
Published in: Proceedings of the 26th IEEE International Conference on Distributed Computing Systems,
Lisbon, Portugal, July 2006, to appear.

A Loss and Queuing-Delay Controller for Router Buffer Management

Long Le Kevin Jeffay F. Donelson Smith
Department of Computer Science

University of North Carolina at Chapel Hill
http://www.cs.unc.edu/Research/dirt

Abstract — Active queue management (AQM) in routers has been
proposed as a solution to some of the scalability issues associated
with TCP’s pure end-to-end approach to congestion control. How-
ever, beyond congestion control, controlling queues in routers is
important because unstable router queues can cause poor applica-
tion performance. Existing AQM schemes explicitly try to control
router queues by probabilistically dropping (or marking) packets.
We argue that while controlling router queues is important, this
control needs to be tempered by a consideration of the overall loss-
rate at the router. Solely attempting to control queue length can
induce loss-rates that have as negative an effect on application and
network performance as the large queues that existing AQM
schemes were trying to avoid. Thus controlling queue length with-
out regard to loss-rate can be counterproductive. In this work we
demonstrate that by jointly controlling queue length and loss-rate,
both network and application performance are improved. We pre-
sent a novel AQM design that attempts to simultaneously optimize
queue length and loss-rate. Our algorithm, called loss and queuing
delay control (LQD), is a control theoretic scheme that explicitly
treats loss-rate as a control parameter. LQD is shown to provide
stable control analytically and is evaluated empirically by compar-
ing its performance against other control theoretic AQM designs
(PI and REM). The results of evaluation in a laboratory testbed
under realistic traffic mixes and loads show that LQD results in
lower overall loss rates and that applications see lower average
queue lengths than with PI or REM.

1 Introduction
Congestion control on the Internet has historically been per-
formed end-to-end with end-systems assuming the responsi-
bility for detecting congestion and reacting to it appropri-
ately. Current TCP implementations detect instances of
packet loss, interpret these events as indicators of conges-
tion, and reduce the rate at which they are transmitting data
by reducing the connection’s window size. This congestion
reaction (combined with a linear probing congestion avoid-
ance mechanism) successfully eliminated the occurrence of
congestion collapse events on the Internet and has enabled
the growth of the Internet to its current size. Nonetheless,
concerns have been raised about the future of pure end-to-
end approaches to congestion control [2, 5]. In response to
these concerns, router-based congestion control schemes
known as active queue management (AQM) have been de-
veloped and proposed for deployment on the Internet [2].
With AQM, it is now possible for end-systems to receive a
signal of incipient congestion prior to the actual occurrence
of congestion. The signal can be implicit, realized by a

router dropping a packet from a connection even though
resources exist to enqueue and forward the packet, or ex-
plicit, realized by the routers’ AQM scheme setting an ex-
plicit congestion notification (ECN) bit in the packet’s
header and forwarding the packet.

Between the methods of dropping and ECN marking of
packets, ECN marking and forwarding is clearly preferred.
Indeed a previous study of marking versus dropping showed
that when combined with prominent AQM schemes, ECN
allowed interactive applications to experience significantly
reduced response times for request-response exchanges, and
allowed service providers to obtain higher link utilization
and lower loss rates [16].

The positive results of ECN, however, are confounded by
the lack of ECN deployment in the current Internet. For
example, a recent study (2004) showed that only 2.1% of
web servers on the Internet had correctly deployed ECN
[19]. Without ECN enabled at the end systems, dropping
packets is the only mechanism AQM schemes can use to
signal incipient congestion. Ultimately, the goal of AQM is
to ensure queues never overflow (i.e., ensure that true con-
gestion does not occur). AQM schemes typically avoid
queue overflows by dropping packets aggressively when a
router’s queue grows larger than a certain threshold. In this
paper, we argue that while it is important to control router
queues, this control should not be performed without regard
to the resulting loss-rate. Solely attempting to control queue
length can induce loss-rates that have as negative an effect
on application and network performance as the large queues
that existing AQM schemes are trying to avoid. Thus con-
trolling queue length without regard to loss-rate can be
counterproductive.

We propose a new AQM scheme that controls both loss rate
and queuing delay at a router. Our algorithm, loss and queu-
ing delay control (LQD), dynamically balances loss rate and
queuing delay at a router to improve network and applica-
tion performance. LQD is a control theoretic scheme that
explicitly treats loss-rate as a control parameter (in addition
to a target queue length parameter). LQD is shown to pro-
vide stable control analytically and empirically. In the latter
case, LQD is evaluated in a large-scale laboratory network
testbed across a range of realistic workloads. The workloads
are derived from measurements on Abilene (i.e., Internet2)

2

and the UNC campus. Application and network perform-
ance are compared for LQD and several prominent AQM
schemes of similar design (PI and REM). The results show
that LQD results in lower overall loss rates and that applica-
tions see lower average queue lengths than with PI or REM.

The rest of the paper is structured as follows. Section 2 dis-
cusses previous related work. Section 3 presents our LQD
scheme. Section 4 explains our experimental evaluation
methodology and Section 5 presents the results of an exten-
sive performance study where our LQD scheme is compared
to several prominent AQM schemes from the literature. Sec-
tion 6 concludes our paper.

2 Background and Related Work
The original AQM design, called random early detection
(RED), used a weighted-average queue length as a measure
of congestion [8]. When this weighted average is smaller
than a minimum threshold (minth), no packets are marked or
dropped. When the average queue length is between the
minimum threshold and the maximum threshold (maxth), the
probability of marking or dropping packets varies linearly
between 0 and a maximum drop probability (maxp, typically
0.10). If the average queue length exceeds maxth, all packets
are dropped. (The actual size of the queue must be greater
than maxth to absorb transient bursts of packet arrivals.)

Since the development of RED, numerous additional
schemes have been developed. Of special interest are the
class of designs based on the principles of control theory. In
a previous study [16], and in follow-on work [15], we
showed that proportional integral (PI) design [11] and the
random exponential marking (REM) design [1] were the
best performing AQM designs. When compared against
ARED [7], AVQ [14], SFB [4], Blue [5], RIO-PS [9], and
AFD [21] in our testbed, REM and PI consistently provided
the best application and network performance. For this rea-
son, we limit ourselves here to a discussion of, and later a
comparison between, PI and REM.

The PI controller is based on a linear model of TCP
throughput and AQM dynamics [11]. PI attempts to regulate
the queue length in a router to match a target value called
the “queue reference,” qref. PI samples the instantaneous
queue length at a constant frequency. The drop probability
is computed at each sampling interval based on the current
and previous queue length samples. PI control is such that
the drop probability increases in sampling intervals when
the queue length is higher than its target value. The drop
probability also increases if the queue has grown since the
last sample (reflecting an increase in network traffic). Con-
versely, the drop probability is reduced when the queue
length is lower than its target value or the queue length has
decreased since its last sample. The sampling interval and
the coefficients in the control equation depend on the link
capacity, the maximum RTT and the expected number of
active flows using the link.

The REM controller is conceptually similar to PI. REM pe-
riodically updates a congestion measure called “price” that
reflects the mismatch between packet arrival and departure
rates at the link (i.e., the difference between the demand and
the service rate), and the queue length mismatch (i.e., the
difference between the actual queue length and its target
value). The price measure is computed at each sampling
point based on the link capacity (in packet departures per
unit time), the instantaneous queue length, and the packet
arrival rate. As with PI, the control target is a particular
queue length. In overload situations, the congestion price
increases due to the rate mismatch and the queue length
mismatch. As the price measure increases, more packets are
dropped or marked to signal TCP senders to reduce their
transmission rate. When congestion abates, the congestion
price is reduced because the mismatches are now negative.
This causes REM to drop or mark fewer packets and allows
the senders to potentially increase their transmission rate.

While PI and REM are a small sample of the large body of
literature in AQM, it is the case that virtually all existing
schemes have all focused solely on controlling a router’s
queue length (via different mechanisms and for different
objectives). In contrast, our focus is on the joint control of
queue length and loss rate. The majority of drops that occur
when using AQM are “early drops” and are made when
buffer capacity exists to queue the packet. We propose a
new queue management scheme that considers both a refer-
ence (target) queue length and the current loss-rate when
deciding whether to drop or enqueue an arriving packet.

3 The LQD Algorithm
Controlling the length of a router’s queue is an important
and difficult task. A large queue causes arriving packets to
be subject to long queuing delays and can cause instability
in the TCP control feedback loop [17]. A large queue can be
prevented by dropping packets aggressively, however, a
short target queue length runs the risk that the queue can
drain quickly and become empty before new packets arrive.
In this case, the link is underutilized and the router has un-
necessarily dropped packets that could have been enqueued
and forwarded without adversely affecting link congestion.

We argue that while controlling routers’ queues is an impor-
tant goal, it should not be achieved by simply dropping ar-
riving packets. This issue is particularly important because
of the bursty characteristics of Internet traffic that can cause
temporary congestion at routers [3, 21]. (AQM schemes
such as RED and its derivatives attempt to deal with bursty
arrivals by using a low-pass filter to smooth the measure of
average queue length. However, as we have previously
shown, this control is ineffective [16].) We believe an AQM
scheme should be flexible enough to absorb short-term
bursts where the input rate temporarily exceeds the link
capacity. On the other hand, an AQM design should be able
to control routers’ queue when persistent congestion occurs.

3

This design distinguishes our AQM scheme from existing
AQM schemes that simply try to control routers’ queue at
any cost (independent of its effect on the environment). To
this end, we propose a new AQM scheme called loss and
queuing delay (LQD) controller that provides a framework
for balancing loss rate and queuing delay.

3.1 Algorithm Description
Like most AQM schemes, on each packet arrival LQD
computes a drop probability p(t) which is used to decide
whether the arriving packet is to be dropped or forwarded.
Let T be the sampling interval and l(t) be the estimated
packet loss rate (i.e., the ratio of the number of dropped
packets to the number of arriving packets). The drop prob-
ability at time kT is computed as

p(kT) = p((k–1)T) + a (q(kT) – qref) – b (l(kT) – pref)

where a and b are coefficients of the LQD controller and
pref 0, and qref > 0, are the target loss rate and target queue
length respectively. The drop probability is increased when
the queue length is larger than the queue target and is de-
creased otherwise. However, when the loss rate grows larger
than its threshold, the drop probability is adjusted down-
ward and the queue is allowed to grow temporarily. The
coefficients a and b allow a router to balance between queu-
ing delay and packet loss rate. The coefficient a specifies
how large the queue can grow and the coefficient b allows
the router to adjust the loss rate and absorb transient conges-
tion. In general, a should be significantly smaller than b
since the range of values for queue length (tens to hundreds)
is significantly larger than the range of values for packet
loss rate (hundredths to tenths). We observed from experi-
mental data that the difference between the actual queue
length and the queue reference is order of tens in dynamic
environments, and the packet loss rate is order of hun-
dredths. Based on these results of empirical analysis, in all
experiments we set a = 0.0001 and b = 0.1 to balance the
relative contributions to the drop probability of the queue
length mismatch and the loss-rate miss match.

3.2 Stability Analysis
The basic issue with any controller is the ability to realize
stable control. Here we give a brief sketch of a stability
analysis useing the framework developed by Misra et al.
[18]. The analysis necessarily makes a number of simplify-
ing assumptions and is provided simply to provide the intui-
tion for stability. Ultimately, our real proof of stability de-
rives from the performance achieved with LQD in practice.

Consider a system with N TCP connections sharing a bot-
tleneck link with capacity C. For analytic tractability, we
assume that the system is homogenous. Let w(t) be the con-
gestion window and be the propagation delay of these
connections. Let q(t) and p(t) be the queue length and drop
probability at the bottleneck router. The evolution of an end-

system’s window size and the queue at a bottleneck router
are given by

 dw(t)

dt
= f (p,q,w) =

1 w(t)w(t)
p(t) (1)

 dq(t)

dt
= g(p,q,w) =

N
w(t) C (2)

where is the number of data segments acknowledged by
an ACK (usually = 2). The actual packet loss rate can be
approximated by the drop probability and the control equa-
tion of LQD can also be formulated as

 dp(t)

dt
= h(p,q,w) = a(q(t) qref) b(p(t) pref) (3)

In steady state, the system operates around an operating
point (w0, p0) where

w0 =
C

N
 and p0 =

w0
2

=
N 2

2C 2
.

We can linearize equations (1), (2), and (3) around the oper-
ating point using the Taylor series approximation. Let w =
w–w0 and p = p–p0. Since

f

q
=

g

p
=

g

q
=

h

w
= 0 ,

h

q
= a , and

h

p
= b,

we have

q

q

f
p

p

f
w

w

f

dt

wd
++= (4)

This implies

 d w

dt
= K11 w + K12 w(t) + K13 p(t) (5)

 d q

dt
=

g

w
w +

g

p
p+

g

q
q = K21 w (6)

 d p

dt
=

h

w
w +

h

p
p+

h

q
q = a q b p (7)

where
2

2

1211

C

N

w

f
KK === ,

2

2

13

N

C

p

f
K = , and

K21 =
g

w
=
N

.

We transform equations (5), (6), and (7) to Laplace domain:

 ss
esPKesWKsWKssW ++=)()()()(

121211
 (7)

 sQ(s) = K21W (s) (8)

 sP(s) = aQ(s) bP(s) . (9)

From equation (7), (8), and (9), we can derive the character-
istic equation of the system.

 s3 + a1s
2

+ a2s+ a3 = 0 (10)

4

where

beKKa
s
+=

12111
, a2 = K11b , and s

eKaKa =
21123

.

Since the real parts of a1, a2, and a3 are positive, any roots of
equation (10) must have a negative real part. Hence, the
system is stable.

As an example, consider a network with capacity C = 100
Mbps = 12,500 packets/sec (for an average packet size of
1,000 bytes), and N = 1,000 flows. For T = 0.001 second, a
= 0.0001 and b = 0.1, we obtain the Nyquist diagram of the
transfer function of the system TCP/LQD shown Figure 1.
Since this open loop diagram does not encircle the point (-1,
0), the closed-loop system TCP/LQD does not enclose the
origin and does not have any poles (roots of equation (10))
in the right-half plane. Therefore, the system consisting of N
TCP flows (plant) and an LQD (controller) is stable.

4 Experimental Methodology
To evaluate LQD we run experiments in the network testbed
described in [16]. The network, illustrated in Figure 2, emu-
lates a peering link between two Internet service provider
(ISP) networks. In this network, we emulate a large popula-
tion of users using a mix of TCP-based applications (de-
scribed below).

The testbed consists of approximately 50 Intel processor
based machines running FreeBSD 4.5. Machines execute
synthetic traffic generation programs that produce synthetic
TCP traffic based on measurements of TCP traffic on real
network links [10]. The traffic is generated in such a way
that it is statistically similar to the traffic on the measured
link (e.g. the distributions of packet sizes, object sizes, ac-
tive connections per second, throughput per second, etc.
observed on the real network can be reproduced in the labo-
ratory network [10, 16]). For this work we use two traffic
generators: a synthetic HTTP generator [16] and a generator
capable of reproducing the mix of application traffic seen on
Abilene [10]. The HTTP workload is used to compare LQD
results with previous studies. A novel aspect of this study is
the consideration of general TCP traffic. For concreteness,
to explain the basic experimental methodology, we focus
here on the process of generating synthetic HTTP traffic.
The generation of Abilene traffic is similar and is briefly
described in Section 5.

End-systems in Figure 2 execute either a web request gen-
erator (a “browser”) that emulates the browsing behavior of
thousands of human users, or a web response generator (a
“server”) that responds to requests by transmitting an object
back to the requesting machine. The browser and server
machines have 100 Mbps Ethernet interfaces and are at-
tached to switched VLANs with both 100 Mbps and 1 Gbps
ports on 10/100/1000 Ethernet switches. The users and the
servers they contact are evenly distributed across ISP1 and
ISP2. At the core of this network are two router machines

running the ALTQ extensions to FreeBSD. ALTQ extends
IP-output queuing at the network interfaces to include alter-
native queue-management disciplines [12]. We used the
ALTQ infrastructure to implement LQD, PI, and REM.

Each router has sufficient network interfaces to create either
a point-to-point 100 Mbps Fast Ethernet network between
the two routers or a point-to-point Gigabit Ethernet between
the routers. The Gigabit Ethernet network is used as an un-
congested network on which we perform calibration ex-
periments to benchmark the traffic generators. To evaluate
LQD and compare its performance to other AQM schemes,
we create a congested 100 Mbps between the routers by
changing static routes in the routers to use the Fast Ethernet
interfaces rather than the gigabit interfaces.

So that we can emulate flows that traverse a longer network
path than the one in our testbed, we use a locally-modified
version of dummynet [22] to configure out-bound packet
delays on browser machines. These delays emulate different
round-trip times on each TCP connection (thus giving per-
flow delays). Our version of dummynet delays all packets
from each flow by the same randomly-chosen minimum
delay as described in [16]. Thus while our network is fun-
damentally a “dumbbell” topology, our use of per-flow
minimum round-trip times ensures a packet arrival process
at the routers that mimics that found in wide-area networks
(e.g., is long-range dependent) [10, 16].

Figure 1: Nyquist diagram for the system TCP/LQD.

ISP 1
Router

1
Gbps100

Mbps

Ethernet
Switches

ISP 1
Browsers/Servers

100/1,000
Mbps

ISP 2
Browsers/Servers

... 1
Gbps

ISP 2
Router Ethernet

Switches

100
Mbps

Network Monitor

Network
Monitor

...

Figure 2: Experimental network setup.

5

4.1 Synthetic Generation of Web Traffic
The HTTP traffic we generate is based on an empirical
model derived from a large-scale analysis of web traffic
[23]. The model is an application-level description of how
the HTTP 1.0 and 1.1 protocols are used. The model of web
browsing is as described in [16, 23], however, here we note
that the model is quite detailed. For example, the model
captures the use of persistent HTTP connections as imple-
mented in many contemporary browsers and servers, and
distinguishes between web objects that are “top-level” (e.g.,
HTML files) and objects that are embedded (e.g., image
files).

The model is expressed as a set of empirical distributions
describing the elements necessary to generate synthetic
HTTP workloads. For each request, a “browser” program
generates a message of random size, sampled from the re-
quest size distribution, and sends it to an instance of a
“server” program. The server returns a response whose size
is a random sample from the distributions of response sizes
for top-level or embedded requests. The empirical distribu-
tion of response sizes is heavy tailed such that while the
median response size is approximately 10,000 bytes, re-
sponses as large as 109 bytes are also generated.

For each request/response pair, the browser program logs
the response time. When all of the request/response pairs for
a page have been completed, the browser enters a thinking
state and makes no more requests for a random period of
time sampled from a think time distribution.

4.2 Experimental Procedures
To evaluate LQD we performed experiments on the two ISP
networks in our testbed connected with 100 Mbps links that
we congest with varying degrees of traffic. To quantify the
traffic load in each experiment we define offered load as the
network traffic (in bits/second) resulting from emulating the
browsing behavior of a fixed-size population of web users.
More specifically, load is expressed as the long-term aver-
age throughput on an uncongested 1 Gbps link that would
be generated by that user population. For example, to de-
scribe the load offered by emulating a population of 20,000
users evenly distributed on our network testbed, we would
first emulate this user population on our network with the
two ISP networks connected with a gigabit/second link and
measure the average throughput in one direction on this
link. The measured throughput, approximately 105 Mbps in
this case, is our value of offered load.

Since experiments are ultimately performed with the two
ISP networks connected at 100 Mbps, we ran a series of
calibration experiments to determine how load on the giga-
bit network varied as a function of the number of emulated
users. As expected, load varied linearly with number if emu-
lated users (see [16] for details). Thus, for example, if we
want to generate an offered load equal to 80% of the capac-

ity of the 100 Mbps link (i.e., 80 Mbps), the calibration ex-
periments tell us that we need to emulate approximately
7,600 users in each ISP to consume 80% of the link in each
direction. Note that as offered loads approach saturation of
the 100 Mbps link, the actual link utilization will, in gen-
eral, be less than the intended offered load. This is because
as utilization increases, response times become longer and
users have to wait longer before they can generate new re-
quests and hence generate fewer requests per unit time.

Previous studies have shown that AQM is effective at high
loads [16]. Therefore, each experiment was run using of-
fered loads of 90%, 98%, or 105% of the capacity of the 100
Mbps link connecting the two router machines. It is impor-
tant to emphasize again that terms like “105% load” are
used as a shorthand notation for “a population of users that
would generate a long-term average load of 105 Mbps on a
1 Gbps link.” Thus our notion of offered load refers to the
traffic generating capacity present in an experiment, not the
actual load generated in an experiment. (The actual load
generated in an experiment is a function of the performance
of the AQM scheme used.) Each experiment was run for
120 minutes to ensure very large samples (over 10,000,000
request/response exchanges), but data were collected only
during a 90-minute interval to eliminate startup effects and
experiment termination synchronization anomalies.

4.3 Measures of Success
The primary metrics for comparing the performance of
AQM schemes are loss-rate and a measure of the router’s
queue length. While we would like to measure and observe
directly how routers’ queues evolve over time when AQM is
used, it is technically and semantically difficult to do so.
The reason is that routers (both “real” routers and our PC
routers) have multiple packet queues on the outbound path
and only one of these queues is controlled by the AQM
scheme. For example, line cards on routers and NICs on
PCs buffer a potentially large number of outgoing packets.
These buffers are different from the IP output queue man-
aged by the router OS where AQM is applied [13]. For this
reason, simple measures of the IP output queue can be mis-
leading as more (or less) packets may also be queued at in
the lower layer queue. Getting queue length data from the
line card or NIC is difficult as it increases the workload of
the processor on the card and hence can effect the card’s
performance (and thus bias experimental results). Moreover,
measures of instantaneous queue length can be misleading
as application performance depends on the sum of the queue
lengths seen by each arriving packet from an application’s
connection. Measures of average queue length are also not
good predictors of application performance unless the aver-
aging is done on a per connection basis (one sample for each
packet of a connection). The cost of gathering such data
similarly effects router performance as this level of per-
packet processing is not optimized and has high memory
requirements.

6

To get around the difficulties of measuring and interpreting
queue length, we adopt an indirect measure of queue length,
namely end-to-end response times for a TCP application
data unit exchange. Response time measures the combined
effect of instantaneous queue length seen by a connection’s
packets and the loss-rate seen by a connection. For this rea-
son it is an effective summary measure of AQM perform-
ance. We also report in a more summary manner, network-
centric performance measures such as the fraction of IP
datagrams dropped at the link queues, the link utilization on
the bottleneck link, and the number of request/response ex-
changes completed in the experiment.

5. Experimental Results
We implemented LQD in the framework of ALTQ [12] and
ran experiments in our laboratory network to evaluate it. We
also implemented PI, REM, ARED, SFB, Blue, RIO-PS,
AVQ, and AFD and compared LQD against them. Because
of space considerations, we only show the results for LQD
versus PI and REM. (In all experiments, the performance of
PI and REM always dominated that of the other algorithms.
Thus the most significant comparisons to be made for LQD
are against PI and REM.) We also include results from ex-
periments with drop-tail FIFO queue management to illus-
trate the performance of no AQM, and results from experi-
ments on the uncongested gigabit network to illustrate the
best possible performance.

For PI, REM, and LQD, we performed extensive initial ex-
periments to determine “optimal” target queue lengths.
Based on these experiments, two target queue lengths were
chosen: 24 and 240 packets. These were chosen to provide
two operating points; one that potentially yields low latency
(24) and one that potentially provides high link utilization
(240). We found that PI performs best at a target queue
length of 240 at all loads. On the other hand, REM performs
best at a target queue length of 24. We only report results
for PI and REM with those target queue lengths. LQD ob-
tains its best performance with a target queue length of 24
overall although it obtains almost comparable performance
with a target queue length of 240. When comparing LQD
against PI and REM, we used a target queue length of 24 for
LQD and REM, and a target queue length of 240 for PI. For
PI and REM, we also used the parameter settings that were
recommended by their inventors. We also experimented
with different parameter settings for each AQM scheme but
only reported the results for the best settings here due to
space limitations. In all cases we set the maximum queue
size to a high number of packets that ensured tail drops did
not occur. (Recall that the target queue length does not rep-
resent the amount of buffering present in the router.)

5.1 Experimental Results with Web Traffic
Figures 3-8 give the results for LQD, PI, REM, and drop-
tail FIFO. They show the cumulative distribution functions

(CDFs) and complementary cumulative distribution func-
tions (CCDFs) for response times at offered loads of 90%,
98%, and 105% respectively. We also report other statistics
for the experiments in Table 1.

At 90% load, REM obtained approximately the same per-
formance as drop-tail for the shortest 80% of responses and
gave worse performance than drop-tail for the remaining
20% of responses. On the other hand, PI gave worse per-
formance than drop-tail for the shortest 80% of responses
but achieved better performance than drop-tail for the re-
maining 20% of responses. These results demonstrate the
tradeoff between minimizing queuing delay and loss rate for
improving application performance. While REM with a tar-
get queue length of 24 managed to maintain a short queue, it
also inflicted a higher loss rate on connections (see Table 1).
These are the connections that experienced worse perform-
ance than under drop-tail. On the other hand, PI with a tar-
get queue threshold of 240 reduced packet loss rate but also
increased queuing delay and response times for applica-
tions’ request-response exchanges.

LQD managed to balance queuing delay and loss rate and
simultaneously gave good performance for response times,
loss-rate and link utilization. LQD absorbs transient conges-
tion (and avoids dropping packets aggressively) by allowing
routers’ queue to grow temporarily. However, when persis-
tent congestion occurs, LQD still maintains stabilized
routers’ queue by increasing the drop probability appropri-
ately. Figure 4 shows the tail of the response time distribu-
tion and shows that response times were best under LQD for
all request-response exchanges except for a handful of large
responses having response times larger than 1,000 seconds.

At loads of 98% and 105%, there is clear performance supe-
riority for LQD over other AQM designs. We also note that
all AQM designs provide performance superior or compara-
ble to drop-tail at these loads. This result demonstrates the
benefits of AQM. We also see in Table 1 that loss rate in-
creases for all AQM designs as load increases. However,
LQD obtained the lowest loss rate among all AQM designs.
Link utilization was also highest under LQD at these loads.

5.2 Experiments with General TCP Traffic
While results for LQD from previous experiments are en-
couraging, they are limited to only Web traffic. To demon-
strate the generality of our results, we repeated our experi-
ment using synthetic traffic that is derived from the full mix
of TCP connections captured on Internet links. We use a 2-
hour packet trace taken on an Abilene (Internet 2) link be-
tween Cleveland and Indianapolis. The data to drive this
experiment was acquired from the NLANR repository. The
packet trace is filtered for all TCP connections including
HTTP, FTP, SMTP, NNTP, and peer-to-peer file-sharing
traffic. The synthetic traffic generated in our network repre-
sents the characteristics of existing Internet backbone traffic
as seen by routers in real network and provides the most

7

realistic method for evaluating AQM designs in a laboratory
network. The application used to generate synthetic TCP

traffic using packet traces is called tmix and is described in
[10]. We only provide a high-level description here.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time (ms)

Uncongested network
drop-tail - qlen=240
PI - qref=240
REM - qref=24
LQD - qref=24

Figure 3: Comparison of the response time distributions of all
schemes at 90% load.

Figure 4: Tail of response time distributions for all schemes
at 90% load.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time (ms)

Uncongested network
drop-tail - qlen=240
PI - qref=240
REM - qref=24
LQD - qref=24

Figure 5: Comparison of the response time distributions of all

schemes at 98% load.
Figure 6: Tail of response time distributions for all schemes

at 98% load.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Response Time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

Response Time (ms)

Uncongested network
drop-tail - qlen=240
PI - qref=240
REM - qref=24
LQD - qref=24

Figure 7: Comparison of the response time distributions of all
schemes at 105% load.

Figure 8: Tail of response time distributions for all schemes
at 105% load.

8

tmix models traffic sources as network-independent entities.
The model is based on two endpoints exchanging applica-
tion data units (ADUs) defined by their specific application-
level protocol. The structure and sequencing of ADUs is
extracted from packet header traces via a “reverse compila-
tion” process. ADUs are aggregated into connections with
ADU exchanges within a connection separated by measured
think times. These connections, in essence a specification of
how an application used TCP at the socket layer to transmit
data, are replayed by a traffic generator. The connection
descriptions form a source-level model of how TCP is used
by the applications found on a given network.

The connection descriptions are replayed into the network to
generate synthetic traffic. During the replay, each TCP con-
nection is reproduced as a sequence of data unit exchanges
and think times, beginning at the same instant and the same
order as it appears in the original trace. We define response
time in this experiment as the time interval necessary to
complete the exchange of data units between two endpoints.
The degree of congestion induced in a network via tmix is a
function of the load on the original traced network and the
capacity of the replay network. The congestion can be con-
trolled via a scaling process that dilates (expands) or com-
presses the range of TCP connection start times in the trace.

Here we show experiments with two different scalings: a
“2.0” scaling (start times expanded by a factor of 2 thus
giving a less congested load than the original network), and
a “1.75” scaling (giving a more congested load than the 2.0
scaling). The choice of scaling parameter followed a calibra-
tion process similar to that described in Section 3 for HTTP.
The actual offered loads induced in the network for 2.0 scal-
ing were approximately 105.3 Mbps on average in one di-
rection and 91.2 Mbps on the reverse path. (Note that an
interesting aspect of Abilene traffic for experiments is that it
is not symmetrical between forward and reverse paths.) For
1.75 scaling, the offered loads were approximately 119
Mbps (forward path) and 104 Mbps (reverse path).

Figures 9-12 show the response time results of AQM per-
formance on Abilene traffic. For comparison purposes, we
also report results for the uncongested network and for
drop-tail FIFO at a queue depth of 240. We see the benefits
of AQM designs over drop-tail (except for PI which ob-
tained slightly worse performance than drop-tail for the
shortest 75% of responses at both offered loads). LQD again
obtained the best performance among all schemes and came
closest to the performance obtained on an uncongested net-
work. The summary statistics for these experiments are in-
cluded in Table 2. The efficiency of LQD is also reflected in
its lowest loss rate and highest link utilization among all
AQM designs.

6. Summary and Conclusions
Active queue management (AQM) in routers has been pro-
posed as a solution to some of the scalability issues associ-
ated with TCP’s pure end-to-end approach to congestion
control. Our recent study of AQM schemes [16] demon-
strated that the AQM algorithms are effective in reducing
the response times of web request/response exchanges as
well as increasing link throughput and reducing loss rates.
However, ECN was required for these results. Since ECN is
currently not widely deployed in the Internet, we argue in
this paper that AQM schemes should be cautious when they
convey congestion signal to end systems by dropping pack-
ets. While we appreciate the benefits of having stabilized
router queues, we argue that controlling queue should not be
the ultimate goal for AQM designs. Furthermore, this goal
should not be achieved by dropping packets aggressively.

We presented an alternate approach, called loss and queuing
delay (LQD) controller, that enables a more flexible frame-
work in managing routers’ resources. LQD allows to bal-
ance queuing delay and loss rate at a router to improve net-
work and application performance. Within this framework,
LQD can obtain a low loss rate by allowing routers’ queue
to grow temporarily when transient congestion occurs.
When congestion is persistent, LQD can still control router
queues by increasing the packet loss rate appropriately.

We evaluated LQD and compared it to prominent AQM
designs such as PI and REM under realistic conditions. Our

Table 1: Loss, completed requests, and link utilizations.

Offered

Load

Loss ratio

(%)

Completed
requests

(millions)

Link
utilization/
throughput

(Mbps)

90% 0 15.0 91.3

98% 0 16.2 98.2

Uncongested
1 Gbps
network
(drop-tail) 105% 0 17.3 105.9

90% 1.8 14.6 89.9

98% 6.0 15.1 92.0
drop-tail
queue size =
 240 105% 8.8 15.0 92.4

90% 1.3 14.4 87.9

98% 3.9 15.1 89.3
PI
qref = 24

105% 6.5 15.1 89.9

90% 0.1 14.7 87.2

98% 3.7 14.9 90.0
PI
qref = 240

105% 6.9 15.0 90.5

90% 0.4 14.7 88.5

98% 2.7 15.3 91.6
LQD
qref = 24

105% 4.9 15.6 91.9

90% 0.2 14.7 88.3

98% 2.6 15.3 91.9
LQD
qref = 240

105% 5.1 15.7 92.1

90% 1.8 14.4 86.4

98% 5.0 14.5 87.6
REM
qref = 24

105% 7.7 14.6 87.5

90% 3.3 14.0 83.3

98% 5.4 14.4 86.2
REM
qref = 240

105% 7.3 14.6 87.7

9

experiments showed that both network and applications
benefit from our approach and LQD outperforms the other
AQM designs. Response times for request/response ex-
changes were most improved under LQD. Further, LQD
obtained higher link utilization and lower loss rate than ex-
isting AQM schemes. We believe that our results open a
new direction and inspire a new focus in AQM design.

7. Acknowledgements
We would like to thank the anonymous referees as well as
Lisa Fowler for their constructive comments and sugges-
tions for revising this paper.

This work was supported in parts by the National Science
Foundation (grants CCR-0208924, EIA-0303590, and ANI-
0323648), Cisco Systems Inc., and the IBM Corporation.

8. References
[1] S. Athuraliya, V. H. Li, S.H. Low, Q. Yin, REM: Active

Queue Management, IEEE Network, Vol. 15, No. 3, May
2001, pp. 48-53.

[2] B. Braden, et al., Recommendations on Queue Management
and Congestion Avoidance in the Internet, RFC 2309, April
1998.

[3] A. Feldmann, A. Gilbert, and W. Willinger, Data networks as
cascades: Explaining the multifractal nature of Internet WAN
traffic, ACM SIGCOMM 1998.

[4] W. Feng, D. Kandlur, D. Saha, and K. Shin, Stochastic Fair
Blue: A Queue Management Algorithm for Enforcing Fair-
ness, Proc., IEEE INFOCOM 2001, April 2001.

[5] W. Feng, D. Kandlur, D. Saha, and K. Shin, Blue: An Alterna-
tive Approach To Active Queue Management, in Proc. of
NOSSDAV 2001, June 2001.

[6] S. Floyd, Congestion Control Principles, RFC 2914, Septem-
ber 2000.

[7] S. Floyd, R. Gummadi, S. Shenker, Adaptive RED: An Algo-
rithm for Increasing the Robustness of RED’s Active Queue
Management, http://www.icir.org/floyd/papers/adaptiveRed.
pdf, August 1, 2001.

[8] S. Floyd, and V. Jacobson, Random Early Detection Gate-
ways for Congestion Avoidance, IEEE/ACM Transactions on
Networking, Vol. 1 No. 4, August 1993, pp. 397-413.

[9] L. Guo and I. Matta: The War between Mice and Elephants,
Proc., ICNP 2001, Nov. 2001, pp. 180-188.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Reponse time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Reponse time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

Figure 9: Comparison of response time distributions (body) of
all schemes under tmix traffic with 2.0 scaling.

Figure 10: Comparison of response time distributions (tail) of
all schemes under tmix traffic with 2.0 scaling.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Reponse time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Reponse time (ms)

Uncongested network
drop-tail - qlen=240

PI - qref=240
REM - qref=24
LQD - qref=24

Figure 11: Comparison of response time distributions (body)
of all schemes under tmix traffic with 1.75 scaling.

Figure 12: Comparison of response time distributions (tail) of
all schemes under tmix traffic with 1.75 scaling.

10

[10] F. Hernandez Campos, K. Jeffay, and F.D. Smith, Generating
Realistic TCP Workloads, Proc., Computer Measurement
Group Intl. Conf., Las Vegas, NV, Dec. 2004, pp. 273-284.

[11] C.V. Hollot, Vishal Misra, Don Towsley, and W. Gong, On
Designing Improved Controllers for AQM Routers Supporting
TCP Flows, Proc., IEEE Infocom 2001, pp. 1726-1734.

[12] C. Kenjiro, A Framework for Alternate Queueing: Towards
Traffic Management by PC-UNIX Based Routers, USENIX
1998 Annual Technical Conf., June 1998, pp. 247-258.

[13] C. Kenjiro, Fitting theory into reality in the ALTQ case, ASIA
BSD conference, Taipei, Taiwan, March 2004.

[14] S. Kunniyur and R. Srikant, Analysis and Design of an Adap-
tive Virtual Queue (AVQ) Algorithm for Active Queue Man-
agement, Proc., ACM SIGCOMM 2001, pp. 123-134.

[15] L. Le, Understanding the Effects of Active Queue Manage-
ment on Web and General TCP Applications, Ph.D. thesis,
University of North Carolina, 2005.

[16] L. Le, J. Aikat, K. Jeffay, F. D. Smith, The Effects of Active
Queue Management on Web Performance, Proc., ACM SIG-
COMM 2003, Aug. 2003, pp. 265-276.

[17] S. Low, F. Paganini, J. Wang, S. Adlakha, J. Doyle, Dynamics
of TCP/RED and a Scalable Control, IEEE Infocom 2002.

[18] V. Misra, W. Gong, and D Towsley, A Fluid-based Analysis
of a Network of AQM Routers Supporting TCP Flows with an
Application to RED, ACM SIGCOMM 2000.

[19] A. Medina, M. Allman, and S. Floyd, Measuring Interactions
Between Transport Protocols and Middleboxes, ACM Inter-
net Measurement Conference 2004, August 2004.

[20] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, Approxi-
mate Fairness through Differential Dropping, ACM CCR,
April 2003, pp. 23-39.

[21] V. Paxson, and S. Floyd, Wide-Area Traffic: The Failure of
Poisson Modeling, IEEE/ACM Transactions on Networking,
Vol. 3 No. 3, pp. 226-244, June 1995.

[22] L. Rizzo, Dummynet: A simple approach to the evaluation of
network protocols, ACM CCR, Vol. 27, No. 1, January 1997.

[23] F.D. Smith, F. Hernandez Campos, K. Jeffay, and D. Ott,
What TCP/IP Protocols Headers Can Tell Us About The Web,
Proc., ACM SIGMETRICS 2001, June 2001, pp. 245-256.

Table 2: Summary statistics for experiments using tmix.

Rate

scaling

Completed
exchanges
(millions)

Loss rate
(forward path)

(%)

Loss rate
(reverse path)

(%)

Link throughput
(forward path)

(Mbps)

Link throughput
(reverse path)

(Mbps)

2.0 2.8 0.0 0.0 105.3 91.2
Uncongested

1.75 3.2 0.0 0.0 119.1 104.5

2.0 2.6 3.7 0.9 90.8 85.7 drop-tail
qlen = 240

1.75 3.0 7.2 2.7 91.0 89.1

2.0 2.6 1.7 0.6 87.9 83.6 PI w/
qref = 240 1.75 3.0 4.2 2.4 86.5 84.9

2.0 2.7 1.4 0.6 90.6 86.7 LQD
qref = 24 1.75 3.0 4.0 2.1 90.5 89.5

2.0 2.6 2.1 0.8 84.3 81.4 REM w/
qref = 24 1.75 3.0 5.4 3.4 83.4 81.6

