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Stable and Accurate Network Coordinates

Jonathan Ledlie and Margo Seltzer

Abstract— Synthetic coordinate systems that mirror latencies stability for applications. After this section, the paper makes
between physical hosts have become a part of the toolboxthe following contributions:

networking researchers would like to use in real deployments. In Secti m . lat distributi that
However, the most promising algorithm for building these coor- « In Section 1ll, we examine a latency distribution tha

dinate systems, Vivaldi, breaks down when run under real world exemplifies a typical input and discuss why the original
conditions. Previous work on network coordinates has examined algorithm experiences difficulty when used without a
their performance in simulation through the use of a latency static latency matrix.

matrix, which summarizes each link with a single latency. In a
deployment, instead of perceiving a single latency for each link,
nodes see a stream of distinct observations that may vary by as

« In Section IV, we present a simple method for stabilizing
coordinates by keeping a small history of samples with

much as three orders-of-magnitude. With no means to discern an each node. This method improves both coordinate stabil-
appropriate latency for each link, coordinate systems are prone ity and accuracy; however, coordinate stability remains at
to high error and instability in live deployments. a level unacceptable to most applications.

Two simple enhancements improved Vivaldi's accuracy byp4%
and coordinate stability by 96% when run on a real large-scale
network. First, we use a non-linear low pass filter to ascertain

« In Section V, we differentiate between application- and
system-level coordinates and compare four heuristics for

a clear underlying signal from each link. These filters primarily improving application-level stability while maintaining
improve accuracy. Second, we introduce a distinction between accuracy. We find that when we insert a sliding window-
system- and application-level coordinates. We evaluate a set of based mechanism for change-detection borrowed from the
change-detection heuristics that allow coordinates to evolves at database literature, an application’s view of its network

the system-level and only initiate an application-level update . S
after a coordinate has undergone a significant change. These Coordm‘?tes becomeS_S'gn!flcantly more Sta,ble',
application-level coordinates retain the filter's high accuracy and [N Section VI, we build histories and application-level
dramatically increase coordinate stability. coordinates into an implementation that we run on a large
Index Terms— Simulations, Stochastic processes/Queueing the- network, resulting in &4% |_mprovemgr_1t in accuracy and
ory, Experimentation with real networks/Testbeds. a 96% improvement coordinate stability.
In Section VII we discuss related work and in Section VIl

we conclude.
I. INTRODUCTION

IVALDI, a simple decentralized algorithm, embeds nodes Il. VIVALDI ALGORITHM

in a network into a relative coordinate system [4], [5]. The Vivaldi algorithm provides a simple, lightweight
Coordinate systems are useful in a wide range of contextsethod for participants in a distributed system to form a
including large scale content distribution, routing, and strearBuclidean metric space, where the distance between any two
based overlay networks [10], [2], [20]. We used the Vivaldiodes is an estimate of their true latencies. To the best of
algorithm to create a coordinate system with hundreds of nodsg knowledge, Vivaldi is the only completely distributed
on the Internet as part of our work on stream-based overlgyordinate formation algorithm that requires neither well-
networks [19]. known landmarks nor significant computation. The algorithm

Yet, when run on a live system, the original algorithnexhibits two useful properties for distributed systems:

does not produce stable, accurate coordinates. The discrepangy Two nodes do not need to have communicated previously
between what we found and the results from the original for the latency between them to be estimated. Therefore,
paper is primarily a result of the orders-of-magnitude variation  the algorithm scales to thousands or millions of nodes.
in latency measurements between the same pairs of nodeg The algorithm continues to refine coordinates as the true

that actually occur when running a coordinate system on a network conditions change over time. For example, if the
real network: inter-node latencies were fixed USing a derived |atency of a link Changes due to a BGP route Change’

latency matrix in the original set of experiments. A few simple  coordinates adjust and restabilize quickly.

changes to the algorithm produced coordinates that are stafyije these two properties are exhibited by the Vivaldi
accurate, and adapt to changing network conditions. This PaRElrithm only in theory, it is nonetheless important that

describes these modifications and how to create a reIatB( methods for increasing its stability and accuracy do not

coordinate system under “real world” conditions. fundamentally alter these properties in practice.
In Section II, we explain what the Vivaldi algorithm is and \;ya1di models the network as a collection of springs

how to measure it, emphasizing the importance of coordingigy: hyil on each node’s coordinate. The original algorithm

) ) o . works as follows. Each node retains its coordinateand its
J. Ledlie and M. Seltzer are with the Division of Engineering fid in thi di Al di
and Applied Science, Harvard University, Cambridge, MA. E-maiconfidence in this coordinate; € (0,1). All coordinates are

{jonathan,margp@eecs.harvard.edu . the same low dimension, which is fixedpriori. Nodes adjust
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VIVALDI (1,5, Z;, w;)

order.
1w = zﬁly) Instead of using a pure metric space, Vivaldi can be modi-
2 e= w fied to include eheighth, which changes the distance between
3 a=cexuws nodesi, j to ||Z; — T, || + h; + h;. The purpose oheightis to
4 w;=(axe)+((1—a)xuw) capture the latency of the access link, while the coordinates
5 §=c. X ws themselves capture the long-haul links. Because our larger
6 T, =7+ x|z — 7| — lij) x w(T —T;) project [19] and the growing body of work using network
coordinates use pure metric spaceg(13], [1], [9]), we did
) ) ) ) ) ) not include aheight although the techniques we present would
Fig. 1. Vivaldi update algorithmu is the unit vector function.

allow for their use. We present results using three dimensions.

their cpordinates and confiQences through observations of t.hﬁ.irMeasuring Coordinate Systems

latencies to other nodes in the system. These observations

can be explicit pings or may be gleaned from existing traffic. In this context, accuracy is measured by comparing the
Through successive samples, each node refines its coordindifference between the expected and actual latencies for an
and increases its confidence. Like a network of springs, coobservation. The error of a link for a particular observation
dinates become more accurate and stable with each succedsjvis:
adjustment.

Each node updates its coordinate and confidence with each

new latency observation based on the pseudocode shQyghenging on context, the accuracy for the system is the

in Figure 1. An observation consists of the remote nodegm of these quantities for all nodes, the sum of the error
coordinatez;, its confidencew;, and a new measurement of,

’ v - squared (the mean squared error), or the median for each
the latency between the two nodesand j. First, a weight o4e - Accuracy can also be normalized by dividing iy
ws is assigned to this observation based on how confidgfis relative error is the same quantity asin Figure 1. We

nodesi andj are relative to one another (Line 1). In essencge relative error as the metric of accuracy because it facilitates
this allows more confident nodes to tug harder than Ieéﬁmparison of a wide range of latencies.

confident ones. Second, they find how far off the observatlor?'\lote thatl;; is a ime dependent quantity because inter-node

was fm”_"' what was ex_pected based on the coordm_ates; th'?a&%ncies are not fixed nor does the same link provide the same
the relatlve_ EITor qf this mea_surement (Line .2)' Th”d’ r]Oderesult with each observation. Instead of being a single quantity,
! updates Its conﬁde_nce;i with an exponentially-weighted L;; is actually a distribution that depends on the characteristics
moving average. Unlike most EWMAs, however, the or af the link. One can consider the distributidiy; the true
Iéttency The original evaluation assumed that links returned

. . . , _ fite same measurement each time; in other words, thatall
observation (Lines 3-4). If this causes natseconfidence to go were equal for a given link.

above one or below zero, it is forced to remain in bounds (not . . .
We measureper-node relative error instead ofer-link

shown). Lines 5-6 update the coordinate. Also based on th? ) o . .
. X o . . relative error. The distribution of per-node relative error is the
confidence of nodes and j, ¢ is the pull of this observation

ollection of errors for each node for all of its observations.

on the coordinate. In line 6 dampens the magnitude anOﬁ/leasurin er-link error would assume that a static, scalar
direction of the change applied to the coordinate. Constants 9P . . ) '
latency matrix exists against which we could compare coor-

andc, affect the maximum change an observation can have 8n ; . .
- . . Inates after a number of iterations. Because our underlying
confidence and coordinates, respectively. They have the sam? ; . . . ) .
) X ._nhetwork is changing, this matrix, and hence this metric, cannot
effect as the tuning parameter in a standard exponentialy-
. : . e computed.
weighted moving average (EWMA): a low value @05, for Stabl i icularly i h
example, limits the weight given to any new observation and >tap'e coor _mat\efs z?(ri_e pa(;tlcu ary(;r_nportar;]t when an ap-
a high value 0f.25, for example, causes faster adjustments RJ'C?“O”, IS using Viva tl)lan ad_coor Inate change ,t”g?ﬁrﬁ
new observations. Larger values formay weigh outliers too 2PPlication activity. A stable coordinate system is one in whic

heavily. We found any setting @f andc. in this range to have coordinates are not changing over time, assuming that the
minimal impact on large scale behavior. We usgd:. = 0.25, network itself is unchanging. Thus, links may produce some
] Ivaﬂiistribution of observations, but as long as this distribution

which are the same values used in the original authors’ Vi , o :
does not change, neither should stabilized coordinates. We use

simulator [7]. h te of dinate ch
Bootstrapping the algorithm is simple. Coordinates arg® rate of coordinate change

initially set to the origin. Each node stores a listra&fighbors S AT

i.e., nodes that it samples. It is assumed that a node knows ==7

at least one other node when it enters the system. In our

implementation, nodes learn new neighbors by attaching ttee quantify stability. Our metric space, the numerator, is in
address of one other node to each sampling message, milliseconds and we measure change in this space in seconds;
through gossip, and sample their neighbors in round-robiinus, stability is inms/sec unless otherwise noted.

e=| 1z -zl i |

t
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Fig. 2. Frequency histogram of raw latency measurements between 269

PlanetLab nodes.
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IIl. LATENCY MEASUREMENTS

When we first implemented Vivaldi, we found that lone
samples, often orders-of-magnitude greater than expected%
would periodically distort the entire coordinate system. These ©
instabilities resulted when raw latency data was fed into the
algorithm. Time (hours)

An examination of a set of raw latency data shows rare )
but persistent samples orders-of-magnitude larger than (il %, Meloaram and scaiepit of e eency messurements o one
common case. We collected a set of latency data from 2§& orders-of-magnitude. Long latency pings continue to occur throughout
PlanetLab [17] nodes over three days starting May 2, 2008g trace.
totaling 43 million samples. PlanetLab is a collection of
approximately 500 machines spread around the world, located
primarily at universities and research labs. To gather thesteadier input, our goal is for each link to experience lower
trace, each node measured the latency to another node wélfative error and greater stability by exhibiting less coordinate
an application-level UDP ping once per second. We use#lange over time.
application-level pings because we intend to eventually use
measurements of existing traffic as input, rather than extra
explicit pings.

We summarize the total distribution of measurements inBased on our analysis of link latencies, a percentile of
Figure 2. The data show théat4% of the measurements aresome window of previous observations appeared to be a good
greater than one second, which is longer than the commpiredictor of future values. Statistically, this is known as a
case even for inter-continental links. Instead of a steadifyoving Percentile (MP) filter, a variant on the Moving Median
stream of measurements, the fact that many measuremditier, and has been used to filter out heavy-tailed error in
are above the largest expected latency suggests that maiher disciplines€.g.[8], [14]). It is a non-linear filter, which
links may be experiencing serious delays that Vivaldi mustmoves non-Gaussian noise and lets through low frequencies.
automatically incorporate. The broad range of measuremeMp filters exhibit edge preservation and are robust against
severely curtails accuracy and stability. noise impulses. A MP filter has two parameters: (1) the size

We examined individual links to confirm that they tooh of the history window and (2) the percentitereturned as
exhibited similar behavior. Not only did the entire distributiothe prediction for the next observation.
have a long tail, with most links below several hundred mil- To examine the predictive effectiveness of the MP filter with
liseconds, but individual links had as well. Figure 3 illustratedifferent parameters, we examined how the filter performed on
one representative link. It shows that a significant number e&ch link from the PlanetLab trace. Each link consists of a se-
observations extend beyond the median (Figure 3, top) and ttias of observations; the relative error is the difference between
these infrequent order-of-magnitude delays are spread otle filter's prediction and the next observation, divided by the
time (Figure 3, bottom). next observation.

Because of the long tail, the mean of the raw values wouldWe ran an experiment in which we varied the size of the
not be a good predictor for future observations. Instead, théndow and the percentile used to surmise the next value.
expected latency appeared to be predictable by taking a lbising the three day trace, we applied different filters to predict
percentile of some portion of the previous observations. Thighat the next observation would be and calculated the relative
expected latency is a better measure of what Vivaldi should useor between each prediction and the true observation. We
as its approximation of the link latency, not the raw valueglot the relative error for all of the links in the system as we
Instead of feeding raw observations into Vivaldi, we wouldary the history sizeh and keepp = 25 in Figure 4. The
filter the input data to remove the heavy tail. By giving Vivaldresults show that a history of only four observations achieves

ng Latency (milliseconds)

IV. FILTERING WITH HISTORIES
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Fig. 4. Short histories of previous observations are sufficient to reduce the i
error in predicting the next latency observation. The boxplots show the relative B
error of all of the links in the system. They show that filters based on the 8
most recent four observations predict with the least error. 7
1 1 .
the best performance (lowest error) with the fewest outliers. . 10 15 20
Using p = 25, the minimum with a history of four, resulted 95" Percentile Relative Error
in slightly lower error tharp = 50 for the MP filter. Lo R
Although long histories do not perform substantially worse, 08 .
intuitively it makes sense that longer histories do not perform | |
. . [ N
better: they are slow to adjust to any changes in network g
04 - :

conditions. That short histories perform well is good for three
reasons: (1) they can be acquired through fewer rounds of 02
observations, (2) they require less state, and (3) they will be oo} , ,
quickest to adjust to any latency shifts. 0 10 20 N 2 50
95" Percentile Coordinate Chande Per Node (milliseconds)

A. Vivaldi with the MP Filter 10 '

In order to compare Vivaldi with and without the MP filter, 08 -
we built a simulator that accepted our raw ping trace as input  os}

[a)

and mimicked the distributed behavior of Vivaldi. Through a ©

comparison of running Vivaldi on a real network and in our o

simulator, we found the simulator provided a high degree of ~ °*[ i

verisimilitude. 00 . . :
Using the simple MP filter substantially improves both 10! 10 10° 10°

the accuracy and stability metrics. With the parameters that

showed the best ability to predict subsequent samples — 10 £ o1 ﬁOmﬁg:;ﬁ%'

taking the 25" percentile (minimum) of the previous four gl"s b RE

observations — we compared Vivaldi with and without MP g1 - [ bt

filtering. We ran Vivaldi on a four hour section of the trace and §103 - KE R

show cumulative distributions for the second half of the run, g1* |- ¢k £

eliminating start-up effects (we examine the rate of start-up * 1t | sfes

in Section V). We measured per-node accuracy and system- i° é ; =

wide stability and summarize the results in Figure 5. The % "R, %

data show that the MP filter at least doubles accuracy and
stability for most nodes. Its primary benefit, however, is that Raw Latency (milliseconds)
it eliminates the periodic distortion of the entire coordinate S ] )

5. Cumulative distributions of relative error (accuracy) and coordinate

Space _that occurs with n(_) fllte_rlng. T_hls is shown through tr{‘%\ga.nge (stability). The top two graphs show the median @ité percentile
reduction of the long tail of instability by three orders-ofrelative error for each node, respectively; thus, some nodes commonly

magnitude. In the application we developed, these distortiofierience several times more error than others. The third graph portrays

. that using the MP filter cuts instability per node in half for most nodes.
would cause a cascade of other updates to occur and usmgﬂﬁeefourth graph shows a CDF of aggregate coordinate change per second

MP filter ameliorated this problem substantially. (stability). With the MP filter, each node moves by a little more than one

millisecond per second. Without the filter, spurious observations throw off all

. . nodes’ coordinates, resulting in a long tail. The filter improves global stability

B. Other F”te“ng Methods in the worst case by three orders of magnitude. The bottom graph shows how
Before turnlng to the non-linear MP fllter’ we ConSIdereH]e MP filter Only trims the problematic observations off of the end of the

latency measurements, leaving the remainder of the distribution intact. The
two methods that are commonly used to smooth out me}ﬁs’togram is of the four hour subsection of the trace.
surement error, thresholds and exponential averaging. We also
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TABLE |
EXPONENTIALLY-WEIGHTED HISTORIES

Filter Median Relative | Instability
Error

MP Filter | 0.07 (—42%) 115 (—47%)
No Filter | 0.12 (0%) 783 (0%)
a =002 | 027 (+125%) | 490 (—37%)
(
(

Confidence

o =0.10 | 2.48 (+1960%) | 1907 (+143%)
o =020 | 5.70 (+4650%) | 3783 (+383%)

Confidence Building
N(I) Confidence Bl{”di ng

¥

I 1 1

0 2 4 6 8 10
Time (minutes)

0.0

examined a confidence building method specific to Vivaldi _ .

. . . ig. 6. By allowing for measurement error on low-latency links, nodes
which would appear to increase coordinate convergence raé%he same cluster can gain confidence in their coordinates. However, in a
Contrary to our initial expectations, these methods had negde-area network, suppressing spurious, high latency observations has much
ligible impact on accuracy or stability, and made conditiorfgeater impact than precise measurement of low latency ones.
worse in some circumstances.

Thresholds. Prior to examining the latency distribution,
we first considered using fixed threshold to discard extrengols. When we first ran Vivaldi on our local cluster without
values. Dropping all values above a threshold is a simpige MP filter, we saw a fairly Normal spectrum of latency
method, with the added benefit that it requires no state. Givebservations betweefid and 1.2ms, and then a tail ob6%
the distribution of the entire trace (shown in Figure 2), thisf the observations above2ms. Because the measurements
method also removes the most extreme outliers, smoothing tised UDP and because the machines had no other load, we
process slightly. However, each link tended to show its own sgitributed the spread to context switches and background pro-
of outliers: most links exhibited heavy tails, but the centeringesses running on the machines. In essence, these observations
and length of the tail was different. For example, a cut-offere below our software’s ability to detect them accurately.
that might work for the general distribution would do nothing \When run on a cluster with low latency, this jitter has
for outliers in the link shown in Figure 3, where the commoa@n adverse effect on the Vivaldi algorithm. It results in high
case is less tham0Oms. Early in our exploration, we tried relative error (Figure 1, line 2) which in turn adversely affects
several thresholds before moving to more complex techniquéisé update in confidence (line 4). For example, if two nodes
we found only minimal stability and accuracy improvemengurrently have confidence.5, and the sampler believes its
when used in isolation. neighbor islms away in the coordinate space, a single sample

EWMA. A commonly used filter to smooth jittery dataof 3ms will reduce confidence by almosts.
is the exponentially-weighted moving average. It captures aTo solve this problem, we introduced a margin of error that
distribution’s general trend by including all previous obsefwas allowed for each sample, a method we calhfidence
vations and giving them an exponentially-declining weighiuilding. If the expected and actual measurement were within
Vi1 = ax s+ (1—a) x v, wherew, is the current value of the this margin of error, we considered them equal. Because we
filter and v, is the value after including observatian The found our measurement error rarely exceeded three millisec-
filter's behavior is controlled by one parametér< o < 1, onds (.05%), we set the threshold to this value. This simple
which determines how much weight is given to the curremiechanism dramatically increased confidence in a low-latency
observation. environment.

We added a per-link EWMA to our simulator with the To examine the effects otonfidence buildingwe ran
goal that it would capture changes in network conditions arth experiment with three nodes on our local cluster. They
dampen the outliers we had seen. We used conventional valoesmputed their coordinates by choosing one node to sample
for o of 0.10 and 0.20 and measured the same four houevery second, and we examined how Vivaldi performed with
section of the trace as in previous experiments. Table | showsd without allowing for measurement error. Figure 6 shows
the median value of the distribution of median relative errdrow confidence buildingaffects one node’s confidence over
and stability when nodes use an EWMA filter with differinga ten minute interval. Usingonfidence buildingthe node
values ofa, as compared to using no filter and using thenaintains100% confidence after start-up. Without it, confi-
MP filter. The data show that even when an unconventionaence wavers arourith%. There appear to be two lines with
low value for o is used,0.02, smoothing with an EWMA No Confidence Buildingbecause the the node’s confidence
still results in lower accuracy than using no filter at all. Thehanges slightly with each measurement to its two neighbors.
outliers are not signifying a trend an EWMA should captureZonfidence followed the same pattern whether or not the MP
but instead should simply be discarded. filter was used in this environment; thus, the filter does not

Confidence Building. The third potential improvement to alleviate the confidence problem on a low latency network.
Vivaldi is particular to the algorithm itself. Links with very We conjectured that when several nodes participating in a
low latency can prevent nodes from becoming confident large-scale network were co-located in the same subnet, they
their coordinates. This occurs when the true latency betweenuld reinforce each other’'s coordinates, essentially creating
two nodes is beneath the precision of our latency measuriagconfident reference point for other nodes. Surprisingly,
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from four distinct regions. Their coordinates move in a con-

300 sistent direction over a three hour period, neither rotating nor

200 remaining within one area. Instead, this example portrays that
100 ¢, should be updated over time to sustain accuracy.

_108 The fact thate, must be updated suggests a trade-off
-200 between the drawback of changing, which induces (perhaps

unnecessary) application-level work a@g's accuracy. Our
goal is to shift the line in Figure 5 (bottom) to the left,
increasing stability, without moving the line in Figure 5 (top)
to the right, increasing error.

We examined four heuristics that each attempt to update

Fig. 7. Coordinates do not necessarily shift in the same direction over ti ; ; . ; At ;
nor do they rotate about the origin. We show how four node'’s coordinartng%%} at appropriate times: dampenlng appllcat|on updates while

change over a three hour period. US West, US East, and China have shif@tgining the MP filter’'s low relative error. Two are based on
nearer to one another and the node in Europe has a higher latency to all tr@mple thresholds and two on sliding windows of previ@ys

coordinates. Before explaining the heuristics, we explain how
we transform streams of system-level coordinate updates into
confidence buildingnly had a small impact on the externally-tWO sets that can be tested for significant coordinate change.
visible metrics of accuracy and stability when run on a higher
latency network. When using an MP filter, it further improve
median relative error bg.8% and stability by only2.3%.
These results suggest thabnfidence buildingmight be In the context of streams of samples entering a database,
a useful technique if Vivaldi were run on a small clusteBen-David, Gehrke, and Kifer propose an algorithm to detect
However, network coordinates are primarily useful for largavhen the stream has undergone a significant change [11]; their
scale networks, renderirmpnfidence buildingnd other efforts algorithm is similar to one proposed by Kleinberg for detecting
to improve the precision of small measurements, includingord bursts in text streams [12]. The kernel of their idea is
kernel timestamping, less important than eliminating larde divide a single data strea = {so, s1,...,s,} into two
spurious observations. sets,W, = {so,...,sx} and W, = {s,,_¢,...,sn}, that can
be compared for statistically significant change using one of
a handful of standard techniquesd., rank-sum).
] ) _Initially, both W, and W, (start and current, respectively)
Our use of the MP filter greatly improved the stability, o empty. As each elemest arrives, it is added t6V, and
and accuracy of a set of network coordinates. As Figureh ntjl they are both of sizé. When this size is reached,
showed, use of the filter clipped the heavy tail of instability,y more elements are added 1, and 1V, slides to adds;
However, the system’s coordinates are still changing at abg{y drops;_1_1. With each new element, the sets are tested
500ms/sec. For an application using network coordinates, igy gifference. When the two sets are declared to be different,
all this movement necessary? Instead of being notified ab%“&hange pointis said to have occurred. At this point, both
slight changes in coordinates with every observation, m%FndowsWS andW, are cleared and the process begins again.
applications would prefer to be notified on_ly wheaignificant By creating two distributions out of the single stream, they
change occurs. By designing the coordinate subsystem asygqyce sets that can be compared for difference using well-
black box that only signals when there is significant changg,own statistical tests. The well-known tests Ben-Dasticl.
we can limit application updates that, in turn, limit unnecessagysmine in their work, however, are all for one-dimensional

application-level work. For the application we developed, @ata. The two tests we employed for multi-dimensional data
coordinate change could initiate a cascade of events, culia neuristiceEnercy and RELATIVE below.

nating in one or more heavyweight process migrations. If the
systems’ coordinates have not changed significantly, there is
no reason to begin this process. Of course, some applicati@sApplication Update Heuristics
would prefer a constant update: the subsystem should outpu
both a system-level coordinaté;, and an application-level
one, ¢,. Those in the former category would ugg and the
latter ;.

Before considering how and when to updag we must acy:
T e ane o BT 110 change 15 fom one cbsenaton o the e

. . g€ . » ME[EW eater than a threshotd updatec,. Thus, if

rotating about an axis, oscillating, or otherwise remaining
stationary? The answer is no: coordinates do change, reflecting s — Gzl > 7,
changes in the underlying network even over relatively short
time-scales. We illustrate this change in Figure 7 by showingt c; = ¢;. This heuristic is simple but suffers from a
how four nodes’ coordinates vary over time. The nodes apathological case: many changes just under the threshold

-150

%\. Detecting Change with Windows

V. UPDATING APPLICATION-LEVEL COORDINATES

Now that we have explained how the two sliding window

algorithms turn the streams of coordinates into two sets, we
present four heuristics that each attempt to increase stability
in application-level coordinates without decreasing their accu-
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might occur, which would lead to high error. Note that relative
error in this context is i
_ leal — el = by | or &
‘o lii 2 | -
APpPLICATION . If the application’s idea of the coordinate has =~ | %
strayed too far from the system’s, notify the application. More =
precisely, if or Instability —+—
”a; _ C_S)H S - 0 Re!latlveErrlor ~7><|~ ) ) ) ) oo
1 2 4 8 16 32 64 128 256
let ¢; = ¢;. This heuristic is a simple way of expressing that I Elnergy' Thrmlld 010
an update should occur if a drift in one direction occurs; it 50 [ X .
permits oscillations beneath i) V. VIS 10%
RELATIVE . This is the first of our two window-based heuris- i
tics. Here we measure the local relative distance as compared 3o - 10 ¢
with our nearest known neighberand update the application 2 o g
if the change is larger than an errer. RELATIVE averages or i 3
each of its sets of coordinates by taking their cent@i@/’). 10 4 002
It computes, if
0 o|.1 ol.z 0|.3 o|.4 o|.5 ol.e o|.7 ol.s 0|.9 000
IC(Ws) — C(We)|| Relatve: Threshald

[MUAEE . | ) N | |

Fig. 8. Instability and Median Relative Error for varying threshold with
let & = C(W.). This heuristic exhibits three good prop-RELATIVE and ENERGY.
erties: updates are relative to the node’s locale, computing
the centroid is inexpensive, ar@{W,) can be cached. The
approximate nearest neighbor is learned through a comparisom As expected, increasing the threshold required for appli-
with each latency sample, where the node leafhs cation update increases stability but also decreases ac-
ENERGY. The last heuristic uses a statistical test that specif- curacy. The window-based heuristics succeed in substan-
ically measures the Euclidean distance between two multi- tially increasing stability before any significant decline in

dimensional distributions [26]. It is based on theergydis- accuracy begins.
tancee(A, B) between two finite setd = {a7,...,a,,},B = « Large windows,e.g., between32 and 512 samples, im-
{le,...JZQ}: prove both stability and accuracy. Very large windows,
however, cause too few updates to occur, decreasing
accuracy.
(A B) = T2 2 ii”a)_m‘ « The heuristics that do not use windows can increase
’ ny +ng \ nyng £ 4 vt stability only at the immediate expense of accuracy and
==t are not robust to minor parameter changes.
l e, l S & — —
2 ;; e — a3l - n2 ;; I1i — b D. Window-based Heuristics

Because the window-based heuristi®sLATIVE and EN-
Using this statistic, we can determine the divergence of thecy, are more complex, with their two parameters of window
two windows. If size and threshold, we examined their behavior first. We
e(Ws, W) > T, conjectured that, as the threshold for update increased, fewer
updates ofc, would occur, leading to greater stability and
let ¢; = C(W.). While computing this heuristic is moreperhaps reduced accuracy.
computationally intensive thamReLaTive, the difference is  To examine how the thresholdsande, affect ENErGY and
negligible for the small windows we used. RELATIVE, respectively, we ran an experiment where we varied
the value of the threshold and kept window size constant. We
recorded accuracy and stability and Figure 8 shows the median
for both the distribution of median relative error per node and
To examine how these four heuristics affected stability aruf instability. The results summarize the last two hours of the
accuracy from an application’s viewpoint, we implementefbur hour trace, as in previous experiments.
them in our simulator and used the same trace of nodeThe data establish th&eLATivE exhibits a near-linear in-
latencies. In particular, we wanted to see how the windogrease in stability with increasing threshold. ThusRasative
size and threshold parameters affected these metrics. requires more and more movement relative to the distance to
The following summarizes the results of our comparison dtie nearest neighbor, updates steadily decline. The increase in
application-update heuristics: ENERGY's stability is curved but has no knee: it too exhibits

C. Summary of Application-Update Results
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a measured decline in coordinate change as the threshold te 0.10
update increases. Both heuristics fall in the same range ofg 006
relative error, withENerGy exhibiting a more gradual decline 3z .,
as thresholds increase. However, the decline in accuracy for% 002
both heuristics does not expend a substantial increase in= oo
stability, especially forRELATIVE, where instability is cut in

half without any noticeable reduction in accuracy. Accuracy 10

elat

begins to decline foENERGY after 7 = 8 and for RELATIVE > ol ]
aftere, = 0.3. These are the most conservative parametersy ]
that still grant an increase in stability, wiV for RELATIVE 2 ol g
and 34% for ENErcY. We kept window size at 32 for this 2L ]

experiment.
Our second experiment with the window-based heuristics _ 4,

like the per-link MP filter, using a large window is acceptable gc 5%
because windows are appended to with every observation,§z 3%
regardless of the link. However, similar to using a large filter, & 1% N
a trade-off exists in which very large windows are slow to 2 2 2 P P o P P 0 g
react to true changes in underlying network conditions. Window Size

We ran an experiment in which we kept the threShOIQg.Q. Median Relative Error, Instability and Application Updates per Second
for application-update constant while we varied window sizgith varying window size folRELATIVE and ENERGY.
exponentially. We monitored accuracy and stability as before,
and also observed how frequently application updates occurred

over time. This last number — that is, the number of UM&Rindowless heuristics could only directly trade off accuracy

Ca IS changgd per unit tlr_ne IS |n.tere_st|ng because evedt stability and had a limited “sweet spot,” one which might
though stability might be increased, it might not necessari ange with a different trace

correlate with a decline in application notifications. Instea 'We show the same metrics, median relative error, and

stability could be increasing through smaller_updgtes th_at_OC(ngtability, as we vary threshold in Figure 10. At low thresh-
at the same frequency. Because a cost exists in notifying Ms. whenz is updated after only a small movement from

appllcatlon W'th. a coordinate change, we wanted to ensyg previous valueSysTEM'S and APPLICATION'S performance
that both instability and update frequency were decreasmg.r ain similar to the raw MP filter. With a large threshold,

Figure 9, we show the same metrics as the previous experimJCe.mS rarely updated, leading to high error. Onlyzat- 16 do

together with the percent of th#9 nodes that changed theirtﬁe two heuristics p;arform in the same range as the window-
values forcg each second. The data show that not only do Iar%%sed ones. Because tipping in either direction results in
windows ¢ 2° —2°) modestly improve accuracy, but also the oor performance on one of the metrics, we conclude the

result in a steady increase in stability and decline in upd Qded complexity and state of using one of the window-based
frequency. Across a wide range of window sizes, updates ristics is worthwhile

both less frequent and cause less movement in aggregate,
achieving two of the goals of the application-update heuristics. _ _
At a window size of128 for example,ReLaTive’s median F. Comparison to the Raw MP Filter

relative error is7%, its instability 5ms/sec, while causing  Our primary goal in introducing the application-level heuris-
only 1% of the nodes to be updated per second. This48% tics was to further improve stability while maintaining ac-
increase in accuracy and a two orders-of-magnitude improv@racy. In Figure 11, we show how the two window-based
ment in stability compared to the original algorithm. Becausgeuristics achieve that goal. Using the parameters established
all large window sizes afforded a substantial improvement ghove, accuracy remains unchanged wRiteATivE and EN-

the metrics, we chose the smallest of thes®, to make a grgy shift the entire distribution of coordinate updates into a
conservative comparison with the window-less heuristics aRgbre stable regime.

to use in our PlanetLab implementation. We used the threshold
values gathered from the previous experiment.

B
X
TT T 1T 117

G. Discussion

Application-level accuracy and stability depend on both
knowing when to update; and what to set it to. A substantial

The window-based heuristics have the disadvantage tlsamponent of the success of the two window-based heuristics
they are slightly more complex than the windowless oneis, their settinge, = C(W.). One could argue that a simple
SvsTem and AppLicaTion, and that they require more statethreshold scheme might achieve similar performance if it
Using the parameters we established for window size frofmo used the centroid of a collection of recent system-level
the previous experiment, we compared all four heuristics as weordinates. However, while it is true that &ELaTive and
varied the update threshold. Unligaercy andRELATIVE the ENERGY do is setc, to the centroid of recent values far,

E. Windowless Heuristics
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Fig. 10. Effect of varying threshold for all four heuristics. The window-basefig. 11. Comparison of application-level suppression to Raw MP Filtering.
heuristics maintain high accuracy and stability. The simple threshold-basgdth window-based heuristicRELATIVE andENERGY succeed in keeping
ones can only trade-off accuracy for stability and are much more sensitiverédative error low while greatly increasing coordinate stability.

changes in the threshold parameter.

% 1.00
s b *3
achieving the properate for these updates — knowing when o S
to change — is a property simple thresholds have difficultly [ P R
performing. 2 ol [ Joso 2
To test this claim, we modifiedppLicaTiON to seté, to be E e
the centroid of a window of the pa8® coordinates (the same =~ 2 70 %
size thatENERGY andRELATIVE use above). In our experiment, ol A Jow =
we varied the threshold at which updates were made and again
monitored accuracy and stability. As the data in Figure 12 0 e 00

portray, this combinedprpLICATION/CENTROID iS more stable ' Application/Centroid: Threshold
than AppLicaTioN and SysTem but, like the two window-less
heuristics, it is not robust against slight changes in parametg\%P
and has high stability only at the expense of good accuracy.

12. Instability and Median Relative Error with varying threshold for
LICATION/CENTROID.

VI. PLANETLAB EXPERIMENT and ¢, with each sample, we could monitor the effects of the

In order both to verify our simulator and to confirm that oufilter and the update heuristic separately. We ran this pair of
findings were not limited to our latency trace, we implementezbordinate systems for four hours on 270 PlanetLab nodes on
a version of Vivaldi that could be run on a real network. Thi§une 24, 2005.
version uses application-level UDP pings as input, the sameThe results of the real-world experiment confirm those of
as our trace. Each node started with a small neighbor set and simulations. We show the relative error and stability for
gossiped one address with every sample. Nodes sampled fitin second half of the experiment in Figure 13. The data
their neighbor set in round-robin order at five second intervakhow that the MP filter reduces error and instability and the
We added the MP filter and thEnercY application-level application-update heuristic further increases stability. We also
update heuristic to our implementation. We used a window ekamined how the MP filter and update heuristic affected these
32 andT = 8 as suggested by the parameter space exploratimetrics over time, shown in Figure 14. The data show that
in simulation. after a half hour convergence period, using the MP filter and

In order to ensure a valid comparison between runnirgEnercy result in a much smoother and more accurate metric
Vivaldi with our enhancements and without, we ran therspace on a real wide-area network. The data confirm that both
on the same set of PlanetLab nodes at the same time, ustnjancements have distinct effects on the two metrics and
different ports. One set of nodes used the MP filter and otteat both are required for a stable and accurate space from an
did not; both usedNERGY. Because each node outputted application perspective.
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Fig. 13. Cumulative distribution of relative error and instability of VivaldiFig. 14. Relative error and instability vary with time on PlanetLab. The data
running on PlanetLab. The data show that with the MP filter ddl} of the  points are the median error and mean instability for ten minute intervals.
nodes experienced%st” percentile relative error greater than one, wisi%

of those without the filter didENERGY dampened the filter's updatest %

of the time it fell below even the minimum instability of the raw filter. The

enhancements combine to reduce the median ob#i& percentile relative .
error by54% and of instability by96%. landmarksplaced themselves in a vector space through all-

pairs ping measurements; second, each joining node measured
its distance to all of the landmarks and picked a coordinate
N . . . that minimized the error to all of them. This approach does
After a close examination of any coordinate disruptions . .
) . X nqt allow for a smooth evolution of the space over time, nor
during the PlanetLab experiment, we discovered a source. Of. . o . .
) : is it decentralized. However, it did establish that, even with
much of the worst error. Most real-time low pass filters ad(ﬁ] . ) . : o :
the error induced by triangle inequality violations, a high-
uality space was possible. Lighthouses [18] Mithos [27],

delay in order to incorporate future values. Our MP filter
nd NPS [16] extended the landmark approach by using

outputted a value for every input, regardless of the histor
i th i i
length: it produced the'" percentile of the current state 'tmultiple local coordinate systems, by building the space

was storing. Thus a pathological case occurs when an extretrrr11reough preferring to measure nearby neighbors, and through

lier is the fir rvation for rticular link: even with " . . .
outlier is the first observation for a particula eve ta hierarchical architecture, respectively. More recently, Costa

the filter, this observation is what is used. In fact, this was th al. developed PIC, another landmark scheme, which runs a

X ; . e
case for the five largest node displacements in the PIanetLg’llb plex solver on each node to minimize error [3]. PIC read-
s coordinates through periodically re-running this solver

experiment and the echoes of these disruptions often continugg
for minutes. To compensate for this, Vivaldi could wait until : : :

process and includes a test to defend its coordinate system
against malicious participants. Cat al. initially proposed

a sufficient number of samples are in the filter.
he decentralized Vivaldi algorithm we discuss here [4] and

In simulation, we experimented with waiting until the
second sample on a link to return an observation. This gre beket al. later improved its accuracy in two-dimensions
wﬁh height which was intended to explicitly capture the

reduced early instability, but, because our set of nodes wa
rCL?:r?itr?m’s h;gr:nxhgglti%d?spacériif(;(iecraﬁtargr?tzr lgng Ilc;gqc::ltency to a high speed link [5]. Shavitt and Tankel's Big-Bang
g sy P y Simulations is an embedding technique similar to Vivaldi,

adding a delay to the filter would increase its robustneSﬁ : . 2
. . although it models a potential force field instead of a mass-
against these pathological cases at only a small cost.

spring system [25]. Kleinberg has developed a theoretical
grounding for network embeddings, analyzing how to embed
_ _ coordinates with arbitrarily low errors [13].
A. Synthetic Network Coordinates Network embeddings were developed partially in response
Since Ng and Zhang provided the first in-depth examinatida the growing interest in topologically-efficient overlay rout-
of how to embed inter-node latencies in a metric space [15}g. CAN’s multi-dimensional space [21], in particular, has
a series of different approaches have emerged. In their inithabtivated work on network-aware overlays and on using a
work, called Global Network Positioning, a coordinate spacede’s network coordinates as its logical CAN coordinate [22],
was built in two stages: first, a collection of well-known31], [29]. In recent theoretical work, Abraham and Malkhi

VII. RELATED WORK
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have examined routing strategies made possible through tieusing more precise measurement tools is small relative to
existence of network embeddings [1]. As network embeddingfiminating signal extrema with a low pass filter.
have become better understood, work has surpassed using/e introduced the distinction between system- and
them merely to route; current work explores how they can lagplication-level coordinates and examined the effect of
used for operator placement in distributed streaming databak®g heuristics that determine how and when to update the
and for solving the distributed approximatenearest neigh- application-level coordinate. The two heuristi&|ercy and
bors problem [19]. RELATIVE, that used a change-detection algorithm based on
In contrast, other work has tried to solve the same set sifding windows best determined when to make the update.
problems, including thé-nearest neighbor problem, withoutAdditionally, using the centroid of a collection of recent
establishing a coordinate space, arguing that their maintenanoerdinates set the application-level coordinate to a highly
is a burden and that these coordinate spaces exhibit highecurate value. We confirmed the results from our simulations
error than a customized mechanism. In essence, this clasth an implementation on PlanetLab.
of work solves the neighbor and routing probleraactively Recalling Vivaldi’'s two useful properties, scalability and
through a spike in activity in response to an application-drivezontinuous refinement, our set of techniques do not funda-
demand, while a long-running coordinate space solves thenentally alter them in practice. The MP filter is short enough
pro-actively. Meridian, for example, finds the nearest overlag permit on-going adjustments and does not affect scalability.
node (.e., one running Meridian) to an arbitrary point in theThe application-level update heuristics, too, allow the algo-
Internet through a large set of pings in direct response ttithm to function as before, only with increased stability for

an application-level request [28]. In the same vein, Shanahapplications.

and Freedman examine the efficacy of network embeddings
for finding nearby servers for unmodified clients [24]. The
choice between solving these problems reactively or pro-
actively appears to be an application-specific decision.

B. Stabilizing Vivaldi

We used Szekely and Rizzo'snergy statistics as one
heuristic to find the distance between the start and curreRt
coordinate windows [26]. Rubinfeld and Servedio provide an
alternate algorithm for determining thedistance in Euclidean [2]
space for two distributions [23]. However, their tests arg,
more focused on high dimensions and reducing the number
of samples required for comparison. In recent work, Zech
and Aslan independently proposed a test statistic, also callél
energy which differs from the statistic we used in its inclusion
of a problem-dependent scaling function embedded within thi8l
statistic [30]. (6]

In another effort to stabilize Vivaldi, de Launoist al.
modify the algorithm to prevent oscillations in the pres-
ence of triangle inequalities [6]. They introduce a factor”
that asymptotically dampens the weight given to each neyg
measurement, regardless of its source. While this factor does
mitigate oscillations, it prevents the algorithm from adapting to
changing network conditions as the pull of new measuremenis
approaches zero.

(10]

VIIl. CONCLUSION [11]

In a real-world deployment, no fixed, single-valued latency
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