then there is an admissible execution of the input
algorithm that violates Requirement 4.

Lemma 4. Let � � ��, ��, ��, � � � be an admissible
execution of the input algorithm. Then, there do not ex-
ist processes � and � and a configuration �� such that
������ ��� � ������ ��� � �, ����� ��� = x � X+1, and
����� ��� � y � Y.

Proof. Suppose that such �, �, and �� exist. Let �� be
the prefix of � ending with �� , and let �� be the last con-
figuration before �� in �� such that, for some process �,
����
� ��� � � and ����� ��� � X+1. If there is no such
configuration, let �� � ��. Then, by Requirement 4,
there exist a unique event �	 = (	�, y) such that y � Y,
������ �	��� � �, and �	 is between �� and �� .

Let ��� be obtained by adding ��� y� and the resulting
configuration �� to the end of ��. Then ��� is admissible.
Then, ������ ��� � � and ����� ��� � X+1. But, in ���,
there are two events �	�� y� and ��� y� between �� and ��.
This violates Requirement 4.

3.2 Transformation HL1

In Transformation HL1, the set of the introduced vari-
ables, � , is � 
�����, � ����	, !����	, "������ 	 �
� � � and  � � �. Transformation HL1 replaces line
x of the input algorithm with lines x.a to x.f and line y of
the input algorithm with lines y.g to y.j. Figure 1 describes
Transformation HL1 in detail.

Transformation HL1 can be described informally as fol-
lows. Let � be a process. In Transformation HL1, � uses
its local shared variable "������ 	 as a spin variable instead
of ��, the spin variable of the input algorithm. The prede-
cessor of � must know the identity of � so that it can access
"������ 	. In Transformation HL1, the successor, �, writes
its identity to !����	, and �’s predecessor reads !����	
to get the identity of its successor.

However, if the predecessor of � reads !����	 before �
writes its identity, the predecessor does not get the identity
of � by reading !����	. In this case, the predecessor does
not access "������ 	 and � should not spin on "������ 	.



Shared variables:
!����	 � �NIL, 0, . . . , � � �� initially NIL
� ����	 � �� �� if �� is initially �, then initially 1.

otherwise, initially 0.
"������ 	 � �LOCKED, UNLOCKED�

initially LOCKED

instead of performing:
x: await �� � �

process � performs:
x.a: !����	 
� �
x.b: if ��	��	���� ����	� �  then
x.c: await "������ 	 � UNLOCKED

/* local spin */ fi
x.d: � ����	 
�  /* reset */
x.e: "������ 	 
� LOCKED
x.f: !����	 
� NIL

instead of performing:
y: �� 
� �

process � performs:
y.g: �� 
� �
y.h: if ��	��	���� ����	� � � then
y.i: 
���� 
� !����	
y.j: "����
����� 	 
� UNLOCKED fi

Figure 1. Transformation HL1

The ��	��	�� object � ����	 is used for � and its prede-
cessor to know whether � must busy-wait.

The initial value of� ����	 depends on the initial value
of ��, the spin variable of the input algorithm. If �� is ini-
tially set to �, the value that makes the first busy-waiting
period unlocked, then the initial value of � ����	 is 1.
Hence, the first process that busy-waits on �� in the input
algorithm does not perform the busy-waiting period in the
transformed algorithm, since the busy-waiting period of the
input algorithm is unlocked initially.

Otherwise, the initial value of � ����	 is 0. Thus,
among process � and the predecessor of �, whoever first
performs ��	��	�� operation on � ����	 receives 0, and
the other receives 1. Process � writes its identity to !����	
before performing the ��	��	�� operation, and the prede-
cessor of � reads !����	 after performing the ��	��	��
operation.

If the predecessor of � receives 0 and � receives 1 from
� ����	, then the predecessor does not access "������ 	
and � does not spin on "������ 	. If the predecessor of �
receives 1 and � receives 0 from � ����	, then the prede-
cessor can get the identity of � by reading !����	. Hence,
the predecessor can access "������ 	 to unlock �.

Proof of correctness of Transformation HL1

We will prove the correctness of Transformation HL by
a simulation proof. Let � be the set of all admissible execu-
tions of the transformed algorithm.

First, we define a simulation function from a configura-
tion � of the transformed algorithm to a configuration � �

of the input algorithm such that process � is in the critical
section in � if and only if � is in the critical section in � �.
Then, using the simulation function we defined, for each
# � �, we find an admissible execution � of the input algo-
rithm that simulates # in the sense that it has the same trace
as #. Given that the input algorithm satisfies mutual exclu-
sion and lockout freedom, we can prove that every admis-
sible execution of the transformed algorithm also satisfies
mutual exclusion and lockout freedom.

Definition 1. For each configuration� of an admissible ex-
ecution of the transformed algorithm, let $��� be the con-
figuration of the input algorithm defined as follows:

P1. For any process � such that ����� �� �� �x.a, . . . , x.f,
y.g, . . . , y.j�, ����� $���� � ����� ��.

P2. If ����� �� � �x.a, x.b, x.c�, then ����� $���� = x.
P3. If ����� �� � �x.d, x.e, x.f�, then ����� $���� =

x+1.
P4. If ����� �� � �y.g, y.h, y.i, y.j�, then ����� $���� =

y.
P5. For any variable � except spin variables used in

the input algorithm, the value of � is the same in both �
and $���. That is, for any � � � � �, ������ $���� �
������ ��.

P6. For any spin variable �� � �, if there does not
exist a process � such that ����� �� � �y.h, y.i, y.j� and
������ �� � �, then ������� $���� = ������� ��. Other-
wise, let � be the process that last executed line y.g among
those such that ����� �� � �y.h, y.i, y.j� and ������ �� �
�. Then, ������� $���� � ������� �

�� where � � is the
configuration just before � last executed line y.g.

For each # � �, let ��, ��, � � � be the sequence of con-
figurations in # and let �#� be the set of all admissible
executions � of the input algorithm such that the sequence
$����, $����, $����, � � � with consecutive duplicates re-
moved is a subsequence of �. We say that event � is an in-
terfering event at configuration �, if � = ���� x.a� and there
is another process � such that ������ �� � ������ �� and
����� �� � �x.a, . . . , x.f�, or if � = ���� y.g� and there ex-
ists another process � such that ������ �� � ������ �� and
����� �� � �y.g� � � � � y.j�.

First, we consider only # � � without any interfering
events. Let �� � � such that �� = �# � # does not have
an interfering event�. We will show that, for each # � ��,
�#� is not empty. Then, we will prove that there is no ad-
missible execution of the transformed algorithm in � ���.
Thus, we will show that �� = �.



Observation 5. Let # � ��. Let � be a configuration
in # and let � be an index. Then, there exists at most
one process � such that ����� �� � �x.a� � � � � x.f� and
������ �� � �. Similarly, there exists at most one process
� such that ����� �� � �y.g� � � � � y.j� and ������ �� � �.

From this observation, we have the following lemma.

Lemma 6. Let # � ��, and let � and � � be any consecu-
tive configurations of # such that, for all processes �, either
����� $���� � ����� $�� ��� or ����� �� �� �y.h� y.i� y.j�,
where y � Y. Then, for any variable � � � , if ������ �� �
������ � ��, then ������ $���� � ������ $�� ���.

Proof. Let � � � be such that ������ �� � ������ � ��. If
� � � � �, then, by P5 of Definition 1, ������ $���� =
������ �� and ������ $�� ��� = ������ � ��, so ������ $����
= ������ $�� ���.

Consider � � �� � �. In this case, we look at the
program counters of all processes � such that ������ �� �
�. If, for all such processes �, neither ����� �� nor ����� � ��
is in �y.h, y.i, y.j�, then ������� $���� � ������� �� and
������� $��

��� � ������� �
�� by P6 of Definition 1. Thus,

������� $���� � ������� $��
���. Now, suppose that there

exists a process � such that ������ �� � � and at least
one of ����� �� and ����� � �� is in �y.h� y.i� y.j�. Then, by
Observation 5, there exists exactly one such �. Let � �� be
the configuration just before � last executed line y.g.

First, suppose that ����� �� � �y.h, y.i, y.j�. Then,
����� $�� ��� � ����� $���� � y. Since � � is the con-
figuration follwing �, ����� � �� � �y.h, y.i, y.j�. Then,
by P6 of Definition 1, ������� $���� � ������� �

��� �
������� $��

���. Otherwise, only ����� � �� is in �y.h, y.i,
y.j�. Then, ����� �� = y.g and ����� � �� = y.h. Note that
� � � �� since � is the configuration just before � performs
line y.g. Thus, by P6 of Definition 1, ������� $��

��� �
������� �� � ������� $����.

Now we show that, for an admissible execution # = ��,
��, ��, ��, ��, � � � of the transformed algorithm, there ex-
ists an admissible execution � of the input algorithm such
that � � �#�. We do this inductively using the following
two lemmas.

Lemma 7. If �� is an initial configuration of the trans-
formed algorithm, then $���� is an initial configuration of
the input algorithm.

Proof. Let �� be an initial configuration of the transformed
algorithm. Consider any process �. If the transformation
does not apply to the first line, then ����� ��� � 1. If the
transformation does apply to the first line, then ����� ��� �
1.a or 1.g. In either case, ����� $����� � 1 by P2 and P4 of
Definition 1.

Also, no variable in � is changed by $ . Since the initial
values of variables in � are the same in both the transformed

algorithm and the input algorithm, and for each process �,
����� $����� � 1, $���� is an initial configuration of the
input algorithm.

Now we prove the induction step.

Lemma 8. Let # � ��� ��� ��� � � � � ����� �� � �� � ��,
and let #� be the prefix of # ending with ����. Then, if
�#�� is not empty, then �#� is also not empty.

Proof. Let � � �#�� that ends with $������. Suppose
that �� is performed by invocation �� and � � ������ ���.
There are four cases depending on the operation performed
by ��.

Case 1: �� is (��, x.a), (��, x.b) with ��	��	��
(� �����	) = 0, (��, x.c) with "������ �	 � LOCKED,
(��, x.d), (��, x.e), (��, x.f), (��, y.g), (��, y.h) with
��	��	��(� �����	) = 1, or (��, y.i). In these cases,
����� $������� � ����� $����� by Definition 1. Thus,
for all processes � � � , ����� $������� � ����� $�����.
Among these events, only (��, y.g) changes the value of
a shared variable in � . In the other cases, for all � �
� , ������ ����� � ������ ���, and hence, by Lemma 6,
������ $������� � ������ $�����.

If �� � (��, y.g), then for all � � � �����,
�����(�, ����) = �����(�, ��), so by Lemma 6,
������ $������� � ������ $�����. The value of �� is set
to � by (��, y.g), so ������� ����� may not be equal to
������� ���. But, ����� ��� � y.h, so by P6 of Definition
1, ������� $����� � ������� ����� � ������� $�������.
Therefore, in both cases, $���� = $������, so � � �#�.

Case 2: �� = (��, x.b) with ��	��	���� �����	� �
1. In this case, we show that �$������� ��

�� x�� $����� is
an admissible execution segment of the input algorithm.
Then, �� ���� x�� $���� is an admissible execution of the
input algorithm that is in �#�. By P2 of Definition 1,
����� $������� � x. Let % be the configuration obtained
by performing event ���� x� in configuration $������. We
will show that % � $���� by proving that, for all variables
� � � , ������%� � ������ $����� and for all processes
� � � , �����%� � ����� $�����.

Since �� receives 1 from � �����	 in �� , �� skips line
x.c. Note that, for all processes � �� �, ����� ����� �
����� ��� since � is the only process that takes a step from
���� to �� . Also, neither ����� ����� nor ����� ��� is
in �y.h� y.i� y.j� since ����� ����� � x.b and ����� ��� �
x.d. Since �� changes only � �����	, which is not in
� , ������ ��� � ������ ����� for all � � � . Therefore,
by Lemma 6, ������ $����� � ������ $������� for all
� � � . Since event ���� x� does not change any variable,
������%� � ������ $������� for all � � � . Hence, for all
� � � , ������%� � ������ $�����.

For all processes � �� �, ����� $������� � ����� $�����
since ����� ����� � ����� ���. Since only �� takes a



step in ���� x�, for all processes � �� �, �����%� �
����� $�������. Thus, for all processes � �� �, �����%� �
����� $�����.

Now, we will show that �����%� � ����� $�����. By
Definition 1, ����� $����� = x+1. In order for �����%� to
be x+1, �� must read �� � � in event ���� x�. Hence, the
value of �� at $������� should be �. We consider the fol-
lowing cases to show ������� $������� � �.

Case 2-1: Invocation �� is the first invocation that per-
formed x.a with a particular value of �. Then no invocation
performs x.a with the same value of � until �� performed
line x.f by Observation 5. Thus, no invocation except ��

performs line x.b or x.d with the same value of � before
����.

Case 2-1-1: There does not exist an invocation that per-
formed line y.h with the same value of � before ����.
Then ���� x.b� is the first event that accesses � �����	,
since � �����	 is accessible in only lines x.b, x.d, and
y.h. Thus, �� got the initial value of � �����	 in event
���� x.b�. Since �� received 1 from � �����	, the initial
value of � �����	 is 1. But, this holds only if the initial
value of �� is �.

If no process performed y.g with the same value of �
prior to ����, then the value of �� remains unchanged,
so ������� ����� � �. In ����, there is no process
with the same value of � whose program counter is in
�y.h� y.i� y.j�. Thus, by Definition 1, ������� $������� �
������� ����� � �. If there exists a process � with the
same value of � that performed y.g before ����, then the
value of �� may be changed by �. Since � did not per-
form line y.h before ����, ����� ����� � y.h. By Obser-
vation 5, no proces other than � has its program counter in
�y.h� y.i� y.j�. Then, by P6 of Definition 1, the value of ��

in $������ is the value of �� just before � performed y.g.
By the Lemma 3, no process with the same value of �

performed line y.g before � did. Thus, the value of �� in
$������� is 1, which is the initial value of ��. Therefore,
������� $������� � �.

Case 2-1-2: There exists an invocation that performs
line y.h with the same value of � before ����. Let �� be
such an invocation, and let �� be the configuration just
before �� performs line y.h. Then, ����� $����� � y and
����� $������� � x. Thus, by Lemma 3, there is no other
invocation with the same value of � whose program counter
is y between $���� and $������. Hence, no process with
the same value of � performed y.h between �� and ����.

Since �� is the first invocation that accesses � �����	, it
gets the initial value from � �����	 in line y.h. Note that,
by Requirement 4 of the input algorithm, if the initial value
of �� was �, then there is no process with the same value of
� whose program counter is y before $������. This contra-
dicts our assumption that �� exists. Hence, the initial value

of �� is not �. Therefore, the initial value of � �����	 is
0. So, �� receives 0 from � �����	, skips lines y.i and y.j,
and finishes y in �.

Finally, the value of �� was set to � when �� performed
line y.g. By Lemma 3, there is no other process with the
same value of � whose program counter is y.g between ��

and ����. Thus, the value of �� remains unchanged dur-
ing this period of time. Therefore, ������� ����� � � and
������� $������� � � by P6 of Definition 1.

Case 2-2: There exists a previous invocation �� that per-
formed x.a using the same variable �. Then �� performed
x.f before �� performs x.a, since there are no interfering
events in #�. Thus, when �� performed x.d, the value of
� �����	 was set to 0. Let �� be the last such invocation.

Since �� gets 1 from � �����	 and x.b, x.d, and y.h
are the only lines that can change the value of � �����	,
there exists another invocation �� that performed y.h be-
fore �� performed line x.c and after �� performed line x.d.
Note that, by Requirement 4, there is only one invocation
that performed y.h before �� performed line x.c and after
�� performed line x.d. Thus, �� performed y.h and received
0 from � �����	. Hence, the value of �� was set to � when
�� performed line y.g.

Note that, by Lemma 3, no other invocation performed
line y.g before ����, but after �� performed line y.g. Thus,
during this period of time, no invocation changes the value
of ��, so ������� ����� � �. Also, �� skipped lines y.i and
y.j, so at ����, no process with the same value of � had a
program counter in �y.g� y.h� y.i�. Thus, P6 of Definition 1,
������� $������� � ������� ����� � �.

Case 3: �� = (��, x.c) with "������ �	 � UNLOCKED.
By Definition 1, ����� $������� = x and ����� $����� =
x+1. For all processes � �� �, ����� ��� � ����� �����, so
����� $����� � ����� $�������. Event �� does not change
the value of any variable. Also, only �’s program counter
is changed from ���� to �� , and ����� ������ ����� ���
�� �y.g� y.h� y.i�. Thus, for all � � � , ������ ��� =
������ �����. Hence, by lemma 6, ������ $����� =
������ $�������.

Now, we show that �$������� ��
�� x�� $����� is an ad-

missible execution segment of the input algorithm, which
shows that �� ���� x�� $���� is an admissible execution of
the input algorithm that is in �#�. To do so, it suffices to
prove that ������� $������� � �.

Consider the last configuration ���� in which
����"������ �	� ����� � LOCKED. Suppose that invoca-
tion �� changed the value of "������ �	 to UNLOCKED at
��. Thus, � � � � �, �� � ��� � y.j�, ����
� ����� � �,
����
����
� ����� � �, and � does not perform x.e
with � � � between ���� and ����. Since there is
no interfering event in #, no process other than � has its
program counter in �y.g� y.h� y.i� y.j� at ���� and ��.



Thus, ������� $����� � � by P6 of Definition 1 since
����� ��� � y+1 and ������� $����� � ������� ���.

Since �� � ���� x.c�, �� performed x.b with
� �����	 � 0. �� � ��� � y.j� implies �� performed y.h
with � �����	 � 1. We will prove that (��, x.b) precedes
(��, y.h).

Suppose, for contradiction, that (��, x.b) does not pre-
cede (��, y.h). Then, some invocation 	� resets � �����	
after (�� , y.h) and before (��, x.b) by performing x.d. Since
there is no interfering event, �� performs x.a after 	� per-
forms x.f. If �� performs y.j before 	� performs x.f, then
�� performs its line y.i before �� performs line x.a. Thus,
�� cannot read the identity of � from !�����	 when it per-
forms line y.i. Hence, �� cannot access "������ �	 in its
line y.j, which contradicts the assumption that �� changed
the value of "������ �	 to UNLOCKED.

If �� performs y.j after 	� performs x.f, then there ex-
ists a configuration � � in � such that ����� � � �� � y and
���	�� � �� � x+1. This violates Lemma 4. Therefore, (��,
x.b) precedes (��, y.h).

Hence, for all � � � � �, ����� ��� � x.c, so
no process can reset ��. Therefore, ������� ����� �
������� ��� � �. No process with the same value of � has
a program counter that is in �y.g� y.h� y.i� in either ����

or �� . Thus, By P6 of Definition 1, ������� $������� �
������� $����� � �. Hence, �$������� ��

�� x�� $����� is
an admissible execution segment of the input algorithm.

Case 4: �� = (��, y.h) with ��	��	���� �����	� �
0 or �� = (��, y.j), In these cases, ����� $������� = y
and ����� $����� = y+1. Event (��, y.h) only changes the
value of � �����	 and (��, y.j) only changes the value
of "����
������ �	. Neither of these variables are in � .
Thus, for all � � � , ������ ����� � ������ ��� and, for all
� � � � ����, ������ $������� � ������ $����� by Def-
inition 1. The value of �� was set to � by event (��, y.g).
Since there is no interfering event, no other process updated
the value of �� before �� , and there does not exist a process
� �� � such that ������ ��� � � and ����� ��� � �y.h, y.i,
y.j�.

Thus, by P6 of Definition 1, ������� $����� =
������� ��� = �. Since the value of �� is set to � and no
other variables in � are changed, �$������� ��

�� y�� $�����
is an admissible execution segment of the input algorithm.
Therefore, �� ���� y�� $���� is an admissible execution of
the input algorithm that is in �#�.

From Lemma 7 and 8, we have the following lemma.

Lemma 9. If # � ��, then �#� is not empty.

Proof. If # � ��, where�� is an initial configuration of the
transformed algorithm, then by Lemma 7, $���� is also an
initial configuration of the input algorithm. Thus, $���� �
�#�, so �#� is not empty.

Now, let # � ��� ��� ��� � � � � ����� �� � �� , and let #�

be the prefix of # that ends with ����. Suppose, for an
induction hypothesis, that �#�� is not empty. Then, by
Lemma 8, �#� is also not empty.

Now we will show that there is no interfering event in
any admissible execution of the transformed algorithm.

Lemma 10. �� ��.

Proof. Suppose, to obtain a contradiction, that there exists
an admissible execution # = ��, ��, ��, . . . ,����, �� , �� ,
����, ����, � � � that is in ����. Let �� be the first inter-
fering event of #. Let #� = ��, ��, ��, . . . ,����. Then,
#� � ��. Thus, by Lemma 9, �#�� is not empty.

Let � � �#��. Then, � is an admissible execution
of the input algorithm such that the sequence of $����,
$����, $����, . . . , $������ with consecutive duplicates
removed is a subsequence of �. Let �� be the invocation
that performs �� . Since �� is the first interfering event in
#, it is either ���� x.a� or ���� y.g�.

Case 1: �� � ���� x.a�. Since �� is an interfering
event, there exists an invocation �� such that ����� �����
� �x�.a, . . . , x�.f� and ������ ����� = ������ �����,
where x� � X. Then, ����� $������� � x� or x�+1 by
Definition 1. Since ����� ����� = x.a, ����� $������� = x
by P2 of Definition 1. Thus, in �, we have ����� $�������
� X 
 X+1, ����� $������� � X, and ������ ����� =
������ �����. This contradicts Lemma 2.

Case 2: �� � ���� y.g�. Since �� is an interfering
event, there exists an invocation �� such that ����� �����
� �y�.g, . . . , y�.j� and ������ ����� � ������ �����,
where y� � Y. Then, by Definition 1,����� $������� � y�.
Also, since ����� ����� = y.a, ����� $������� = y. Hence,
in �, we have ����� $�������, ����� $������� � Y and
������ ����� � ������ �����, which violates Require-
ment 4 of the input algorithm.

Since there is no admissible execution of the transformed
algorithm that has an interfering event, we can extend
Lemma 9 to the following lemma.

Lemma 11. For all # � �, �#� is not empty.

Theorem 12. Transformation HL1 correctly transforms
any local-spin mutual exclusion algorithm on the CC model
that satisfies the requirements into a local-spin mutual ex-
clusion algorithm on the DSM model.

Proof. We prove this theorem by contradiction. Suppose,
for contradiction, that the transformed algorithm does not
satisfy mutual exclusion or lockout freedom. Then, there
exists an admissible execution of the transformed algorithm
in which mutual exclusion or lockout freedom is violated.



Let # = ��� ��� ��� � � � be such an execution. Then, by
Lemma 11, �#� is not empty. Let � � �#�.

Case 1: # violates mutual exclusion.
Then, in #, there exists a configuration � in which two

processes � and � are in the critical section. Let C be the
set of all lines of the critical section of the transformed al-
gorithm, and let z be the first line of the exit section of the
transformed algorithm. Then, ����� ��� ����� �� � C 
�z�.
Let C� be the set of all lines of the critical section of the in-
put algorithm, and let z� be the first line of the exit section
of the input algorithm.

By Definition 1, ����� $���� = ����� �� and ����� $����
= ����� ��, except when z � �x.a, y.g� � ������ ��,
����� ���. But, if x.a is the first line of the exit section of
the transformed algorithm, then x is the first line of the exit
section of the input algorithm, i.e. z� = x. Also, if ����� ��
= x.a, then ����� $���� = x = z�, and if ����� �� = x.a, then
����� $���� = x = z�. Similarly, if y.g is the first line of the
exit section of the transformed algorithm, then ����� �� �
y.g implies ����� $���� � z�, and ����� �� � y.g implies
����� $���� � z�

Thus, ����� $����� ����� $���� � C� 
 �z��. Hence, �
and � are in the critical section of the input algorithm in
$���. Since $��� is a configuration of �, � does not satisfy
mutual exclusion. This contradicts the fact that the input
algorithm satisfies mutual exclusion.

Case 2: # violates lockout freedom.
In this case, # is an infinite admissible execution of the

transformed algorithm that contains an invocation �� that
remains in the entry section of the transformed algorithm
forever. Let �� be the first configuration where �� is in
the entry section. Let A be the set of all lines in the entry
section of the transformed algorithm, and let z be the first
line of the critical section of the transformed algorithm. Let
A� be the set of all lines in the entry section of the input
algorithm, and let z� be the first line of the critical section of
the transformed algorithm. Then, for all � � �, ����� ��� �
A 
 �z�.

Note that if x.a, . . . , x.f are in the entry section of the
transformed algorithm, then x is in the entry section of the
input algorithm and x+1 is in the entry section or the first
line of the critical section of the input algorithm. Similarly,
if y.g, . . . , y.j are in the entry section of the transformed
algorithm, then y is in the entry section of the input algo-
rithm and y+1 is in the entry section or the first line of the
critical section of the input algorithm. Thus, for all � � �,
����� $����� � A� 
 �z��.

Since $����� $������� � � � is an infinite subsequence of
� and, for all � � �, ����� $����� � A� 
 �z��, � does not
satisfy lockout freedom, which contradicts the fact that the
input algorithm satisfies lockout freedom.

In both cases, we reach a contradiction, so the trans-

formed algorithm satisfies mutual exclusion and lockout
freedom. Note that any algorithm that results from apply-
ing Transformation HL1 is a local-spin algorithm on the
DSM model, since processes use local spin variables in
all busy-waiting periods. Therefore, Transformation HL1
transforms any local-spin mutual exclusion algorithm on the
CC model that satisfies the requirements into a local-spin
mutual exclusion algorithm on the DSM model.

3.3 Transformation HL2

Transformation HL2 is the first transformation that uses
only registers. In Transformation HL2, the set of the in-
troduced variables, � , is �����, 
�����, �����	, &����	,
%������ 	, "������� 	, "������� �	 � �� � � � and  � � �.
Transformation HL2 replaces line x of the input algorithm
with lines from x.a to x.i and line y of the input algorithm
with lines from y.j to y.q. Figure 2 describes Transforma-
tion HL2 in detail.

Transformation HL2 can be described informally as fol-
lows. Let � be a process, and � be the predecessor of
�. In Transformation HL2, � uses two local shared vari-
ables "������� 	 and "������� �	 as spin variables instead
of ��, the spin variable of the input algorithm. The role of
�����	 in Transformation HL2 is similar to that of !����	
in Transformation HL1. In Transformation HL2, the suc-
cessor, �, writes its identity to �����	, and � reads �����	
to get the identity of �.

However, unlike Transformation HL1, it is possible
that � accesses "������� 	, and � does not busy-wait on
"������� 	. To avoid this unwanted unlocking event from
interfering with a later invocation of � that uses the same
index , Transformation HL2 has another busy-waiting pe-
riod for �. After finishing the first busy-waiting period,
process � knows the identity of its predecessor, �, because
� writes its identity to &����	 and "������� 	. Therefore,
in the second busy-waiting period, � can use spin variable
"������� �	, which can be accessed only by � and �. At
this time, shared variable %������ 	 is used to determine
whether � spins on "������� �	. Although it is still possible

Shared variables introduced:
"������� 	 � �NIL, 0, . . . , � � �� initially NIL
"������� �	 � �LOCKED, UNLOCKED�

initially LOCKED
&����	 � �NIL, 0, . . . , � � �, ��

if �� is initially �, then initially � .
otherwise, initially NIL

�����	 � �NIL, 0, . . . , � � �� initially NIL
%������ 	 � �True, False� initially True
%������ 	 � True
where �� � � �� � � � � � � �� and  � '



instead of performing:
x: await �� � �

process � performs:
x.a: ��� 
� NIL

"������� 	 
� NIL
x.b: �����	 
� �
x.c: ��� 
� &����	

if ��� � NIL then
x.d: while ��� � NIL do

��� 
� "������� 	 /* local spin */
od fi

x.e: "������� ���	 
� LOCKED
x.f: if �%�������� 	 then
x.g: await "������� ���	 � UNLOCKED

/* local spin */ fi
x.h: &����	 
� NIL
x.i: �����	 
� NIL

instead of performing:
y: �� 
� �

process � performs:
y.j: %������ 	 
� False
y.k: &����	 
� �
y.l: 
���� 
� �����	

if 
���� �� NIL then
y.m: "�����
����� 	 
� � fi
y.n: �� 
� �
y.o: %������ 	 
� True
y.p: 
���� 
� �����	

if 
���� �� NIL then
y.q: "�����
����� �	 
� UNLOCKED


���� 
� NIL fi

Figure 2. Transformation HL2

that � accesses "������� �	, and � does not busy-wait, this
unlocking event by � does not affect a later invocation of �
with the same index . That is because the later invocation
of � cannot use "������� �	 unless its predecessor is also �.

3.4 Modifications of the Transformations

For some input algorithms, it is difficult to tell whether
�� 
� � is an unlocking event or resetting event, espe-
cially if � is not a constant. In this case, we replace
� ����	 with � ����� �	 in Transformation HL1, and
replace &����	, �����	, and %������ 	 with &����� �	,
������ �	 and %������ � �	 in Transformation HL2.

4 Conclusion

We showed that if a local-spin mutual exclusion algo-
rithm on the CC model satisfies the requirements in this

paper, then there is also a local-spin mutual exclusion algo-
rithm on the DSM model that has the same time complexity.
This result is another indication that the DSM model could
have the same power to solve the mutual exclusion problem
as the CC model.

It is open whether it is possible to transform all local-
spin mutual exclusion algorithms from the CC model to the
DSM model without increasing the number of RMAs they
perform by more than a constant factor.

Acknowledgement: I would like to thank my supervisor
Prof. Faith Ellen Fich for her guidance and careful correc-
tions. This research is supported by Natural Sciences and
Engineering Research Council of Canada.

References

[1] Jae-Heon Yang and James H. Anderson. A fast, scal-
able mutual exclusion algorithm. Distributed Comput-
ing, 9(1):51–60, August 1995.

[2] James H. Anderson and Yong-Jik Kim. An improved
lower bound for the time complexity of mutual exclu-
sion. In Proceedings of the 20th Annual ACM Sym-
posium on Principles of Distributed Computing, pages
90–99, August 2001.

[3] Thomas E. Anderson. The performance of spin
lock alternatives for shared-memory multiprocessors.
IEEE Transactions on Parallel and Distributed Sys-
tems, 1(1):6–16, January 1990.

[4] James Anderson. A fine-grained solution to the mu-
tual exclusion problem. Acta Informtica, 30(3):249–
265, May 1993.

[5] James H. Anderson and Yong-Jik Kim. Local-spin mu-
tual exclusion using fetch-and-� primitives. In The
23rd International Conference on Distributed Comput-
ing Systems, May 2003.

[6] James H. Anderson, Yong-Jik Kim, and Ted Her-
man. Shared-memory mutual exclusion: Major re-
search trends since 1986. Distributed Computing, 2002.

[7] Robert Danek and Vassos Hadzilacos. Local-spin group
mutual exclusion algorithms. In Proceedings of the
18th International Symposium on Distributed Comput-
ing, pages 71–85, October 2004.

[8] Yong-Jik Kim and James H. Anderson. Timing-based
mutual exclusion with local spinning. In Proceedings of
the 17th International Symposium on Distributed Com-
puting, pages 30–44, October 2003.


