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Abstract— In this paper, we explore multi-hop bandwidth esti-
mation assuming arbitrary cross-traffic at each node and develop
a new probing method called Envelope that can asymptotically
estimate not only the available bandwidth but also the raw capac-
ity of the tight link. Envelope is based on a multi-link recursive
extension of unbiased single-hop estimators proposed in the past
(e.g., [14]) and a variation of the packet-cartouche technique [6].
Through extensive simulations, we evaluate Envelope in various
network settings and cross-traffic conditions and find that it can
measure tight-link bandwidth characteristics with accuracy that
significantly surpasses that of the existing methods. We also find
that Envelope can measure non-tight links in certain path and
cross-traffic configurations.

I. INTRODUCTION

Measuring bandwidth characteristics of Internet paths has
attracted significant interest over the years. Research in this
area has initially focused on the link with the minimum
capacity (i.e., the narrow link) along the path [1], [2], [3], [4],
[6], [16]. More recently, measuring bandwidth characteristics
of the link with the minimum available bandwidth (i.e., the
tight link) received substantially more attention. A number
of techniques have been proposed to measure the available
bandwidth [9], [12], [24], [26], cross-traffic rate [7], [9], [21],
[23], capacity [14], [21], and location [8], [25] of the tight
link.

While a variety of methods currently exists, the majority of
them are designed based on a single-hop model, which does
not consider the cross-traffic interference at non-tight links.
This approach imposes two fundamental limitations on the
existing techniques. First, most available bandwidth estimation
tools do not have a provable convergence to the true value
and are often subject to significant measurement biases due
to interference in non-tight links [19]. Second, and more
importantly, there is no existing technique that can correctly
measure the tight-link capacity over a multi-hop path, even
though a provably accurate estimator exists for a single-hop
path [14]. Note that the tight-link capacity is an important
metric in understanding the characteristics of an end-to-end
path and several measurement tools (e.g., [9], [26]) require it
in order to estimate the available bandwidth of the path.

In this paper, our goal is to measure with asymptotic accu-
racy1 both capacity and available bandwidth of the tight link

1Asymptotic accuracy means the convergence of estimates to the true value
after a sufficiently long measurement process.

over a multi-hop path under arbitrary cross-traffic. We present
a recursive extension of the single-node estimator proposed
in [14] to multiple routers and combine it with the packet-
cartouche technique [6] to sample the statistics of each hop
independently. We develop a bandwidth estimation method
called Envelope that sends trains of probe packets surrounded
by two Envelope packets along the path in question. The
key idea of this method is to allow the probe packets to
sample queuing dynamics at the desired router Rk and then
“disappear” from the network at router Rk+1. By selecting
probe parameters to ensure that spacing zk between the
surviving Envelope packets at router Rk is sufficiently large,
the method guarantees that the mean dispersion of the entire
train at router Rk (i.e., E[zk]) is preserved in the path suffix
and that the receiver (whenever feasible) is able to extract
available bandwidth Ak and capacity Ck from E[zk].

A complete measurement using Envelope takes M − 1
phases, where M is the number of links in the end-to-end
path. Each phase focuses on a particular router Rk and sends
enough probe-trains to obtain the mean spacing E[zk] exiting
from Rk. Armed with this information and the mean spacing
E[zk−1] measured in the previous phase, Envelope is able
to estimate the available bandwidth Ak and capacity Ck

of router Rk given that the condition E[zk] > E[zk−1] is
satisfied. If this condition is not satisfied, router Rk is marked
as “unmeasurable.” Note that Envelope can select probing
parameters such that the tight link is always measurable (for
more on this issue, see Section VI-A).

The major advantage of Envelope over existing methods is
its asymptotic accuracy in measuring both bandwidth metrics
of the tight link. This stems from the fact that Envelope is able
to sample uncorrupted inter-packet spacing information at the
tight link from the mean dispersion of the probe-train. Note
that since Envelope examines each link on a path separately
to obtain the uncorrupted information about the tight link, it
sometimes requires more probe packets and time than existing
available bandwidth estimators. However, we believe that the
additional overhead is warranted in cases that the tight-link
capacity information (which can not be measured by previous
techniques) is highly desirable.

Through ns2 simulations in various network settings with
multiple links, we find that Envelope indeed correctly identifies
the tight link of the path and produces the capacity and



available bandwidth estimates with over 90% accuracy. We
compare Envelope with existing available bandwidth estima-
tion tools Pathload [12], Spruce [26], and IGI [9]. We also
compare Envelope with existing capacity estimation tools such
as Pathrate [4] and CapProbe [15] when the narrow link
is measurable by Envelope. Our results show that Envelope
exhibits similar performance to that of Pathload in measuring
available bandwidth, but significantly outperforms the other
existing approaches under all studied conditions.

The rest of the paper is organized as follows. Section II
discusses background and related work. Section III introduces
Envelope and Section IV evaluates its performance in various
network settings. Section V examines several existing methods
and their estimation accuracy. Section VI discusses probe
parameters used in Envelope and Section VII concludes the
paper.

II. BACKGROUND AND RELATED WORK

In this section, we summarize related work in end-to-end
capacity and available bandwidth measurement and introduce
the single-hop analytical model that Envelope is based upon.

A. Capacity Measurement

The vast majority of previous capacity measurement re-
search focused on estimating the minimum link capacity (i.e.,
the narrow-link capacity) of a path. The basic idea for all the
work in this area stems from an observation by Jacobson [11]
in 1988 that two back-to-back packets (a packet-pair) of size s
each injected into an empty network path come out with their
dispersion equal to s/Cm, where Cm is the minimum link
capacity of the path2. In real networks, the output packet-pair
dispersions are distorted by cross-traffic and exhibit a multi-
modal distribution [22]. Hence, subsequent work centered
around how to identify in the output dispersion histogram the
mode that corresponds to the minimum capacity and how to
enhance the capacity mode to facilitate its detection. These
efforts led to several measurement methods and public tools
such as bprobe [3], PBM [22], Nettimer [16], and Pathrate [4].
These tools work well in certain network environments, but
there is in general no guarantee that their capacity estimates
converge to the correct value even when a sufficient number
of probing samples are used.

In addition to histogram-based proposals, other methods in-
clude packet tailgating [17], where larger packets are followed
by smaller packets to ensure a particular queuing pattern at the
narrow link, and packet cartouche [6], where certain packets
in a probe-train are dropped at select routers (using the TTL
field) so as to ensure that the surviving packets can measure
the capacity of individual routers and/or subpaths. Additional
router-assisted bottleneck bandwidth estimation techniques can
be found in [5], [10], [20].

Besides the methods discussed above, a recent approach
called CapProbe [15] is based on the idea that if two back-to-
back packets are never queued along a given path, then their

2We use m to index the narrow link and t to index the tight link.

inter-arrival spacing at the receiver represents the transmission
delay of the probe packet at the narrow link and the one-way
delay sum of the packets is the minimum among all packet-
pairs. Using minimum filtering, CapProbe is frequently able
to obtain Cm with better accuracy and much quicker than
the previous methods; however, its asymptotic accuracy in
congested paths remains unexplored.

B. Available Bandwidth Measurement

Unlike a link capacity, available bandwidth is a dynamic
metric that varies over time. Most existing work measures
the average available bandwidth of the tight link over a long
time interval (e.g., tens of seconds). The fundamental idea is
based on utilizing the statistical mean of packet-train output
dispersions and its relationship to the input dispersion. Such
relationship was first derived using a single-hop path with
constant-rate fluid cross-traffic in [4], which led to a number of
proposed techniques that can be classified into two categories
[13].

The first category is called iterative probing, which includes
Pathload [12], PTR [9], and TOPP [21]. These techniques
iteratively adjust input rates of packet-trains to identify the
transition from negligible to substantial increase in the inter-
packet spacing and produce the input rate at that transition
point as the available bandwidth estimate of a network path.
It is important to note that iterative methods do not estimate
the capacity or the cross-traffic rate at the tight link, nor do
they use this information in their measurement process.

The second category is classified as direct probing and
includes Delphi [23], IGI [9], and Spruce [26]. These methods
essentially sample the cross-traffic at the tight link using
packet-trains with a fixed input rate that is higher than the
available bandwidth and estimate the cross-traffic rate λt:

λt =
CtE[y]− s

x
, (1)

where Ct is the tight-link capacity, E[y] is the average output
dispersion, x is the input dispersion, and s is the probe-
packet size. The available bandwidth is then computed as
Ct − λt. Clearly, direct probing methods must use the tight-
link capacity Ct in their measurement algorithms. Current
techniques assume that the tight link is the same as the narrow
link and that it can be measured using an existing capacity
estimation tool such as Pathrate.

Different from the above studies, Pathneck [8] is a recent
router-based sampling technique that focuses on locating the
tight link of the path instead of computing accurate available
bandwidth. Pathneck introduces a probing technique called
recursive packet train, in which the sender places a number
of small packets on both sides of each probe-train and forces
them to be dropped at certain routers along the path. The server
then examines the time gap between each pair of TTL-expired
messages generated by the same router and infers the location
of the tight link.
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Fig. 1. Modeling an end-to-end path.

C. Single Link Models and Common Notation

Many studies in the literature discussed similar bandwidth
estimation models (under different assumptions on cross-
traffic) using a single-hop path. We summarize below the most
important results that serve as a foundation for Envelope.

Fig. 1 schematically illustrates an end-to-end Internet path,
where routers are present before and after the tight link3

Rt. The measurement sender injects probe packet-trains with
inter-packet spacing x and the receiver samples inter-arrival
dispersion y, which is a random variable. Due to expan-
sion/compression in pre-tight links, inter-packet spacing xt of
the probe packets entering router Rt is different from the initial
spacing x. Then, the spacing xt is altered at the router Rt to
be yt by random noise ωt introduced by cross-traffic. Along
the remaining routers, yt is further “corrupted” to become y,
which is what the receiver samples.

Recall that in the single-node analysis, it is assumed that
cross-traffic in pre- and post-tight links does not change inter-
packet spacings of the probe packets. Hence, the inter-arrival
spacing xt at the router Rt is trivially equal to the initial
spacing x; and similarly, we have y = yt. Based on this simple
end-to-end path model, we next briefly review several previous
single-hop results.

Melander et al. [21] and Dovrolis et al. [4] rely on a
constant-rate fluid model of cross-traffic and obtain the fol-
lowing result

y = max
(

x,
s + xλt

Ct

)
=





x x ≥ s

Ct − λt
s + xλt

Ct
x ≤ s

Ct − λt

, (2)

where λt is a (fixed) cross-traffic arrival rate at the tight link.
Note that in real networks such as the Internet, cross-traffic

is bursty with a time-varying arrival rate. Considering the time-
varying nature of cross-traffic, Kang et al. [14] derive the mean
output dispersion under arbitrary cross-traffic when the input
spacing x ≤ s/Ct:

E[y] =
s + xλt

Ct
, (3)

where λt is the time-average of a cross-traffic arrival rate

3In the paper, “router” and “link” are used interchangeably.

process4 rτ (t) at the tight link:

λt = lim
t→∞

1
t

∫ t

0

rτ (u)du. (4)

This result confirms the fluid model (2) as a valid first-order
approximation of the real situation when the input spacing x is
small. Another important result in [14] shows that the variance
of y decays to 0 as the packet-train length N (i.e., the number
of packets in each train) increases.

To extract both capacity Ct and available bandwidth At

from E[y], the paper [14] defines W a
n and W b

n to be the aver-
age output dispersion of two sets of measurements {ya

i } and
{yb

i } (where the index i represents the packet-train sequence
number) with different initial spacings xa and xb:

W a
n =

1
n

n∑

i=1

ya
i , W b

n =
1
n

n∑

i=1

yb
i (5)

and derives asymptotically accurate estimators for the tight-
link capacity and available bandwidth of a single-hop path:

lim
n→∞

s(xa − xb)
xaW b

n − xbW a
n

= Ct, (6)

lim
n→∞

s

(
xa − xb −W a

n + W b
n

xaW b
n − xbW a

n

)
= Ct − λt = At. (7)

More recently, Liu et al. [18], [19] extend the single-hop
analysis to accommodate arbitrary input spacings. Their results
show that when x > s/Ct, the mean output dispersion E[y]
is larger than the fluid prediction in (2). However, as packet-
train length N increases, the output dispersion y converges to
(2) in the mean-square sense, which means that not only E[y]
converges to (2) but also V ar[y] decays to 0. This result allows
us to apply a recursive extension of (6) and (7) to multi-hop
paths.

III. ENVELOPE

In this section, we first extend the single-hop estimators
in [14] to multi-hop paths. We then discuss the phase-based
probing technique used in Envelope.

A. Recursive Model

Recursive extension of the previous results to the multi-hop
case can be performed by treating inter-packet spacing xk of
probe traffic arriving at router Rk as the inter-departure delays
yk−1 of the previous router Rk−1:

xk = yk−1. (8)

The recursive relationship between the average output dis-
persions E[yk] and E[yk−1], when a packet-train is sufficiently
large, can be expressed as

E[yk] =





E[yk−1] E[yk−1] ≥ s

Ak
s + λkE[yk−1]

Ck
E[yk−1] ≤ s

Ak

. (9)

4The term rτ (t) represents the cross-traffic arrival rate during the time
interval [t, t + τ ], τ > 0.
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The intuition behind (9) is as follows. When the packet-
train is large, the single-hop fluid prediction (2) becomes a
valid first-order characterization of the stochastic response
curve5 given that the input spacing is fixed. Furthermore, large
packet-trains reduce the variance of yk−1, so that most of the
input spacing samples at Rk are clustered in the neighborhood
of E[yk−1], which allows the single-hop result derived using
fixed input spacings to hold for the case that the input spacings
are random.

It is easy to see from (9) that a necessary condition for
the bandwidth characteristics of link Rk to be measurable is
E[yk−1] < s/Ak. Otherwise, Rk preserves average incoming
inter-packet spacings and thus E[yk] contains no information
about the capacity or available bandwidth of the link. If this
necessary condition can be satisfied by adjusting the initial
input spacing x at the sender, we say that Rk is measurable.
It is possible sometimes that the condition E[yk−1] < s/Ak

cannot be satisfied no matter how small x is. In such case,
Rk is unmeasurable. The following fact re-states the above
discussion.

Fact 1: The tight-link router Rt is always measurable as
long as the initial spacing x < s/At.

We can also see from (9) that E[yk] at any router Rk is
monotonically non-decreasing. Hence, to make as many links
fall into the measurable category as possible, we should use
the initial spacing x as small as it can be (we discuss more
about this issue in the next subsection).

When a particular router Rk is measurable, we must obtain
both E[yk−1] and E[yk] so that we can apply the second
part in (9) to compute λk and Ck. The next fact states the
condition necessary to preserve E[yk] in the path suffix from
router Rk+1 to the receiver.

Fact 2: The mean inter-departure delay E[yk] of router Rk

is preserved along the path suffix from link Rk+1 up to the
receiver, i.e., E[y] = E[yk], as long as the condition E[yk] >
s/Ai holds for all i > k.

Fact 2 implies that for the receiver to obtain E[yk], the aver-
age output rate s/E[yk] of the packet-train at router Rk must
be smaller than the available bandwidth of all downstream
links along the path.

Summarizing the above results, we obtain that in order to
measure link Rk, the spacing between the probe packets must
be small when arriving at router Rk; however, in order to pre-
serve the mean of the sampled signal along the path suffix, the
departure spacing must be large. Since these two requirements
contradict each other, we next develop a methodology called
Envelope that preserves E[yk] based on Fact 2, but at the same
time satisfies the condition in Fact 1.

B. Envelope Packet-Train

To obtain departure spacing from router Rk, we use a probe-
train of N packets surrounded by two envelope packets E1 and
E2 as demonstrated in Fig. 2. As the figure shows, all probe

5The stochastic response curve represents a relationship between the
statistical mean of packet-train output dispersions and the input dispersion
[19].

…

……

Fig. 2. A probe-train [P1, . . . , PN ] of N packets enveloped by two packets
E1 and E2 at router Rk .

packets P1, . . . , PN are dropped at router Rk+1 (using TTL
limiting) and the surviving envelope packets carry spacing that
is N + 1 times larger than yk.

Before continuing further, we should address several aspects
of this approach. First, as in other packet-train methods (e.g.,
[4], [8], [21]), there is a chance that Envelope may congest
the network by sending trains of N +2 back-to-back packets.
While this drawback appears unavoidable in all such methods,
it is important to remember that the delay between the trains
can be arbitrarily large and that Envelope can maintain any
desired average probing rate. Second, Envelope does not
require any special “cooperation” from the routers (such as
ICMP TTL-expired replies) since all routers must discard
packets with TTL = 0 to prevent infinite looping of packets.

To satisfy the condition in Fact 2, the dispersion between
the two envelope packets must be sufficiently large, which can
be accomplished in practice by properly selecting a large N6.
After the probe-train is dropped at router Rk+1, the receiver
samples spacing zk between envelope packets E1 and E2.
Since we assume that zk is large enough to be preserved along
the path suffix, we directly obtain:

E[zk] = (N + 1)E[yk]. (10)

Define Wn,k to be a normalized average of n samples of
zi,k (where i is the packet-train sequence number as before)
with respect to a given router Rk:

Wn,k =
1
n

n∑

i=1

zi,k

N + 1
. (11)

Then, similar to the single-hop case in [14], the bandwidth
of Rk can be inferred by using two sets of measurements
{za

i,k} and {zb
i,k} with two different initial inter-packet spac-

ings x = a and x = b and computing the corresponding
metrics W a

n,k and W b
n,k at the receiver:

W a
n,k =

1
n

n∑

i=1

za
i,k

N + 1
, W b

n,k =
1
n

n∑

i=1

zb
i,k

N + 1
. (12)

Similar to (6) and (7), the capacity of link Rk can be
estimated as:

lim
n→∞

s(W a
n,k−1 −W b

n,k−1)

W a
n,k−1W

b
n,k −W b

n,k−1W
a
n,k

= Ck, (13)

6Recall that a large N is also needed to ensure the validity of (9).
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Fig. 3. Simulation topology.

and the available bandwidth Ak = Ck − λk is:

lim
n→∞

s

(
W a

n,k−1 −W b
n,k−1 −W a

n,k + W b
n,k

W a
n,k−1W

b
n,k −W b

n,k−1W
a
n,k

)
= Ak. (14)

Note that in both (13) and (14), the two metrics W a
n,k−1

and W b
n,k−1 have been obtained in the previous phase when

link Rk−1 was measured.

IV. PERFORMANCE OF ENVELOPE

To evaluate the performance of Envelope, we present simu-
lation results of Envelope including its estimation accuracy and
asymptotic behavior and then compare its estimation accuracy
with that of existing methods. We start by describing the
simulation setup.

A. Simulation Setup

For simulations, we use the ns2 network simulator with the
topology shown in Fig. 3, in which source PS sends prob data
to the destination PR through five router nodes R1, . . . , R5.
Cross-traffic is injected into each router Ri at an average rate
λi through nodes Si (where i = 1, 2, 3, 4). The speed of all
access links is 100 Mb/s (delay 5 ms) and the remaining links
Li (i = 1, 2, 3, 4) between routers Ri and Ri+1 have capacities
Ci and propagation delay 10 ms.

To examine the estimation accuracy of Envelope, we use
five different network settings shown in Table I, which lists
the capacity and available bandwidth of each link for different
simulation scenarios. The darkly shaded values in each row
represents the tight-link capacity and available bandwidth of
the path for each case. We also lightly shade the narrow link
capacity in cases when it is different from the tight link. Note
that in cases I and III, the narrow link coincides with the tight
link; in cases II and IV, the narrow link follows the tight link;
while in case V, the narrow link precedes the tight link.

All simulations are partitioned into two categories: CBR and
TCP cross-traffic. For the first scenario, 10 UDP sources are
attached to each node Si to generate CBR flows that are in-
jected into each router Ri. Each CBR flow starts with a random
initial delay and uses 500-byte packets7. For simulations with
TCP cross-traffic, we attach 50 FTP sources to each of Si and

7We remind that the aggregated cross-traffic that actually traverses each
router is not CBR but an aggregate CBR flow with rather bursty characteristics.

TABLE I
SIMULATION SETUP

Different link bandwidths (Mb/s)
C1 A1 C2 A2 C3 A3 C4 A4

Case-I 5 1 100 50 100 40 1.5 0.3

Case-II 2 0.4 1.5 0.25 0.8 0.4 1.5 0.35

Case-III 1.5 0.3 100 50 100 40 5 1

Case-IV 20 4 15 2.5 8 4 15 3.5

Case-V 2 0.4 0.8 0.4 1.5 0.25 2 0.4

keep the utilization of each router Ri according to the values
shown in Table I. To maintain a fixed average utilization at
each link in the TCP scenario, we placed an additional router
(not shown in the figure) between each node Si and router
Ri to limit the aggregate sending rate of the TCP flows to
the capacity of the additional router. The utilization of Ri is
controlled by properly setting the capacity of the auxiliary
router. The TCP cross-traffic consists of a mixture of flows
with packet sizes 640, 840, 1040, 1240, and 1440 bytes. In
both TCP and UDP scenarios, link utilization along the path
of probe packets varies between 50% and 83%.

The probe-traffic sender PS sends packet-trains of length
N = 80 with 40-byte packets at an average rate of 50 kb/s.
The inter-packet spacing in alternate packet-trains is initialized
to two different values xa and xb as described in the previous
section.

Note that every simulation has four phases, one for each
link in Fig. 3. In each phase φk (k = 1, 2, 3, 4), the packet-
trains enclosed by envelope-packets are dropped at router
Rk+1, while the two envelope packets are forwarded up to the
receiver. In each phase, the receiver PR computes the average
spacing W a

n,k and W b
n,k after receiving n = 100 packet-trains

for each of xa and xb. The two average spacings are then
applied to (13) and (14) to produce estimates of capacity and
available bandwidth of the router under investigation.

B. Estimation Accuracy of Envelope

We next investigate the properties of Envelope, its estima-
tion accuracy, and convergence behavior. We first define the
following relative error metrics:

eCi =
|Ci − C̃i|

Ci
, eAi =

|Ai − Ãi|
Ai

, (15)

where eCi and eAi are the relative estimation errors of Ci and
Ai, respectively, Ci is the true capacity of a link Li, C̃i is its
estimate, Ai is the true available bandwidth of Li, and Ãi is
its estimate.

Simulation results of Envelope are summarized in Tables
II and III, which show relative estimation errors eCi and
eAi under CBR and TCP cross-traffic, respectively. In the
tables, empty cells represent links that are not measurable
by Envelope. As Table II shows, under CBR cross-traffic,
Envelope correctly identifies the tight link (shaded in the table)
and computes its capacity with over 95% accuracy as well as
the available bandwidth with 95%−99% accuracy. Under TCP
cross-traffic, Envelope also properly locates the tight link and

5



TABLE II
PERFORMANCE OF ENVELOPE (CBR CROSS-TRAFFIC)

Relative estimation error
Case-I Case-II Case-III Case-IV Case-V

eC1 0.94% 2.39% 0.17% 0.15% 10.76%

eA1 7.75% 1.57% 3.74% 6.99% 4.20%

eC2 — 0.35% — 2.36% 2.47%

eA2 — 2.09% — 5.62% 8.71%

eC3 — 3.76% — 0.65% 4.13%

eA3 — 7.07% — 2.04% 5.71%

eC4 1.56% 0.60% — 12.11% 21.19%

eA4 2.38% 3.05% — 9.86% 17.59%

produces its bandwidth estimates C̃ and Ã with 90% − 99%
accuracy as shown in Table III.

In what follows below, we examine the asymptotic behavior
of Envelope and show the evolution of its estimates. Figs.
4 and 5 plot the evolution of Envelope’s relative estimation
errors eC and eA (of the tight link) under CBR cross-traffic. As
the figures show, the tight link capacity estimate C̃ converges
to within 5% of its true value for each case after 100 packet-
train samples. Note that eA also becomes less than 5% after
convergence takes place. For TCP cross-traffic, we observe a
similar asymptotic behavior for eC and eA in all studied cases
(see Figs. 6 and 7).

C. Available Bandwidth Comparison

In this subsection, we compare Envelope with several ex-
isting methods with respect to estimation accuracy using the
setup shown in Table I.

We first compare Envelope with several recent available
bandwidth estimation methods Pathload [12], Spruce [26], and
IGI [9]. We conduct all simulations over mildly to heavily
loaded links with utilization varying between 50% and 83%.

0 50 100
0

0.02

0.04

0.06

0.08

0.1

Number of packet-train samples

R
e

la
ti

v
e

 e
s
ti

m
a

ti
o

n
 e

rr
o

r

(a) eC for case I

0 50 100
0

0.1

0.2

0.3

0.4

Number of packet-train samples

R
e

la
ti

v
e
 e

s
ti

m
a

ti
o

n
 e

rr
o

r

(b) eA for case I
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Fig. 4. Evolution of relative estimation errors eC and eA for cases I and II
under CBR cross-traffic.

TABLE III
PERFORMANCE OF ENVELOPE (TCP CROSS-TRAFFIC)

Relative estimation error
Case-I Case-II Case-III Case-IV Case-V

eC1 0.21% 0.40% 0.46% 8.55% 4.22%

eA1 12.07% 0.27% 0.98% 21.23% 16.60%

eC2 — 3.62% — 0.26% 5.90%

eA2 — 4.22% — 3.29% 10.06%

eC3 — 10.79% — 9.41% 10.06%

eA3 — 15.44% — 23.30% 5.82%

eC4 0.24% 10.04% — — —
eA4 3.30% 11.53% — — —
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(e) eC for case V
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(f) eA for case V

Fig. 5. Evolution of relative estimation errors eC and eA for cases III, IV,
and V under CBR cross-traffic.

Note that with negligible cross-traffic interference at non-
tight links, all methods produce accurate estimates of available
bandwidth. However, when cross-traffic is non-negligible, the
estimation accuracy is drastically different depending on the
applied methods.

Tables IV and V show relative estimation errors eA for the
different cases under CBR and TCP cross-traffic, respectively.
For Pathload, we use up to 9600 samples with a very fine-
grained bandwidth resolution (4% of available bandwidth) and
average the low and high values of the produced estimates.
For Spruce, we use the last 100 samples to obtain the main
estimate as suggested in [26]; and in the IGI case, we use the
estimates available at the end of IGI’s internal convergence
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(f) eA for case III

Fig. 6. Evolution of relative estimation errors eC and eA for cases I, II, and
III under TCP cross-traffic.

algorithm. Also note that we feed both Spruce and IGI the
exact bottleneck capacity C, while Envelope and Pathload
operate without this information.

As both tables show, Envelope significantly outperforms
Spruce and IGI in all examined scenarios. Note that Pathload
also produces much more accurate bandwidth estimates than
Spruce and IGI and its results are comparable to those of
Envelope.

D. Bottleneck Bandwidth Comparison

Since in all five paths simulated, the narrow link is mea-
surable, we next compare Envelope with recent bottleneck
bandwidth estimators CapProbe [15] and Pathrate [4], both
of which provide very accurate capacity estimates in lightly
congested paths. CapProbe [15] suggests to use 100 samples
for estimation; however, we find that with 100 samples this
algorithm does not converge, nor does it produce accurate esti-
mates in our multi-link topology given cross-traffic conditions
in Table I. Hence, we run simulations for 2000 seconds and
use up to 10000 samples for better accuracy. In Pathrate, the
internal algorithm executes for over 900 seconds and uses up
to 11440 samples to get estimates of the bottleneck capacity
of the end-to-end path.

Tables VI and VII illustrate relative capacity estimation
errors eC of the different methods under CBR and TCP cross-
traffic, respectively. As the tables show, Envelope produces

TABLE IV
AVAILABLE BANDWIDTH ESTIMATION METHODS (CBR CROSS-TRAFFIC)

Relative estimation error
Envelope Pathload Spruce IGI

Case-I 2.38% 10.07% 33.99% 38.67%

Case-II 2.09% 23.69% 68.78% 64.25%

Case-III 3.74% 10.00% 13.91% 39.13%

Case-IV 5.62% 6.20% 64.69% 53.54%

Case-V 5.71% 12.45% 65.65% 44.40%

TABLE V
AVAILABLE BANDWIDTH ESTIMATION METHODS (TCP CROSS-TRAFFIC)

Relative estimation error
Envelope Pathload Spruce IGI

Case-I 3.30% 8.33% 34.83% 86.67%

Case-II 4.22% 12.09% 78.00% 109.20%

Case-III 0.98% 3.33% 7.65% 103.05%

Case-IV 3.29% 15.88% 78.15% 98.96%

Case-V 5.82% 12.04% 70.85% 91.60%

significantly better capacity estimates than CapProbe and
Pathrate.

V. ANALYSIS OF EXISTING METHODS

In this section, we examine bandwidth sampling techniques
used in several existing methods (Spruce, IGI, and CapProbe)
and understand the reasons for their estimation inaccuracy.

A. Spruce and IGI

Note that even with the exact bottleneck capacity informa-
tion, Spruce and IGI produce estimates with very high relative
errors (see Tables IV and V). Recall that Spruce is based on
the probe gap model (PGM) [26], which is derived under the
assumption of a single bottleneck link that is both the narrow
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(d) eA for case V

Fig. 7. Evolution of relative estimation errors eC and eA for cases IV and
V under TCP cross-traffic.
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TABLE VI
CAPACITY ESTIMATION METHODS (CBR CROSS-TRAFFIC)

Relative estimation error
Envelope CapProbe Pathrate

Case-I 1.56% 40.00% 40.53%

Case-II 3.76% 43.75% 43.75%

Case-III 0.17% 38.46% 40.47%

Case-IV 0.65% 48.86% 43.75%

Case-V 2.74% 50.03% 42.25%

TABLE VII
CAPACITY ESTIMATION METHODS (TCP CROSS-TRAFFIC)

Relative estimation error
Envelope CapProbe Pathrate

Case-I 0.24% 40.95% 40.93%

Case-II 10.79% 39.12% 32.50%

Case-III 0.46% 35.78% 48.10%

Case-IV 9.41% 50.60% 20.62%

Case-V 5.90% 51.62% 45.62%

and the tight link along the path. By measuring packet spacing
at the receiver, Spruce collects individual samples Ai [26]:

Ai = C

(
1− yi − x

x

)
, (16)

where x is the initial inter-packet spacing at the sender and
yi is the i-th measured packet spacing at the receiver. The
algorithm averages samples Ai to obtain a running estimate
of the available bandwidth An =

∑n
i=1 Ai/n.

Note that this method does not take into account interference
of cross-traffic with the probe-gap at the routers other than the
bottleneck router over the entire path. Hence, with congested
pre- and post-bottleneck links, Spruce’s estimation accuracy
degrades significantly. For example, in cases II, IV, and V, the
estimation error is over 60− 70% as shown in Tables IV and
V. To illustrate the estimation accuracy of Spruce for different
link utilization ρ, we extract the evolution of Spruce’s estimate
An in case II with TCP cross-traffic. For this demonstration,
we set the utilization of all links in the path to ρ and plot
the relative estimation errors eA for ρ = 80% and ρ = 60%
in Figs. 8(a) and 8(b), respectively. As the figures show, the
convergence error of eA is reduced from 245% to 30% when ρ
is lowered from 80% to 60%. This explains the high estimation
errors exhibited in Tables IV and V and confirms Spruce’s
limitations in heavily-loaded multi-link paths.

IGI [9] is also based on a probing gap model. IGI sends a
sequence of packet-trains with increasing inter-packet spacing
in each packet-train until it reaches the turning point (where
the initial inter-packet spacing x at the sender equals the inter-
packet spacing y at the receiver). This method assumes that at
the turning point, the noise introduced by cross-traffic becomes
zero mean and the probing rate is equal to the available
bandwidth of the path (which is not true [19]). Furthermore,
the analysis in [9] with respect to a single congested node does
not consider the interference of pre- and post-bottleneck cross-
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(c) IGI (ρ = 80%)
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(d) IGI (ρ = 60%)

Fig. 8. Evolution of relative available bandwidth estimation error eA of
Spruce and IGI for different link utilization ρ.

traffic, which randomly changes the probe-gap at the receiver.
As a result, IGI’s estimate can converge to a value that is
significantly different from the true path available bandwidth.

To emphasize this fact, we simulate case II with TCP cross-
traffic for two different utilizations ρ = 80% and ρ = 60%. We
plot in Figs. 8(c) and 8(d) the evolution of relative estimation
errors eA until IGI’s internal algorithm terminates at x/y =
0.9. As the figure shows, IGI produces the available bandwidth
estimate with 80% error in the heavily congested case (ρ =
80%), while the same error is only 30% in the case of ρ =
60%.

Moreover, IGI’s estimation accuracy gets worse if the initial
packet spacing x becomes close to the turning point. For
illustration, we plot the evolution of IGI’s available bandwidth
estimate in Fig. 9(a) until it terminates its internal algorithm
at x/y = 0.999. In the figure, IGI produces the best estimate
some time before it reaches the turning point and thereafter
the accuracy becomes worse as the initial spacing becomes
closer to the turning point. Hence, unlike some of the other
approaches studied in this work, using more samples in IGI
does not necessarily lead to better estimation accuracy (for
this reason, we let the IGI algorithm terminate at x/y = 0.9
to produce its best available bandwidth estimates discussed in
Section IV-C).

B. CapProbe

Recall that CapProbe is based on the assumption that if
packets in a probe pair have arrived at the receiver with the
smallest combined one-way delay, then the packets have not
been queued at any intermediate routers in the path and thus
the inter-packet delay of the probe pair reflects the transmis-
sion delay of the bottleneck link. Based on this assumption,
CapProbe uses 100 samples and the minimum delay condition
to obtain the packet-pair that contains information about C.
However, CapProbe’s minimum filtering is sensitive to random
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(d) CapProbe (ρ = 60%)

Fig. 9. (a) Evolution of relative estimation error eA of IGI for ρ = 80%.
(b) Relative estimation error eC of CapProbe for different utilization ρ of the
links in case II. (c)-(d) Evolution of relative capacity estimation error eC of
CapProbe for two different values of ρ.

queuing delays in front of the first packet of the pair and thus
it is possible that the estimated capacity converges to a value
that is very different from the true value of C. Furthermore,
the convergence is rather random so that it is difficult to decide
the number of samples to be used in the estimation algorithm.

To illustrate the queuing effects discussed above, we simu-
late case II with TCP cross-traffic for varying link utilization
ρ between 50% and 85%. Fig. 9(b) shows CapProbe’s relative
capacity estimation errors eC for different ρ. Observe that as ρ
of the path increases from 50% to 85%, the relative estimation
error eC jumps from 0% to 64%. This indicates that CapProbe
performs very well in a lightly utilized path; however, in
a heavily-congested path, its capacity estimation accuracy
significantly degrades. Furthermore, CapProbe’s estimation
accuracy fluctuates substantially depending on the number of
samples used as illustrated in Figs. 9(c) and 9(d). For example,
in a path with ρ = 60%, eC = 41% with 100 samples, 4% with
6000 samples, 19% with 10000 samples, and 11% with 20000
samples. This indicates that if the measuring process stops at
a random plateau where CapProbe has seemingly converged,
its estimation accuracy will be random as shown in Fig. 9(d).

VI. PROBING PARAMETERS IN ENVELOPE

A. Initial Input Spacing

We now discuss how Envelope chooses the two initial input
spacings xa and xb. Recall from Fact 1 that as long as the two
spacings are less than s/At and differ from each other, the tight
link can be measured. Note that Envelope can measure many
non-tight links if the conditions in Facts 1 and 2 hold. Hence,
it tries to choose initial spacing values that is much smaller
than s/At. To achieve this, Envelope utilizes the known access
link capacity C0 and sets xa as small as possible: xa = s/C0.
Then, it probes for the Asymptotic Dispersion Rate (ADR) of
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Fig. 10. Relative estimation errors eC and eA of Envelope for varying
probe-train length N in case II under TCP cross-traffic.

the path to determine xb. Envelope obtains ADR by sending
a packet-train with spacing xa and computes ADR = s/E[y]
at the receiver, which is similar to Pathrate. Based on ADR,
Envelope determines the second spacing xb = s/(αC0 + (1−
α)ADR), where 0 < α < 1 is tunable.

It is proved in [4] that At < ADR < C0, which confirms
that our initial spacing settings satisfy the condition in Fact 1
discussed in Section III.

B. Probe-Train Length

We study the impact of probe-train length N on the estima-
tion accuracy of Envelope. Recall that the main idea behind
Envelope is to preserve the inter-departure spacing yi,k of
probe packets in the path suffix of a congested router Rk using
envelope packets. As suggested in Section III-B, maintaining
a large inter-envelope packet spacing zi,k preserves its mean
E[zi,k] in the path suffix since cross-traffic noise introduced
into zi,k becomes zero-mean.

We conduct simulations using case II under TCP cross-
traffic for different probe-train length N and plot the relative
estimation errors eC and eA of the tight link in Fig. 10. As the
figure shows, the estimation accuracy of Envelope is improved
as probe-train length N increases. For example, Envelope
produces the bottleneck capacity estimate with error 60% for
N = 20; however, its error is reduced to 13% for N = 40 and
6% for N = 60 (see Fig. 10(a)). Similarly, with small train
length N = 20, the accuracy of available bandwidth estimation
is rather low (43% error), but when the train length increases
to N = 60, Envelope estimates the available bandwidth with
just 8% error as shown in Fig. 10(b).

C. Amount of Probe Data

We briefly discuss the amount of probe data used in band-
width sampling for different methods. For existing methods,
we used the same packet size and number of trains or packet
pairs recommended in the original paper. Table VIII shows
the number of packet samples and corresponding data used
to get bandwidth estimates for cases I and III. As the table
shows, Spruce, IGI, and CapProbe do not use many samples
while Pathload, Pathrate, and Envelope requires significantly
more probe packets for their measurement. Note that Envelope
requires even more samples than Pathrate to examine individ-
ual links. However, unlike other methods, Envelope can use
very small packets without sacrificing estimation accuracy. For
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TABLE VIII
BANDWIDTH SAMPLING OVERHEAD FOR CASES I AND III

Method Number of Packet size Total probe data
samples (bytes) (MB)

Envelope 64, 000 40 2.56

Pathrate 11, 440 1, 500 17

CapProbe 600 1, 500 0.9

Pathload 4, 200 192 0.81

Spruce 533 1, 500 0.8

IGI 900 800 0.72

instance, Pathrate used 11440 samples in our study, which
accounts to 17 MB of data, while Envelope used 2.56 MB of
probe packets. Recall that the number of samples required for
Envelope is proportional to the number of hops in the path.
For a 10-hop Internet path, Envelope needs a maximum of 6.4
MB of probe data to examine all individual links. However,
since Envelope can terminate the measurement right after the
tight link is measured, the required number of probe packets
will be often smaller than the maximum.

VII. CONCLUSION

This paper proposed a recursive extension of the bandwidth
estimators in [14] to network paths with multiple routers and
presented a new tight-link bandwidth estimation technique,
called Envelope, for end-to-end network paths. Through sim-
ulations, we showed that Envelope is asymptotically accurate
(to the extent possible to observe using finite-sampling) in
estimating both types of bandwidth. We also presented exten-
sive simulation results of existing methods Pathload, Spruce,
IGI, Pathrate, and CapProbe and their comparison to Envelope.
These results suggested that in multi-link paths with significant
cross-traffic interference at non-tight links, most of existing
methods cannot converge to the correct values of C or A,
even if the sampling process is sufficiently long.

We further demonstrated that in many network settings,
Envelope can also estimate bandwidth for some non-tight links
in the path and locate the position of the tight link. Our Future
work involves implementation of Envelope in the Internet and
further reduction of traffic required to obtain C and A.
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