A Hierarchical Approach to Internet Distance Prediction

Rongmei Zhang!, Y. Charlie Hu', Xiaojun Lin!, and Sonia Fahmy?
1 School of Electrical and Computer Engineering
2 Department of Computer Science
Purdue University, West Lafayette, IN 47907
{rongmei, ychu, linx, fahmy } @purdue.edu

Abstract

Internet distance prediction gives pair-wise latency in-
formation with limited measurements. Recent studies have
revealed that the quality of existing prediction mechanisms
from the application perspective is short of satisfactory. In
this paper, we explore the root causes and remedies for this
problem. Our experience with different landmark selection
schemes shows that although selecting nearby landmarks
can increase the prediction accuracy for short distances, it
can cause the prediction accuracy for longer distances to
degrade. Such uneven prediction quality significantly im-
pacts application performance. Instead of trying to select
the landmark nodes in some “intelligent” fashion, we pro-
pose a hierarchical prediction approach with straightfor-
ward landmark selection. Hierarchical prediction utilizes
multiple coordinate sets at multiple distance scales, with the
“right” scale being chosen for prediction each time. Exper-
iments with Internet measurement datasets show that this
hierarchical approach is extremely promising for increas-
ing the accuracy of network distance prediction.

1. Introduction

Internet distance (latency) prediction estimates the pair-
wise (O(N?)) distances between N nodes, using only
O(N) measurements. In recent years, several prediction
mechanisms have been proposed, e.g., [12, 4, 5, 11]. Most
of these mechanisms assign a coordinate to a node in order
to characterize its approximate location in the Internet; the
distance between two nodes can be estimated by applying
a distance function over their coordinates. For the purpose
of determining its coordinate, a node usually selects a num-
ber of other nodes as reference points (often referred to as
“landmarks”). The coordinate is then computed by mini-
mizing the difference between the estimated distances and
the measured distances to these landmarks.

The accuracy (or inaccuracy) of a prediction scheme has
often been measured by the relative prediction error over all

distance ranges [12]. When this metric is used to evaluate
the quality of the prediction, existing prediction algorithms
have appeared to achieve reasonably high prediction accu-
racy. However, when the prediction errors are broken down
to each distance range, there typically exists a significant
disparity in the prediction accuracy for different distance
ranges. Evaluation of various prediction algorithms pro-
posed in the literature suggests that these algorithms tend to
over-estimate short distances and under-estimate long dis-
tances.

Several approaches have been proposed in the literature
to improve the distance prediction accuracy, including in-
creasing the dimension of the coordinate space or the num-
ber of landmark nodes. However, it has been observed
that, once beyond a certain threshold, the prediction can-
not benefit from higher dimensions or a larger number of
landmarks [12, 4]. Another approach that has been pro-
posed is to “intelligently” determine the placement of the
landmark nodes. Previous studies do indicate that the pre-
diction accuracy can be very sensitive to the placement of
the landmark nodes [12]. In [4], the authors have explored
various landmark selection schemes, and recommended a
hybrid landmark selection scheme that uses a combination
of randomly selected landmark nodes and nearby landmark
nodes. However, using both synthetic and Internet measure-
ment datasets, we observe that although the hybrid land-
mark selection scheme can improve the prediction accuracy
for short distances, other distance ranges may suffer de-
graded prediction accuracy. The potential interference be-
tween short and long distances can cause the application to
experience degraded performance. In Section 3, we propose
a new metric, reverse range accuracy, which captures the
impact of this interference between distance ranges when
prediction is used. Our experiments [23] show that using a
hybrid selection of landmarks can notably degrade the re-
Verse range accuracy.

The objective of this work is to investigate how to im-
prove the prediction accuracy of short distances without de-
grading the accuracy of long distances. Observing that none
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of the distance prediction schemes that we have evaluated
can simultaneously improve the prediction accuracy of both
short and long distances, we conjecture that there may be
some fundamental reasons why accurately predicting both
short and long distances is difficult [23]. In particular, we
study the impact of the range and distribution of the dis-
tances on the prediction accuracy and find that a narrower
distance range contributes to higher prediction accuracy.

Motivated by the above observation, we resort to alter-
native approaches to improving Internet distance predic-
tion. In Section 5, we propose a hierarchical distance pre-
diction approach that computes multiple sets of coordinates
for each node using multiple landmark sets, where each set
of coordinates and landmarks correspond to a different dis-
tance scale. For instance, a node can use one coordinate
for estimating the distance to a distant node, and a second
coordinate for estimating the distance to a close node. Our
main idea is that if we can find one set of coordinates that
is more accurate for short distances, and another set of co-
ordinates that is more accurate for long distances, then de-
pending on the distance range of interest, we can choose the
right set of coordinates to achieve higher overall prediction
accuracy. Our evaluation demonstrates that the hierarchical
approach is very effective in improving the prediction accu-
racy of short distances at little or no cost in the prediction
accuracy of long distances.

2. Related Work

Several approaches have been proposed for network dis-
tance prediction. The distance between two nodes can be
inferred from the measured distances to the landmarks, e.g.,
based on the assumption of the triangle inequality [8], or the
order of the distances to the landmarks [15]. In [9, 18], the
distances to the landmarks are assigned as the coordinate of
the node in a multi-dimensional space. In GNP [12, 13],
node coordinates are computed using the Simplex Down-
hill method. Lighthouse [14] derives node coordinates by
solving systems of linear equations. Mithos [20] and Vi-
valdi [5] use the spring relaxation technique to calculate
node coordinates. In [16, 17], the Big-Bang simulation
method is used for embedding network distances in a multi-
dimensional space. IDES (Internet Distance Estimation
Service) [11] exploits matrix factorization, i.e., Singular
Value Decomposition (SVD) or Non-negative Matrix Fac-
torization (NMF), to compute an incoming and an outgo-
ing coordinate for each node. In [4], different strategies
for choosing landmarks are studied, including using ran-
dom nodes, closest nodes, and a hybrid of both. Choosing
nearby nodes as landmarks is shown to improve the pre-
diction accuracy for short distances. In addition to these
coordinate-based prediction mechanisms, there have been
proposals for distance prediction based on a measurement
infrastructure [6, 19, 3, 21, 22].

3. Evaluation Methodology

In this section, we describe the evaluation methodology
that we use throughout the paper.

Internet Distance Datasets Our evaluation uses 3 la-
tency datasets from real-world measurements. The P2PSim
dataset is from the MIT P2PSim project [2]. This dataset
contains the pair-wise RTTs between 1740 nodes measured
using the KING method [7]. The Meridian dataset is from
the Cornell Meridian project [21]. It measures the pair-wise
RTTs between 2500 nodes using the KING method [7].
The AMP dataset is from the NLANR Active Measurement
Project [1]. The 110 nodes in this dataset are connected to
high speed networks.

The average RTTs in these three datasets are about
182 ms, 75 ms, and 55 ms respectively. The maximum
RTTs in the P2PSim and the Meridian datasets are around
800 ms and 996 ms respectively, while the AMP dataset has
a maximum RTT of 373 ms. We note that all three datasets
exhibit high concentration over small distance ranges. For
the P2PSim dataset, more than 85% of links are below
300 ms; for the Meridian and AMP datasets, links of up
to 100 ms count for over 80% and 90% of all the links re-
spectively. Links of medium lengths are the majority, while
short links are not as abundant. For instance, in the P2PSim
dataset, only about 1.6% of links are within 20 ms (roughly
the typical RTT within a local region), and about 6.9% are
within 40 ms (approximate RTT of halfway across the con-
tinental US).

Distance Prediction Algorithms In most of our exper-
iments, we study a GNP-style prediction algorithm, and
evaluate options for each node to select its own landmark
nodes. The coordinate is computed using the simplex-
downhill algorithm as in [12, 4]. As in [4], we assume an
8-dimensional coordinate space with 16 landmarks used for
prediction. Our previous study [24] shows that there are no
major performance differences between distance prediction
schemes that have been proposed so far from the perspec-
tive of the applications. We have repeated a subset of our
experiments with IDES-style prediction and the results were
consistent with the results discussed here.

Evaluation Metrics The prediction accuracy of a net-
work distance prediction mechanism is often measured by
the relative prediction error:

abs(predicted distance — measured distance)

measured distance

In this paper, we propose a new metric, Range Accu-
racy, to gauge the ability to correctly identify links that are
inside a particular distance range r (specified by a lower



and upper threshold) using the prediction algorithm. Con-
sider a distance range 7, and a distance prediction algorithm
that predicts that all links falling within r comprise a set
PredictedLinks. Assume that the set MeasuredLinks
comprises all links that fall within r if we measure actual
distances. We define the Range Accuracy as the fraction

of correctly identified links among all those actually within
. . |[MeasuredLinks N PredictedLinks|
the given range r, i.e., [MeasaredLinks| s

where | X| denotes set X cardinality. Conversely, we de-
fine the Reverse Range Accuracy as the fraction of pre-
dicted links that are indeed within the given range 7, i.e.,

|MeasuredLinks N PredictedLinks| .
PrediciedLinks| . While the Range Accu-

racy indicates the prediction accuracy for those links within
the given range, the Reverse Range Accuracy reflects the
interference between distance ranges caused by prediction
inaccuracy. The two metrics give the converse of false neg-
atives (links mis-predicted to fall outside ) and converse of
false positives (links mis-predicted to fall within r) respec-
tively.

In [10], two additional metrics, i.e., Relative Rank Loss
(rrl) and Closest Neighbor Loss (cnl), were proposed to cap-
ture the prediction quality as perceived by the user. Due to
space limits, we focus on the range accuracy and reverse
range accuracy metrics in this paper. Evaluation results
with the rrl and cnl metrics can be found in an extended
version [23].

4. Impact of Distance Range and Distribution
on Prediction Accuracy

In this section, we study the impact of the range and dis-
tribution of the distances on prediction accuracy. Our hy-
pothesis is that the narrower the distance range, the higher
the prediction accuracy. The intuition is that it is easier to
embed the nodes into a multi-dimensional space when the
pair-wise distances between them are concentrated within
a small range. Conversely, it is difficult to position a node
accurately with regard to both relatively nearby nodes and
distant outliers. Moreover, a node coordinate is oftentimes
computed by minimizing the overall prediction error (of all
node pairs or from a node to the landmarks), e.g., by us-
ing the sum of squares error function. Therefore, a higher
concentration within some distance range tends to result in
higher prediction accuracy over the range. Since randomly
selected landmarks provide a random sample of the dis-
tances to be predicted, the prediction accuracy is likely to
follow the distance density distribution, with high-density
ranges having higher prediction accuracy.

4.1. Experiments with Internet Distance
Datasets

First, we evaluate the hypothesis using the three distance
datasets. We assume a set of landmark nodes randomly cho-
sen from each dataset, which serve as reference points for

all nodes during prediction. Fig. 1(a) shows the CDF of the
relative prediction error. The AMP data has higher overall
prediction accuracy than the P2PSim and Meridian datasets.
Fig. 1(b) depicts the relative prediction error over the dis-
tance spectrum: short links apparently suffer from higher
relative prediction error. While all three datasets experience
similar prediction error for medium and long distances, e.g.,
distances beyond 50 ms, the AMP dataset has notably lower
error for short links.

Fig. 1(c) shows the range accuracy. In this experiment,
we evaluate three distance ranges (0,20 ms], (0,40 ms] and
(0,80 ms]. As shorter distances are more difficult to pre-
dict accurately, the range accuracy degrades for lower dis-
tance thresholds. In fact, the accuracy for selecting the links
within 20 ms is below 50% for both the P2PSim and Merid-
ian datasets. Note that the reverse range inaccuracy is also
significant (Fig. 1(d)). For instance, among all the links pre-
dicted to be within 40 ms in the Meridian dataset, only 36%
are in fact of more than 40 ms. This can be attributed to the
interference from mis-predicted (under-estimated) longer
links. Overall, the AMP dataset has significantly better ac-
curacy than the other two datasets.

Recall that while all three datasets exhibit roughly sim-
ilar distance density distributions, the AMP dataset has a
much narrower distance range, with a maximum distance of
373 ms. The above results confirm our hypothesis that a nar-
row distance range contributes to high prediction accuracy.
We will omit the experiments from the AMP dataset beyond
this subsection, since the prediction quality for this dataset
is good with most prediction schemes. Due to limited space,
we will also omit results from the Meridian dataset, which
can be found in the extended version [23].

4.2. Experiments with Synthetic Datasets

In this subsection, we conduct experiments with syn-
thetic datasets to further evaluate our hypothesis. In order
to control both the range and distribution of the distances
to be predicted, we generate these synthetic datasets as fol-
lows. First, a set of N points is generated with random
locations in a multi-dimensional space. Then, the pair-wise
(Euclidean) distances between the N points are computed
to generate an N x N distance matrix, which completely
conforms to the triangular inequality. Since Internet dis-
tances have been observed to exhibit triangular inequality
violations (TIV), we introduce errors to the distance matrix,
and the error level is controlled by a parameter §. The range
of the synthetic distances can be bounded by given lower
and upper thresholds. In our first dataset, N = 1000, and
0 = 30%, i.e., on average, the error magnitude is 30% of the
original Euclidean distance. For comparison, we generate a
second dataset with a much smaller upper distance thresh-
old of only 50 ms. In order to closely match the distance
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Figure 1. Prediction accuracy with random global landmark selection

distribution of the second dataset to the first dataset (within
50 ms), we set N = 600,85 = 30% in the second dataset.
The density distributions of the two synthetic datasets are
shown in Fig. 2(a).

Fig. 2(b) shows the CDF of the relative prediction er-
ror. The mean relative prediction errors are 0.40 and 0.27
for the two generated datasets respectively. If we con-
sider solely the links within 50 ms in the first dataset, the
mean relative prediction error is as high as 0.45. Clearly,
a narrow distance range helps to improve the prediction
accuracy. These results are consistent with the observa-
tion made in [10] that “less information gives better accu-
racy results.” In fact, our studies reveal that the reason be-
hind this phenomenon is closely tied to the distance range
in question. We can also observe the association between
prediction accuracy and the distribution of distances from
Fig. 2(c), which shows the absolute prediction error, i.e.,
abs(predicted distance — measured distance).

4.3. Impact of Landmark Selection

We have also evaluated the impact of adopting “intelli-
gent” landmark selection schemes discussed in [4], includ-
ing random landmark selection, closest landmark selection,
and a hybrid of random and closest landmarks. In con-
trast to the experiments presented above, where all nodes
use the same set of “global” landmarks, each node selects
its own landmarks from the nodes with known coordinates.
The results (see [23]) from using the three Internet latency
measurement datasets can be summarized as follows. The
random selection scheme can achieve comparable predic-
tion quality to the random global landmark selection. Using
closest nodes as landmarks can improve the prediction ac-
curacy for the shortest links, while the majority of links (of
medium or long length) experience degraded accuracy.

In addition to the above experiments, our analytical re-
sults (see [23]) also suggest that it is fundamentally difficult
to accurately predict both short and long distance using a
single coordinate per node.

5. Improving Prediction Accuracy: A Hierar-
chical Approach

In this section, we propose a new approach which ex-
ploits multiple coordinates for the same node, each posi-
tioning the node at a different distance scale. This can be
considered as a hierarchy of multiple levels: level-0 is the
“global” scale, and each subsequent level-i covers a shrink-
ing distance range.

5.1. Leveraging A Shared Hierarchy

We first explore constructing a landmark hierarchy that is
shared by all nodes for prediction. Specifically, a number of
landmark nodes form a hierarchy through recursive cluster-
ing. Each cluster consists of landmark nodes that are close
to each other. The cluster heads from lower-level clusters
are members of the next high-level cluster. The hierarchy
levels represent increasingly finer distance scales, starting
from the top-level which represents the “global” scale.

A node maintains separate coordinates for different lev-
els in the hierarchy. At the top level (level-0), each node
computes a coordinate with reference to level-0 landmarks.
At level-1, there are L landmark clusters. A node can
choose one or more clusters based on their distance proxim-
ity to compute one or more level-1 coordinates. The num-
ber of coordinates at level-i is designated by a parameter
«;. A node can infer the proximity of a landmark cluster by
measuring the distance to the cluster head. Alternatively, a
node can also determine the closeness of a landmark clus-
ter based on the maximum or average distance to the cluster
members.

Prediction proceeds in a bottom-up fashion. Starting
from the bottom level, it is first determined whether two
nodes, say A and B, are both close to some cluster at the
current level, i.e., if both maintain a coordinate relative to
the same landmark cluster. If so, this implies that nodes A
and B are relatively close to each other, and therefore the
distance can be estimated using the corresponding coordi-
nates at current level. Otherwise, the next higher level is
tested, until the top level, i.e., the global level is reached. It
is possible that nodes A and B share more than one land-
mark set at level-:. In this case, the average of the predicted
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values with reference to all the shared landmark sets can be
taken.

5.1.1 Evaluation

To experimentally evaluate the above approach, we use a
2-level hierarchy. The bottom level (level-1) comprises 16
clusters, each containing 16 landmarks. The representatives
from the 16 level-1 clusters form the top level (level-0). A
node maintains 4 coordinates with reference to the closest 4
landmark sets at the bottom level, i.e., a1 = 4.

Landmark Hierarchy Construction In our experiments,
we use a simple heuristic to build a landmark hierarchy for
each of the P2PSim and Meridian datasets. First, 5 nodes
are selected from the dataset, where 3 > 16. The (3 nodes
are the seeds to grow the clusters. They are randomly cho-
sen and are well-distributed, i.e., the pair-wise distances be-
tween the § nodes are above a given threshold 7. A cluster
is formed by adding one node per round. In each round,
the seeds take random turns to choose the closest nodes to
themselves from the remaining nodes in the datasets. 16
out of the 3 clusters are then selected to form the landmark
hierarchy, based on the “quality” of the candidate clusters.
We define the quality by the average pair-wise distance be-
tween the cluster members, and randomly select 16 clusters
of average pair-wise distances below a given threshold 6. In
our experiments, ¥ = 150 ms, # = 100 ms for the P2PSim
dataset, and v = 100 ms, 6 = 60 ms for the Meridian dataset.

Evaluation Results We now present the results of evalu-
ating the shared hierarchical prediction scheme. The label
“random global” represents the results using the top-level
landmarks, while “hierarchy shared” represents the results
using the 2-level landmark hierarchy. We also compare
with the hybrid landmark selection scheme, which selects
4 nearby nodes and 12 random nodes as landmarks.

The evaluation results for the P2PSim dataset are re-
ported in Fig. 3(a)-Fig. 3(d). Fig. 3(a) shows that using
the 2-level landmark hierarchy improves the overall pre-
diction accuracy. Fig. 3(b) shows the average relative pre-
diction error for links of various distances. Compared to

using the top-level coordinates alone, the hierarchical ap-
proach improves the prediction quality for links of up to
about 300 ms, while longer links can experience slightly de-
graded prediction accuracy. This is because short distances
are more likely to be estimated using the bottom-level coor-
dinates, and hence to experience higher prediction accuracy.
The hybrid landmark selection scheme also achieves high
prediction accuracy for short links. However, the overall
prediction quality cannot match the hierarchical prediction
scheme, due to the notably worse prediction accuracy for
medium and long links, i.e., links of delay above 150 ms.

Fig. 3(c) and Fig. 3(d) indicate that both the range ac-
curacy and the reverse range accuracy are significantly im-
proved by using the hierarchical prediction. This reflects
both lower false negative rate and lower false positive rate
in selecting short distances. On the other hand, although the
hybrid landmark selection scheme achieves higher range ac-
curacy, the reverse range accuracy decreases. This can be
explained by the interference from longer links due to the
higher prediction error beyond short distances.

Note that the performance of the hierarchical prediction
varies with the landmark placement at the top level (i.e.,
level-0). Choosing a different set of landmarks at the top
level might produce different results. However, adopting
the landmark hierarchy always out-performs using one set
of landmarks (i.e., at the top level).

5.2. Hierarchical Prediction with Flexible
Landmark Selection

Instead of building a shared landmark hierarchy, the sec-
ond hierarchical prediction scheme allows each node to
choose its own landmarks. The “hierarchy” is specified by
the radius R; of each level-:. For instance, level-1 is defined
by Ry = 100 ms. Given a node B, node A first determines
an approximate distance range where node B is likely to be
located, and then uses their corresponding coordinates at the
estimated level for predicting the distance. If node A pre-
dicts node B to be within 100 ms, their level-1 coordinates
are then used to compute the distance. At each level-i, a
node only needs to choose a set of other nodes as landmarks
that are within (or close to) R; to itself. Therefore, level-:
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coordinates are more accurate for predicting distances that
are within R;, and less accurate for predicting distances that
are beyond R;.

The main challenge for this hierarchical approach lies
in accurately estimating the distance range between two
nodes, and then selecting the right level to be used for pre-
dicting the distance. In this paper, we leverage the trian-
gular inequality existing in the Internet for the purpose of
distance range estimation. Recent studies have found that
triangular inequality is violated with a typical possibility
of 10-20% [25]. Therefore, we can expect it to hold for
the majority of the cases. The scheme assumes a set of
nodes is distributed over the network. For clarity, we call
these nodes “anchors” (specialized landmarks). The an-
chors should be able to achieve good coverage of the net-
work, i.e., most nodes should be within relatively small dis-
tances to at least one of these anchors. Assuming the tri-
angular inequality stands, if node A and B are both within
R;/2 to some anchor C}, the distance between node A and
B is upper bounded by R;.

5.2.1 Evaluation

We assume a hierarchy of three levels: level-0 as the global
level, level-1 covering distances of up to 40 ms, and level-2
covering distances of up to 20 ms.

Anchor Selection In our experiment, we use an offline
heuristic to identify a set of nodes that provide good cov-
erage for each dataset. The offline heuristic selects a node
from the dataset each time, such that the node can add to
the current covered node set at least o more nodes. In our
experiment, 0 = 2: each selected anchor covers at least 2
more nodes. The anchor selection and the achievable cov-
erage are designated by the radius. In our experiment, the
radius is set to to half of the range of the lowest level (level-
2),1i.e., R2/2. The selected anchors can be shown to provide
good coverage for level-1 (see Table 1).

We evaluate the accuracy of using the selected anchors
for range estimation. Specifically, we measure the false
positive rate and false negative rate at level-2 (with radius
10 ms) and level-1 (with radius 20 ms), and the results are

reported in Table 1. Both datasets experience high false
negative rates, while the false positive rates stay relatively
low. For instance, over 66% of the links below 20 ms in
the P2PSim dataset are estimated to be over 20 ms based on
measurements to the anchors; these links will not be able
to benefit from the higher prediction accuracy of the level-2
prediction.

There are two factors that contribute to the high false
negative rates. First, the selected anchors are unable to pro-
vide perfect coverage for the dataset. The higher false neg-
ative rate for the P2PSim dataset can be explained by the
lower coverage rate, due to the low density of short dis-
tances in the dataset. Second, the range estimation accuracy
based on measurements to the anchor nodes also depends
upon conformance to the triangular inequality. The lower
false positive rate for the P2PSim dataset reflects higher de-
gree of conformance to the triangular inequality.

Anchors can also serve as landmarks for prediction. For
instance, if node A is within distance R /2 to two anchors
(41 and Cs, the anchors can be selected as landmarks for
prediction at level-2. In our experiment, the anchors also
provide bootstrapping capability by computing their coor-
dinates first. In addition, 16 anchors are randomly selected
to serve as landmarks at the global level (i.e., top level of of
the hierarchy).

Evaluation Results Our experiments evaluate the hier-
archical prediction approach in comparison to two base-
line schemes: random global landmark selection and hybrid
landmark selection. The random global landmark selection
scheme uses the same set of landmarks as the global level
of the hierarchical approach. The hybrid random selection
is configured with 4 (out of 16) nearby landmarks.

Fig. 4(a) depicts the CDF of relative prediction error for
the entire P2PSim dataset: the hierarchical approach experi-
ences similar prediction quality as the random global land-
mark selection scheme. Although using the hybrid land-
mark selection scheme improves the prediction accuracy for
short links (Fig. 4(b)), longer links suffer decreased predic-
tion accuracy, causing the overall prediction quality to de-
grade. Fig. 4(c) shows that both the hierarchical scheme and



Table 1. Anchor Selection and Range Estimation Accuracy

anchors level-2 level-1
coverage | false positive | false negative | coverage | false positive | false negative
P2PSim 111 961 0.089% 66% 1359 0.45% 55%
Meridian 77 2022 6.8% 45% 2307 17% 30%

the hybrid landmark selection scheme can improve the abil-
ity to correctly identify the links within 20 ms, 40 ms, and
80 ms respectively. However, the hybrid landmark selection
scheme causes the reverse range accuracy to degrade, due to
the higher prediction error for longer links. Lower reverse
range accuracy corresponds to higher false positive rate in
range estimation.

The performance of the flexible hierarchical prediction
approach also varies with the landmark selection at the
global level (level-0). However, we expect that the hierar-
chical approach can always improve the prediction quality
over short distances without severe degradation over other
distance ranges.

Impact of Range Estimation Inaccuracy In order to il-
lustrate the impact of the range estimation accuracy on the
performance of the hierarchical prediction mechanism, we
utilize an “oracle” that is able to precisely determine the
right range (e.g., level) for the target distance. Fig. 5(a)-
Fig. 5(c) report the results of applying the oracle with the
anchor-based hierarchical scheme on the P2PSim dataset.
We observe improved prediction quality, which in turn ben-
efits the application performance. This experiment indicates
that an accurate range estimation scheme is key to the suc-
cess of the hierarchical prediction mechanism and anchor-
based range estimation is a promising technique.

5.3. Practical Considerations

In this section, we have presented two schemes for hi-
erarchical distance prediction. The first leverages a shared
landmark hierarchy, and thus landmark nodes may sustain
a high measurement load. In the second scheme, the mea-
surement load is distributed over all the nodes as each node
chooses its own landmarks. In our experiments, we have
adopted two heuristics for building the landmark hierarchy
and for selecting the anchors from the nodes in the datasets
respectively. In practice, both the landmarks and anchors
can be determined according to the inherent hierarchy of
the Internet, with each sub-network being deployed with its
own landmarks or anchors.

Since each node maintains multiple coordinates, the hi-
erarchical prediction approach incurs a higher overhead
than non-hierarchical prediction. In the shared hierarchi-
cal scheme, the overhead is designated by the number of
coordinates (i.e., ;) that a node maintains at each level-:.
In the second hierarchical scheme with flexible landmark
selection, the overhead at individual nodes is determined by

the number of levels in the hierarchy. In our experiments
with the anchor-based hierarchical approach, the hierarchy
has 3 levels, and therefore the total number of landmarks
that a node measures is upper bounded by 48. For com-
parison, we have experimented with 48 landmarks for the
“random global” and “hybrid” landmark selection schemes.
In the hybrid landmark selection, 12 out of 48 landmarks
are nearby nodes. The results indicate that for the “ran-
dom global” scheme, increasing the number of landmarks
can slightly improve the overall prediction quality, but is
not as effective as the hierarchical approach in improving
the prediction accuracy for short links. The hybrid land-
mark selection scheme can also benefit from a larger num-
ber of landmark nodes. However, longer links still suffer
from considerably degraded prediction accuracy, compared
to the random global scheme and the hierarchical approach.

6. Conclusions

Recent studies suggest that the prediction quality of ex-
isting prediction mechanisms can be inadequate from the
application perspective. This paper has shown that while it
might be possible to improve the prediction quality through
intelligent landmark selection, it is unclear how to engineer
the selection procedure in order to guarantee good predic-
tion quality over all distance ranges. Although choosing
nearby nodes as landmarks can result in higher prediction
accuracy for short links, longer links may suffer signifi-
cantly degraded prediction accuracy.

In light of this problem, we have proposed a hierarchi-
cal approach for network distance prediction. The hierar-
chical prediction leverages multiple coordinates at multiple
distance scales. The right scale is chosen for predicting
the target distance. We study two hierarchical prediction
schemes. The first scheme leverages a shared landmark hi-
erarchy. The second scheme allows flexible landmark se-
lection at individual nodes and the “hierarchy” is defined
by increasingly smaller distance scales. Experiments with
Internet measurement traces show that the hierarchical ap-
proach outperforms the hybrid landmark selection scheme:
short links can be predicted with higher accuracy with little
impact on the medium or long links.
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