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Abstract

Using shortest paths, the Internet scales very poorly with
respect to congestion [2]. Two main reasons for using
shortest paths are dilation (or delay) and size of routing
tables. As the Internet grows, the small size of routing ta-
bles is important for scaling, but it does not require shortest
paths. As long as the paths are confluent, the routing table
size is unchanged.

In this paper we study the confluent capacity of the Inter-
net. We use the preferential attachment model [5] for the In-
ternet, and all-pair uniform demand for the traffic pattern.
Our main theoretical result is that the confluent congestion1

is within a logarithmic factor of the optimal splittable con-
gestion and can be achieved using a simple randomized and
distributed scheme called Locally Independent Rounding
Algorithm (LIRA). We reinforce this result experimentally
by employing simulations to demonstrate that for almost all
instances the confluent congestion is (nearly) equal to the
splittable congestion. Thus we conclude that the Internet
scales well using confluent paths.

We combine known results on expanders and the ex-
pansion properties of the preferential attachment model to
show that for almost all Internet-like networks, we can
find a confluent flow that simultaneously achieves O(log n)-
approximate congestion and O(1)-approximate dilation.
We confirm, using simulations, the intuition that confluence
does not come at the cost of dilation.

1. Introduction
The Internet has been growing fast in the past decade

and it will keep growing in the future. One question is how
the Internet capacity scales, if the links capacities are lin-
early growing with the Internet size. The Internet capacity
is the fraction of routing demands that can be satisfied. If
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1We use congestion and capacity interchangeably, as they are recipro-
cals of each other. More details can be found in Section 3.

the Internet capacity is decreasing even with the link capac-
ities growing in step with the Internet size, then the growth
of the Internet cannot sustain at its current rate. The prop-
agation delay, which is associated with the dilation of the
routing paths, is also important for the Internet to grow.

A lot of experimental work has been done to understand
the structure and growth of the Internet. A more rigor-
ous analysis, however, requires a formal evolving model of
the Internet. One of the widely accepted model is based
on preferential attachment [5], which produces networks
with power-law degree distributions. Recently, the Internet
capacity scaling problem based on the preferential attach-
ment model has been the focus of some research [2], where
n1+Ω(1) congestion is shown for shortest path routing, sug-
gesting poor scaling of the capacity of the Internet. Natural
questions are why do we want to use shortest paths and can
we do better than shortest path routing.

It turns out that there are two major reasons for using
shortest path routing. In terms of dilation, it is the optimal
routing scheme. Secondly, it guarantees small routing ta-
bles, since each router only needs to maintain a routing table
which has one entry for each destination (or a block of des-
tinations). Upon receiving a packet, the router will look up
the routing table and determine its next hop by its destina-
tion. Linear routing table size ensures fast table look-up and
packet dispatching. It is shown in [22] that we can achieve
O(n log n) congestion if we allow arbitrary routes. But the
routing table size will become arbitrarily large. The prop-
erty of linear routing table size, however, does not constrain
us exclusively to shortest path routing. In fact, any routing
scheme based on confluent flows will lead to small routing
tables.

A network flow of a given commodity is said to be con-
fluent if all the flow of this commodity arriving at a node
departs from the node along a single edge. If we view pack-
ets towards the same destination as one commodity, then
small routing table size is a natural result of any confluent
routing scheme.

In this work, we are interested in confluent alternatives
to shortest paths. We will show that the poor scaling of
the Internet property is not a necessary result of confluent
routing. We can keep linear size routing tables, and achieve
O(n log n) congestion using a simple routing scheme. This
certainly comes with a cost in dilation. But we will show



that we do not incur a large increase in the dilation.
Our contributions. We study the scaling of the capacity of
the Internet as it grows in size. Our main results are:
• O(n log n) congestion. We propose a distributed

scheme LIRA that can confluently route all-pair uni-
form demands with congestion O(n log n) for the pref-
erential attachment model. Observe that the best
achievable congestion, even if we allow non-confluent
routing, is O(n log n) [22].

• Simulations. We support our theoretical analysis with
detailed simulations. Through comparison with the
work in [2], we show that our algorithm performs
much better than the shortest path routing in terms of
congestion, with only a slightly increase in dilation.

• O(n log n) congestion and O(1) dilation simultane-
ously. Starting from a low dilation splittable flow, we
show how LIRA can be employed to achieve O(1)-
approximate dilation in addition to O(n log n) conges-
tion for the preferential attachment model. Low dila-
tion splittable flows can be computed by applying the
expansion properties of Internet-like networks.

We review related work in Section 2. After formally in-
troducing the models and the problems in Section 3, we first
analyze our congestion minimization algorithm for the gen-
eral networks in Section 4, then we extend the analysis to
Internet-like networks (preferential attachment model) and
back the theoretical results with simulations, in Section 5.
Then in Section 6 we amend our algorithm to take dilation
into consideration. We conclude with the limitations of our
work and future directions in Section 7.

2. Background and Related Work
Recently the problem of modeling the Internet topology

has attracted much interest. Empirical studies have found
compelling evidence of power-law distributions in the In-
ternet [10, 14, 15, 20]. It is generally agreed that power law
degree distribution is a most important property of the In-
ternet, although it is still arguable which generative model
is more precise. Models for growing networks such that the
power law degree distribution is achieved include the pref-
erential attachment model of Barabási and Albert [5], and
the heuristically optimized trade-offs model of Fabrikant,
Koutsoupias and Papadimitriou [9]. Graphs with power-law
degree distribution are called scale-free graphs, introduced
in [5] and used to model complex networks including the In-
ternet (router-level graphs and AS-level graphs). The power
law random graph model of Aiello, Chung and Lu [1] is a
generic model for all scale-free graphs, regardless of how
they evolve.

Several topology generators have been implemented to
generate Internet-like networks for experimental study on
the Internet. The one we use is Inet-3.0, which is a combi-
nation of the power law random graph model and the prefer-
ential attachment model. It first generates a degree sequence

satisfying power law distribution, and then forms a network
according to preferential attachment. It targets generating
networks very similar to the Internet, in terms of degree dis-
tribution, connectivity, average path length, distortion, etc.

The shortcoming of shortest path routing has been long
noticed. Many alternative confluent routing heuristics have
been proposed (see [19,25] and the references therein). Un-
fortunately, none of them provides a provable performance
guarantee for the Internet-like networks. Our algorithm has
provable upper bounds on both congestion and dilation. In
the context of packet routing, congestion and dilation are
both lower bounds for the time required to route all the
packets. It is proved in [18] that the lower bounds can be
achieved. But the paths are specified in [18], while in our
case we are only given the demand function and need to
find the paths, such that both lower bounds are optimized.
Bicriteria optimization is studied in [21].

Confluent flow is a natural follow-up to splittable flow
and unsplittable flow, which allows at most one path from
each source (see eg. [17] and the references therein for fur-
ther discussions on unsplittable flow). With confluence,
however, once two flows of a commodity meet, they merge
and never split [8]. The congestion minimizing confluent
flow problem is established and proved to be NP-hard in [8].
We refer interested readers to [6] for the most recent theo-
retical results on the single commodity confluent flow. In
this work, however, we are most interested in multicom-
modity confluent flow, where the flow is confluent for each
commodity. This setting models hop-by-hop routing appli-
cations. For example, in Internet routing, we treat pack-
ets towards the same destination as one commodity, since
at each node they leave along the same edge; packets to-
wards different destinations belong to different commodi-
ties, since they may depart from a node on different edges.
In [8], an approximation algorithm based on randomized
rounding has been analyzed for the multicommodity con-
fluent flow. Unfortunately, that algorithm is difficult to im-
plement in a distributed manner. In this paper, we propose
a different rounding scheme, which involves only local in-
formation and is distributed in nature.

The splittable capacity, which characterizes the maxi-
mum traffic that the network can accommodate if arbitrary
routes are allowed, is studied in [22] based on the expansion
properties of Internet-like networks. In [17], the expansion
properties of expander graphs are used to convert an arbi-
trary flow into a flow that uses short paths only.

3. Model and Methodology
We study the capacity of Internet-like networks by ana-

lyzing the maximum congestion and dilation incurred in the
network when a certain traffic pattern is routed through the
network. We model the network by a directed graph, which
captures the structural properties (topology) of the under-
lying network, and the traffic pattern by a demand matrix



that specifies for each pair of nodes u and v the amount of
traffic originating at u and destined to v. Furthermore, the
paths carrying the respective demands from sources to the
destinations may be shortest-path, confluent, or splittable,
depending on whether the underlying routing is based on
shortest-paths, confluent flows, or unrestricted. All of the
preceding notions are best studied within the formal frame-
work of multicommodity flows, which we present in §3.1.
We describe our simulation setup in §3.2.

3.1. The model and problem definition

We consider the Minimum Congestion Ratio problem in
the multicommodity setting, in which we are given a general
directed graph, with arbitrary edge capacities, and arbitrary
demands from each node for each commodity, and need to
ensure that the flow per commodity is confluent.

We consider a multicommodity flow over a directed net-
work G = (V, E) with n nodes, m edges, and edge capac-
ities c : V × V 7→

�
+ . We represent the commodities by

a set {1, . . . , k}, where k is the total number of commodi-
ties. With each commodity i, we associate a distinguished
sink ti and a set Si ⊆ V of sources. We note that the stan-
dard model of multicommodity flows has one source and
one sink per commodity. In our framework, we allow a set
of sources for convenience, but this is no more general since
we can connect a super-source to each of the sources for a
commodity with an edge of infinite capacity and emulate the
multi-source model. We represent the commodity demands
by a function d : [k] × V 7→

�
+ .

A (splittable) multicommodity flow is a standard net-
work flow that satisfies all capacity constraints and flow
conservation constraints per commodity. We say that a flow
f : [k] × V × V 7→

�
is confluent if for any commodity

i, there is at most one outgoing flow at any node v. It is
easy to see that for any commodity i, flow f induces a set
of arborescences, each of which is rooted at a sink ti.

The focus of this paper is on the congestion and dilation
of multicommodity confluent flows. We first define capac-
ity and congestion and describe their relation.

Definition 3.1. The capacity of a network is the maximum
fraction of all-pair uniform demands that can be concur-
rently routed while observing the edge capacity constraints.

Definition 3.2. Given a flow f , the congestion ratio at an
edge (u, v) with c(u, v) > 0, denoted by r(u, v), is the
ratio between the total flow

∑
i∈[k] f(i, u, v) on this edge

and the capacity of this edge. The congestion ratio of flow
f , denoted by r(f), is the maximum congestion ratio among
all edges. In the special case of uniform edge capacities, we
use congestion, instead of congestion ratio, for simplicity.

The capacity of a network is just the reciprocal of the
minimum congestion ratio under all-pair uniform demands.
We will first study the Minimum Congestion Ratio problem

with arbitrary demands, whose objective is to find a conflu-
ent flow to satisfy all the demands with minimum conges-
tion ratio; and then apply the results to analyze the capac-
ity/congestion for the all-pair uniform demand case.

Definition 3.3. Given a network G and a multicommodity
flow f , let Gi denote the dag obtained by including only
those edges in G that carry positive flow for commodity i.
If `i denotes the length of the longest path from si to ti in
Gi, then the dilation of f is maxi `i.

Similar to the minimum congestion ratio problem, one
may define the minimum dilation problem in which we seek
a confluent flow of minimum dilation. It is easy to see
that routing all of the demands along shortest paths yields
a minimum dilation confluent flow. In §6, we consider
the problem of finding confluent flows that simultaneously
achieve low congestion (ratio) and low dilation in networks
designed according to the preferential attachment model.

Although we have obtained theoretical results for the
general setting in Section 4, we are mainly interested in
a special setting which is based on the preferential attach-
ment model for the network topology and all-pair uniform
demand model for the traffic.
Preferential attachment model. The description of the
preferential attachment model can be found in [5] and is in-
cluded here for completeness. Starting from n0 nodes, we
add one node each time and connect it to m0(≤ n0) exist-
ing nodes. The probability that the new node is connected
to node v is equal to dv,t

Dt
, where dv,t is the degree of node

v at time t and Dt is the total degree of all nodes at time t.
Traffic model. We assume that there is a unit of demand
to be sent from each node to each other node. This is a
reasonable approximation for random Internet activities.
3.2. Simulation setup

In our simulations, we address the scaling problem of the
Internet studied in [2]. Specifically, we examine the perfor-
mance of our confluent routing algorithm in Internet-like
networks and make comparisons with the shortest path al-
gorithm. We mostly follow the simulation setting in [2] to
make the results comparable. That is, we generate undi-
rected networks by Inet-3.0 [26]. For each network, we
transform it to a directed network by replacing each edge
with two oppositely directed edges of capacity one in each
direction. We assume all-pair uniform demands, i.e., one
unit of demand is to be sent from each node to each other
node. For each network size, we generate five random in-
stances, as in [2], and report statistics including the average
and the maximum. Our networks have size up to 9000.

Our algorithm first computes a splittable multicommod-
ity flow and rounds it to a confluent flow. For the split-
table flow, we implement the fast approximation algorithm
in [16], and set the parameter such that 8-approximation is
guaranteed. For the confluent flow, we implement our own



algorithm. All our implementations use the C++ language.
Inet is available online. The simulations are run on a Pen-
tium dual-CPU, 1Ghz with 1.8 GB of memory and Linux
operating system.

4. A Locally Independent Rounding Algorithm
(LIRA)

In this section, we present a randomized approximation
algorithm for the minimum congestion ratio problem. Our
algorithm is based on a local randomized rounding of a
splittable flow relaxation of the problem. The rounding is
local in the sense that once the splittable flow is obtained,
each node of the network can round its part of the inte-
gral solution independent of the other nodes in the network.
Taken together with distributed (1 + ε)-approximation al-
gorithms for splittable multicommodity flows, this yields
a distributed algorithm for the minimum congestion ratio
problem. We present the splittable flow relaxation in §4.1
and the local randomized rounding algorithm in §4.2.
4.1. From splittable to confluent

Let Di =
∑

v∈V d(i, v). Let x : [k] × V × V 7→ [0, 1]
and r ∈

�
+ . The following linear program computes a

splittable flow with minimum congestion ratio.
min

{x,f,r}
r

s.t.
∑

v∈V

f(i, u, v) = d(i, u), ∀u 6= ti, ∀i

∑

i∈[k]

f(i, u, v) ≤ rc(u, v), ∀u, vV

0 ≤ x(i, u, v) ≤ 1, ∀u, v, ∀i
∑

w∈V

x(i, v, w) = 1, ∀v, ∀i

0 ≤ f(i, u, v) ≤ Dix(i, u, v), ∀u, v, ∀i

When x ∈ {0, 1}, the linear program computes a con-
fluent flow with minimum congestion ratio. The mini-
mum congestion ratio problem, however, is NP-hard even
for one commodity and uniform capacities and uniform de-
mands [8]. The main idea of computing a minimum con-
gestion ratio confluent flow is to first compute a splittable
flow with certain performance guarantee, and apply various
rounding techniques to get a confluent flow solution. Sup-
pose the splittable flow is a ρ-approximation to the mini-
mum congestion ratio splittable flow, and the gap between
the splittable flow and the confluent flow is at most ξ, then
the algorithm achieves ρξ approximation for the multicom-
modity minimum congestion ratio confluent flow problem.

Although the linear program admits a polynomial time
optimal solution, it is often difficult or even infeasible to
compute the splittable flow through the linear program, es-
pecially for large networks. And in many applications the
need to solve it fast is greater than the need for optimal-
ity. There are numerous approximation algorithms that can

compute a splittable flow arbitrarily close to the optimum.
For example, the simple (1 + ε)-approximation algorithms
based on local load balancing in [3, 4, 23] can be easily im-
plemented in a distributed manner. Another line of work,
based on augmenting flow on shortest paths, provides faster
(1 + ε)-approximation for the minimum congestion ratio
multicommodity splittable flow [11, 12, 16]. The fastest
(1 + ε)-approximation algorithm, to our knowledge, ap-
pears in [16] and runs in Õ(ε2(m2 + kn)) time, where
m = |E|, n = |V | and k is the number of commodities.

Next we will introduce a new approximation algorithm
for the multicommodity minimum congestion ratio conflu-
ent flow problem, based on a simple rounding technique
from a given splittable flow.
4.2. The locally independent rounding algo-

rithm

The randomized rounding algorithm for the single com-
modity setting that is discussed in [8] is easy to implement
in a distributed manner. We extend this algorithm to the
multicommodity setting in a natural way, and call it LIRA
– Locally Independent Rounding Algorithm.

LIRA takes as input a splittable flow f to route all de-
mands. Flow f can be computed with any fast O(1) approx-
imation algorithm, e.g. the (1+ε) approximation algorithm
in [3, 4]. In LIRA each node chooses for each commodity
a unique outgoing edge independently at random. Node u
chooses, for commodity i, edge (u, v) with probability

p(i, u, v) =
f(i, u, v)∑

(u,v′)∈E f(i, u, v′)
. (1)

Theorem 4.1. Given a splittable flow f with congestion ra-
tio C, the LIRA algorithm produces a confluent flow φ with
O(max(C, D/cmin log n)) congestion ratio with high prob-
ability, where cmin is the minimum edge capacity.

To prove Theorem 4.1, we establish that the expected
confluent flow on each edge equals the splittable flow, and
apply the Chernoff-Hoeffding bound to show that the con-
fluent flow congestion is concentrated around its expecta-
tion if the splittable flow congestion is large and if the split-
table flow congestion is upper-bounded then the confluent
flow congestion is bounded by the same bound (up to a con-
stant factor) with high probability. We refer the reader to the
full paper [7] for the proof.

If C = Ω(D/cmin log n), then LIRA is a constant factor
approximation algorithm for the multicommodity minimum
congestion ratio problem. If C = Ω(D/cmin), then LIRA
achieves a logarithmic approximation. These performance
guarantees, however, are conditional; and the conditions are
not always satisfied in practice. We do not have analytical
results on the performance of LIRA when the assumptions
are not true; but we suspect that LIRA may work well even
without given conditions. We would like to explore, with



experiments, when LIRA performs well and when it fails.
The experimental work is described in §5.
Derandomization. We now derandomize the LIRA algo-
rithm to yield a set of confluent routing paths determinis-
tically. We set the confluent flow in a sequence of k · n
steps, each step setting, for some vertex u and commodity
i, its parent π(i, u) in the final confluent flow. Through-
out this process, we maintain a multicommodity flow. Let
ft(i, u, v) denote the flow of commodity i on edge (u, v)
after step t. We set f0 to be the given splittable flow.

Our derandomization is by means of the standard method
of pessimistic estimators. For vertices u, v, let φt(i, u, v)
(resp., Ct(u, v)) be the random variable denoting the flow
of commodity i (resp., the total congestion) on edge (u, v)
if LIRA is applied to the flow ft. Let µt(u, v) denote
E[Ct(u, v)]/(k · c(u, v)), αt(u, v) denote (c log n)/k −
µt(u, v), and λ(u, v) be a constant that is defined later. We
now define the pessimistic estimator.

Ft(u, v) = e−λ(u,v)c log n

k∏

i=1

(
1 +

ft(i, u, v)

c(u, v)
(eλ(u,v) − 1)

)

Ft =
∑

u,v∈V

Ft(u, v)

The particular choice of the above pessimistic estimator
Ft is to ensure that the probability that any edge violates
the desired congestion bound is upper bounded by Ft, as
shown below. Furthermore, the λ(u, v) are chosen such that
F0 is strictly less than 1. We will perform each step t of the
derandomization process so as to guarantee that Ft ≤ Ft−1.
This will ensure that at termination, Fkn < 1. Since Fkn is
an integer, this implies that at termination none of the edges
violates the congestion bound, thus giving us the desired
confluent flow.

We process the network in reverse topological order. In
step t, we select an arbitrary vertex u and commodity i such
that π(i, u) has not been set while for every edge (u, v),
π(i, v) is set. If no such u and i exist, then we have a conflu-
ent flow, and the process terminates. Otherwise, we proceed
as follows. For every outgoing edge (u, v), we define a flow
fv

t as a flow obtained by setting π(i, u) = v and thus rout-
ing all of the incoming flow for commodity i into u through
v and sending this flow downstream to ti along the unique
flow path in ft−1 from v to ti.

Let F v
t denote the value of Ft conditioned on setting

π(i, u) to v. By elementary probability theory, we have

Ft−1 =
∑

v∈V

ft(i, u, v)∑
v∈V ft(i, u, v)

F v
t .

Thus, there exists a v such that F v
t is at most Ft−1. We then

set π(i, u) = v, ft to be fv
t , and proceed to the next step.

We have already shown that Ft ≤ Ft−1. In the full pa-
per [7], we establish that initially F0 < 1, and at the end

of each step t, the probability that there exists an edge with
congestion ratio exceeding c log n in φt is at most Ft.

5. Confluent Capacity of Internet-like Net-
works

We now apply the theoretical results in Section 4 to
study the confluent capacity of Internet-like networks. Hop-
by-hop routing, which is widely used in the Internet, can
be modeled by our multicommodity confluent flow where
packets towards the same destination form one commodity
and need to be routed confluently.

We first prove that under the preferential attachment
model, all-pair uniform demands can be confluently routed
with congestion no worse than O(n log n), using LIRA .
This implies that, if the preferential attachment model is an
appropriate model for the Internet, the confluent capacity of
the Internet scales well as the Internet grows in size, expo-
nentially better than the poor scaling caused by shortest path
routing [2]. In the next section, we will show that to achieve
this nearly optimal confluent capacity, we only need to sac-
rifice a logarithmic factor in the worst path length. Further-
more, our simulations show that we occur minimal increase
in the average path length.

We adopt the preferential attachment model, which is
also used in [2, 22] to analyze the capacity of the Inter-
net. For the traffic pattern, we assume a symmetric set-
ting, where a unit of demand is to be routed from every
node to every other node. Our confluent capacity analysis
is followed by simulations on Inet-3.0 generated networks.
We compare LIRA against two versions of shortest path al-
gorithm studied in [2], using a similar simulation setting.
LIRA performs significantly better in the simulations.

5.1. Theoretical analysis

Consider an undirected network with uniform edge ca-
pacities and all-pair uniform demands, i.e., each node needs
to send one unit of demand to every other node. Gkantsidis
et al. [13] study a specific generating model for networks
whose degree distributions have heavy tails, and show for
this model that all demands can be routed by a splittable
flow with O(n log2 n) maximum edge congestion. A sim-
ilar result, with edge congestion at most O(n log n), is
shown in [22], where the network is assumed to be gen-
erated from the Preferential Attachment model of Barabási
et al. [5].

Theorem 5.1. (Corollary 2.3 of [22]) In a network gener-
ated from the preferential attachment model, the maximum
edge congestion is O(n log n) with high probability if we
use a splittable flow to route all-pair uniform demands.

On the other hand, it is shown in [2] that the maximum
edge congestion can be n1+Ω(1) if the network is generated
from the preferential attachment model and if a specific ver-
sion of the shortest path routing algorithm is used. In this



version of shortest path algorithm, when there are multi-
ple shortest paths, the maximum degree of nodes along the
paths are considered, and the path with the highest maxi-
mum degree is picked. Therefore, in an Internet-like net-
work, while the worst congestion of a splittable flow scales
only logarithmically with the size of the network, shortest
path routing results in exponentially faster scaling of worst
congestion.

Theorem 5.2. (Theorem 1 of [2]) In a network generated
from the preferential attachment model, the expected maxi-
mum edge congestion is n1+Ω(1) if we use shortest paths to
route all-pair uniform demands.

Simulations in [2] show that even if BGP routing is used,
the congestion is roughly the same as when shortest path
routing is used. One naturally wonders whether poor scal-
ing is unavoidable if confluence is required. The following
corollary shows that this is not true.

Corollary 5.3. In a network generated from the preferential
attachment model, the LIRA algorithm finds a confluent flow
whose maximum edge congestion is O(n log n), with high
probability, to satisfy all-pair uniform demands.

Proof: It immediately follows from Theorem 5.1 and The-
orem 4.1, noticing that D = n.

5.2. Simulations

In our simulation comparing confluent flow routing and
basic shortest path routing in the Internet-like networks, we
generate network instances using a graph generation tool
which implements an efficient algorithm for generating ran-
dom simple connected graphs with prescribed degree se-
quence [24]. We generate five topologies for each network
size n, ranging from 3100 to 9000. For each topology, we
run (1) the algorithm in [16] to get a splittable flow solution,
(2) the LIRA algorithm to get a confluent flow solution, (3)
the hop-count shortest path algorithm based on random tie-
breaking among multiple shortest paths to get a random SP
solution, (4) the hop-count shortest path algorithm which
among multiple shortest paths considers the maximum de-
gree of nodes along the paths and picks the one with the
highest maximum degree.

Note that the linear program formulation for the mini-
mum congestion ratio splittable flow in 4.1 warrants a poly-
nomial time optimal solution. For networks of the mag-
nitude of the Internet, however, the linear program is too
hard to solve. Moreover, the splittable flow solution is used
to generate the confluent flow solution, which is itself an
approximation. Therefore, the optimality of the splittable
flow solution is not necessary. Instead, we need a fast split-
table flow algorithm which provides a good approximation.
We find that the splittable multicommodity flow algorithm
in [16] is such a fast, (1 + ε)-approximation algorithm.

We then plot the worst congestion from each algorithm
against n. In Figure 1, we plot the average worst congestion
among the instance of the same size, while in Figure 2, we
plot the maximum worst congestion among the samples.
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Figure 1. Average worst congestion vs network size in
Internet-like networks.
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Figure 2. Maximum worst congestion vs network size in
Internet-like networks.

It is obvious that the worst congestion of the LIRA so-
lution is very close to that of the splittable flow solution:
the two curves almost overlap. Considering that our split-
table flow is a constant factor approximation to the optimal
splittable flow, the figure may imply that the LIRA solu-
tion is only a constant factor away from the optimal split-
table flow solution. On the other hand, congestions of both
shortest path solutions are well above those of the LIRA
and splittable solutions. In fact, their congestions increase
much faster when network size grows, implying poor scal-
ing of the Internet capacity. On the contrary, LIRA leads
to much better Internet capacity. The simulation provides
strong support for the analytical result that the shortest path
congestions are n1+Ω(1) and the LIRA and splittable flow
congestions are O(n log n).

Congestion distribution. We pick arbitrarily an in-
stance for each network size and plot the variance of
the edge congestions in each solution. We point out
that all choices of instances result in similar plots, but
due to space constraint, we only include one arbitrary



choice in Figures 3. All plots can be found online:
http://www.ccs.neu.edu/home/chenj/icdcs2006/plots.pdf. It
is clear that traffic load is much more evenly distributed
among the edges in the LIRA solution than in the short-
est path solutions. In the shortest path algorithm, since ev-
ery commodity selfishly and independently chooses a path
with a globally and statically optimal metric, many choices
collide at the few short paths, causing large congestion on
them. On the other hand, LIRA takes load balancing into
account and distributes flows based on a random scheme,
achieving much lower worst congestion.
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Figure 3. Variance of edge congestions vs network size
in Internet-like networks: instance 1.

Path length. Since LIRA does not minimize hopcount of
the route, the path length is necessarily larger than that in
the shortest path solution. Longer path causes larger pro-
pogation delay. Therefore, we are also interested in the path
length in LIRA solution. To this end, we plot the hopcounts
of the paths in both LIRA solution and the shortest path
solution against the network size. Figure 4 reports the av-
erage (among the samples) of average (among all n(n − 1)
source-destination pairs) path length; Figure 5 reports the
maximum of the average path length. It seems that, in av-
erage, the path length of LIRA solution is very close to the
optimal (i.e., the shortest path solution). We are also inter-
ested in dilation of a routing solution, which is the hopcount
of the longest route. We will show in Section 6 that, starting
from a short path splittable flow, which can be found by us-
ing the expansion properties of the Internet-like networks,
LIRA also guarantees that the dilation is only larger than
the optimal by a logarithmic factor.

6. Dilation of Internet-like Networks
The dilation of the confluent flow obtained by the LIRA

algorithm depends critically on the dilation of the original
multicommodity splittable flow. One can easily construct
examples of networks in which the dilation of a congestion-
optimal multicommodity flow can be much larger than that
achieved by shortest-paths routing. In this section we
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Figure 4. Mean of average path length vs network size in
Internet-like networks.

show that the uniform demand multicommodity flow can be
routed on networks obtained by the preferential attachment
model using a confluent flow that simultaneously achieves
O(log n)-approximate congestion and O(1)-approximate
dilation, with high probability. We establish this result by
first analyzing the dilation of LIRA in a more general con-
text and then applying known results about the expansion
properties of graphs obtained by the preferential attachment
model and short flows in graphs that expand well. We refer
the reader to the full paper [7] for the proofs of Lemma 6.1
and Theorem 6.2.
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Figure 5. Maximum of average path length vs network
size in Internet-like networks.

Lemma 6.1. The dilation of the confluent flow obtained by
running LIRA on a given multicommodity flow f is at most
the dilation of f .

Theorem 6.2. Let G be a network constructed randomly
according to the preferential attachment model. With prob-
ability 1 − o(1), there exists a confluent flow in G that
routes a unit flow between all pairs of nodes with conges-
tion O(C∗ log n) and dilation O(D∗), where C∗ and D∗

are the congestion and dilation of a congestion-optimal flow
and dilation-optimal flow, respectively.



7. Limitations and Conclusion
In this work, for comparison purposes, we follow [2] and

use the preferential attachment model. It is still a matter of
debate as to what is an accurate model for the Internet. The
all-pair uniform demand model, although a widely adopted
traffic model, is only a simplified way of characterizing ran-
dom Internet activities. It would be interesting to extend the
results to networks arising from other models of Internet-
like networks and to other more realistic traffic models.

LIRA is a simple and distributed algorithm if a split-
table flow is given. But computing splittable flow is a more
complicated task. The distributed algorithm of Awerbuch-
Leighton [3] can be used to compute a nearly optimal split-
table flow. To convert LIRA and the associated splittable
flow algorithm into a working protocol for Internet rout-
ing, however, will require additional engineering effort. The
game theoretic aspect also needs to be addressed in the pro-
tocol for possible non-cooperative behaviors of the users.
Even if the algorithm is converted into a protocol, one still
needs to consider how to incrementally shift the Internet to
the new protocol without incurring any serious interruption
in services.

Finally, notice that the distributed nature of LIRA is lost
after the derandomization. It remains an open issue whether
there is an effective distributed derandomization.

In this work we have studied the confluent capacity of the
Internet and provided a partial solution to the scaling prob-
lem. LIRA keeps the small routing table property intact,
achieves nearly optimal capacity with only a slight loss on
the dilation. We have shown that confluent routing schemes
could be a solution to the Internet scaling problem.
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