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Abstract

The link structure of the Web graph is used in algo-
rithms such as Kleinberg’s HITS and Google’s PageRank
to assign authoritative weights to Web pages and thus rank
them. Both require a centralized computation of the rank-
ing if used to rank the complete Web graph. In this paper,
we propose a new approach based on a Layered Markov
Model to distinguish transitions among Web sites and Web
documents. Based on this model, we propose two different
approaches for computation of ranking of Web documents,
a centralized one and a decentralized one. Both produce a
well-defined ranking for a given Web graph. We then for-
mally prove that the two approaches are equivalent. This
provides a theoretical foundation for decomposing link-
based rank computation and makes the computation for a
Web-scale graph feasible in a decentralized fashion, such as
required for Web search engines having a peer-to-peer ar-
chitecture. Furthermore, personalized rankings can be pro-
duced by adapting the computation at both the local layer
and the global layer. Our empirical results show that the
ranking generated by our model is qualitatively comparable
to or even better than the ranking produced by PageRank.

1. Introduction

Applying the peer-to-peer architectural paradigm to Web
search engines has recently become a subject of intensive
research. Whereas proposals have been made for the de-
composition of content-based retrieval techniques, such as
classical text-based vector space retrieval or latent seman-
tic indexing, it is much less clear of how to decompose the
computation for ranking methods based on the link structure
of the Web.

∗The work presented in this paper was carried out in the framework of
the EPFL Center for Global Computing and supported by the Swiss Na-
tional Funding Agency OFES as part of the European FP 6 STREP project
ALVIS (002068).

We first briefly review the two most prominent link-
based ranking algorithms - HITS [10] and PageRank [14],
and then describe our main contribution towards enabling
link-based ranking in peer-to-peer Web search engines.

1.1. Link-based Web Document Ranking

HITS is a query-dependent approach, which first obtains
a subgraph of the Web relevant to a query result, and then
applies the algorithm to this subgraph. On the other hand,
PageRank is query-independent and operates on the whole
Web graph directly. Disregarding this difference, both rely
on the same principles of linear algebra to generate a rank-
ing vector, by using a principal Eigenvector of a matrix gen-
erated from the (sub) Web graph to be studied.

It has been shown [4] that HITS is often instable such
that the returned Eigenvectors depend on variations of the
initial seed vector and that the resulting Eigenvectors inap-
propriately assign zero weights to parts of the graph. In
short, HITS lacks strong theoretical basis assuring certain
desirable properties of the resulting rankings.

In PageRank the process of surfing the Web is used as
an intuitive model for assessing importance of Web pages
and is modeled as a random walker on the Web graph. The
computation of PageRank (and similarly of HITS if it were
applied to the complete Web graph) is then performed on a
matrix representation of the walker’s stochastic state transi-
tion on the complete Web graph. It is inherently difficult to
decompose as it would be required for a distributed compu-
tation in a peer-to-peer architecture.

1.2. SiteRank for Computation Distribution

Various methods [6, 7, 8] have been proposed to speed
up the computation of PageRank by either more efficient
implementations or the application of optimized numerical
algorithms. However, all these attempts have a limited po-
tential of keeping up with the Web growth, as the complex-
ity of centralized computation of Page rank is inherently



related to the size of the link matrix of the Web, which
is extremely large and growing. A different direction has
been taken in [2, 9], where structural features of the Web
graph related to the hierarchical organization of the Web
are used to simplify the link matrix and thus the computa-
tion of PageRank. In [2] the Web graph is aggregated at the
Web site level in order to improve the efficiency of Page-
Rank computation. Even though these algorithms make use
of the internal structure of the Web in ranking computation,
they are typically designed to be centralized.

Recently several research groups, including ours, have
thus investigated the possibility to compute PageRank in
a distributed fashion [17, 19, 20]. Common to these ap-
proaches is an idea similar to the one used in [2]: the Web
graph is aggregated at the Web site level and a ranking is
computed at this granularity, which we call SiteRank. For
each Web site an independent ranking is computed for the
local document collection, which we call a local DocRank.
The different DocRanks are then aggregated by using the
SiteRank to weight the relative importance of the Web sites.
Apparently this computation can be performed in a distrib-
uted manner since all DocRanks can be computed indepen-
dently. The computation of SiteRank is of a comparably
low complexity and can be either performed centrally or
in a distributed fashion, depending on the architectural re-
quirements. First experimental studies provide empirical
evidence that rankings computed in this way, not only allow
a widely distributed and thus scalable computation, but also
produce ranking results comparable (and sometimes even
more reasonable) than applying global PageRank. How-
ever, as opposed to the standard PageRank method, a solid
theoretical foundation for this approach has not yet been
provided. This is the gap that we close in this paper.

The model for distributed link-based web rank computa-
tion that we introduce is based on Layered Markov Models
taking into account the Web site structure as a higher level
of abstraction in the standard random surfer model of the
Web. It serves the following purposes:

• It clarifies the relationship between a standard Page-
Rank computation and distributed computation by
composing SiteRank with DocRank. Thus it provides
a precise semantics to SiteRank methods relative to
PageRank.

• It provides sufficient conditions on SiteRank and
DocRank computation to ensure non-degeneracy of
the global ranking resulting from their composition.
One of the important observation on PageRank was
that ensuring primitivity of the link matrix by adding
a random transition matrix is required. We show that
primitivity of the global Web site graph and the local
document graphs is sufficient.

• It shows the equivalence of distributed rank computa-
tion to a specific global ranking computation. Thus we
prove that the distributed rank computation is equiva-
lent to a well-understood centralized algorithm.

In addition, our model provides a foundation for a whole
class of ranking methods, e.g. by replacing the Page-
Rank algorithm by any other methods for the computation
of DocRank and/or SiteRank at different layers, including
methods that exploit user relevance feedback, of which the
models that have been proposed in [2, 17, 20, 19] are spe-
cific instances. It thus generalizes the existing proposals.

1.3. Contribution

In our Layered Markov Model the Web is no longer con-
sidered as a flat graph of Web documents, but characterized
by a multi-layer hierarchical structure. In the analysis, a
two-layer structure is used: the graph of Web sites at the
higher layer, and the graphs of Web documents at the lower
layer. A transition from one Web document to another is
mapped to both transitions between Web sites at the higher
layer and transitions between Web pages on the same Web
site at the lower layer. We will show in this paper that this
model has the following important properties:

1. The derived ranking method satisfies basic properties
required for consistently producing rankings. In partic-
ular, the ranking is well-defined and produces a proba-
bility distribution over the Web pages.

2. We provide a Partition Theorem for Rank Computa-
tion showing that by using the model we can provide
a distributed algorithm for computing the ranking that
is equivalent to result from a well-defined global algo-
rithm.

3. Empirical experiments demonstrate that the ranking
result produced by our approach is qualitatively com-
parable to or even better than that of PageRank. Link
spamming is also defeated to a satisfiable degree.

4. While the model provides an alternative to existing
link-based ranking methods allowing for distributed
computation, it also introduces the possibility to gen-
erate in an elegant way personalized rankings by in-
cluding into the computational personal preferences at
both the Web site layer and the Web page layer.

2. Layered Markov Model

In this section, we first summarize the classical Page-
Rank algorithm, then we present our new model.



2.1. The Classical Web Ranking

In the classical PageRank model, a surfer performs ran-
dom walks on the flat graph generated by the Web pages,
by either following hyperlinks on Web pages or jumping to
a random page if no such link exists. A damping factor is
defined to be the probability that a surfer does follow a hy-
perlink contained in the page where the surfer is currently
located. Suppose the damping factor is f , then the prob-
ability that the surfer performs a random jump is 1 − f .
PageRank first generates a transition matrix M based on
the original link-based adjacency matrix. However, the ma-
trix M does not ensure the existence of the stationary vec-
tor of the Markov chain which characterizes the surfer be-
havior, i.e. the PageRank vector. As widely accepted, the
unaltered Web creates a reducible Markov chain 1. Thus,
PageRank enforces the following adjustment to make a new
irreducible transition matrix:

M̂ = fM +
1 − f

ND
ee′ (1)

where ND is the total number of Web documents, e is the
column vector of all 1s and e′ is e transposed. M̂ is then
primitive 2, thus the power method will finally produce the
stationary PageRank vector. The adjustment is called maxi-
mal irreducibility [11].

We also use M(G) and M̂(G) to denote the function of
generating such matrices for a given graph G. Remember
that in the function body of M̂(G), personalization of rank-
ings can be obtained by replacing e′ with a personalized
distribution vector vp’s transposed v′

p in equation (1).

2.2. Why Layered Markov Model

Hierarchical Hidden Markov Models are used in [1] and
similar work to determine optimal parameters for a Hidden
Markov Model (HMM) given observed outputs from the
hidden states. The main purpose of this work is to reduce
the complexity of learning a hidden model for large-scale
and highly complex application domains, such as analysis
of traffic data from ISDN traffic, Ethernet LAN’s, Common
Channel Signaling Network (CCNS) and Variable Bit Rate
(VBR) video, etc.. Studies have shown that for such prob-
lems, applying the standard HMM learning algorithm does
not generate acceptable results.

The study in this paper is fundamentally different from
that work both in the model and the problem itself: In our

1When represented by the stochastic transition matrix, reducibility
means the matrix is not strongly connected.

2This property pertains to whether a unique ranking vector exists. A
primitive matrix is a nonnegative irreducible matrix that has only 1 eigen-
value on its spectral circle. A nonnegative matrix M is primitive if and
only if Mp > 0 for some p > 0 [13]. A positive matrix is thus always
primitive.

model, we do not have observed outputs while a hidden
model has. The purpose is also different. We do not aim
to learn system parameters, but to mine the link structure
and obtain a ranking for all global system states related to
the Web graph.

While PageRank assumes that the Web is a flat graph of
documents and the surfers move among them without ex-
ploiting the hierarchical structure, we consider the Layered
Markov Model as a suitable replacement for the flat chain
to analyze the Web link structure for the following reasons:

• The logical structure of the Web graph is inherently
hierarchical. No matter, whether the Web pages are
grouped by Internet domain names, by geographical
distribution, or by Web sites, the resulting organiza-
tion is hierarchical. Such a hierarchical structure does
definitely influence the patterns of user behavior.

• The Web is shown to be self-similar [3] in the sense
that interestingly, part of it demonstrates properties
similar to those of the whole Web. Thus instead of ob-
taining a snapshot of the whole Web graph, introduc-
ing substantial latency, and performing costly compu-
tations on it, bottom-up approaches, which deal only
with part of the Web graph and then integrate the par-
tial results in a decentralized way to obtain the final
result, seem to be a very promising and scalable alter-
native for approaching such a large-scale problem.

Figure 1 illustrates a Layered Markov Model structure.
The model consists of 12 sub-states (small circles) and 3
super-states (big circles), which are referred to as phases
in [1]. There exists a transition process at the upper layer
among phases and there are three independent transition
processes happening among the sub-states belonging to the
three super-states.3

When applying the Web surfer paradigm, a phase could
be considered as a surfer’s staying within a specific Web site
or a particular group of Web pages. The transition among
phases corresponds to a surfer’s moving from one Web site
or group to another. The transition among sub-states cor-
responds to a surfer’s movement within the site or group.
Thus a comprehensive transition model should be a func-
tion of both the transitions among phases and the transi-
tions among sub-states. In other words, the global system
behavior emerges from the behaviors of decentralized and
cooperative local sub-systems.

We consider a two-layer model in the following to keep
explanations simple, but the analysis can be extended to
multi-layer models using similar reasoning. We introduce
now the notations to describe the two-layer model.

3Please note the figures of layered models here are only for the purpose
of illustration, and the transition probabilities in the matrices used in our
examples later are not necessarily related to the edges of the graph shown
in this figure.



Figure 1. Phases and sub-states in Layered
Markov Model.

• Given the number of phases NP, we use
{1, 2, · · · , NP} to label the individual phases and de-
note the phase active at time t as a variable Z(t). The
set of phases is denoted by P = {P1, P2, · · · , PNP

}.

• For each phase PI the number of its sub-states is
nI . We use {1, 2, · · · , nI} to label the individual
sub-states and denote the state at time t as a variable
zI(t). The set of sub-states of phase PI is denoted by
OI = {oI

1, o
I
2, · · · , oI

nI
}. The overall set of sets of

sub-state is denoted by O = {O1, O2, · · · , ONP}.

• The transition probability at the phase layer is given
by Y = {yIJ} where yIJ = P (Z(t + 1) = J |Z(t) =
I) and 1 ≤ I, J ≤ NP. The initial state distribution
vector is denoted by vY .

• For each phase I , the transition probability at the sub-
state layer is given by UI = {uI

ij} where uI
ij =

P (zI(t + 1) = j|Z(t + 1) = I, Z(t) = I, zI(t) = i)
and 1 ≤ i, j ≤ nI . In addition, U is defined to
be the set of all sub-state transition matrices: U =
{U1,U2, · · · ,UNP}. There exists a one-to-one map-
ping between P and U, namely each phase PI has its
sub-state transition matrix U I , 1 ≤ I ≤ NP. The
set of initial state distribution vectors is denoted by
vU = {v1

U ,v2
U , · · · ,vNP

U }.

When context is clear, we also use the index of a phase or
a sub-state to designate the phase or sub-state. For example,
phase 2 for P2 and its sub-state 3 for o2

3 in O2. An overall
system state is denoted by a (phase,sub-state) pair like (2,3)
which means the system is at the sub-state 3 of phase 2. In
addition, NP =

∑NP

I=1 nI is used to denote the total num-
ber of overall system states. An overall system state is also
called a global system state in contrast to a local sub-state
(i.e. a sub-state local to a phase).

Definition 1. A (two-layer) Layered Markov Model is a 6-
tuple LMM = (P,Y,vY , O, U,vU) where each dimension
has the meaning explained above.

2.3. LMM for Ranking Global System States

We want to use the Layered Markov Model to compute a
ranking for all global system states, i.e., a stationary (if pos-
sible) distribution vector for all global system states. Such
a ranking also should be uniquely defined.

We assume that state transition between two global sys-
tem states is always abstracted as first an inter-phase transi-
tion, and then an intra-phase transition.

As an example, suppose we have a phase transition ma-
trix Y, and three sub-state transition matrices U1 of the
four-sub-state phase I, U2 of the three-sub-state phase II,
and U3 of the five-sub-state phase III as follows:

Y =

2
4

.1 .3 .6

.2 .4 .4

.3 .5 .2

3
5 U1 =

2
664

.3 .3 .2 .2

.5 .1 .1 .3

.1 .2 .6 .1

.4 .3 .1 .2

3
775

U2 =

2
4

.2 .1 .7

.1 .8 .1
.05 .05 .9

3
5 U3 =

2
66664

.6 .02 .2 .1 .08
.05 .2 .5 .05 .2
.4 .1 .2 .1 .2
.7 .1 .05 .1 .05
.5 .2 .1 .1 .1

3
77775

We want to rank the 12 global system states according to
the general authority implied by the transition link structure.
To do so, we need to obtain a global transition probability
matrix for the 12 global system states. To derive such a ma-
trix, we first introduce our notion of layer-decomposability.

2.3.1 Layer-Decomposability

Informally, the property of layer-decomposability ensures
the legitimacy of decomposing the transition between two
global system states into the two steps of first inter-phase
transition then intra-phase transition.

In order to define the decomposability between layers,
we first introduce the concept of gatekeeper sub-state.

Definition 2. A gatekeeper sub-state oI
G of a phase PI is

a virtual sub-state appended to the phase, such that it con-
nects to every other sub-state and every other sub-state is
connected to it.

After the introduction of gatekeeper sub-states for
phases, the decomposability of a Layered Markov Model
is defined as below.

Definition 3. Layers in a Layered Markov Model are
decomposable if the transition probability between two
given non-gatekeeper sub-states in their two corresponding



phases satisfies:

P (Z(t + 1) = J, z(t + 1) = j|Z(t) = I, z(t) = i) (2)

= P (Z(t + 1) = J |Z(t) = I)P (zJ(t + 1) = j|zJ (t) = oJ
G)

The definition basically assures that whenever a phase
transition takes place, it has to go through the gatekeeper
sub-state of the destination phase. The gatekeeper sub-state
functions as the boundary between inter-phase transitions
and intra-phase transitions.

Denoting the transition probability in phase PJ from the
gatekeeper sub-state oJ

G to sub-state oJ
j by uJ

Gj , the ele-
ments of the resulting global transition matrix W are com-
puted as follows:

w(I,i)(J,j) = yIJuJ
Gj (3)

W.l.o.g., we assume that for each J ∈ [1, NP], we have

∑
j

uJ
Gj = 1 (4)

as this is the sum of the transition probabilities from the
gatekeeper sub-state oJ

G to all the sub-states oJ
j , j =

1, 2, · · · , nJ within phase PJ .
We show the following.

Lemma 1. The resulting transition matrix W satisfies the
raw stochastic property.

Proof. Given an overall system state (I, i),
X

J

X
j

w(I,i)(J,j) =
X

J

X
j

yIJuJ
Gj =

X
J

yIJ

X
j

uJ
Gj = 1

2.3.2 Transition Probabilities of Gatekeeper Sub-
states

To compute (3), for each phase J we have to obtain the uJ
Gj

values of all j ∈ [1, nJ ].
We already have the Markovian (not necessarily irre-

ducible) transition matrix UJ . After adding the new virtual
gatekeeper sub-state, we need to make the new (nJ + 1) ×
(nJ + 1) matrix ÛJ Markovian as well. A possible method
of applying such a change is:

ÛJ =
[

αUJ (1 − α)e
(vJ

U )T 0

]

where 0 < α < 1 is an adjustable parameter, e is the col-
umn vector of all 1s and vJ

U is the initial state distribution
vector for all the non-gatekeeper sub-states within PJ , as
we have described before. The new matrix ÛJ is not only
Markovian, but also irreducible and primitive.

This method is actually known as the approach of mini-
mal irreducibility in the context of PageRank computation.
In detail, applying the power method on ÛJ will eventually
produce its principal Eigenvector. After that, the last ele-
ment of the vector, which corresponds to the appended gate-
keeper sub-state in our case, is removed and the remaining
nJ elements are re-normalized to sum up to 1. The resulting
vector πJ

U is considered as the stationary distribution over
all the non-gatekeeper sub-states within the given phase J .
We take the nJ elements of the stationary distribution vec-
tor πJ

U as the values of all uJ
Gj , j ∈ [1, nJ ].

Interestingly enough, it is shown in [11] that this method
is equivalent in theory and in computational efficiency to
Google’s method of maximal irreducibility. Thus, given the
adjustable factor α, we actually take the PageRank values of
the local sub-states of PJ as their uJ

Gj values, j ∈ [1, nJ ].
To compute a ranking for the system states, we need to

ensure the primitivity of the new global transition matrix.

Lemma 2. If Y is primitive and the PageRank values of
the local sub-states of PJ are taken as their uJ

Gj values, j ∈
[1, nJ ], the global transition matrix W is also primitive.

Proof. This is a natural consequence of all the uJ
Gj values’

being positive.

Thus W has only one Eigenvalue on its spectral circle.
The corresponding Eigenvector is used to rank the states in
the overall system. However, we do not make the assump-
tion that both Y and U are primitive, we are only sure that
both of them are Markovian. Even if they are not primi-
tive, we can make the resulting W primitive by adopting the
same approach as taken in PageRank, the so-called method
of maximal irreducibility, by connecting every pair of nodes
via random jumps. Once the primitivity is achieved, we can
always compute the ranking of the system states.

We now compute the W for our example given by the
four Markovian matrices Y,U1,U2 and U3. First, we
compute the PageRank vectors for three phases (denoted by
πJ

G,J = 1, 2, 3):

π1
G =

0
BB@

0.3054
0.2312
0.2582
0.2052

1
CCA π2

G =

0
@

0.1191
0.2691
0.6117

1
A π3

G =

0
BBBB@

0.4557
0.1038
0.2014
0.1106
0.1285

1
CCCCA

Then we use equation (3) to obtain the new W 4. The el-
ements of this global system transition matrix are the prob-
abilities of transitions among global system states. The ele-
ments of both the rows and columns are in the order of (1,1),
(1,2), (1,3), (1,4), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (3,4),
(3,5). 1 · · · 12 are assigned as their corresponding global

4The actual value is not included here due to the limit of space. It can
be found in [18].



system state index. For example, the element w(12)(7) =
w(3,5)(2,3) is the transition probability from the sub-state
5 of phase 3 (global system state 12) to the sub-state 3 of
phase 2 (global system state 7). Layer decomposability as-
sures that w(3,5)(2,3) = y32u

2
G3 = 0.5 × 0.6117 = 0.3059.

As equation (3) does not depend on i anymore given a
global system state (I, i), we can find that in the matrix W
rows pertaining to a particular value I are constant.

At this point, we are able to compute a ranking for the
global system states. There are two possible approaches.

Approach 1: We apply the standard PageRank algorithm
to W to rank all states, i.e. we apply the method of maxi-
mal irreducibility to W before we launch the power method
to compute the principal Eigenvector. We obtain πW as fol-
lows:

1 : (1, 1)
2 : (1, 2)
3 : (1, 3)
4 : (1, 4)
5 : (2, 1)
6 : (2, 2)
7 : (2, 3)
8 : (3, 1)
9 : (3, 2)
10 : (3, 3)
11 : (3, 4)
12 : (3, 5)

πW =

0
BBBBBBBBBBBBBBBBBB@

0.0682
0.0547
0.0596
0.0499
0.0545
0.1073
0.2281
0.1562
0.0452
0.0760
0.0474
0.0530

1
CCCCCCCCCCCCCCCCCCA

5
7
6
10
8
3
1
2
12
4
11
9

π̃W =

0
BBBBBBBBBBBBBBBBBB@

0.0658
0.0498
0.0556
0.0442
0.0495
0.1118
0.2541
0.1683
0.0383
0.0744
0.0408
0.0474

1
CCCCCCCCCCCCCCCCCCA

5
7
6
10
8
3
1
2
12
4
11
9

Figure 2. Ranking results of Approach 1 & 2

The first column in Figure 2 above is the list of global
system states with their index numbers on the left-hand side.
The middle vector πW gives the rank values (PageRank val-
ues) we computed based on the transition matrix W, and
the column neighboring to the vector on the right-hand side
gives the order numbers of the states ranked by their rank
values.

Approach 2: On the other hand, as Y is already primi-
tive, hence W is primitive as well. We can compute directly
its stationary state distribution without applying the Maxi-
mal Irreducibility method. The resulting ranking is shown
by the right vector π̃W in Figure 2. We notice that apart
from minor differences in the absolute values, the two re-
sults rank all system states in an identical order.

The results imply that, in the Layered Markov Model
defined by Y,U1,U2 and U3, the top three (highly ranked)
overall system states are number 7, 8 and 6, namely (2,3),
(3,1) and (2,2).

In both Approach 1 and Approach 2, we have to com-
pute in advance the global transition matrix W in order to
derive the ranking of the global system states, thus we con-
sider these two as centralized approaches for computing the

global system state ranking. The difference between them
is that if the maximal irreducibility adjustment has to be
performed on W .

2.3.3 Partition Theorem for Rank Computation

A natural question is now that given the PageRank rank-
ing for all four matrices, Y,U1,U2 and U3, is it possible
to obtain the stationary distribution for the global system
states without deriving a new matrix W and applying the
PageRank algorithm to it?

We introduce now such an algorithm step-by-step:

1. At the phase level, if Y is already primitive, we can
compute its stationary distribution π̃Y without apply-
ing the maximal irreducibility method to Y before the
power method is applied. The element for phase I in
the distribution vector is denoted by π̃Y(I).

Certainly, we can also compute the slightly different
πY by applying the maximal irreducibility method to
Y even if Y is already primitive. We will see later on
why we don’t make this choice.

2. At the sub-state level within phases, for each phase I ,
we compute its stationary distribution πI

G by applying
the PageRank algorithm to UI . Remember this re-
sulting vector is related to our introduced gatekeeper
sub-state of each phase PI . We denote the element for
sub-state i in the distribution vector by πI

G(i).

3. For each global system state (I, i), we assign it a value
as follows:

π̃(I, i) = π̃Y(I)πI
G(i) (5)

The assignments to all global system states form a state
distribution π.

We call this the Layered Method of rank computation. The
result of this computation has the following (expected)
property.

Theorem 1. The resulting vector of the Layered Method of
rank computation is a probability distribution.

Proof.
X

I

X
i

π̃(I, i) =
X

I

X
i

π̃Y(I)πI
G(i) =

X
I

π̃Y(I)
X

i

πI
G(i) = 1

We give an example illustrating the computation: we
want to compute the ranking value assigned to the global
system state 7 : (2, 3).

Approach 3: The PageRank vector πY for Y is:

πY = (0.2315, 0.4015, 0.3670)′



We can replace π̃Y(I) in (5) with πY(I) and the result is
still a probability distribution. The corresponding multipli-
cation becomes:

π(2, 3) = πY(2)π2
G(3) = 0.4015× 0.6117 = 0.2456

Unsurprisingly, this value is different from πW(2, 3) that
we’ve computed before.

Approach 4 (the Layered Method): The vector π̃Y for
Y is:

π̃Y = (0.2154, 0.4154, 0.3692)′

Thus:

π̃(2, 3) = π̃Y(2)π2
G(3) = 0.4154× 0.6117 = 0.2541

Notice that this value is equal to that of π̃W(2, 3) we have
obtained previously.

We call Approach 3 and Approach 4 the decentralized
approaches for computing the global system state ranking,
as we do NOT have to compute in advance the global tran-
sition matrix W. Instead we compute the ranking for the
phases (or Web sites for the case of Web document ranking),
the individual rankings for the sub-states in each phase (or
the individual Web document rankings for each Web site),
which can be done in a parallel or decentralized fashion.
The differences between Approach 3 and 4 is also whether
the maximal irreducibility adjustment has to be performed
on W .

Now we want to show the equality of the values obtained
from Approach 2 and Approach 4 in the example is not ac-
cidental.

Corollary 1. Approach 2 and Approach 4 (the Layered
Method) are equivalent.

This corollary results from the following theorem.

Theorem 2. Give LMM = (P,Y,vY , O, U,vU) as a Lay-
ered Markov Model where Y is primitive. The following
vectors are first computed: the stationary state distribution
vector π̃Y of Y, the PageRank vectors πI

G, I ∈ [1, NP]. A
new matrix W and a new vector π̃ are derived in the fol-
lowing fashion:

1. Both the size of W and the length of π̃ are NP =∑NP

I=1 nI , i.e., the total number of the global system
states in the model LMM. Every element of W and
every element of π̃ correspond to a global system state
(I, i) ordered by I ∈ [1, NP] and i ∈ [1, nI ].

2. Every element of W is defined by w(I,i)(J,j) =
yIJπJ

G(j).

3. Every element of π̃ is defined by π̃(I, i) =
π̃Y(I)πI

G(i).

Then W is also primitive and its stationary state distribu-
tion vector is exactly π̃.

Proof. For a primitive matrix, we know its stationary state
distribution vector is the principal Eigenvector of its trans-
posed matrix. Lemma 2 assures that W is primitive.
Lemma 1 says W is Markovian, thus the principal Eigen-
value of W is 1. Then it remains to show

W′π̃ = π̃

which is equivalent to that, given (I, i),
∑

J

∑
j w(J,j)(I,i)π̃(J, j) = π̃(I, i)

⇔ ∑
J

∑
j yJIπ

I
G(i)π̃Y(J)πJ

G(j) = π̃Y(I)πI
G(i)

⇔ πI
G(i)

∑
J yJI π̃Y(J)

∑
j πJ

G(j) = π̃Y(I)πI
G(i)

⇔ πI
G(i)

∑
J yJI π̃Y(J) = π̃Y(I)πI

G(i)
⇔ ∑

J yJI π̃Y(J) = π̃Y(I)

The last equality is guaranteed by the fact that π̃Y is the
stationary state distribution vector of Y.

We call Theorem 2 the Partition Theorem for Rank Com-
putation as the rank computation for the global system
states in a Layered Markov Model can be decomposed
into several steps that can be performed in a decentralized
or/and parallel fashion, if decomposability is assumed and
the phase transition matrix is primitive.

The computation proceeds as follows: (1) At the phase
layer, computation of the stationary distribution for the
phase transition matrix. (2) At the sub-state layer, com-
putation of the PageRank for individual sub-state station-
ary distribution for the sub-state transition matrix. (3) The
aggregation of those vectors where only O(NP) multiplica-
tions are necessary. In contrast, previous methods require a
large number of multiplications of two NP × NP matrices
until the resulting vector converges.

3. Application to Web Information Retrieval

We now discuss how the obtained theoretical results
can be applied in the context of Web Information Re-
trieval. We know that search engines take into considera-
tion both query-based ranking (for example, distances be-
tween queries and documents based on the Vector Space
Model) and link-structure-based ranking (typically Page-
Rank in Google and HITS-derived algorithm in Teoma)
when ordering search results. We focus on the second as-
pect.

3.1. Different Abstractions for the Web Graph

Previous research work focused on the page granularity
of the Web, i.e., a graph where the vertices are Web pages



and the edges are links among pages. We propose to model
the Web graph at the granularity of Web site. We call the
graph at the document level the DocGraph, and the graph
at the Web site level the SiteGraph. We also use the notion
of SiteLink to designate hyperlinks among Web sites and
DocLink for those among Web documents. When the Site-
Graph is created, to count the number of Sitelinks between
two sites, we add the number of outgoing edges from any
node in the first site to any node in the second site.

Given the graph of Web documents GD(VD, ED) with
ND pages as a DocGraph, we assume its corresponding
SiteGraph is GS(VS , ES) with NS Web sites in total, vs ∈
VS is a Web site and es ∈ ES is a SiteLink. We use the no-
tations GD(VD, ED), vd, ed for a DocGraph. We also use
the shorthand d and s to represent a Web document and a
Web site respectively. Taking one page d, we denote its cor-
responding site as s = site(d) with ns = size(s) local
Web documents in total. Vd(s) ⊆ VD is the set of all lo-
cal Web pages of the particular Web site s. Ed(s) ⊆ ED

is defined to be the set of those ed whose both originating
and destination documents are members of Vd(s). Gs

d =
(Vd(s), Ed(s)) is defined to be the subgraph restricted with
the Web site s.

We call the ranking of Web sites the SiteRank for the
SiteGraph and the ranking of Web documents the DocRank
for the DocGraph. PageRank is an example of DocRank,
but DocRank can be computed in a way other than Page-
Rank, for example, as in our approach in a decentral-
ized fashion. We use the notions SiteRank(GS) and
DocRank(GD) to refer to the SiteRank result of GS and
DocRank result of GD respectively. When we are using the
matrix representations M̂S of GS and M̂D of GD , we also
use SiteRank(M̂S) and DocRank(M̂D) to denote the rank-
ings.

3.2. Layered Method for DocRank

Having the analytical results above, we compute the
DocRank for a given Web graph in the following steps:

1. Derive the global DocGraph GD(VD, ED) from the
given Web graph. Typically, DocLinks are processed.

2. Derive the global SiteGraph GS(VS , ES) from the
DocGraph. Nodes in the SiteGraph are the Web sites.
Edges are grouped together according to Web sites.
The numbers of SiteLinks are counted.

3. For each Web site s, derive the subgraph Gs
d, its ma-

trix representation M̂s
d = M̂(Gs

d) and compute its
πD(s) =DocRank(M̂s

d) using the classical PageRank
algorithm. This step can be completely decentralized
in a peer-to-peer search system.

4. For the global SiteGraph GS(VS , ES), we first derive a
primitive transition matrix and then compute its princi-
pal Eigenvector. The primitivity of the transition prob-
ability matrix is required by Theorem 2. In practice,
we compute M̂S = M̂(GS) which is primitive and its
principal Eigenvector πS = (πS(s1), · · · , πS(sNS ))′

as the SiteRank.

5. For i = 1, · · · , NS , we list the ND DocRank vectors
πD(si) and create an aggregate vector from them:

πD = (πD(s1)
′
, · · · , πD(sNS )′)′

By applying Theorem 2, we perform a weighted prod-
uct to obtain the final global ranking for all documents
in the DocGraph GD(VD, ED):

DocRank(GD) = (πS(s1)πD(s1)
′, · · · , πS(sNS )πD(sNS )′)′

Personalization of rankings can be easily implemented
in our layered method for DocRank. Personalization at the
lower layer, i.e., the layer of local Web documents within
specific Web sites, can be realized in Step 3 by provid-
ing different personalized vectors in the function body of
M̂(Gs

d). Similarly, personalization at the higher layer, i.e.,
the layer of Web sites, can be realized in Step 4. Of course,
it can also be applied to both layers at the same time.

When considering a peer-to-peer architecture the strat-
egy for computing SiteRank and DocRank need to be con-
sidered. In a flat peer-to-peer architecture SiteRank could
be a shared resource among all peers, i.e. globally avail-
able, which is realistic as its value changes less rapidly.
DocRank computations are performed by individual peers,
which would ideally map to Web servers. This would in
particular open the possibility to obtain access to the hidden
Web. Alternatively, super-peer architectures can be consid-
ered, where rank aggregation is only performed at super-
peers and individual peers provide their local DocRanks.

Worthy of notice is the difference between the block
graph in [9] and our SiteGraph although they look simi-
lar. The main difference is the weight assignment to edges
among blocks. In BlockRank such an assignment is depen-
dent on earlier stage of computation. The weight of the sin-
gle edge between two blocks is the sum of local PageRank
values of the source pages in the source block. In other
words, the edge weights are bound with the local Page-
Rank values and the computation has to be serialized. In
our model, only the number of SiteLinks is used thus the
computations of SiteRank and local DocRanks can be done
in parallel.

3.3. Empirical Results

We made some initial experiments on a recently crawled
snapshot of our campus Web. We started from the home



page of the university, www.epfl.ch, and let the crawler fol-
low the hyperlinks and retrieve Web pages. Different from
many other previous published experiments, we did not ex-
clude dynamic Web pages generated by server-side scripts.
The reason is that nowadays most Web sites use them as a
powerful vehicle to provide dynamic and fresh information.
Without including them, the captured Web graph would be
a rather skewed one. However, crawling dynamic pages of-
ten causes an infinite loop for all kinds of possibilities. To
avoid this, researchers usually let the crawler run and then
stop it after it has been running for a period of time.

Our partial Campus Web graph was captured in late
2003. In this graph there are 218 Web sites and 433707
Web pages altogether. We follow the steps described in
Section 3.2 to compute the SiteRank of the SiteGraph of
this partial Campus Web, the DocRanks of every site, and
finally the global DocRank for all pages in this partial Cam-
pus Web. The result is presented in Figure 4. To make com-
parison, we also apply the PageRank algorithm to the set of
all Web pages to obtain the PageRank for them. The result
containing the top 15 entries is presented in Figure 3. The
left columns are the lists of the document identifiers with
their corresponding URLs in the right columns. Documents
are listed in descending order of the computed rank values.

0
BBBBBBBBBBBBBBBBBBBBBBBB@

16 http://www.epfl.ch/
1737 http://research.epfl.ch/
73612 http://research.epfl.ch/research/Webdriver?LO=...
73613 http://research.epfl.ch/research/Webdriver?MIval=...
73614 http://research.epfl.ch/research/Webdriver?LO=...
18282 http://research.epfl.ch/research/Webdriver?MIval=...
677 http://www.epfl.ch/place.html
570 http://www.epfl.ch/styles/dynastyle.php
459683 http://dmawww.epfl.ch/roso.mosaic/ismp97/...
73635 http://research.epfl.ch/research/Webdriver?LO=...
73636 http://research.epfl.ch/research/Webdriver?MIval=...
73637 http://research.epfl.ch/research/Webdriver?LO=...
122990 http://lamp.epfl.ch/˜linuxsoft/java/jdk1.4/docs/...
90330 http://lampwww.epfl.ch/˜linuxsoft/java/jdk1.4/docs/...
614 http://sti.epfl.ch/

1
CCCCCCCCCCCCCCCCCCCCCCCCA

Figure 3. Result by PageRank

In Figure 3, the top entries of the PageRank result are
dominated by some pages which share an identical URL
prefix. Further investigation shows that all of them have
a huge in-degree number. For example, the dynamic page
73612 has 17004 incoming links and most of its originating
pages have the same URL prefix

http://research.epfl.ch/research/Webdriver?

which means they are generated by the same server-side
script and heavily linked among each other. Similarly, the

static page 122990 has 6425 incoming links and most of its
originating pages have as well the same URL prefix

http://lamp.epfl.ch/˜linuxsoft/java/jdk1.4/docs/

which means they are all javadocs of jdk1.4 and also heavily
linked among each other.

It seems that the agglomerate structure of these docu-
ment sets boosts drastically their PageRank values and this
fact has been widely exploited by spammers such that even
a new business has been created to make the most out of it.

0
BBBBBBBBBBBBBBBBBBBBBBBB@

16 http://www.epfl.ch/
570 http://www.epfl.ch/styles/dynastyle.php
677 http://www.epfl.ch/place.html
73324 http://satellite.epfl.ch/
2196 http://lcsmwww.epfl.ch/
153 http://cssa.epfl.ch/
572 http://www.epfl.ch/150/
2884 http://sti.epfl.ch/news/AG/AG-Faculte-STI08.html
73446 http://mysearch.epfl.ch/help/?la=fr
678 http://www.epfl.ch/niceberg/content/1/
581517 http://smte.epfl.ch/francais/impressum.php
71973 http://spi.epfl.ch/Jahia/site/spi/cache/offonce/pid/...
71975 http://spi.epfl.ch/page33282.html
681 http://www.epfl.ch/impressum.html
71961 http://vpf.epfl.ch/

1
CCCCCCCCCCCCCCCCCCCCCCCCA

Figure 4. Result by LMM-based Method

On the other hand, the ranking result computed by our
Layered Method based on LMM gives a very neat list of
entries which really cover many authoritative aspects of the
university, such as central place (677), student bar (73324),
student organization (153), 150 anniversary page (572), fac-
ulty of engineering (2884), search (73446), news (678), in-
ternal journal (71973 and 71975), press information (681),
vice presidency of education (71961), etc..

In the Layered Method, the role played by the entangled
cross links has been made much less important due to the
effect of introducing the SiteRank of the owner Web site
as a crucial part of the final global ranking for a particu-
lar Web page. It shows that the global page ranking algo-
rithm is not necessarily the best possible ranking method.
It demonstrates the capability of the LMM model to defeat
link spamming to a very satisfiable degree.

4. Summary and Future Work

Applying the peer-to-peer architectural paradigm to Web
search engines has recently become a subject of intensive
research [5, 12, 16, 15]. Most recent work has been focusing
on key-based retrieval. Among those, there are two main



categories: P2P-IR using structured overlay networks and
P2P-IR using unstructured overlay networks. To make an
IR system scalable, especially at the Web scale, is one of
the key arguments why P2P approaches are adopted.

Whereas for the decomposition of content-based re-
trieval techniques, such as classical text-based vector space
retrieval or latent semantic indexing, various proposals have
been made, the decomposition of rank computation based
on the link structure of the Web is less clear. This is also
one of the reasons that the combination of link-based rank-
ing with content-based methods in P2P search has not been
investigated closely yet.

In this paper, we introduce a novel link-structure analysis
method based on a Layered Markov Model. Our model dif-
fers substantially from the classic rank computation models
that consider a flat Web graph. Our model makes use of the
inherent hierarchical logical structure of the Web and the
self-similar character of the Internet. We provide a strict
analysis of our model for the Web ranking problem and
give the Partition Theorem for Rank Computation. Such
a formal result backs up theoretically the rank computa-
tion of the Internet-scale Web graph in a completely dis-
tributed way. This removes the radical obstacle and limita-
tion that the existing algorithms have to suffer in terms of
requiring global computation. Empirical experiments give
good results and show that link spamming which has been
a headache for some global ranking algorithm is also nicely
defeated to a very satisfiable degree.

Future work includes in particular the investigation of the
retrieval performance of LMM-based algorithms. Though
it seems this has not been properly addressed for the stan-
dard, centralized methods like PageRank and HITS either,
it seems important to improve insight into this question. To
that end experiments with the TREC collection are planned
and work of combining query-based ranking and link-based
ranking will also be carried out.
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