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Abstract

A peer-to-peer (P2P) storage system allows a network

of peer computers to increase the availability of their data

by replicating it on other peers in the network. In such

networks, a central challenge is preventing “freeloaders”,

or nodes that use disproportionately more storage on other

peers than they contribute to the network. While several

existing systems claim to solve this problem, we show that

all known approaches are vulnerable to various attacks by

either a single greedy peer or a small group of peers. To

address this problem, we describe a robust distributed sys-

tem to account for the storage activities of each peer. We

analyze the security of this system, prove that it is secure

under a much stronger attack model than previous work,

and evaluate the efficiency of a prototype implementation.

1. Introduction

In a peer-to-peer (P2P) storage archival system [12, 19,

7, 1, 2], a peer stores copies of its files at other nodes in the

network, so that they can be retrieved in the event of a local

file system failure. Such decentralized, P2P storage systems

can be an attractive way to increase the availability of data,

since they have no central point of failure and any organi-

zation can deploy such a system with very little extra cost.

However, a central barrier to the widespread adoption of

such systems is that current systems rely on the generosity

of participants in order to work at all. To give a simple ex-

ample, consider PAST [19], a distributed hash table (DHT)

based archiving application which achieves load-balancing

and efficient access to stored data. If on average each node

in a 100-node PAST system stores 10 GB of data for other

nodes, a new node that joins the network and writes 100 GB

of files to the network will have to store only about 11 GB

for others. If enough nodes behave in this manner, other

nodes will be unable to find space for their storage needs

and will leave the network. PAST has no mechanism to de-

tect such nodes, and therefore requires peers to blindly trust

each other not to cheat in this fashion.

Of course, given that peers store files on such systems

to increase availability, some level of trust among peers is a

central requirement: if one cannot be reasonably certain that

in the future other nodes in the network will exist, be online,

and provide previously stored files, there is little incentive to

use the system. While it may be reasonable to assume that

most peers will indeed behave cooperatively, some greedy

users may still wish to consume more resources than they

provide, degrading the quality of service provided by the

system. Thus, the primary goal of this work is to design

a low-overhead, distributed P2P accounting system which

securely prevents such greedy behavior.

1.1. Research Goals and Challenges

We consider P2P file archiving systems in which every

peer plays two roles: Provider — each peer provides part of

its local storage to other peers — and Consumer — every

peer can store data at other peers. A transaction between

peers can be a request to either store or delete a file. After

a transaction, one peer gets credit (for donating disk space)

and the other one is debited for the same amount. We refer

to the difference between the amount of data a peer stores

locally for other peers and the amount of data the peer stores

at others as its “credit score.” A negative credit score means

that the peer is contributing less than it consumes. A decen-

tralized P2P accounting system should satisfy the following

requirements:

–Attack-free: the system should be resistant to abuse by

the peers. Namely, a coordinated group of “cheating” (or

faulty) nodes may collude to achieve one of two goals: 1)

Freeloading - where the goal of a coalition of adversarial

nodes is to collectively store more in the rest of the network

than they store locally for others. 2) Framing - a coalition

of nodes may collaborate to falsify accounting information

of some innocent nodes, e.g., make the credit score of the

attacked node from the point of view of the system appear
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to be less than its real value.

While the system may aim to provide confidentiality and

integrity of the files stored, we assume that, if necessary,

such protections can be implemented orthogonally based on

standard cryptographic mechanisms.

–Usable: the system should be efficient, scalable and able

to handle the dynamic nature of P2P systems such as peer

joins and leaves. Furthermore, unlike all other systems of

this type (including [12, 6, 19]) file deletion should be sup-

ported since typical nodes have finite local storage space.

Meeting these requirements poses several challenges in

a decentralized environment. The main challenges are en-

suring that information about storage transactions is accu-

rately recorded, and making this information available to

other peers upon request. In decentralized systems it is not

clear who should record this type of information, why other

peers should trust this entity and how peers determine who

is storing the required information. The dynamic nature of

P2P systems makes the problem even harder since the re-

quired information may reside at different peers at different

times. Alternative approaches that attempt to discard the

need for such accounting suffer other inherent limitations

that make them unacceptable for a P2P setting; see Sec-

tion 2 for further discussion.

1.2. Contribution

The primary contribution of this work is the design,

analysis and implementation of a robust, scalable, and se-

cure P2P storage accounting system. This system is se-

cure against a comparatively strong attack model in which

a known constant fraction ε < 1/2 of all nodes collaborate

to circumvent the fairness mechanism, although the proto-

col overhead increases as ε approaches 1/2. In comparison

with previous work, our design allows deletion of archived

contents and tolerates nodes which are occasionally offline.

We also provide a prototype implementation as well as sim-

ulation results showing that the system is scalable and can

bootstrap from a small initial set of users.

An important secondary contribution is vulnerability

analysis of previous approaches to fair P2P storage systems.

In many cases we show that many previous solutions (even

those which claim fairness) are generically vulnerable to

abuse by small coalitions of peers, usually consisting of a

single peer. To our knowledge this is the first analysis to

point out these inherent security failures in existing systems.

2. Related Work

Current approaches to fair P2P storage can be roughly

classified as either implicit or explicit accounting schemes.

In the following, we refer to the generic freeloading attack,

in which a peer writes files to the network but maintains

the appearance of being offline until he needs to retrieve his

files, thus avoiding the need to store files for others.

Implicit accounting approaches attempt to avoid explic-

itly recording the contribution and consumption of a peer.

Typically these systems attempt to maintain the invariant

that a peer’s credit score is nonnegative by means of direct

exchange of storage. Within this class of solutions, we con-

sider micropayment schemes and bartering schemes. How-

ever, in micropayment schemes [4, 13], the central difficulty

is token revocation which necessitates presence of online

trusted party which is a central point of failure. Bartering

approaches eliminate need for such entity by locating peers

who are mutually interested in each other’s services; in this

case a mutually beneficial transaction can take place and

the rest of the network need not know anything about it. In

particular, a node cannot get away with consuming network

resources without adequate contribution. However, the pro-

cess of finding pairs of mutually interested nodes becomes a

critical detail since storage efficiency and scalability depend

heavily on finding closely matched nodes quickly. Current

research focuses on two different approaches.

One approach, employed by Samsara [6] is to have the

“non-interested” node force the other node to perform an

equitable amount of perhaps futile work such as store some

“junk” data. This approach ensures that peers perform some

equitable amount of work for the system but wastes network

resources, requiring 100% bandwidth overhead and signifi-

cant storage overhead. Moreover, since the “non-interested”

peer does not gain anything from the transaction, it is not

clear what its motivation is to participate in the transaction.

Samsara attempts to deal with freeloading attacks as fol-

lows: when node A storing file F at B goes offline, A’s

file F is dropped by B with a certain probability p which

increases the longer A is offline. If p is large the system

may be unusable (e.g., for back-up), but if p is small the ad-

versary may maintain its data in the network without con-

tribution through replication, making it susceptible to the

generic freeloading attack.

Alternatively, one can find two mutually interested par-

ties through storage auctions [5]: a peer that wants to store

some data polls others asking how much it would have

to store in return and chooses the best bid. The authors

of [5] are concerned primarily with data preservation and

assume trust among the peers. As a result, the proposed

scheme cannot be used for general P2P storage networks

without being susceptible to the generic freeloading attack.

As in Samsara, storage auctions have scalability and usabil-

ity problems: one must either poll a significant part of the

network to achieve the best outcome or limit oneself to a

small number of (possibly unacceptable) bids.

In explicit accounting systems, a peer may use the ser-

vices of another without barter but, to guard against abuse,

(honest) peers agree not to serve peers that do not ade-
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quately contribute to the network. To achieve this, if peer

A approaches peer B with a service request, peer B should

be able to obtain, efficiently and securely, information on

A’s storage contribution and consumption. Without a cen-

tral repository, this information is naturally distributed in

the system. Hence, three issues need to be addressed: the

location of a peer’s information, its correctness and com-

pleteness. Current approaches can be categorized based on

how they address the first question: 1) peer A presents its

usage/contribution to B, 2) peer B polls the network to ob-

tain information on A, 3) peer B obtains information on A
from some set of peers assigned to monitor A’s activities.

The first approach was used in [14]: to ensure that peers

do not misrepresent their information, peers periodically

and anonymously (using an anonymous P2P overlay) ping

others and check their books. This solution, unfortunately,

cannot distinguish in some cases a misbehaving peer from a

victimized one and requires arbitration in case misbehavior

is detected, making it susceptible to both freeloading and

framing attacks. In addition, the suitability of this proposal

for file archival is questionable since the proposed solution

requires that whenever a peer goes offline its files stored in

the network are deleted – if not, the system becomes sus-

ceptible to the generic freeloading attack.

In the polling approach one obtains information on a

particular peer by polling the network [8] or local trusted

peers [20]. But, polling approaches generally 1) do not scale

to large networks and provide incomplete information mak-

ing them susceptible to freeloading attacks; 2) do not verify

the correctness of poll responses (thus framing attacks are a

possibility); 3) are susceptible to collusion attacks in which

both peers claim that a transaction took place in order to

boost the credit of one peer without the second one suffer-

ing consequences; 4) limit applications to those that require

only reputation of service providers and not of clients.

In what we dub the witness approach, each peer has a

fixed set of publicly known witness peers which monitor

the transactions of the peer [23, 22]. These witnesses can

also be employed to carry out distributed reputation calcu-

lations as exemplified by EigenTrust [11]. This idea ap-

pears in other contexts requiring resource accounting; for

example, in the CONFIDANT [3] wireless network project,

network neighbors eavesdrop on each other to ensure cor-

rect behavior. Having witnesses distributes trust, but the

witnesses of a peer can be corrupted with the peer reaping

long-term rewards, making the system susceptible to both

freeloading and framing attacks by small coalitions.

3. System and Attack Models

We consider a set of computing nodes with sufficient

non-volatile storage such as hard disk, connected to a large

network such as the Internet, and capable of giving access

to local storage over the network. The nodes could be per-

sonal computers with an Internet connection. We assume

that the nodes are connected to each other using a scalable

network overlay, for example, Pastry [18] or Chord [21]. 1

The nodes can communicate with each other reliably us-

ing either the underlying network (e.g. Internet with IP

addresses) or the overlay (using some required meta-data).

In addition, nodes are loosely synchronized. As mentioned

previously, each node provides local storage space to other

nodes (his contribution) and stores his own data at other

nodes (his consumption). If node A stores a file F for node

B, A also provides read-access to the stored file F for B.

Each transaction can be either storage or deletion of data.

We assume that the nodes in the system form a commu-

nity of common interest, which has three important conse-

quences. First, all but a few nodes hold a long-term interest

in using the system for purposes such as archiving, back-up

or simply to increase data availability. As a consequence

there is no need to consider attacks to disable the network

infrastructure. Second, each node has a public key certifi-

cate (PKC) created by some mutually trusted authority. As a

result, we assume that each physical member of the network

cannot have certificates for multiple identities. As each node

is mapped in one-to-one fashion to a physical identity, from

now on we refer to nodes as peers. Finally, most nodes are

willing to do some extra work to contribute to the health of

the community, if it has little cost to them; their incentive is

the continued availability of the system.

As a result of our “community of common interest” as-

sumption, the class of attacks we consider is significantly

narrowed. In particular, the attacks addressed in this paper

fall into either the freeloading or framing categories as ex-

plained above. In addition, we assume, as a result of the

PKI assumption, that the Sybil [9] attack is hard 2. A small

fraction ε of the nodes could be controlled by an adversary

to behave either selfish and/or malicious. However, we as-

sume that the adversary can compromise only limited num-

ber of nodes in a given time period. Our protocols are most

efficient if ε is less than 0.1 but can be scaled to accom-

modate any ε up to 0.5 as long as the underlying network

and overlay maintain reliable communications.3 While this

assumption may seem strong, we note that many existing

protocols are easily abusable by a single peer or a coalition

of O(1) peers, regardless of the network size.

Once a file is transfered we assume it is the job of the in-

1This is assumed only for implementation convenience, not for security

reasons. Any mechanism allowing users to find other peers would suffice.
2We note that if possible a Sybil attack can be effective against our

system, but this is true of previous work as well: previous systems can be

effectively attacked with a constant number of identities, most often 1.
3We remark that, when the underlying and overlay networks are not re-

liable, our protocols can be altered to accommodate this, at a considerable

loss of efficiency, and only with a supermajority of honest nodes. We do

not describe the necessary modifications here.
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terested peer to verify from time to time if the file is actually

being stored. Note that because our system supports dele-

tion, the file may simply be deleted if the peer that allegedly

stores the file fails to prove that it can access the file.

4. System Design

In our design, each peer has a set of witnesses (chosen

from other peers) that monitor its transactions. In essence,

this approach allows one to decentralize a previously cen-

tralized environment, where the witnesses play the role of

the center. Our design has three key innovations to over-

come the limitations of previous approaches:

–Randomly Chosen, Dynamic Witness sets. In our system,

the set of witnesses of a peer change over time; whenever

the majority of a peer’s witnesses are honest, he cannot

freeload, nor can he be framed. We stress that the inter-

esting idea here is not the specific protocol used to achieve

this objective, but the architectural concept of randomizing

a peer’s witness set.

–Storage Expiration. To correct for the possible occasional

damage caused when a majority of peer’s witnesses are cor-

rupt, our system requires that a file be “refreshed” period-

ically so that the information related to its storage is sent

to the (new) witnesses that were not informed of the trans-

action before. By setting the refresh interval, the number

of witnesses, and the rate of witness turnover appropriately,

we can limit the damage while retaining the simplicity and

efficiency of the witness approach.

–“Formal” Deletion. To counter the generic freeloading

attack, we allow nodes to request that a file stored at an of-

fline node be deleted; the file can then be stored to another

node. In this way, nodes that attempt to “freeload” by pre-

tending to accept files and then going offline cannot gain

credit from the system for storing these files.

4.1. Protocols

The following notations are used to explain the proto-

cols. See Section 4.2 for details on how anyone can com-

pute the current witness set of any peer.

Symbol Meaning

SignA(m) This contains the message m and signature of m by A
h(m) Hash of message m, where h is a strong hash function

IDA ID of A, computed as hash of public key certificate of A
size(F ) File size

WA A’s witnesses

tc Current time

R(WA) Approve/Disapprove reply from A’s witness

X → Y : M ∀x ∈ X ,∀y ∈ Y , x sends M to y
te File expiration time

sw size of a witness set

S(A) A’s signed storage request

D(A) A’s signed deletion request

RR(A) A’s signed refresh request

SR(B) B’s signed receipt

File Storage Protocol Suppose peer A contacts peer B with

a request to store file F . Algorithm 1 details the procedure

whereby the file and a receipt for storage of this file are

exchanged. All the parties involved in the transaction store

the receipt along with the file expiration date. This receipt

is deleted and the credit values of A and B are adjusted

appropriately once the storage request expires.

Algorithm 1 File Storage Protocol

1. Storage Request

A→B : S(A)= SignA(storage, IDA, IDB , size(F ), tc, te, h(h(F )))
A sends a signed storage request M1 to B, which contains identities of both peers,

file size, current time, file expiration time, and double-hash of file contents.

2. Checking with Witnesses

2-a. B → WA : S(A)
B forwards the request to WA to determine if A would be in compliance with

network policies even after B storing the file F .

2-b. WA → B : R(WA) = SignWA
(S(A), Approve/Disapprove)

Each of WA checks if the message is fresh by checking the current time tc con-

tained within S(A). Then, the witness replies to B with signed answer R(WA).

If majority of WA states that A cannot store the file, transaction aborts.

3. File Transfer

3-a. B → A : Approve B informs A that it can send file F to B.

3-b. A → B : F Then A sends the file F to B.

4. Signed Storage Receipt

4-a. B → A : SR(B) = SignB(S(A), h(F ), tc)
When file transfer is complete, B computes double-hash of the file and com-

pares it to the value in the storage request S(A) – if these are different, transaction

aborts. B sends a signed receipt SR(B) containing S(A), h(F ) and timestamp

tc to A. Upon receiving this message, A verifies the freshness, signature and

checks if received h(F ) is same as hash of the file he sent.

4-b. B → WB , WA : SR(B), R(WA), and WB → A, WA : SR(B)
Upon receiving the receipt, WB credits B and WA debits A. WB also for-

wards the receipt to A and WA. Note B has incentive to send the receipt to WB

(to claim credits), but not necessarily to WA (if colluding with A) or A (if trying

to frame A by telling A that the transaction aborted claiming, for example, that the

hash of the file is wrong.)

Note that the only way for B to obtain credit for the

stored file is to send the receipt to WB , which will send

it to WA who will automatically debit A. In addition, if the

transaction is recorded by WA and WB , then A receives B’s

receipt which proves to A that B actually received the file.

Also, A cannot be debited unless B receives and stores the

file correctly, and B can prove to others that it stored A’s

file and can collect credits.

File Deletion Protocol The file deletion protocol, shown in

Algorithm 2, is one-sided; i.e., peer A above can delete its

file F at any time without obtaining B’s confirmation (Note

that B can be offline). We note that in the protocol, A can-

not issue a deletion request for a non-existent transaction.

Also, an honest node B has to store the file until a deletion

request is issued by A or the storage request expires.

Algorithm 2 File Deletion Protocol
1. Deletion Request:

A → WA, WB , B : D(A) = SignA(deletion, SR(B), tc)
A sends signed deletion request D(A) along with the storage receipt SR(B) of

file F to WA, WB and B. WA and WB look up the receipt in their databases,

delete the transaction and adjust credits of A and B, accordingly. B at the same

time deletes the file.

2. Distribution of D(A): WA → B, WB : D(A) and WB → B : D(A)
WA forwards A’s deletion request to B and WB , and WB forwards it to B.

The deletion request is buffered until the file expiration date of the original storage

request (if B is offline, it queries WB for deletion request once it is online again).
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Storage Refresh Protocol In the file storage protocol, the

stored file F has an expiration date te. If A decides to con-

tinue storing the file at B and B agrees, the storage transac-

tion needs to be refreshed in order for B to continue obtain-

ing credit for storing the file. If B refuses, A can formally

delete the file and store it at a more reliable peer. This re-

fresh protocol is similar to the storage protocol except that

the file is not transferred. The refresh protocol is shown in

Algorithm 3. Upon completion, every party involved in the

transaction replaces the old receipt with the new one. Note

that 1) A cannot refresh a non-existent transaction, 2) B
can refuse to continue storing the file, 3) at the end of the

protocol, A knows if the transaction has been refreshed.

Algorithm 3 Storage Refresh Protocol

1. Refresh Request:

A → B : RR(A) = SignA(refresh, S′(A), SR(B), tc, te)
Peer A sends refresh request containing the receipt SR(B) of the original storage

request, updated storage request S′(A), updated current time tc, and the new

expiration time te.

2. Checking with Witnesses: Peer B needs to verify if A is allowed to continue

storing the file.

2-a. B → WA : RR(A)
B forwards the request to WA to see if A is allowed to continue storing file.

2-b. WA → B : R(WA) = SignWA
(RR(A), Y es/No)

Each of WA checks if A is allowed to refresh the file. Then, the witness replies

to B with signed answer R(WA). If majority of WA states that A cannot store

the file, transaction aborts.

3. Signed Storage Receipt

3-a. B → A : SR′(B) = SignB(S′(A), h(F ), tc)
B sends a signed receipt SR′(B) to A. Upon receiving this message, A

verifies the signature and message freshness

3-b. B → WB , WA : SR′(B), R(WA) and WB → A, WA : SR′(B)
Upon receiving the receipt, WA and WB replaces the old receipt with the new

receipt. Again, WB forwards the receipt to A and WA for the same reason as in

the file storage protocol.

4.2. Determining Witnesses

Assume each peer A has a set of witnesses WA drawn

from the network peers. Whenever A wants to participate

in a transaction, the witnesses in WA will be contacted and

will maintain A’s transaction history. The following prop-

erties are required to make this approach secure:

–With high probability (at least 99%), the majority of wit-

nesses in WA must provide correct information on A.

–Any peer should be able to contact the members of WA

efficiently and securely.

Load balancing concerns lead to the observation that

each peer must serve as a witness for some peer, while se-

curity requirements dictate that each peer must have several

witnesses. To decide which peers serve as witnesses of A,

it would be best if for each peer the witnesses are chosen

at random and independently, while any peer can determine

which nodes are the witnesses of A. For this purpose we use

a cryptographic hash function h. Let d denote the number

of output bits produced by h. If every peer has m witnesses,

one can compute the values h(i||IDA), i = 1, ..., m which

will fall randomly and independently for each peer into the

range of values [0, 2d − 1]. If we now map each peer into

this range in a random manner by hashing the peer’s ID,

then the peer that is the next one after h(i||IDA) can be

chosen to be the i-th witness of A.

This approach distributes witness load efficiently and

in a balanced manner. Additionally, peer A cannot influ-

ence the choice of its witnesses and everyone can deter-

mine its witnesses. We still need to determine how many

witnesses each peer should have. If everyone has sw wit-

nesses then every peer is also a witness for (on average)

sw other peers. Reducing sw will decrease the complex-

ity of any protocols that use the witnesses and reduce the

witness burden on peers, while increasing sw decreases the

probability of a corrupt witness majority and thus improves

security. A simple calculation shows that when ε = 10% of

nodes are corrupt, sw = 5 witnesses suffice to ensure that

less than δ = 1% of nodes have corrupt witness majority;

in general, a Chernoff bound gives that it suffices to have

sw = ln 100/δ
2(1/2−ε/100)2 .

Dynamic Witness Change To minimize the effect of col-

lusions our protocols ensure that the witnesses for each peer

change with time. For load-balancing reasons, the witnesses

should change for each peer at different times and one wit-

ness should change at a time. This can be implemented us-

ing any of several different cryptographic techniques. We

describe here the Queued Witness Replacement approach

which is implemented by the prototype and provides load-

balancing. A different approach, Random Witness Replace-

ment, which is simpler conceptually and easier to analyze is

given in [16]. In this approach, witness change occurs at the

same discrete time-intervals for all peers; and during each

witness change, a random choice of current witness is re-

placed by a random peer. Both protocols, however, 1) main-

tain the same security guarantees as will be shown later, 2)

retain all of the necessary characteristics; in particular, any-

one can determine the current witness set of any peer and

a peer cannot easily influence the choice of its witnesses,

3) allow for usage of public source of randomness in com-

putations to increase indeterminism. Below, we let PKCA

denote the public-key certificate of peer A and assume that

PKCA contains some randomness not determined by A.

Queued Witness Replacement is specified in Algorithm 4

and computes the set of witnesses for peer A at time tc.

Algorithm 4 Queued witness set construction
1. On input time tC (expressed, say, in days) and peer PKCA, initialize

W0,...,sw−1(A) :=⊥
2. Initialize n := 0
3. For j ∈ {0, . . . , e − 1} do:

(a) if tC − �tC� ≥ H(j || PKCA)/2k , set n := n + 1.

4. For i ∈ {0, . . . , sw − 1}, set Wi(A) to the node with ID closest to

H(PKCA || H(�tC� − �(i + e − n)/e�) || (i − n) mod sw)

In effect, we keep a queue of sw witnesses: at random

intervals, the oldest witness of A is replaced by a randomly
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chosen peer; the intervals are different for each peer A and

so witness handoffs are smoothly distributed over time. Let

φ denote the desired life-span of a witness in days (or an-

other arbitrary time increment). For simplicity assume that

φ divides sw and denote e = sw/φ. Algorithm 4 exhibits

the following properties:

–Each day, on average sw/φ witnesses change and each

such change happens at a random (but fixed for each inter-

val) time 4. The schedule for each peer is different.

–The average witness life-span is φ days.

–Other peers can determine the current witness set of A
autonomously, given PKCA. A peer cannot easily influ-

ence the choice of its witnesses.

Witness Hand-Off The remaining problem that needs to be

resolved is how to carry out witness hand-off without prop-

agation of incorrect information. More precisely, consider

the following scenario. At one point peer C is able to cor-

rupt a majority of its witness set WC and manages to store

in the network significantly more than its contribution. At

handoff time, a new (honest) peer X replaces a witness in

WC : if X keeps the same incorrect information as the faulty

majority, the effect of dynamic witness change is minimal.

If all witnesses of WC collude with C and hide C’s re-

mote storage transactions the new witness will not be able

to obtain a correct view of C’s participation without signif-

icant overhead. Thus, our protocol requires peers to specify

the expiration time of the transaction; system policy can be

used to put an upper bound on the life of storage signatures.

Even if a peer is able to corrupt all its current witnesses the

effect will last only until the transactions expire.

Suppose a new peer X becomes a witness for C replac-

ing one of the current witnesses. Denote by 1) RSD(C) the

set of storage receipts stored at D, which were either issued

by or to C, 2) DSD(C) the set of deletion requests stored

at D, which were either issued by or to C. The protocol for

witness hand-off is shown in Algorithm 5.

Algorithm 5 Witness Hand-Off Algorithm

1. X obtains signatures (i.e. storage receipts and deletion requests) relating to C
from its current witnesses WC and C (if it is online).

2. For every current witness D of C and for each (unexpired) storage receipt

s ∈ RSD(C), X checks DSD(C) to see if there exists any deletion request

related with s (i.e. either issued by or to C). If yes, run the file deletion protocol

from Step 2 to delete the file.

3. Optionally, X may ask peers and witnesses associated with (unexpired) storage

receipt s ∈ RSD(C) if any deletion request was issued to or by them. If so, X
runs the file deletion protocol using the deletion request.

4.3. Mechanism Design for Fairness

In the above storage and refresh protocols WA has to

make a decision whether to allow A to store or refresh the

4The protocol can be easily modified if we would like to have the same

time interval between successive witness changes

specified file size or not. The mechanism enforced by WA is

important to guard the system from abuse. All such mecha-

nisms must follow three important rules:

–WA must ensure that peers cannot successfully go

through the storage or refresh protocol if in the end their

contribution to the network falls well below their usage of

remote storage. For example, in the above protocols, WA

may decide not to allow peer A to store or refresh if the

amount of data it stores for others falls well below its re-

motely stored data after the transaction.

–The strategy must be balanced between preventing

freeloaders and protecting honest peers which have a sud-

den contribution drop. Peer contribution to the network may

fall due to various reasons, e.g., large amount of files stored

at a peer are deleted by the file owners and this peer fails

to attract new storage requests immediately. The system

should allow and/or help the honest peer to recover.

–The system must be able to bootstrap. In particular, a new

peer joining the system with no current contribution to the

network should be able to start storing at other peers within

a reasonable amount of time.

To bootstrap the system, new peers are given some for-

ward credit which is set by witnesses to a system-fixed con-

stant and allows peers to store remotely more than what

they contribute. The forward credit is computed as fol-

lows: when a peer stores more data locally than remotely,

its forward credit increases; when a peer under-contributes,

his forward credit decreases which guards the system from

abuse. In both cases, the magnitude of the change in for-

ward credit increases with the magnitude of the difference

between a peer’s contribution and consumption. Note that

storage expiration ensures that files of peers that under-

contribute are eventually deleted and when a peer is absent

for sufficiently long time, its files and records held by its

witnesses will expire and be purged (only a single signa-

ture of this peer needs to be maintained so that when it re-

joins it will not longer be given initial credit). Still in case

of genuine crash, peer’s files will be maintained unless its

credit declines (when other peers delete their files at this

peer), but even in that case the files will be in the network

for some time allowing the peer to retrieve them if it cannot

go back online for a long time. The above mechanisms are

used in our prototype implementation which is discussed in

Section 6. In addition, we provide simulations of the system

bootstrapping period.

5. Security Analysis

In this Section, we give brief arguments for the security

of the protocols sketched in Section 4. Let us say that the

system is in a correct state with respect to peer A if the ma-

jority of A’s witnesses are honest and have an accurate ac-

counting of A’s storage consumption and contribution. We
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first briefly sketch why a peer in such a state cannot freeload

and cannot be framed. Next we show that a system in a

correct state will stay in a correct state when handoff to an

honest witness occurs. Finally we demonstrate that the im-

pact of bad states is minimal by analyzing the fraction of

time the system is in a bad state with respect to A and deter-

mining, analytically and experimentally, the expected time

to recover from entering an incorrect state in terms of the

witness turnover and storage refresh intervals.

5.1. Security in a Correct State

Now suppose the system is in a correct state with respect

to peer A, and thus peer A has currently contributed more

than he has consumed. To invalidate this condition, he must

break a security guarantee of one of the request protocols:

–Storage: In the storage protocol, when storing at honest

peer B, A can only exceed his contribution if more than

half of his witnesses WA sign a request permitting the stor-

age. Since we assume that less than half of the witnesses are

corrupt, this means A must forge a signature of at least one

honest witness. When B, in correct state, is part of the col-

lusion and tries to store at A, A cannot obtain credit without

B being debited unless either all of WA or majority of WB

are corrupt.

–Deletion: A could hope to subvert the deletion protocol

by either deleting a file stored at honest node B without

notifying B, (so that the file remains accessible while not

counting against A) or allowing B to delete a file stored at

A without notifying WA. The former attack is impossible in

a correct state, since A must first send the deletion request

to WA and once a majority of WA sign the deletion request,

they will forward it to B. The latter attack is also prevented

by the design of the protocol, since B forwards the deletion

request to WA directly. If B, in correct state, is part of the

collusion and tries to delete a file at A, the attack succeeds

only if majority of WB are not and majority of WA are

aware of the deletion, which is prevented since WA forward

deletion to WB .

–Refresh: The attacks here are almost identical to attacks

on storage protocol with obvious modifications.

Thus we conclude that in a correct state, the security of

the protocol against freeloading is reducible to the security

of the underlying signature scheme. We remark that the

proof of security against framing attacks with honest wit-

ness majority will be essentially the same, since in order for

a node B (in correct state) to be framed, it must either re-

ceive a forged signature from some honest witness in WB

or some honest witness in WB must receive a forgery of a

signature from B. Notice that this proof of security depends

on reliable delivery of messages; if the fraction of attackers

is large enough to invalidate this assumption then certain

race conditions can be exploited to freeload for the interval

in which A has at least one corrupted witness. To prevent

such attacks, a secure Byzantine consensus mechanism be-

tween witnesses can be implemented, at a significant cost in

communication overhead in the resulting system.

5.2. Security of Witness Handoff

We wish to show that an honest witness X receiving the

accounting information for user A from WA will obtain a

correct view of A’s transactions when for each transaction

at least one peer in WA will have corresponding signatures.

Thus a system in a correct state with respect to A will re-

main in a correct state with high probability. It is relatively

straightforward to show that this property is reducible to the

security of the underlying signature scheme:

–For each remote storage request issued by A, if at least

one current witness has a correct view of the transaction,

then X will also obtain a correct view. If the file was deleted

at least one witness will have the deletion signature (which

is maintained until the storage signature expires). If the file

was not deleted and one witness submits C’s deletion sig-

nature, X will push the deletion through and ensure that the

file is deleted by all honest parties.

–A similar analysis applies to local storage receipts gen-

erated by A: if at least one honest witness has a record of

A’s storage receipt, it cannot be discarded; and A’s corrupt

witnesses cannot generate legal receipts without obtaining

signatures from some honest witness of WB . Thus the abil-

ity to increase the apparent local storage of A in witness

handoff implies the ability to forge a signature.

–Provided that for each transaction at least one witness has

the correct view, all relevant transactions will be available

to the new witness.

The case when all current witnesses of A are part of a

coordinated collusion is not dealt with in the hand-off pro-

tocol. As previously mentioned, such collusions allow A to

hide its remote storage. Alleviation of such attacks would

be expensive so instead we rely on storage expiration to

limit the impact of such attacks.

5.3. Bad State Recovery

It is evident that if a majority of peer A’s witnesses be-

come corrupted by A then his consumption may arbitrarily

exceed his contribution during the entire period of corrup-

tion - the corrupted witnesses simply approve all storage

transactions. Likewise, if a majority of a peer’s witnesses

are corrupted against him, he may be framed, limiting his

ability to refresh storage requests for the duration of the cor-

ruption. Thus we are interested in two quantities related to

such “bad states”: the fraction of time that the system is in

a bad state with respect to peer A, and the expected time to

return to a correct state after entering a bad state.
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Figure 1. Part (a) shows the expected probability of having faulty majority obtained in simulations using SHA-1 hash function and 10,000 peers: the dashed lines

indicate standard deviation. Plot of analytically computed probabilities follows closely this graph. Part (b) shows the average expected time (in terms of witness change

intervals) to recover from bad witness majority with z denoting the percentage of bad nodes in the network. The circles show the experimental results obtained using

a simulator with the queue-style witness scheduling algorithm over 10000 peers and k · 10000 witness changes, where k is the number of witnesses (note that, when

probability of bad majority is very low, it takes a long time to obtain accurate results). The solid lines indicate the results obtained using the recurrence relation specified

in Section 5.3 and corresponding to the random witness replacement algorithm.

The probability that a random peer ends up with a faulty

witness majority can be computed by modeling each wit-

ness choice as a Bernoulli trial, where failure probability

is equal to the fraction of faulty nodes. The results for

cases when this percentage is 5%,10%,15%,20%,30% are

presented in Figure 1(a). In particular, in case of 10%, the

number of witnesses should be at least 5 (setting used in our

implementation in Section 6) to ensure that a random peer

ends up with rogue majority with probability less than 1%.

Using Random Witness Replacement algorithm, one can de-

rive an analytical recurrence-based formula for the expected

number of witness hand-offs for the system to recover from

rogue witness majority with respect to a single peer. Fig-

ure 1(b) shows the results for various numbers of witnesses

and percentages of rogue peers: with 5 witnesses and 10%

of attackers, the average recovery time, over 5000000 wit-

ness changes with 10000 users, was 1.94 with standard de-

viation 1.1. In addition, the figure shows simulation results

with the queued witness schedule of Algorithm 4. Note that

the simulation results confirm that both witness replacement

approaches exhibit similar expected time to recover from

bad witness majority. Once witness majority has recovered,

it takes a single refresh interval for them to obtain correct

information on the state of the peer.

6. Implementation and Experiments

We have implemented a prototype of the proposed sys-

tem to determine the amount of computation, communica-

tion, and storage overhead imposed by the system, the sys-

tem scalability and usability. Our implementation is built

Transaction Storage Refresh Delete

Action Send Recv Send Recv Send Recv

Consumer 2 2+sw 1 1+sw 1+2sw 0

Supplier 2+3sw 2+sw 1+3sw 1+sw 0 1+2sw

WC 1 2+sw 1 2+sw 1+sw 1

WS 1+sw 1 1+sw 1 1 1+sw

Table 1. The number of messages, where WC denotes

witness of consumer and WS witness of supplier

in Java on top of the FreePastry [10] implementation of

the Pastry [18] routing layer. Every peer has an account-

ing system, a file system, and a Pastry routing layer. The

accounting system consists of three modules: the consumer

module generates storage/refresh/deletion requests; the sup-

plier module serves storage/refresh/delete requests issued

by other peers; and the witness module implements the wit-

ness functionality as described in Section 4.

Each module is implemented as a thread with a message

queue for incoming messages and a consumer module gen-

erates/processes each transaction one at a time. On the other

hand, the supplier and witness modules are event driven and

are activated when a new message is put in the queue. Each

module is equipped with a database in which relevant ac-

counting information such as receipts is stored. The Pastry

routing layer is used to locate potential suppliers and contact

witnesses. Subsequent communication between the same

peers uses direct TCP connections, to minimize communi-

cation overhead and dependence on the Pastry routing layer.

To speed up cryptographic operations, RSA signatures and

verification are implemented using native code written in

C with OpenSSL 0.9.8 [15]. To estimate the storage and

communication overhead of our system, we recorded vari-
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ous messages of the system. The size of the messages varies

from 693 to 1229 bytes with an average of 974 bytes. For

simplicity, we assume all messages have the size of 1KB.

Table 1 shows the number of messages in different transac-

tions. Note that communication overhead per node of the

system is linear in sw. This is a tradeoff between system

performance and system security.

Our live testing environment consisted of two different

subnets that belong to the Institute of Technology at the

University of Minnesota and constitute two separate stu-

dent labs. The first subnet consists of 44 Sun Blade 1500

machines each with 2GB of RAM and 1062MHz Ultra-

SPARC CPU. The second subnet has 36 machines running

Ubuntu Linux (2.6 kernel), with 3GHz Pentium IV CPU

and 1GB Ram. The Linux machines have 100Mbit net-

work connection, while the Sun machines are connected

with GigE. Transfer of a 100MB file took between 0.8 and

5.2 sec under a light network load. Being a live environment

with students using the computers and occasional NFS hic-

cups, occasional spikes in terms of transaction time do hap-

pen, especially in the accelerated experiments described be-

low. Still 95% of all transactions finish within an acceptable

amount of time, as indicated in the measurements below.

Although the system is implemented on top of Pastry,

to obtain a better view of the overhead induced by our ap-

plication layer we used a bare-bones Java implementation

of DHT routing layer without join/leave mechanisms in the

measurements presented here. Figure 3 shows the detailed

measurements obtained from our experiments. We started

with the following basic setup: 1) 80 nodes with one peer

per node, 2) 100 MB files, 3) 5 witnesses for each peer, 4)

witness serves for a specific peer for 12 hours (and a wit-

ness handoff for a specific peer occurs every 2.4 hours), 5)

for each consumer, the average time difference between end

of one storage/refresh/delete transaction and start of another

is 6 sec. As mentioned before, higher frequency of witness

turnover increases security of the system, but increasing it

may also affect overall network performance due to more

frequent witness handoff. To see how this parameter affects

system performance we increased the rate of witness hand-

off five times (case 80 100 10 1). The figure indicates that

the network is able to accommodate such increase of ac-

tivity without any significant performance penalty. From

then on, we used only the setup in which witness hand-off

occurs every 2.4 hours. To see how the number of nodes

affects performance, we ran the system on 20, 40 and 80

nodes. The results shown indicate that the system scales

well as the network size increases. We also ran an experi-

ment using 1 MB files: since length of storage transaction

decreases about 5.5 times, the overall rate at which transac-

tions are generated is increased and the results shown indi-

cate graceful degradation of performance of the system.

We also ran a separate simulator, written in C++ with

OpenSSL, to determine the the bootstrapping properties of

the system 5. In these experiments, a consumer module is-

sues storage/refresh/deletion requests with equal probabil-

ity, with the exception that deletion requests become more

likely when a peer’s consumption exceeds his contribution.

The supplier module initially allocates some amount of its

local storage for others and grants storage requests if and

only if the supplier has free space and the credit of the con-

sumer (including forward credit) stays non-negative after

the transaction.

We simulated 100
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Figure 2. Dynamics of system

bootstrap with 500 initial peers.

runs with 500 nodes

each, with file sizes

drawn from a left-

skewed distribution with

mean 700MB and local

allocations uniformly

distributed between

10GB and 100GB. The

interarrival span of

requests was selected

uniformly over a small

constant range such that each peer made on average two

requests per hour, and peers reduced their rate of storage

and deletion when consumption reached 95% of local allo-

cation. Maximum file expiration time was set to one day.

A more detailed summary of the simulation parameters,

along with code for the simulation is available online [17].

Figure 2 shows the bootstrapping behavior when running

the simulator. It shows the average of the percentage of

local allocation consumed by all peers at each time period.

Within 2 days, the system saturates with 90% of users

having remotely stored at least 95% of their local allocation

and 98.69% of users having remotely stored at least 90% of

their local allocation. Thus we conclude that the “forward

credit” mechanism effectively allows bootstrapping without

deadlock. Note that the system is stable and usable well

before the saturation point; on average, a peer has stored

1.1GB in our simulations after 2.74 hours.

7. Concluding Remarks and Future Work

In this paper we describe a distributed accounting sys-

tem for P2P storage archival. Analytical results show that

the system is secure against a much stronger attack model

than previous fair P2P storage schemes. Our experimen-

tal results suggest that the scheme can be efficient even for

large networks of peers. However, because there currently

are no widely used fair P2P archival systems, we are unable

to obtain good traces for experimental purposes. It is easy

to see that several usability aspects of our system (e.g., the

average wait time to obtain enough credit to write a file) de-

pend on the exact workload. Thus an important next step is

5Additional simulations such as “deletion attack” are found in [16]

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06) 
0-7695-2540-7/06 $20.00 © 2006 IEEE 



�������	
�����
����

�

����

����

����

����

����

����

	���

��
���
��
� ��
���
��
� ��
���
��
� ��
�
��
� ��
���
��
�


�
�
�	
��
��

�
����������� ������
���
�� ��������
��

�������	
�����
����

�

���

���

���

���

���

���

	��

���

���

����

��
���
��
� ��
���
��
� ��
���
��
� ��
�
��
� ��
���
��
�


�
�
��
	��

��

������
���
�� ��������
��

������	
�����
����

�

���

���

���

���

���

���

	��

���

��
���
��
� ��
���
��
� ��
���
��
� ��
�
��
� ��
���
��
�


�
�
�	
��
��

������
���
�� ��������
��

Figure 3. The figure shows average computational, network and file-transfer overhead incurred in the transactions under different experimental conditions. The

notation A B C D used on the X-axis means that in the experiment 1) we used A number of nodes, 2) file size was B megabytes, 3) if D=1, the witness hand-off was done

5 times more frequently than in the case D=5. The standard deviation for each measurement ranged up to the value of the corresponding average, due to occasional spikes

to field this system with live users to obtain accurate traces

and distribution parameters for simulation.

We have mentioned that the security of the protocols here

does not hold against an attacker who can control the deliv-

ery of network messages. However, it is possible to mod-

ify our protocols to provide assurance in the face of such

attacks. An interesting future direction would be to imple-

ment such modifications, measure the additional overhead

incurred, and find ways to gracefully degrade performance

or security when such attacks are detected. Finally, this pa-

per explores one witness mechanism to encourage fairness;

in general many other such mechanisms are possible. An

interesting future direction is to explore the mechanism de-

sign issues related to fair P2P storage, extending the eco-

nomic concepts introduced in [5].
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