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Abstract — Active queue management (AQM) in routers has been 
proposed as a solution to some of the scalability issues associated 
with TCP’s pure end-to-end approach to congestion control. How-
ever, beyond congestion control, controlling queues in routers is 
important because unstable router queues can cause poor applica-
tion performance. Existing AQM schemes explicitly try to control 
router queues by probabilistically dropping (or marking) packets. 
We argue that while controlling router queues is important, this 
control needs to be tempered by a consideration of the overall loss-
rate at the router. Solely attempting to control queue length can 
induce loss-rates that have as negative an effect on application and 
network performance as the large queues that existing AQM 
schemes were trying to avoid. Thus controlling queue length with-
out regard to loss-rate can be counterproductive. In this work we 
demonstrate that by jointly controlling queue length and loss-rate, 
both network and application performance are improved. We pre-
sent a novel AQM design that attempts to simultaneously optimize 
queue length and loss-rate. Our algorithm, called loss and queuing 
delay control (LQD), is a control theoretic scheme that explicitly 
treats loss-rate as a control parameter. LQD is shown to provide 
stable control analytically and is evaluated empirically by compar-
ing its performance against other control theoretic AQM designs 
(PI and REM). The results of evaluation in a laboratory testbed 
under realistic traffic mixes and loads show that LQD results in 
lower overall loss rates and that applications see lower average 
queue lengths than with PI or REM.  

1 Introduction 
Congestion control on the Internet has historically been per-
formed end-to-end with end-systems assuming the responsi-
bility for detecting congestion and reacting to it appropri-
ately. Current TCP implementations detect instances of 
packet loss, interpret these events as indicators of conges-
tion, and reduce the rate at which they are transmitting data 
by reducing the connection’s window size. This congestion 
reaction (combined with a linear probing congestion avoid-
ance mechanism) successfully eliminated the occurrence of 
congestion collapse events on the Internet and has enabled 
the growth of the Internet to its current size. Nonetheless, 
concerns have been raised about the future of pure end-to-
end approaches to congestion control [2, 5]. In response to 
these concerns, router-based congestion control schemes 
known as active queue management (AQM) have been de-
veloped and proposed for deployment on the Internet [2]. 
With AQM, it is now possible for end-systems to receive a 
signal of incipient congestion prior to the actual occurrence 
of congestion. The signal can be implicit, realized by a 

router dropping a packet from a connection even though 
resources exist to enqueue and forward the packet, or ex-
plicit, realized by the routers’ AQM scheme setting an ex-
plicit congestion notification (ECN) bit in the packet’s 
header and forwarding the packet. 

Between the methods of dropping and ECN marking of 
packets, ECN marking and forwarding is clearly preferred. 
Indeed a previous study of marking versus dropping showed 
that when combined with prominent AQM schemes, ECN 
allowed interactive applications to experience significantly 
reduced response times for request-response exchanges, and 
allowed service providers to obtain higher link utilization 
and lower loss rates [16].  

The positive results of ECN, however, are confounded by 
the lack of ECN deployment in the current Internet. For 
example, a recent study (2004) showed that only 2.1% of 
web servers on the Internet had correctly deployed ECN 
[19]. Without ECN enabled at the end systems, dropping 
packets is the only mechanism AQM schemes can use to 
signal incipient congestion. Ultimately, the goal of AQM is 
to ensure queues never overflow (i.e., ensure that true con-
gestion does not occur). AQM schemes typically avoid 
queue overflows by dropping packets aggressively when a 
router’s queue grows larger than a certain threshold. In this 
paper, we argue that while it is important to control router 
queues, this control should not be performed without regard 
to the resulting loss-rate. Solely attempting to control queue 
length can induce loss-rates that have as negative an effect 
on application and network performance as the large queues 
that existing AQM schemes are trying to avoid. Thus con-
trolling queue length without regard to loss-rate can be 
counterproductive.  

We propose a new AQM scheme that controls both loss rate 
and queuing delay at a router. Our algorithm, loss and queu-
ing delay control (LQD), dynamically balances loss rate and 
queuing delay at a router to improve network and applica-
tion performance. LQD is a control theoretic scheme that 
explicitly treats loss-rate as a control parameter (in addition 
to a target queue length parameter). LQD is shown to pro-
vide stable control analytically and empirically. In the latter 
case, LQD is evaluated in a large-scale laboratory network 
testbed across a range of realistic workloads. The workloads 
are derived from measurements on Abilene (i.e., Internet2) 
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and the UNC campus. Application and network perform-
ance are compared for LQD and several prominent AQM 
schemes of similar design (PI and REM). The results show 
that LQD results in lower overall loss rates and that applica-
tions see lower average queue lengths than with PI or REM. 

The rest of the paper is structured as follows. Section 2 dis-
cusses previous related work. Section 3 presents our LQD 
scheme. Section 4 explains our experimental evaluation 
methodology and Section 5 presents the results of an exten-
sive performance study where our LQD scheme is compared 
to several prominent AQM schemes from the literature. Sec-
tion 6 concludes our paper. 

2 Background and Related Work 
The original AQM design, called random early detection 
(RED), used a weighted-average queue length as a measure 
of congestion [8]. When this weighted average is smaller 
than a minimum threshold (minth), no packets are marked or 
dropped. When the average queue length is between the 
minimum threshold and the maximum threshold (maxth), the 
probability of marking or dropping packets varies linearly 
between 0 and a maximum drop probability (maxp, typically 
0.10). If the average queue length exceeds maxth, all packets 
are dropped. (The actual size of the queue must be greater 
than maxth to absorb transient bursts of packet arrivals.)  

Since the development of RED, numerous additional 
schemes have been developed. Of special interest are the 
class of designs based on the principles of control theory. In 
a previous study [16], and in follow-on work [15], we 
showed that proportional integral (PI) design [11] and the 
random exponential marking (REM) design [1] were the 
best performing AQM designs. When compared against 
ARED [7], AVQ [14], SFB [4], Blue [5], RIO-PS [9], and 
AFD [21] in our testbed, REM and PI consistently provided 
the best application and network performance. For this rea-
son, we limit ourselves here to a discussion of, and later a 
comparison between, PI and REM. 

The PI controller is based on a linear model of TCP 
throughput and AQM dynamics [11]. PI attempts to regulate 
the queue length in a router to match a target value called 
the “queue reference,” qref. PI samples the instantaneous 
queue length at a constant frequency. The drop probability 
is computed at each sampling interval based on the current 
and previous queue length samples. PI control is such that 
the drop probability increases in sampling intervals when 
the queue length is higher than its target value. The drop 
probability also increases if the queue has grown since the 
last sample (reflecting an increase in network traffic). Con-
versely, the drop probability is reduced when the queue 
length is lower than its target value or the queue length has 
decreased since its last sample. The sampling interval and 
the coefficients in the control equation depend on the link 
capacity, the maximum RTT and the expected number of 
active flows using the link.  

The REM controller is conceptually similar to PI. REM pe-
riodically updates a congestion measure called “price” that 
reflects the mismatch between packet arrival and departure 
rates at the link (i.e., the difference between the demand and 
the service rate), and the queue length mismatch (i.e., the 
difference between the actual queue length and its target 
value). The price measure is computed at each sampling 
point based on the link capacity (in packet departures per 
unit time), the instantaneous queue length, and the packet 
arrival rate. As with PI, the control target is a particular 
queue length. In overload situations, the congestion price 
increases due to the rate mismatch and the queue length 
mismatch. As the price measure increases, more packets are 
dropped or marked to signal TCP senders to reduce their 
transmission rate. When congestion abates, the congestion 
price is reduced because the mismatches are now negative. 
This causes REM to drop or mark fewer packets and allows 
the senders to potentially increase their transmission rate.  

While PI and REM are a small sample of the large body of 
literature in AQM, it is the case that virtually all existing 
schemes have all focused solely on controlling a router’s 
queue length (via different mechanisms and for different 
objectives). In contrast, our focus is on the joint control of 
queue length and loss rate. The majority of drops that occur 
when using AQM are “early drops” and are made when 
buffer capacity exists to queue the packet. We propose a 
new queue management scheme that considers both a refer-
ence (target) queue length and the current loss-rate when 
deciding whether to drop or enqueue an arriving packet.  

3 The LQD Algorithm  
Controlling the length of a router’s queue is an important 
and difficult task. A large queue causes arriving packets to 
be subject to long queuing delays and can cause instability 
in the TCP control feedback loop [17]. A large queue can be 
prevented by dropping packets aggressively, however, a 
short target queue length runs the risk that the queue can 
drain quickly and become empty before new packets arrive. 
In this case, the link is underutilized and the router has un-
necessarily dropped packets that could have been enqueued 
and forwarded without adversely affecting link congestion.  

We argue that while controlling routers’ queues is an impor-
tant goal, it should not be achieved by simply dropping ar-
riving packets. This issue is particularly important because 
of the bursty characteristics of Internet traffic that can cause 
temporary congestion at routers [3, 21]. (AQM schemes 
such as RED and its derivatives attempt to deal with bursty 
arrivals by using a low-pass filter to smooth the measure of 
average queue length. However, as we have previously 
shown, this control is ineffective [16].) We believe an AQM 
scheme should be flexible enough to absorb short-term 
bursts where the input rate temporarily exceeds the link 
capacity. On the other hand, an AQM design should be able 
to control routers’ queue when persistent congestion occurs. 
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This design distinguishes our AQM scheme from existing 
AQM schemes that simply try to control routers’ queue at 
any cost (independent of its effect on the environment). To 
this end, we propose a new AQM scheme called loss and 
queuing delay (LQD) controller that provides a framework 
for balancing loss rate and queuing delay.  

3.1 Algorithm Description 
Like most AQM schemes, on each packet arrival LQD 
computes a drop probability p(t) which is used to decide 
whether the arriving packet is to be dropped or forwarded. 
Let T be the sampling interval and l(t) be the estimated 
packet loss rate (i.e., the ratio of the number of dropped 
packets to the number of arriving packets). The drop prob-
ability at time kT is computed as  

p(kT) = p((k–1)T) + a  (q(kT) – qref)  –  b  (l(kT) – pref) 

where a and b are coefficients of the LQD controller and  
pref  0, and qref > 0, are the target loss rate and target queue 
length respectively. The drop probability is increased when 
the queue length is larger than the queue target and is de-
creased otherwise. However, when the loss rate grows larger 
than its threshold, the drop probability is adjusted down-
ward and the queue is allowed to grow temporarily. The 
coefficients a and b allow a router to balance between queu-
ing delay and packet loss rate. The coefficient a specifies 
how large the queue can grow and the coefficient b allows 
the router to adjust the loss rate and absorb transient conges-
tion. In general, a should be significantly smaller than b 
since the range of values for queue length (tens to hundreds) 
is significantly larger than the range of values for packet 
loss rate (hundredths to tenths). We observed from experi-
mental data that the difference between the actual queue 
length and the queue reference is order of tens in dynamic 
environments, and the packet loss rate is order of hun-
dredths. Based on these results of empirical analysis, in all 
experiments we set a = 0.0001 and b = 0.1 to balance the 
relative contributions to the drop probability of the queue 
length mismatch and the loss-rate miss match. 

3.2 Stability Analysis 
The basic issue with any controller is the ability to realize 
stable control. Here we give a brief sketch of a stability 
analysis useing the framework developed by Misra et al. 
[18]. The analysis necessarily makes a number of simplify-
ing assumptions and is provided simply to provide the intui-
tion for stability. Ultimately, our real proof of stability de-
rives from the performance achieved with LQD in practice.  

Consider a system with N TCP connections sharing a bot-
tleneck link with capacity C. For analytic tractability, we 
assume that the system is homogenous. Let w(t) be the con-
gestion window and  be the propagation delay of these 
connections. Let q(t) and p(t) be the queue length and drop 
probability at the bottleneck router. The evolution of an end-

system’s window size and the queue at a bottleneck router 
are given by  

 dw(t)

dt
= f (p,q,w) =

1 w(t)w(t )
p(t )  (1)

 dq(t)

dt
= g(p,q,w) =

N
w(t) C  (2)

where  is the number of data segments acknowledged by 
an ACK (usually  = 2). The actual packet loss rate can be 
approximated by the drop probability and the control equa-
tion of LQD can also be formulated as 

 dp(t)

dt
= h(p,q,w) = a(q(t) qref ) b(p(t) pref )  (3)

In steady state, the system operates around an operating 
point (w0, p0) where  
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We transform equations (5), (6), and (7) to Laplace domain: 

 ss
esPKesWKsWKssW ++= )()()()(

121211
 (7)

 sQ(s) = K21W (s)  (8)

 sP(s) = aQ(s) bP(s) . (9)

From equation (7), (8), and (9), we can derive the character-
istic equation of the system.  

 s3 + a1s
2

+ a2s+ a3 = 0  (10)
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where 

beKKa
s
+=

12111
, a2 = K11b , and s

eKaKa =
21123

. 

Since the real parts of a1, a2, and a3 are positive, any roots of 
equation (10) must have a negative real part. Hence, the 
system is stable.  

As an example, consider a network with capacity C = 100 
Mbps = 12,500 packets/sec (for an average packet size of 
1,000 bytes), and N = 1,000 flows. For T = 0.001 second, a 
= 0.0001 and b = 0.1, we obtain the Nyquist diagram of the 
transfer function of the system TCP/LQD shown Figure 1. 
Since this open loop diagram does not encircle the point (-1, 
0), the closed-loop system TCP/LQD does not enclose the 
origin and does not have any poles (roots of equation (10)) 
in the right-half plane. Therefore, the system consisting of N 
TCP flows (plant) and an LQD (controller) is stable. 

4 Experimental Methodology 
To evaluate LQD we run experiments in the network testbed 
described in [16]. The network, illustrated in Figure 2, emu-
lates a peering link between two Internet service provider 
(ISP) networks. In this network, we emulate a large popula-
tion of users using a mix of TCP-based applications (de-
scribed below). 

The testbed consists of approximately 50 Intel processor 
based machines running FreeBSD 4.5. Machines execute 
synthetic traffic generation programs that produce synthetic 
TCP traffic based on measurements of TCP traffic on real 
network links [10]. The traffic is generated in such a way 
that it is statistically similar to the traffic on the measured 
link (e.g. the distributions of packet sizes, object sizes, ac-
tive connections per second, throughput per second, etc. 
observed on the real network can be reproduced in the labo-
ratory network [10, 16]). For this work we use two traffic 
generators: a synthetic HTTP generator [16] and a generator 
capable of reproducing the mix of application traffic seen on 
Abilene [10]. The HTTP workload is used to compare LQD 
results with previous studies. A novel aspect of this study is 
the consideration of general TCP traffic. For concreteness, 
to explain the basic experimental methodology, we focus 
here on the process of generating synthetic HTTP traffic. 
The generation of Abilene traffic is similar and is briefly 
described in Section 5.  

End-systems in Figure 2 execute either a web request gen-
erator (a “browser”) that emulates the browsing behavior of 
thousands of human users, or a web response generator (a 
“server”) that responds to requests by transmitting an object 
back to the requesting machine. The browser and server 
machines have 100 Mbps Ethernet interfaces and are at-
tached to switched VLANs with both 100 Mbps and 1 Gbps 
ports on 10/100/1000 Ethernet switches. The users and the 
servers they contact are evenly distributed across ISP1 and 
ISP2. At the core of this network are two router machines 

running the ALTQ extensions to FreeBSD. ALTQ extends 
IP-output queuing at the network interfaces to include alter-
native queue-management disciplines [12]. We used the 
ALTQ infrastructure to implement LQD, PI, and REM.  

Each router has sufficient network interfaces to create either 
a point-to-point 100 Mbps Fast Ethernet network between 
the two routers or a point-to-point Gigabit Ethernet between 
the routers. The Gigabit Ethernet network is used as an un-
congested network on which we perform calibration ex-
periments to benchmark the traffic generators. To evaluate 
LQD and compare its performance to other AQM schemes, 
we create a congested 100 Mbps between the routers by 
changing static routes in the routers to use the Fast Ethernet 
interfaces rather than the gigabit interfaces.  

So that we can emulate flows that traverse a longer network 
path than the one in our testbed, we use a locally-modified 
version of dummynet [22] to configure out-bound packet 
delays on browser machines. These delays emulate different 
round-trip times on each TCP connection (thus giving per-
flow delays). Our version of dummynet delays all packets 
from each flow by the same randomly-chosen minimum 
delay as described in [16]. Thus while our network is fun-
damentally a “dumbbell” topology, our use of per-flow 
minimum round-trip times ensures a packet arrival process 
at the routers that mimics that found in wide-area networks 
(e.g., is long-range dependent) [10, 16].  

 
Figure 1: Nyquist diagram for the system TCP/LQD. 
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Figure 2: Experimental network setup. 
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4.1 Synthetic Generation of Web Traffic  
The HTTP traffic we generate is based on an empirical 
model derived from a large-scale analysis of web traffic 
[23]. The model is an application-level description of how 
the HTTP 1.0 and 1.1 protocols are used. The model of web 
browsing is as described in [16, 23], however, here we note 
that the model is quite detailed. For example, the model 
captures the use of persistent HTTP connections as imple-
mented in many contemporary browsers and servers, and 
distinguishes between web objects that are “top-level” (e.g., 
HTML files) and objects that are embedded (e.g., image 
files).  

The model is expressed as a set of empirical distributions 
describing the elements necessary to generate synthetic 
HTTP workloads. For each request, a “browser” program 
generates a message of random size, sampled from the re-
quest size distribution, and sends it to an instance of a 
“server” program. The server returns a response whose size 
is a random sample from the distributions of response sizes 
for top-level or embedded requests. The empirical distribu-
tion of response sizes is heavy tailed such that while the 
median response size is approximately 10,000 bytes, re-
sponses as large as 109 bytes are also generated.  

For each request/response pair, the browser program logs 
the response time. When all of the request/response pairs for 
a page have been completed, the browser enters a thinking 
state and makes no more requests for a random period of 
time sampled from a think time distribution.  

4.2 Experimental Procedures 
To evaluate LQD we performed experiments on the two ISP 
networks in our testbed connected with 100 Mbps links that 
we congest with varying degrees of traffic. To quantify the 
traffic load in each experiment we define offered load as the 
network traffic (in bits/second) resulting from emulating the 
browsing behavior of a fixed-size population of web users. 
More specifically, load is expressed as the long-term aver-
age throughput on an uncongested 1 Gbps link that would 
be generated by that user population. For example, to de-
scribe the load offered by emulating a population of 20,000 
users evenly distributed on our network testbed, we would 
first emulate this user population on our network with the 
two ISP networks connected with a gigabit/second link and 
measure the average throughput in one direction on this 
link. The measured throughput, approximately 105 Mbps in 
this case, is our value of offered load. 

Since experiments are ultimately performed with the two 
ISP networks connected at 100 Mbps, we ran a series of 
calibration experiments to determine how load on the giga-
bit network varied as a function of the number of emulated 
users. As expected, load varied linearly with number if emu-
lated users (see [16] for details). Thus, for example, if we 
want to generate an offered load equal to 80% of the capac-

ity of the 100 Mbps link (i.e., 80 Mbps), the calibration ex-
periments tell us that we need to emulate approximately 
7,600 users in each ISP to consume 80% of the link in each 
direction. Note that as offered loads approach saturation of 
the 100 Mbps link, the actual link utilization will, in gen-
eral, be less than the intended offered load. This is because 
as utilization increases, response times become longer and 
users have to wait longer before they can generate new re-
quests and hence generate fewer requests per unit time. 

Previous studies have shown that AQM is effective at high 
loads [16]. Therefore, each experiment was run using of-
fered loads of 90%, 98%, or 105% of the capacity of the 100 
Mbps link connecting the two router machines. It is impor-
tant to emphasize again that terms like “105% load” are 
used as a shorthand notation for “a population of users that 
would generate a long-term average load of 105 Mbps on a 
1 Gbps link.” Thus our notion of offered load refers to the 
traffic generating capacity present in an experiment, not the 
actual load generated in an experiment. (The actual load 
generated in an experiment is a function of the performance 
of the AQM scheme used.) Each experiment was run for 
120 minutes to ensure very large samples (over 10,000,000 
request/response exchanges), but data were collected only 
during a 90-minute interval to eliminate startup effects and 
experiment termination synchronization anomalies.  

4.3 Measures of Success 
The primary metrics for comparing the performance of 
AQM schemes are loss-rate and a measure of the router’s 
queue length. While we would like to measure and observe 
directly how routers’ queues evolve over time when AQM is 
used, it is technically and semantically difficult to do so. 
The reason is that routers (both “real” routers and our PC 
routers) have multiple packet queues on the outbound path 
and only one of these queues is controlled by the AQM 
scheme. For example, line cards on routers and NICs on 
PCs buffer a potentially large number of outgoing packets. 
These buffers are different from the IP output queue man-
aged by the router OS where AQM is applied [13]. For this 
reason, simple measures of the IP output queue can be mis-
leading as more (or less) packets may also be queued at in 
the lower layer queue. Getting queue length data from the 
line card or NIC is difficult as it increases the workload of 
the processor on the card and hence can effect the card’s 
performance (and thus bias experimental results). Moreover, 
measures of instantaneous queue length can be misleading 
as application performance depends on the sum of the queue 
lengths seen by each arriving packet from an application’s 
connection. Measures of average queue length are also not 
good predictors of application performance unless the aver-
aging is done on a per connection basis (one sample for each 
packet of a connection). The cost of gathering such data 
similarly effects router performance as this level of per-
packet processing is not optimized and has high memory 
requirements.  
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To get around the difficulties of measuring and interpreting 
queue length, we adopt an indirect measure of queue length, 
namely end-to-end response times for a TCP application 
data unit exchange. Response time measures the combined 
effect of instantaneous queue length seen by a connection’s 
packets and the loss-rate seen by a connection. For this rea-
son it is an effective summary measure of AQM perform-
ance. We also report in a more summary manner, network-
centric performance measures such as the fraction of IP 
datagrams dropped at the link queues, the link utilization on 
the bottleneck link, and the number of request/response ex-
changes completed in the experiment.  

5. Experimental Results 
We implemented LQD in the framework of ALTQ [12] and 
ran experiments in our laboratory network to evaluate it. We 
also implemented PI, REM, ARED, SFB, Blue, RIO-PS, 
AVQ, and AFD and compared LQD against them. Because 
of space considerations, we only show the results for LQD 
versus PI and REM. (In all experiments, the performance of 
PI and REM always dominated that of the other algorithms. 
Thus the most significant comparisons to be made for LQD 
are against PI and REM.) We also include results from ex-
periments with drop-tail FIFO queue management to illus-
trate the performance of no AQM, and results from experi-
ments on the uncongested gigabit network to illustrate the 
best possible performance.  

For PI, REM, and LQD, we performed extensive initial ex-
periments to determine “optimal” target queue lengths. 
Based on these experiments, two target queue lengths were 
chosen: 24 and 240 packets. These were chosen to provide 
two operating points; one that potentially yields low latency 
(24) and one that potentially provides high link utilization 
(240). We found that PI performs best at a target queue 
length of 240 at all loads. On the other hand, REM performs 
best at a target queue length of 24. We only report results 
for PI and REM with those target queue lengths. LQD ob-
tains its best performance with a target queue length of 24 
overall although it obtains almost comparable performance 
with a target queue length of 240. When comparing LQD 
against PI and REM, we used a target queue length of 24 for 
LQD and REM, and a target queue length of 240 for PI. For 
PI and REM, we also used the parameter settings that were 
recommended by their inventors. We also experimented 
with different parameter settings for each AQM scheme but 
only reported the results for the best settings here due to 
space limitations. In all cases we set the maximum queue 
size to a high number of packets that ensured tail drops did 
not occur. (Recall that the target queue length does not rep-
resent the amount of buffering present in the router.) 

5.1 Experimental Results with Web Traffic 
Figures 3-8 give the results for LQD, PI, REM, and drop-
tail FIFO. They show the cumulative distribution functions 

(CDFs) and complementary cumulative distribution func-
tions (CCDFs) for response times at offered loads of 90%, 
98%, and 105% respectively. We also report other statistics 
for the experiments in Table 1. 

At 90% load, REM obtained approximately the same per-
formance as drop-tail for the shortest 80% of responses and 
gave worse performance than drop-tail for the remaining 
20% of responses. On the other hand, PI gave worse per-
formance than drop-tail for the shortest 80% of responses 
but achieved better performance than drop-tail for the re-
maining 20% of responses. These results demonstrate the 
tradeoff between minimizing queuing delay and loss rate for 
improving application performance. While REM with a tar-
get queue length of 24 managed to maintain a short queue, it 
also inflicted a higher loss rate on connections (see Table 1). 
These are the connections that experienced worse perform-
ance than under drop-tail. On the other hand, PI with a tar-
get queue threshold of 240 reduced packet loss rate but also 
increased queuing delay and response times for applica-
tions’ request-response exchanges. 

LQD managed to balance queuing delay and loss rate and 
simultaneously gave good performance for response times, 
loss-rate and link utilization. LQD absorbs transient conges-
tion (and avoids dropping packets aggressively) by allowing 
routers’ queue to grow temporarily. However, when persis-
tent congestion occurs, LQD still maintains stabilized 
routers’ queue by increasing the drop probability appropri-
ately. Figure 4 shows the tail of the response time distribu-
tion and shows that response times were best under LQD for 
all request-response exchanges except for a handful of large 
responses having response times larger than 1,000 seconds. 

At loads of 98% and 105%, there is clear performance supe-
riority for LQD over other AQM designs. We also note that 
all AQM designs provide performance superior or compara-
ble to drop-tail at these loads. This result demonstrates the 
benefits of AQM. We also see in Table 1 that loss rate in-
creases for all AQM designs as load increases. However, 
LQD obtained the lowest loss rate among all AQM designs. 
Link utilization was also highest under LQD at these loads. 

5.2 Experiments with General TCP Traffic  
While results for LQD from previous experiments are en-
couraging, they are limited to only Web traffic. To demon-
strate the generality of our results, we repeated our experi-
ment using synthetic traffic that is derived from the full mix 
of TCP connections captured on Internet links. We use a 2-
hour packet trace taken on an Abilene (Internet 2) link be-
tween Cleveland and Indianapolis. The data to drive this 
experiment was acquired from the NLANR repository. The 
packet trace is filtered for all TCP connections including 
HTTP, FTP, SMTP, NNTP, and peer-to-peer file-sharing 
traffic. The synthetic traffic generated in our network repre-
sents the characteristics of existing Internet backbone traffic 
as seen by routers in real network and provides the most 



7 

realistic method for evaluating AQM designs in a laboratory 
network. The application used to generate synthetic TCP 

traffic using packet traces is called tmix and is described in 
[10]. We only provide a high-level description here. 
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Figure 3: Comparison of the response time distributions of all 
schemes at 90% load. 

Figure 4: Tail of response time distributions for all schemes  
at 90% load.  
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Figure 5: Comparison of the response time distributions of all 

schemes at 98% load. 
Figure 6: Tail of response time distributions for all schemes  

at 98% load. 
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Figure 7: Comparison of the response time distributions of all 
schemes at 105% load. 

Figure 8: Tail of response time distributions for all schemes  
at 105% load. 
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tmix models traffic sources as network-independent entities. 
The model is based on two endpoints exchanging applica-
tion data units (ADUs) defined by their specific application-
level protocol. The structure and sequencing of ADUs is 
extracted from packet header traces via a “reverse compila-
tion” process. ADUs are aggregated into connections with 
ADU exchanges within a connection separated by measured 
think times. These connections, in essence a specification of 
how an application used TCP at the socket layer to transmit 
data, are replayed by a traffic generator. The connection 
descriptions form a source-level model of how TCP is used 
by the applications found on a given network.  

The connection descriptions are replayed into the network to 
generate synthetic traffic. During the replay, each TCP con-
nection is reproduced as a sequence of data unit exchanges 
and think times, beginning at the same instant and the same 
order as it appears in the original trace. We define response 
time in this experiment as the time interval necessary to 
complete the exchange of data units between two endpoints. 
The degree of congestion induced in a network via tmix is a 
function of the load on the original traced network and the 
capacity of the replay network. The congestion can be con-
trolled via a scaling process that dilates (expands) or com-
presses the range of TCP connection start times in the trace. 

Here we show experiments with two different scalings: a 
“2.0” scaling (start times expanded by a factor of 2 thus 
giving a less congested load than the original network), and 
a “1.75” scaling (giving a more congested load than the 2.0 
scaling). The choice of scaling parameter followed a calibra-
tion process similar to that described in Section 3 for HTTP. 
The actual offered loads induced in the network for 2.0 scal-
ing were approximately 105.3 Mbps on average in one di-
rection and 91.2 Mbps on the reverse path. (Note that an 
interesting aspect of Abilene traffic for experiments is that it 
is not symmetrical between forward and reverse paths.) For 
1.75 scaling, the offered loads were approximately 119 
Mbps (forward path) and 104 Mbps (reverse path).  

Figures 9-12 show the response time results of AQM per-
formance on Abilene traffic. For comparison purposes, we 
also report results for the uncongested network and for 
drop-tail FIFO at a queue depth of 240. We see the benefits 
of AQM designs over drop-tail (except for PI which ob-
tained slightly worse performance than drop-tail for the 
shortest 75% of responses at both offered loads). LQD again 
obtained the best performance among all schemes and came 
closest to the performance obtained on an uncongested net-
work. The summary statistics for these experiments are in-
cluded in Table 2. The efficiency of LQD is also reflected in 
its lowest loss rate and highest link utilization among all 
AQM designs. 

6.  Summary and Conclusions 
Active queue management (AQM) in routers has been pro-
posed as a solution to some of the scalability issues associ-
ated with TCP’s pure end-to-end approach to congestion 
control. Our recent study of AQM schemes [16] demon-
strated that the AQM algorithms are effective in reducing 
the response times of web request/response exchanges as 
well as increasing link throughput and reducing loss rates. 
However, ECN was required for these results. Since ECN is 
currently not widely deployed in the Internet, we argue in 
this paper that AQM schemes should be cautious when they 
convey congestion signal to end systems by dropping pack-
ets. While we appreciate the benefits of having stabilized 
router queues, we argue that controlling queue should not be 
the ultimate goal for AQM designs. Furthermore, this goal 
should not be achieved by dropping packets aggressively. 

We presented an alternate approach, called loss and queuing 
delay (LQD) controller, that enables a more flexible frame-
work in managing routers’ resources. LQD allows to bal-
ance queuing delay and loss rate at a router to improve net-
work and application performance. Within this framework, 
LQD can obtain a low loss rate by allowing routers’ queue 
to grow temporarily when transient congestion occurs. 
When congestion is persistent, LQD can still control router 
queues by increasing the packet loss rate appropriately. 

We evaluated LQD and compared it to prominent AQM 
designs such as PI and REM under realistic conditions. Our 

Table 1: Loss, completed requests, and link utilizations. 

  
Offered 

Load 

 
Loss ratio 

(%) 

Completed 
requests 

(millions) 

Link  
utilization/ 
throughput 

(Mbps) 

90% 0 15.0 91.3 

98% 0 16.2 98.2 

Uncongested 
1 Gbps  
network  
(drop-tail)  105% 0 17.3 105.9 

90% 1.8 14.6 89.9 

98% 6.0 15.1 92.0 
drop-tail 
queue size =  
                 240 105% 8.8 15.0 92.4 

90% 1.3 14.4 87.9 

98% 3.9 15.1 89.3 
PI 
qref = 24 

105% 6.5 15.1 89.9 

90% 0.1 14.7 87.2 

98% 3.7 14.9 90.0 
PI 
qref = 240 

105% 6.9 15.0 90.5 

90% 0.4 14.7 88.5 

98% 2.7 15.3 91.6 
LQD 
qref = 24 

105% 4.9 15.6 91.9 

90% 0.2 14.7 88.3 

98% 2.6 15.3 91.9 
LQD 
qref = 240 

105% 5.1 15.7 92.1 

90% 1.8 14.4 86.4 

98% 5.0 14.5 87.6 
REM 
qref = 24 

105% 7.7 14.6 87.5 

90% 3.3 14.0 83.3 

98% 5.4 14.4 86.2 
REM 
qref = 240 

105% 7.3 14.6 87.7 
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experiments showed that both network and applications 
benefit from our approach and LQD outperforms the other 
AQM designs. Response times for request/response ex-
changes were most improved under LQD. Further, LQD 
obtained higher link utilization and lower loss rate than ex-
isting AQM schemes. We believe that our results open a 
new direction and inspire a new focus in AQM design. 
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Table 2: Summary statistics for experiments using tmix.  

 
Rate 

scaling 

Completed 
exchanges 
(millions) 

Loss rate 
(forward path) 

(%) 

Loss rate 
(reverse path) 

(%) 

Link throughput 
(forward path) 

(Mbps) 

Link throughput 
(reverse path) 

(Mbps) 

2.0 2.8 0.0 0.0 105.3 91.2 
Uncongested  

1.75 3.2 0.0 0.0 119.1 104.5 

2.0 2.6 3.7 0.9 90.8 85.7 drop-tail 
qlen = 240 

1.75 3.0 7.2 2.7 91.0 89.1 

2.0 2.6 1.7 0.6 87.9 83.6 PI w/  
qref = 240 1.75 3.0 4.2 2.4 86.5 84.9 

2.0 2.7 1.4 0.6 90.6 86.7 LQD 
qref = 24 1.75 3.0 4.0 2.1 90.5 89.5 

2.0 2.6 2.1 0.8 84.3 81.4 REM w/ 
qref = 24 1.75 3.0 5.4 3.4 83.4 81.6 


