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Abstract
The growing popularity of mobile devices in the last

few years has made them attractive to virus and worm
writers. One communication channel exploited by mo-
bile malware is the Bluetooth interface. In this paper, we
present a detailed analytical model that characterizes the
propagation dynamics of Bluetooth worms. Our model
captures not only the behavior of the Bluetooth proto-
col but also the impact of mobility patterns on the Blue-
tooth worm propagation. Validation experiments against
a detailed discrete-event Bluetooth worm simulator re-
veal that our model predicts the propagation dynamics
of Bluetooth worms with high accuracy.

1 Introduction

The last decade has witnessed a surge of wireless
mobile devices such as cellular phones and PDAs, and
the rapid proliferation of new services targeted at them.
With the prevalence of these mobile devices in our lives,
the reality that virus and worm writers are develop-
ing mobile malware propagating on them becomes in-
creasingly haunting . Common to many existing mobile
viruses and worms is that they leverage Bluetooth ca-
pabilities to propagate themselves. Bluetooth, a short-
range radio technology aimed at connecting wireless de-
vices with low power consumption, has a wide range of
applications, such as wireless headsets, dial-up network-
ing, and peer-to-peer file sharing. The market for Blue-
tooth devices has grown tremendously in recent years:
world-wide, 272 million Bluetooth-enabled devices were
shipped in 2005, twice as many as in 2004 [13].

Internet worms, which have been rampant for more
than two decades, are nothing new to us. Bluetooth
worms significantly depart from Internet worms in three
major ways. First, the limited transmission range of a
Bluetooth device leads to a proximity-based infection
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mechanism: a Bluetooth device controlled by a worm
can only infect neighbors within its radio range. This
differs from Internet worms that can scan the whole IP
address space for susceptible victims. Second, the band-
width available to Bluetooth devices is usually much
narrower than those of Internet links. Finally, owing
to the mobility of Bluetooth devices and their limited
transmission range, the underlying network topology on
which Bluetooth worms propagate is much more dy-
namic than that of the Internet.

Although there have been substantial efforts on mod-
eling Internet worms, the fundamental differences be-
tween Bluetooth and Internet worms call for a new ap-
proach to modeling Bluetooth worm propagation. In
this paper, we propose a detailed analytical model that
characterizes the propagation dynamics of Bluetooth
worms. The input parameters fed to this model con-
sist of a few commonly used statistical metrics that
describe the underlying mobility patterns, such as av-
erage node degree, average node meeting rate and the
link duration distribution, and some control parameters
used by the Bluetooth worms. The development of the
model is based on detailed analysis of both the Blue-
tooth protocol and the impact of the mobility pattern
on the worm behavior. Validation experiments against
a detailed discrete-event Bluetooth worm simulator re-
veal that the model can accurately predict the propaga-
tion dynamics of Bluetooth worms, with relative errors
smaller than 10% in most cases.

The remainder of this paper is structured as fol-
lows. Section 2 gives a simple behavior model of a typ-
ical Bluetooth worm. Section 3 discusses the modeling
methodology used in this paper. Section 4 gives a model
of the inquiry phase in a worm infection cycle, including
how many neighbors can be discovered and how long it
can take. Section 5 models the period that a worm con-
tacts each neighbor it has discovered and attempts to in-
fect each one of them. In Section 6, we describe a model
that estimates the infection curve from the analysis of
a single infection cycle. Section 7 presents experimental
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Figure 1. Infection Cycle of A Bluetooth Worm
Input Explanation
λne Avg. meeting rate of neighbors
Jin Avg. node degree

FL(τ) CDF of link durations
Ndev Number of devices
Sdev Size of the area in which devices move
T to

inq Inquiry timeout value
N to

inq Max. number of inquiry responses expected
T to

conn Connection establishing timeout value
T to

prb Probing timeout value
T to

rep Worm replication timeout value
T to

disc Disconnection timeout value
T to

idle Duration of the idle phase
Sprb Size of the probing packet

Sworm Size of the worm code body

Table 1. Input parameters fed to the model

results of model validation. Section 8 introduces related
work and Section 9 concludes the paper.
2 Behavior of Bluetooth Worms

The infection cycle of a typical Bluetooth worm can
break down into two phases, illustrated in Fig. 1. When
a Bluetooth worm is activated, it starts searching for
Bluetooth-enabled devices in its vicinity. In this phase,
the worm broadcasts Bluetooth inquiry packets and
waits for responses. Because of the uncertainty about
how many responses will be received, the worm has pa-
rameters as the expected number of responses, N to

inq,
and the maximum amount of time it wants to wait,
T to

inq. If N to
inq responses are received before T to

inq time
units elapse, the worm stops the inquiry phase on the
arrival of the N to

inq-th response and then enters the next
phase; otherwise, regardless of the number of responses

it receives, the worm terminates the inquiry phase im-
mediately after T to

inq time units elapse.
Once the worm has collected a list of Bluetooth-

enabled devices in its communication range, it iterates
through the list, attempting the following steps with
each neighbor device: establish a connection to it (Step
1 ), probe infection possibility (Step 2 ), replicate the
worm code onto the victim device (Step 3 ), and discon-
nect from it (Step 4 ). Due to link instability in mobile
networks, each of these steps may fail without notice
from the other end. Hence, a timer is scheduled in each
step, allowing the worm to detect possible connection
failures. The maximum amount of times the worm is
willing to wait in Steps 1, 2, 3, and 4 are denoted by
T to

conn, T to
prb, T to

rep, and T to
disc respectively.

In Step 1, establishing a connection to a nearby de-
vice involves the paging process in the Bluetooth com-
munication. We refer the reader to [4] for the details in
this process. In Step 2, whether a device is infectable
hinges on the vulnerability the worm exploits. We model
this process by distinguishing three types of replies from
a probed device: A REJECTED reply indicates that the
probed device is insusceptible, an UNINFECTED reply
indicates that the probed device is susceptible and un-
infected, and an INFECTED reply indicates that the
probed device is susceptible but infected. The last type
of replies may not reflect the behavior of some Bluetooth
worms, but this can be easily modified in our Bluetooth
worm model. In Step 3, the time needed to replicate
the worm code onto the victim depends on both the
Bluetooth packet type and the size of the worm code.

Once all the devices on the neighbor list have been
iterated, the worm remains inactive for T to

idle time units.
After the idle phase finishes, the worm enters another
infection cycle and the process repeats.

3 Modeling Methodology

Out model characterizing the propagation dynamics
of Bluetooth worms is deterministic and advances time
in a discrete fashion. Let i(t) be the average density of
infected devices in the network being considered at time
t. We assume that the worm starts propagating at time
t0 with the initial infection density as i(t0). Given the
knowledge of the worm propagation state i(tk) at time
tk, the model determines the next time point tk+1 and
the new worm propagation state i(tk+1). Let Tcycle(t)
be the duration of an infection cycle that starts at time t.
We then choose the time step size tk+1−tk as Tcycle(tk).
Moreover, between any two successive time points tk and
tk+1, we use the following logistic equation to approxi-
mate the worm propagation curve:

di(t)
dt

= β(t) · i(t) · (ρ(t) − i(t)), (1)
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where ρ(t) and β(t) are the average device density and
the pairwise infection rate at time t respectively.

To derive Tcycle(t) and β(t), we make the following as-
sumptions: (1) all individual devices are homogeneously
mixed; (2) the behavior of an infected device at time t is
a deterministic function of the device density (i.e, ρ(t)),
the worm propagation progress (i.e., i(t)) and the sta-
tistical properties of device mobilities; (3) all infected
devices at time t have an identical infection cycle, ex-
cept that they can be at different phases in the infection
cycle. We note that the first assumption may not hold
under some mobility patterns. For instance, the well-
known random waypoint model leads to higher device
mixing ratio at the center of the area than that in the
bordering region. This problem can be solved by extend-
ing our approach to a spatial-temporal model, which di-
vides a large area into multiple patches and updates the
worm propagation status in each patch separately.

By assuming that individual devices are homoge-
neously mixed, we can abstract the underlying mobility
model into a few statistical metrics. Fig. 1 gives a list
of these metrics and their explanations. Note that all
these metrics except the size of the area (i.e., Sdev) can
be time variant. For clarity, we omit their time indices
in the table. ρ(t), the device density at time t, is actu-
ally Ndev(t)/Sdev(t). Moreover, the statistical metrics
that describe the mobility pattern form one part of the
input parameters fed to our model, besides the Blue-
tooth worm parameters as discussed in Section 2. The
Bluetooth worm parameters are also listed in Fig. 1.

In the following discussion, we first focus on the anal-
ysis of a single infection cycle starting time t, from
which we derive the duration of the infection cycle (i.e.,
Tcycle(t)) and the number of new infections out of the
infection cycle. We use α(t) to denote the latter. We
then discuss how to derive β(t) from α(t) and use Eq.
(1) to estimate the worm propagation curve.

4 Modeling The Inquiry Phase

Consider an infective device starting its inquiry phase
at time t. Without loss of generality, we number it as
device 0. Let Tinq(t) be the average duration of the
inquiry phase at time t.

4.1 Number of Neighbors

We distinguish two different classes of neighbors.
First, at the exact moment when device 0 starts its in-
quiry phase, some neighbors may be in its radio range.
We call such neighbors instantaneous neighbors of de-
vice 0. Their average number at time t is actually Jin(t)
shown in Fig. 1, the average node degree at time t. As
time goes by, some of these instantaneous neighbors may
move out of its radio range and at the same time some

new neighbors may enter its radio range. These new
neighbors are called contingent neighbors of device 0,
whose number we denote by Jco(t). Apparently, Jco(t)
depends on how long the inquiry phase lasts. Here,
we assume that the interarrival time between these new
neighbors are exponentially distributed. Hence, the ar-
rival process of new neighbors is a Poisson process. This
assumption will also be used later in Section 4.4 to de-
rive the mean duration of the inquiry phase. Let λne(t)
be the arrival rate of new neighbors. Using the PASTA
(Poisson Arrivals See The Average) property of the Pois-
son process, the number of neighbors, Hinq(t), that de-
vice 0 meets in its inquiry phase starting at time t is

Hinq(t) = Jin(t)+Jco(t),where Jco(t) = λne(t) ·Tinq(t).

4.2 Neighbor Discovery Probability
Not all the neighbors that the infective device meets

in its inquiry phase can be discovered by it. As a neigh-
bor receives an inquiry packet transmitted at the same
frequency as the one that it is hopping on to receive in-
quiry packets, it backs off for a random period of time
before responding to the inquiry device. A neighbor has
to stay in the inquiry device’s radio range long enough
to get discovered. Let D be the time that an inquiry
device needs to discover a neighbor in its radio range.
The distribution function of D depends on how many
devices that are performing inquiry operation simultane-
ously and analytically deriving the distribution function
for D is infeasible [9]. We thus resort to simulation for
an empirical solution to D̄(k), the average time needed
to discover a neighbor given that k devices are perform-
ing inquiry simultaneously. We apply the linear least
squares regression method and get the following equa-
tion: D̄(k) = 0.3322 · k + 2.2325. When k is 1, D̄(1) is
2.5647 seconds; it is very close to 2.292 seconds, the ex-
pected inquiry time derived from mathematical analysis
[9]. We further assume that the discovery time D(k) is
uniformly distributed between 0 and 2D̄(k). The ob-
servations from the simulation results confirm that it
is a reasonable approximation. Thus, the probability
density function of D(k), denoted by fD(k)(τ), is 1

2D̄(k)
.

The number of devices that perform inquiry simulta-
neously increases as the network is populated with more
infected devices. We use m(t) to denote the average
number of devices that perform inquiry simultaneously
in device 0’s radio range at time t. Recall that Tcycle(t)
denotes the total duration of an infection cycle starting
at time t. The probability that an infected device is in
the inquiry phase, denoted by P inq

inf (t), is thus Tinq(t)
Tcycle(t) .

We thus have: m(t) = i(t) · πr2
ra · P inq

inf (t), where rra is
the radio range of a Bluetooth device.

We now calculate the discovery probability of a neigh-
bor that device 0 meets in its inquiry phase starting
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at time t. We use random variable L(t) to denote the
duration of a link and fL(t)(τ) to denote the prob-
ability density function of the link duration at time
t. We can not simply let the discovery probability be
P{L(t) ≥ D(m(t))} because the inquiry phase initiated
by device 0 may not start at exactly the same time as
that when the link appears. We thus introduce nota-
tion Tgap(t) to be tlink

s − tinq
s , where tlink

s and tinq
s are

the starting times of the link and the inquiry phase re-
spectively. Satisfying either of the following two propo-
sitions leads to a link between the two devices during
the inquiry phase of device 0:
A1: Tgap(t) < 0, and Tgap(t) + L(t) > 0.
A2: Tgap(t) ≥ 0, and Tgap(t) < Tinq(t);

Proposition A1 corresponds to the instantaneous
neighbors met by device 0 in its inquiry phase and
proposition A2 corresponds to its contingent neighbors.
Let PA1 and PA2 denote the probabilities that proposi-
tions A1 and A2 are true respectively. We then have:

PA1 = P{Tgap(t) + L(t) > 0 ∧ Tgap(t) < 0} (2)
PA2 = P{0 ≤ Tgap(t) < Tinq(t)} (3)

In order for a neighbor to be discovered by device
0, the link should overlap with the inquiry phase for at
least D(m(t)). Satisfying the following two propositions
enables device 0 to discover that neighbor:
B1: Tgap(t) < 0, 0 ≤ D(m(t)) ≤ Tinq(t), and Tgap(t) +

L(t) ≥ D(m(t)).
B2: Tgap(t) ≥ 0, 0 ≤ D(m(t)) ≤ Tinq(t), L(t) ≥

D(m(t)), and Tgap(t) + D(m(t)) ≤ Tinq(t);
Similarly, propositions B1 and B2 correspond to the

instantaneous neighbors and the contingent neighbors
that device 0 discovers in its inquiry phase respectively.
Let PB1 and PB2 denote the probabilities that proposi-
tions B1 and B2 are true respectively. We have:

PB1 = P{Tgap(t) < 0 ∧ D(m(t)) ≤ Tinq(t) ∧
Tgap(t) + L(t) ≥ D(m(t))} (4)

PB2 = P{0 ≤ Tgap(t) ≤ Tinq(t) − D(m(t)) ∧
L(t) ≥ D(m(t)) ∧ D(m(t)) ≤ Tinq(t)} (5)

Let P in
dsc(t) and P co

dsc(t) be the probability that an
instantaneous neighbor and a contingent neighbor can
be discovered by device 0 respectively. Clearly, we have:
P in

dsc(t) = PB1
PA1

and P co
dsc(t) = PB2

PA2
.

The computation of PA1 , PA2 , PB1 , and PB2 requires
the knowledge of the distributions of both Tgap(t) and
L(t). The latter is dictated by the mobility model that
governs how devices move. Let Φl be the maximum link
duration derived from the mobility model. We assume
that Tgap(t) is uniformly distributed between −Φ and Φ,
where Φ is max(Φl, T

to
inq). Typically, Φl is much larger

than T to
inq. Hence, the probability density function of

Tgap(t), denoted by fTgap(t)(τ), is 1
2Φ . We thus have

PB1 =
1

2D̄(m(t))
× 1

2Φ
×

∫ Φ

0

ds

∫ min{Tinq(t),2D̄(m(t))}

0

P{L(t) ≥ v + s}dv;

PB2 =
1

2D̄(m(t))
× 1

2Φ
×

∫ Tinq(t)

0

(Tinq(t) − v)P{L(t) ≥ v}dv. (6)

4.3 Number of Inquiry Responses
Infected neighbors are discovered by the inquiry de-

vice with a different probability from uninfected neigh-
bors, because an infected neighbor in the inquiry or pag-
ing state can not respond to the inquiry. Let P av

inf (t)
denote the probability that an infected neighbor is not
in inquiry or paging mode. We also use Tpage(t) to de-
note the total time that device 0 spends on paging the
neighbors it has discovered. We then have

P av
inf (t) = 1 − Tinq(t) + Tpage(t)

Tcycle(t)
. (7)

Even though a neighbor is not infected or is not in ei-
ther inquiry or paging mode, it may be contacted by an-
other infected device. According to the Bluetooth pro-
tocol state transition diagram [10], if a neighbor is being
contacted by other infected devices and is thus not in the
CONNECTION state or the STANDBY state, it can not
respond to the inquiry from device 0. Let Prsp(t) denote
the probability that an uninfected device or an infected
device not in the inquiry or paging mode responds to
the inquiry of device 0. It is difficult, though, to derive
a precise analytical model for Prsp(t). For simplicity, we
assume that a neighbor does not respond to the inquiry
of device 0 if there exists another infected device that
is paging it or has already established a connection to
it. Consider any neighbor of device 0 that is either not
infected or an infected device not in the inquiry or pag-
ing mode. Suppose it is device k. We use Nproc(t) to
denote the average number of infected devices in device
k’s radio range that are actively processing the neigh-
bors that they have discovered. We also use Tproc(t) to
denote the total time that an infected device spends on
processing the neighbors it has discovered. We have

Nproc(t) =
Tproc(t)
Tcycle(t)

· i(t) · πr2
ra (8)

To derive an approximate formula for Prsp(t), we con-
sider a static case in which no devices move. Then,
the neighbors that these Nproc(t) devices are contact-
ing should be located within 2rra distance to device k
and they are either uninfected or infected but idle. Let
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Mproc(t) be the average number of devices that these
Nproc(t) devices can possibly be processing. We have:

Mproc(t) = (ρ(t)− i(t) +
T to

idle

Tcycle(t)
· i(t)) · π(2rra)2. (9)

If device k is able to respond to the inquiry of de-
vice 0, it should not be contacted by any of the Nproc(t)
infected devices. For each of the Nproc(t) infected de-
vices, the probability that it does not contact device k

is Mproc(t)−1
Mproc(t)

. Hence, it immediately follows that

Prsp(t) = (
Mproc(t) − 1

Mproc(t)
)Nproc(t). (10)

Now we calculate R(t), the average number of neigh-
bors that device 0 can discover in its inquiry phase.
We treat instantaneous neighbors and contingent neigh-
bors differently because their discovery probabilities are
not the same. Let N in

rsp(t) and N co
rsp(t) denote the av-

erage number of instantaneous neighbors and contin-
gent neighbors discovered by device 0 respectively. For
brevity, we also introduce another notation �(t) as fol-
lows:

�(t) =
ρ(t) − i(t)

ρ(t)
+

i(t)
ρ(t)

· P av
inf . (11)

We then have:

N in
rsp(t) = Jin(t) · P in

dsc(t) · �(t) · Prsp(t), (12)
N co

rsp(t) = Jco(t) · P co
dsc(t) · �(t) · Prsp(t). (13)

As the total number of neighbors that device 0 can
discover should not exceed N to

inq, the number of neigh-
bors discovered in the inquiry phase, i.e., R(t), can be
established as follows:

R(t) = min{N to
inq, N

in
rsp(t) + N co

rsp(t)}. (14)

4.4 Duration of The Inquiry Phase

The duration of the inquiry phase is related to how
many instantaneous neighbors device 0 can discover. If
N in

rsp(t) is equal to or greater than N to
inq, then device 0

does not need to wait for the appearance of contingent
neighbors. Hence, the duration of the inquiry phase is
simply D̄(m(t)). We thus have the following:

Tinq(t) = D̄(m(t)), if N in
rsp(t) ≥ N to

inq. (15)

On the other hand, if N in
rsp(t) is smaller than N to

inq,
then device 0 has to discover more contingent neighbors
to fill the gap between them. In this case, computing
the duration of the inquiry phase requires the knowl-
edge of how device 0 meets its neighbors. As in Eq. (2),
we assume that links between device 0 and its neigh-
bors appear according to Poisson process at arrival rate
λne(t). Moreover, we also assume that all devices are
homogeneously mixed so that among Hinq(t) neighbors,
the number of infected and uninfected devices are pro-
portional to their fractions in the whole network. Hence,

the original Poisson process can be split into two sub-
processes which both are Poisson processes. The first
one has only uninfected devices and their arrival rate,
denoted by λ1(t), is

λ1(t) =
ρ(t) − i(t)

ρ(t)
· λne(t) · Prsp(t). (16)

The second subprocess consists of only infected de-
vices and their arrival rate is i(t)

ρ(t) · λne(t). Since the
probability that an infected device can respond to the
inquiry by device 0 is P av

inf (t) · Prsp(t), all such devices
form another Poisson process and its arrival rate, de-
noted by λ2(t), is

λ2(t) =
i(t)
ρ(t)

· λne(t) · P av
inf · Prsp(t). (17)

As two Poisson processes merge into a new Poisson
process, all the neighbors that can respond to the in-
quiry of device 0, including both infected and uninfected
devices, form another Poisson process. Moreover, recall
that the discovery probability of a contingent neighbor is
P co

dsc(t). The process after random selection with prob-
ability P co

dsc(t) is still a Poisson process and its arrival
rate, denoted by λ(t), is (λ1(t) + λ2(t)) · P co

dsc(t).
Let Zn be the time needed for device 0 to collect n

neighbors and zn(s) be its probability density function.
We then have [6]

zn(s) =
λ(t)(λ(t)s)n−1e−λ(t)s

(n − 1)!
. (18)

Since N in
rsp(t) instantaneous neighbors have already

been discovered, device 0 only needs to find N to
inq −

N in
rsp(t) contingent neighbors, unless the inquiry timer

expires before it does so. Therefore, if N in
rsp(t) < N to

inq,
the average duration of the inquiry phase is

Tinq(t) = 1
2D̄(m(t))

∫ 2D̄(m(t))

0
((1 − ∫ T to

inq−v

0
zε(t)dt) · T to

inq

+
∫ T to

inq−v

0
(t + v) · zε(t)dt)dv, (19)

where ε is N to
inq − N in

rsp(t). Note that in Eq. (19), we
integrate from 0 to T to

inq − v on t. This is because the
link between a contingent neighbor and device 0 must
last at least D(m(t)) time units before it is discovered.

5 Modeling Neighbor Processing Phase

For ease of explanation, we number the infective de-
vice under consideration as device 0 and all the neigh-
bors discovered from 1 to R(t). In order for the worm to
infect device k, where 1 ≤ k ≤ R(t), it has to wait until
all neighbor devices numbered before neighbor k have
been processed. We use τ

(k)
s (t) to denote the duration

of the period that starts when device 0 starts its inquiry
phase and ends when it starts to process neighbor k.
Obviously, we always have the following:

τ (1)
s (t) = Tinq(t). (20)
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5.1 Establishing A Connection

We first model the probability that a neighbor discov-
ered is pageable. Let Pi(t) and Pu(t) denote the fraction
of infected devices and uninfected devices among all the
neighbors discovered by device 0 respectively. Accord-
ing to the discussion in Section 4.3, infected devices in
inquiry or paging mode do not respond to the inquiry
of device 0. Hence, we have

Pi(t) =
P av

inf (t) · i(t)
P av

inf (t) · i(t) + ρ(t) − i(t)
(21)

Pu(t) =
ρ(t) − i(t)

P av
inf (t) · i(t) + ρ(t) − i(t)

(22)

For any of these infected neighbors, if it is in the in-
quiry or paging mode, device 0 can not successfully es-
tablish a connection to it. Furthermore, for any neigh-
bor collected by device 0, if there is another infected
device also connecting to it, device 0 may not be able
to establish a connection to it successfully. Deriving the
precise probability that a device is pageable is difficult.
For simplicity, we assume that if there exists another in-
fected device in contact with neighbor k, neighbor k is
not pageable. Let P pos

page(t) denote the probability that a
neighbor discovered by device 0 is pageable and Pneg

page(t)
denote the probability that a neighbor discovered by de-
vice 0 is not pageable. We then have

P pos
page(t) = (Pi(t) · P av

inf (t) + Pu(t)) · Prsp(t), (23)
Pneg

page(t) = Pi(t) · (1 − P av
inf (t) + P av

inf (t) · (1 −
Prsp(t))) + Pu(t) · (1 − Prsp(t)). (24)

Let P page
i (t) and P page

u (t) denote the proportions of
infected devices and uninfected devices among all page-
able neighbors respectively. Obviously,

P page
i (t) =

Pi(t) · P av
inf (t)

Pi(t) · P av
inf (t) + Pu(t)

, (25)

P page
u (t) =

Pu(t)
Pi(t) · P av

inf (t) + Pu(t)
. (26)

Packet losses due to channel congestion (e.g., co-
channel interference and adjacent channel interference)
can increase the duration of the connection establish-
ing process. In our model, we take this into consid-
eration. Let τ̄conn be the average duration of success-
fully establishing a connection between two devices in
a loss-free environment. We model the connection es-
tablishing process as a two-way handshake: the paging
device sends out a packet with the paged device’s ac-
cess code requesting a connection and the paged device
replies with a new packet carrying its own access code.
An iteration of two-way handshake fails if either of the
packets gets dropped. Let P page

loss (t) denote the paging
packet loss rate at time t. In the following, we compute

T good
conn(t), the average time needed for successfully es-

tablishing a connection provided that the paging packet
loss rate is P page

loss (t). The loss probability of a packet is
related to its size. As a paging response packet has the
same size as a paging packet, the loss probability of pag-
ing response packets is also P page

loss (t). We refer readers
to [16] for details of computing P page

loss (t). Let s be the
maximum number of iterations allowed. Assuming both
error-free transmission and no estimate of the slave’s na-
tive clock by the paging device, if the paging procedure
uses the R1 mode [10], the mean duration of the paging
process is 1.28 seconds and its maximum duration is 2.56
seconds [5]. If an iteration of two-way handshake fails,
the paging device wastes 2.56 seconds and has to wait
for the next iteration. Let δ(t) be (1−P page

loss (t))2. Then,
the average duration of a successful paging process is
T good

conn(t) = 2.56((
1

δ(t)
− (

1
δ(t)

+ s)(1 − δ(t))s) − 1.28, (27)

where s = �T to
conn

2.56 �.
A necessary condition for device 0 to establish a con-

nection to neighbor k successfully is that the link be-
tween these two devices should be long enough such
that the connection establishing process can be finished.
Hence, the following proposition should be satisfied:

Q1 : L(t) + Tgap(t) ≥ τ (k)
s (t) + T good

conn(t).
Before device 0 connects to neighbor k, the prior

knowledge is that it must have already discovered this
neighbor in its inquiry phase. Hence, we know that ei-
ther propositions B1 or B2 must be true. Then, the
probability that device 0 can connect to neighbor k suc-
cessfully is

P succ
conn(t, τ (k)

s (t)) = P pos
page(t) · P{Q1 | B1 ∨ B2} (28)

To simplify Eq. (28), we introduce proposition Q0:
Q0 : Tgap(t) ≤ Tinq(t) − D(m(t)) ∧ D(m(t)) ≤ Tinq(t).
After some logic computation, we have:

Q1 ∧ (B1 ∨ B2) = Q0 ∧ Q1 (29)
Hence, Eq. (28) can be rewritten as

P succ
conn(t, τ (k)

s (t)) = P pos
page(t) ·

P{Q0 ∧ Q1}
P{B1 ∨ B2} (30)

If device 0 fails to establish a connection to neigh-
bor k, it has to wait until the connection establish-
ing timer expires, which lasts T to

conn time units. Let
P fail

conn(t, τ (k)
s (t)) denote the probability that device 0

fails to establish a connection to neighbor k provided
that device 0 starts to process neighbor k at time τ

(k)
s (t).

We thus have: P fail
conn(t, τ (k)

s (t)) = 1 − P succ
conn(t, τ (k)

s (t)).
In Eqs. (30), P{B1 ∨ B2} equals P{B1} + P{B2},

and P{Q0 ∧ Q1} can be written as an expression of
P{Tgap(t) + Dm(t) ≤ Tinq(t) ∧ Dm(t) ≤ Tinq(t) ∧ L(t) +
Tgap(t) ≥ Y (t)}, where Y (t) ≥ Tinq(t). We refer readers
to [16] for details of computing such an expression.
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5.2 Probing for Infection Possibility
If device 0 succeeds in establishing a connection to

neighbor k, it probes whether it is infected. It is ob-
vious that the probing process can be prolonged be-
cause of channel congestion. Let η(t) be the average
data throughput at time t. We refer readers to [16] for
details of computing η(t). Recall that the total num-
ber of bytes in the probing packet and replying packet
is Sprb. The average time needed for a successful prob-
ing process is Sprb

η(t) . Therefore, in order for the probing
process finishes successfully, the following must hold:

Q2 : L(t) + Tgap(t) ≥ τ (k)
s (t) + T good

conn(t) +
Sprb

η(t)
. (31)

The prior knowledge for device 0 to probe the k-th
neighbor is that device 0 successfully establishes a con-
nection to it. Hence, (B1∨B2)∧Q1 must be true. If the
probing process succeeds, the duration of the probing
phase is Sprb

η(t) ; otherwise, the probing timer expires and
the probing phase thus lasts T to

prb time units. Further-
more, the probability that device 0 attempts to probe
the k-th neighbor is P{Q1|B1∨B2}. Let P succ

prb (t, τ (k)
s (t))

denote the probability that device 0 successfully probes
the infection state of device k. Obviously, Q1∧Q2 = Q2.
Some logic computation leads to the following:

Q2 ∧ (B1 ∨ B2) = Q0 ∧ Q2. (32)
By applying Bayes’s rule, we have:

P succ
prb (t, τ (k)

s (t)) = P pos
page(t) ·

P{Q0 ∧ Q2}
P{B1 ∨ B2} . (33)

Let P fail
prb (t, k) denote the probability that device 0

fails to probe the infection state of device k. Then,

P fail
prb (t, τ (k)

s (t)) = P pos
page(t) ·

P{Q0 ∧ Q1} − P{Q0 ∧ Q2}
P{B1 ∨ B2} .

5.3 Replicating The Worm Code
After the probing step, if device 0 finds that neighbor

k is not infected, it tries to replicate the worm code onto
the victim. The prior knowledge for device 0 to replicate
the worm code onto neighbor k includes: (1) device 0
establishes a connection to neighbor k successfully; (2)
device 0 receives the reply to its probing packet from
neighbor k; (3) neighbor k has not been infected. The
probability that all these three conditions are satisfied,
denoted by P prior

rep (t, τ (k)
s (t)) is

P prior
rep (t, τ (k)

s (t)) = P pos
page(t) ·

P{Q0 ∧ Q2}
P{B1 ∨ B2} · P page

u (t).

(34)

Let P prb
inf (t, τ (k)

s (t)) be the probability that device 0
finds that neighbor k has already been infected. Then,

P prb
inf (t, τ (k)

s (t)) = P pos
page(t)·

P{Q0 ∧ Q2}
P{B1 ∨ B2} ·P

page
i (t). (35)

The average time needed to replicate the code suc-
cessfully is Sworm/η(t). The following must be true if
the worm code is successfully copied onto neighbor k:

Q3 : L(t)+Tgap(t) ≥ τ (k)
s (t)+T good

conn(t)+
Sprb

η(t)
+

Sworm

η(t)
.

Similar to Eqs. (29) and (32), we have the following
Q3 ∧ (B1 ∨ B2) = Q0 ∧ Q3. (36)

It is also possible that worm code replication fails
because neighbor k moves out of the radio range or
the packet loss rate is too high. Let P succ

rep (t, τ (k)
s (t))

denote the probability that the worm code can be
successfully replicated onto the victim. It is actually
P prior

rep (t, τ (k)
s (t)) · P{Q3 | Q2 ∧ (B1 ∨ B2)}. Hence,

P succ
rep (t, τ (k)

s (t)) = P pos
page(t) · P page

u (t) · P{Q0 ∧ Q3}
P{B1 ∨ B2} . (37)

If the worm code is not successfully replicated before
the code replication timer expires, the worm code repli-
cation process takes T to

rep time units. Let P fail
rep (t, τ (k)

s (t))
be the probability that device 0 fails to copy the worm
code onto the victim. Similarly, we have:
P fail

rep (t, τ (k)
s (t)) =

P pos
page(t) · P page

u (t) · P{Q0 ∧ Q2} − P{Q0 ∧ Q3}
P{B1 ∨ B2} . (38)

5.4 Total Time Spent On Processing All
The Neighbors Discovered

The total time spent on processing neighbor k by
device 0 depends on multiple conditions, including
whether device 0 can successfully establish a connec-
tion to it, whether device 0 can successfully probe its
infection state, whether neighbor k has already been
infected, and whether device 0 can successfully copy
the worm code onto it if it is found to be uninfected.
Let 
V be a vector of 5 elements. We define function
Ω(t, k, τ

(k)
s (t), 
V ) recursively as follows:

Ω(t, k, τ (k)
s (t), 
V ) =

{
0 if k > R(t),
ω if k ≤ R(t), (39)

where ω = P fail
conn(t, τ (k)

s (t))·
(
V [1] + Ω(t, k + 1, τ

(k)
s (t) + T to

conn)) + P fail
prb (t, τ (k)

s (t))·
(
V [2] + Ω(t, k + 1, τ

(k)
s (t) + T good

conn(t) + T to
prb))+

P prb
inf (t, τ (k)

s (t)) · (
V [3] + Ω(t, k + 1, τ
(k)
s (t) + T good

conn(t)
+Sprb

η(t) )) + P succ
rep (t, τ (k)

s (t)) · (
V [4] + Ω(t, k + 1, τ
(k)
s (t)

+T good
conn(t) + Sprb

η(t) + Sworm

η(t) )) + P fail
rep (t, τ (k)

s (t))·
(
V [5] + Ω(t, k + 1, τ

(k)
s (t) + T good

conn(t) + Sprb

η(t) + T to
rep)).

Then, Tproc(t), the total time that device 0 spends on
processing all the neighbors it has discovered, is

Tproc(t) = Ω(t, 1, Tinq(t), 
Vproc(t)). (40)
where 
Vproc(t) = 〈T to

conn, T good
conn(t) + T to

prb, T
good
conn(t) +

Sprb

η(t) , T good
conn(t) + Sprb

η(t) + Sworm

η(t) , T good
conn(t) + Sprb

η(t) + T to
rep〉.
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The total duration of an infection cycle starting at
time t, Tcycle(t), is given by:

Tcycle(t) = Tinq(t) + Tproc(t) + T to
idle. (41)

Once the worm code has been successfully replicated
onto a victim, a new device has been infected. Recall
that α(t) denotes the number of new infections out of
an infection cycle starting at time t. Then, we have

α(t) = Ω(t, 1, Tinq(t), 〈0, 0, 0, 1, 0〉). (42)

6 Modeling The Infection Curve

We model the Bluetooth worm infection curve using
the logistic equation with variable infection rates. By as-
suming that individuals are homogeneously mixed, the
model can be written as the differential equation given
in Eq. (1). Now we estimate β(t), the pairwise infection
rate. Consider the Tcycle(t) time units after time t. As
the number of new infections out of each infection cycle
is α(t), we can approximate β(t) from the follows:

di(t)
dt

= β(t) · i(t) · (ρ(t) − i(t)) =
α(t)

Tcycle(t)
· i(t)

=⇒ β(t) =
α(t)

(ρ(t) − i(t)) · Tcycle(t)
. (43)

The worm propagation curve can thus be modeled as:

i(t + ∆t) =
i(t) · ρ(t)

i(t) + (ρ(t) − i(t))e−β(t)·ρ(t)·∆t
(44)

Hence, after an infection cycle, the new density of in-
fected devices is

i(t + Tcycle(t)) =
i(t) · ρ(t)

i(t) + (ρ(t) − i(t))e
−α(t)·ρ(t)
ρ(t)−i(t)

. (45)

Eq. (45) directly leads to an approach to compute
the whole infection curve. Let t0 be 0. We assume
that at time t0, there is only one single infected device.
Hence, i(t0) is ρ(t0)/Ndev(t0), where Ndev(t) denotes the
total number of devices at time t. Starting from t0,
we compute Tcycle(tk) and α(tk), for k ≥ 0 and then
recursively update tk+1 and i(tk+1) as follows:

tk+1 = tk + Tcycle(tk), (46)

i(tk+1) =
i(tk) · ρ(tk)

i(tk) + (ρ(tk) − i(tk))e
−α(tk)·ρ(tk)
ρ(tk)−i(tk)

.(47)

There are a few problems with the above approach.
First, at the early phase of the worm propagation, in-
fected devices tend to cluster together because it takes
some time for them to diffuse into each region of the
area. A fundamental assumption underlying the logis-
tic model is that infected and uninfected devices are ho-
mogeneously mixed. This problem manifests itself es-
pecially when a small number of devices are sparsely
distributed in a large area. To fix this problem, we set
the low bound on the density of infected devices as fol-
lows. Consider an infected device starting its inquiry at
time t. We assume that it moves along a straight line

during its inquiry phase. The area that its radio signal
covers during its inquiry phase, denoted by Sinq(t), is:

Sinq(t) = πr2
ra + 2 · rra · v(t) · Tinq(t), (48)

where v(t) is the average device speed at time t. In
the area covered by the infected device, there exists
at least one infected device, which is itself. Let i′(t)
be max{i(t), 1

Sinq(t)}. When we compute Tcycle(tk) and
α(tk), we use i′(t) to replace i(t) and i(tk+1) is updated
as follows instead of using Eq. (47):

i(tk+1) =
i(tk) · ρ(tk)

i′(tk) + (ρ(tk) − i′(tk))e
−α(tk)·ρ(tk)
ρ(tk)−i′(tk)

. (49)

The second problem with Eqs. (46) and (47) is re-
lated with the assumption that new infections out of
a single infection cycle is evenly distributed in the in-
fection cycle. If a large fraction of devices have already
been infected, this assumption is reasonable because the
phase of an infected device in the infection cycle can be
random. At the early stage of the infection, however,
a newly infected device immediately enters the active
scanning mode. Hence, Eq. (47) tends to underesti-
mate the worm propagation speed at its early phase.
Moreover, if β(tk) is larger, there are more new infec-
tions out of a single infection cycle and the estimation
error is thus larger. We thus reduce Tcycle(tk) based on
β(tk) in the first few iterations. The adjusted model on
computing Tcycle(tk) is given as follows:
Tcycle(tk) ={

Tinq(tk) + Tproc(tk) + e−2·β(tk) · T to
idle, if k < 3,

Tinq(tk) + Tproc(tk) + T to
idle, if k ≥ 3.

The third problem with the model is that it computes
the worm growth rate based on the infection state at a
time point tk and then assumes this growth rate stays
unaltered until an infection cycle starting at time t fin-
ishes at time tk+1. For those infected devices that start
their infection cycle after time t but before time tk+1, α
is overestimated. To overcome this flaw in the model, we
further readjust the computation of i(tk+1) as follows.
First, we compute α(tk) as before. Then, we estimate
the density of infected devices at time tx, where

tx = tk + Tcycle(tk) − Tproc(tk). (50)
Actually, tx is the latest time when an infected device
finishes its inquiry phase so that it can finish processing
all the neighbors discovered no later than tk +Tcycle(tk).
The estimated infection state at time tx is

i(tx) =
i(tk) · ρ(tk)

i′(tk) + (ρ(tk) − i′(tk))e
−α(tk)·ρ(tk)
ρ(tk)−i′(tk) ·

tx−tk
Tcycle(tk)

.

Based on the estimated infection state at time tx, we
can compute α(tx). We define α′ as follows

α′ =
ρ(tk) − i(tk)

ρ(tk)
· α(tk) +

i(tk)
ρ(tk)

· α(tx). (51)
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The new equation to compute i(tk+1) becomes

i(tk+1) =
i(tk) · ρ(tk)

i′(tk) + (ρ(tk) − i′(tk))e
−α′·ρ(tk)

ρ(tk)−i′(tk)

.

Obviously, at the early stage of the worm propagation,
α′ is close to α(tk) and at the late stage of the worm
propagation, α′ is close to α(tx). This can be explained
as follows. In the logistic model, at the early stage of the
worm propagation, the worm infection curve is convex
and the average number of infected devices between time
tk and tx is smaller than the (i(tk) + i(tx))/2; hence,
choosing α′ closer to α(tk) achieves a better estimate.
Similarly, at the late stage of the worm propagation, the
infection curve turns concave in the logistic model and
the average number of infected devices between time tk
and tx is larger than the (i(tk)+i(tx))/2, which suggests
that choosing α′ closer to tx leads to a better estimate.

7 Experiments

The system of equations proposed to characterize the
Bluetooth worm propagation is comprehensive, covering
both dynamics of the Bluetooth protocol behavior and
statistical properties of mobility patterns. It is, however,
not easy to solve these equations analytically. On the
other hand, closed-form analytical solutions to the sta-
tistical properties of even simple mobility models (e.g.,
random walk model) can be hairy. Under such circum-
stance, we resort to numerical solutions. We have im-
plemented our model as a system of equations in Octave
[8] . We use function fsolve, a nonlinear equations solver
provided in Octave, to derive the solutions numerically.
We use the ns-2 network simulator [2], extended with
the detailed UCBT Bluetooth simulation module [1].

To evaluate the accuracy of the model, we conduct
experiments with different mobility and Bluetooth worm
parameter settings. In all the experiments, a Bluetooth
device moves in a square area according to the random
walk model, in which it updates its direction and speed
every 30 seconds. The speed of a device is uniformly
chosen between 1 and 2 meters per second. The average
device speed in our experiments is roughly the same of
pedestrians. Fig. 2 presents Ndev, Sdev, λne, Jin used in
our experiments and Fig. 2 depicts the CDFs of link du-
rations corresponding to the four mobility scenarios. We
notice that the CDFs of link durations produced from
the four mobility scenarios are very close to each other.
This is because devices in each of them move according
to the same parameterized random walk model.

We use two sets of Bluetooth worm parameters, de-
noted by W1 and W2 respectively. In setting W1, we
have: T to

inq = 10.24 (sec), N to
inq = 5, and T to

idle = 20
(sec); in setting W2, we have: T to

inq = 5.12 (sec), N to
inq =

3, and T to
idle = 10 (sec). For each of the 8 scenarios, we

use ns-2 to simulate 20 sample runs, in which the initial

ID Ndev Sdev λne Jin

M1 50 75×75 m2 0.5239 2.4751
M2 200 75×75 m2 2.1199 10.0088
M3 200 150×150 m2 0.5753 2.6651
M4 800 150×150 m2 2.3089 10.6693

Table 2. Mobility parameter settings
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infection is randomly chosen. Some other parameters
in the experiments are given as follows: rra = 10 (m),
Sworm = 20000 (bytes), Sprb = 27 (bytes), T to

conn = 5.12
(sec), T to

prb = 1 (sec), T to
rep = 10 (sec), T to

disc = 0.1 (sec).
Figures 3 and 4 depict the fraction of infected de-

vices as a function of propagation time derived from the
model and that obtained from the simulation by aver-
aging 20 sample runs for each scenario. Apparently, the
infection curves produced from the model match well
with the simulation results in most cases. The only ex-
ception happens under Mobility scenario M3 and Blue-
tooth worm parameter setting W2: the model slightly
overestimates the worm propagation speed in the late
stage of the worm propagation.

To quantify the prediction errors from the model, we
consider the times needed to infect 20%, 40%, 60%, and
80% of the population. The model, due to its variable
time steps, may not produce infection states at these
points. We thus use a linear model to predict the in-
fection states between consecutive time steps. We com-
pute the relative errors on the times needed to infect
20%, 40%, 60%, and 80% of the population. The re-
sults show that in all the cases, the relative errors are
smaller than 18%, and in most of the cases, the relative
errors are below 10%. Hence, the model characterizes
well the propagation process of Bluetooth worms.

8 Related Work

There have been substantial efforts in modeling the
propagation dynamics of Internet worms recently. Stan-
iford et al. used the logistic function to fit the propaga-
tion curve of the Code Red worm [11]. Zou et al. pro-
posed a two-factor worm model to model the epidemic
spreading of Internet worms [17].

So far, there are only a few papers that investigate
the behavior of mobile worms. Bose et al. gave a
comprehensive survey of existing Bluetooth viruses and
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Figure 3. Infection curves of under different mo-
bility models (T to

inq = 10.24s, N to
inq = 5, T to

idle = 20s)
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Figure 4. Infection curves of under different mo-
bility models (T to

inq = 5.12s, N to
inq = 3, T to

idle = 10s)

worms in [3]. As a starting point of research on Blue-
tooth worms, simulations of the Bluetooth worm propa-
gation have been pursued from different perspectives in
[3][15][12]. In [14], Yan et al. investigated the impact of
mobility patterns on the Bluetooth worm propagation.
Mickens et al. proposed a probabilistic queueing model
to model epidemic spreading in mobile environments [7].

9 Conclusions

Recently, Bluetooth worms have created growing se-
curity concerns over the data stored on mobile devices
such as cellular phones and PDAs. This paper proposes
a detailed model that characterizes the propagation dy-
namics of Bluetooth worms. We have used our model
for a large-scale scenario roughly modeling metropoli-
tan Los Angeles (4M people with Bluetooth devices on
500 square miles). After setting model parameters ac-
cordingly (λne = 0.2108 and Jin = 0.2372), our model
predicts that the time it would take to infect 99% of the
devices is slightly less than one hour.
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