Self-Similar Algorithms for Dynamic Distributed Systems*

K. Mani Chandy and Michel Charpentier!
Computer Science Department, California Institute of Technology, Mail Stop 256-80
Pasadena, California 91125
mani@cs.caltech.edu, charpov@cs.unh.edu

Abstract

This paper proposes a methodology for designing a
class of algorithms for computing functions in dynamic dis-
tributed systems in which communication channels and pro-
cesses may cease functioning temporarily or permanently.
Communication and computing may be interrupted by an
adversary or by environmental factors such as noise and
power loss. The set of processes may be partitioned into
subsets that cannot communicate with each other; algo-
rithms in which all such subsets behave in a similar fash-
ion, regardless of size and identities of processes, are called
self-similar algorithms. Algorithms adapt to changing con-
ditions, speeding up or slowing down depending on the re-
sources available. The paper presents necessary and suffi-
cient conditions for the application of a self-similar strat-
egy. Self-similar algorithms are developed for several prob-
lems by applying the methodology.

1 Introduction
1.1 Contribution

We develop algorithms for dynamic distributed systems
in which processes may be repeatedly disabled and then re-
enabled during the course of a computation. A disabled pro-
cess executes no actions and does not change state. Com-
munication between processes may be disrupted temporar-
ily or permanently. We use the terms agent and process
interchangeably because agent is used more often than pro-
cess in fields, such as mobile-agent systems, which are rel-
evant to this paper.

Dynamic distributed systems are useful in analyzing sev-
eral types of problems. In an adversarial situation an oppos-
ing team may disable agents and communication channels.
In mobile agent systems, agents go in and out of communi-
cation range as they travel. Agents may cease functioning

*This work is supported by AFOSR MURI award FA9550-06-1-0303.
TOn leave from the University of New Hampshire, 2006/07

after they run out of battery power and resume operation
when they gain access to other sources of power. Agents
communicating by wireless interfere with each other. This
paper discusses algorithms in which agents meet a collec-
tive goal—such as computing a function of sensor values—
despite the dynamic nature of the system. The algorithms
speed up or slow down depending on the resources avail-
able. This paper:

e proposes a model for distributed systems composed of
sets of agents operating in extremely dynamic and pos-
sibly adversarial environments;

e presents a methodology for developing a class of algo-
rithms for dynamic systems;

e identifies necessary and sufficient conditions for the
application of the methodology;

e and applies the methodology to example problems.

This paper contributes to research on robust systems by de-
veloping multi-agent algorithms that perform correctly un-
der a variety of conditions. The example problems solved
in this paper are simple provided the environment is benign.
Our challenge is to develop classes of algorithms that per-
form efficiently when conditions permit, and perform cor-
rectly even under adverse conditions

1.2 Agents and their Environment

A system consists of a set of agents and an environ-
ment in which the agents operate. The environment has a
state space, and each agent has a state space. The state of
the environment determines how agents may interact with
each other. A set of agents may be able to communi-
cate with each other in one state of the environment and
unable to communicate in a different environmental state.
An agent may be disabled—unable to change state—in one
state of the environment and enabled in another environ-
mental state.

A set of communicating agents can execute collaborative
algorithms that change the states of participating agents.

IEE |-:

COMPUTER
SOCIETY

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007 IEEE

When the environment does not permit these agents to com-
municate or compute they cannot execute collaborative al-
gorithms. We model the environment’s ability to enable
and disable agents and communication channels by speci-
fying the agent transitions that are enabled in each state of
the environment. Agent transitions may become enabled or
disabled as the environment’s state changes.

The environment does not change the states of agents
though it can disable agent transitions. Agents do not
change the state of the environment nor enable or disable
transitions of the environment’s state. Designers cannot
specify the environment’s states and transitions; these are
given in the problem specification. Designers can, however,
specify certain progress properties assumed of the environ-
ment. If no restrictions are placed on the environment then
the environment can permanently disable all agents. The
designer’s challenge is to find weak constraints on the en-
vironment that guarantee that the agents reach their goals
eventually.

What should agents in a group do when they cannot
communicate with agents outside the group? Since all the
agents outside the group may be disabled, the group be-
haves as though the entire system consisted of that group
of agents alone. We give the name self-similar computa-
tions for computations in which each group of communi-
cating agents acts as though the total system consisted of
that group alone. A definition of self-similarity in the liter-
ature is that a self similar object is similar to part of itself.
Likewise, a self-similar computation by a group of agents
is similar to computations by its subgroups of agents. Self-
similar algorithms can be defined succinctly because a de-
scription is given for a single algorithm that is employed by
all groups regardless of size and identity.

The state spaces of agents may be discrete or continu-
ous. We have started to study algorithms for systems in
which variables change value continuously with time, and
in which dynamics are specified by differential or difference
equations. This paper restricts attention to discrete state
transition systems that are specified using temporal logic.

Our model is defined in sect. 2. The methodology and
the conditions of its applications are presented in sect. 3.
Examples are developed in sect. 4. Section 5 discusses re-
lated work and summarizes the paper’s contributions. Most
proofs are omitted or are presented in outline form, due to
insufficient space; detailed proofs are given in [2].

2 A Model of Dynamic Distributed Systems
2.1 Dynamic Systems as Transition Systems
Transition Systems A (fair) transition system is defined

by (i) a set of states, (ii) a predicate on states that speci-
fies the set of initial states, (ii7) a relation — between pairs

of states, and (iv) a progress property. A computation is
a sequence of states, starting from an initial state, where
X — X' holds for each successive pair of states X and X’
and the computation satisfies the progress property.

States of Dynamic Distributed Systems A dynamic dis-
tributed system has a fixed set .4 of agents. Each agent a
has a state space. A system state is a pair (G, S) where
G is the state of the environment and S is the multiset (or
bag) of states of agents in the system. We use GG, G’ and S,
S’ to denote values of G and S, respectively. We use bold
symbols such as €, U, { or } to represent multiset opera-
tions and ordinary symbols such as €, U, { or } to represent
(ordinary) set operations. For any system state (G, S) and
agent a, let S, be the state of agent a while the system is in
state (G, S); then: S = {S, | a € A}.

State Transitions of Dynamic Distributed Systems Let
B be a subset of the agents. Let Sp be the multiset of states
of agents in B when the system is in state (G,S): Sp =
{S. | « € B}. As aconsequence, S = S4 and, for any
disjoint subsets B and C of A, Spuc = Sp U Sc.

A set B of agents can execute a collaborative algorithm
that changes Sp. The collaborative algorithm executed is
described by a relation R that specifies the state transitions
of the set B from Sp to S; while the environment is in
state G

(G,Sp) R (G, Sp)

We require that relation R is reflexive—for any set B of
agents and any state G of the environment, (G,Sg) R
(G, Sp)—because, under any environment, a group of
agents can always leave the state of the system unchanged.
In the following, the phrase: “transition of B from Sp to
S%” means that S and S are states of a group B of agents
where (G, Sg) R (G, S) holds for some G.

The entire state (G, S) can change because of a change
in either the environment G or the agents S but not by
both simultaneously. Furthermore, disjoint sets of agents
can execute the algorithm concurrently. The possible state
changes of S are specified by R. Our goal is to develop al-
gorithms that work for all types of environments. Therefore,
we place no direct constraints on state transitions of the en-
vironment. We do, however, place constraints—specified as
progress properties—on infinite computations.

Let 7 be a partition of the set A of agents into groups.
Each group B in 7 can make a state transition from Sg to

5 provided (G, Sg) R (G, S) holds. A state transition
from S to S’ of the set of all agents is one in which every
group B of agents in 7 makes a state transition from Sp to
S’ (including the possibility S% = Sp) and hence VB €
m : (G,SB) R (G,S%). Since no constraints are placed
on transitions of the environment’s state, the environment

IEE |-:

COMPUTER
SOCIETY

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007 IEEE

may transit from a state G to any state G’. A transition
of the entire system is either a transition of the environment
from state G to any G’ while agent states remain unchanged,
or a transition of the states of agents from S to S’ while
the environment state remains unchanged. The transition
relation for the entire system (G, S) is defined as follows:

((G,8) = (¢, 5)) =
(S=95) v
(G=G") N 3r:VBen:(G,Sp)R(G,SE)))

where 7 is a partition of the set 4 of agents.

Progress Properties of Dynamic Distributed Systems
No progress is possible while the environment prevents all
agents from changing state. We propose a model of dy-
namic systems that makes no assumptions about transi-
tions of the environment’s state over finite computations and
makes only weak assumptions about environment state tran-
sitions over infinite computations. A key issue is to iden-
tify requirements about the environment that guarantee that
agents do not remain stuck in the same state forever. We de-
fine a relation 3 between the state of the environment and
the state of the agents where S &~ G means that while the
environment is in state G the agents can transit from S to a
different state.

S+ G =39:5#5:(G,S) — (G, S5))

Read S & G as “S escapes G”. Note that “agents can
escape S when the environment is in G” means only that
there exists a transition of agents from state S to some other
state S’ while the environment is in state G'; no assumptions
are made about S’ other than that it is different from S.

Let @ be a predicate on states G of the environment.
We extend the definition of relation & from environmen-
tal states to predicates on environmental states: S & (@ is
true when the environment allows a transition of agent states
from S to a different state while () holds.

S+ Q = (VG:Q(G): S+ G)

If agents can escape S when the environment is in any
state (G that satisfies), and the environment satisfies () in-
finitely often, then agents in S either transit to a different
state or are given the opportunity to do so infinitely often.
We restrict our attention to dynamic systems that satisfy the
following requirement, which we call the escape postulate.
Escape Postulate: If agents can transit from a state in-
finitely often then they will do so eventually.

VS: S Q:00Q = OO(S #S) (1)

The operators [J and ¢ are the usual henceforth and eventu-
ally of linear-time temporal logic [6]: OO P means that, in

any computation of the system, predicate P holds infinitely
often. The escape postulate is not too restrictive; neverthe-
less we need to prove that it holds for a given implementa-
tion. One can, for example, imagine the following system
for which the escape postulate does not hold: the environ-
ment always transits from G to G’ before the agents can
take a step, where both G and G’ satisfy (). In this case,
even though agents can escape S while the environment is
in G or G’ and though @ holds infinitely often, the agents
may remain stuck in S forever.

2.2 Specification of Algorithms

The specification of an algorithm for a dynamic dis-
tributed system consists of a specification of agents and a
specification of the environment.

Specification of the Algorithm of Agents The specifica-
tion of agents consists of a specification of their state spaces,
their initial values and the state-transition relation k.

Specification of the Environment The state space, initial
states, and transition relations of the environment are given
and designers cannot specify these values. Designers may
specify a set Q of predicates on environmental states and
require that every predicate in Q holds infinitely often:

(VQ € Q : 00Q) (2)

The environment may change its state in any arbitrary way
subject to this constraint.

2.3 Discussion of the Model

Different models of dynamic systems are suitable for dif-
ferent purposes. In this paper we propose a simple model
in which (i) agents are specified by a single state-transition
relation R, (ii) there are no assumptions about the environ-
ment regarding finite computations, and (iif) assumptions
about infinite computations are defined by a set Q of predi-
cates where (2) holds.

An alternate approach is to specify agents as action sys-
tems with fairness criteria about action execution. Action
system models are more descriptive than models defined
by a single state-transition relation in the sense that more
items—actions, fairness criteria—are used in specifying the
model. For some problems we can prove more properties
about action-system models than the single-relation model;
however, we chose to begin with the single-relation model
for reasons of simplicity.

A challenge in designing algorithms is to find a set Q
such that (2) is a weak restriction on the environment. We

IEE |-:

COMPUTER
SOCIETY

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007 IEEE

do not define “weak” and “strong” restrictions on the envi-
ronment formally because their meanings are problem de-
pendent. For instance, in many applications agents are dis-
tributed in space, and to require that agents near each other
can communicate with each other is a weaker restriction on
the environment than to require that agents far away from
each other can communicate with each other. We give a
few examples of suitable sets Q in section 4 where several
examples are considered.

In the remainder of the paper, we restrict our attention to
a specific set of problems that occur in dynamic distributed
systems. The state spaces and initial states of agents are
given for these problems and the objective is for agents to
compute a function of the initial state. Our design task is
to specify R and Q where we can prove that the algorithm
defined by R satisfies the specification provided assumption
(2) on Q holds. The states, transitions and initial state of the
environment are not specified—the only design parameter
regarding the environment is Q.

3 A Class of Algorithms for Dynamic Systems
3.1 Problem Specification

We are given a function f from agent states to agent
states where f is idempotent: f(f(S)) = f(S). We are
required to design a system such that if the agents state
S has an initial value S(°) then within a finite number of
steps a point in the computation is reached after which
S = f(S©) forever:

(S=50) = 00(S = f(S)) 3)

In a sensor network, for instance, f is a function on agent
variables such as values read by sensors. If f computes
the average of sensor values then the specification requires
that in a finite number of steps S becomes and remains the
average of the initial values S(*) provided (2) is satisfied.

3.2 Consequences of the Specification

Terminology We use the following concepts from tempo-
ral logic [6]: ~ (“leads-to”) and stable . Their meanings
are as follows. “P ~» (” means if P is true at any point in
a computation then () is true at that point or a later point:
(P~ Q) =0(P = ¢Q). The property “stable P
means if P holds at any point in a computation then it con-
tinues to hold thereafter: (stable P) = O(P = 0OP)

Lemma If the agents are in state S at any point in a com-
putation then the agents will eventually remain forever in
state f(.S) in that computation:

O((8=5) = 00(8 = f(5)))

Proof: Suppose the system reaches a state S = S. Because
S represents the entire state of the multi-agent system, there
is nothing that distinguishes the remainder of this computa-
tion from a computation that begins with the initial state
S = 5. From (3) such a computation must eventually reach
a state where S becomes and remains equal to f(.5).

Theorem: Conservation Law An invariant of programs
that satisfy the specification (3) is f(S) = S* where S* =
f(S©). (We call this property the conservation law be-
cause f(S) is conserved.)

O(f(S) = 57)

Proof: Let S and S’ be states of agents in a computation.
From the previous lemma there is an infinite suffix (tail) in
which S = f(S) and S = f(S5’). Hence f(S) = f(5).
Substituting (%) for S’ gives that f(S) = S* for all reach-
able states .S.

Lemma: Stability
stable (S = f(.9))

Proof: Suppose there exists a transition from f(.9) to a dif-
ferent state S” in some state G of the environment. When-
ever the state f(5) is reached in the future, the environ-
ment could be in state GG, thus enabling the transition again.
Therefore, there exists a possible computation in which
f(S) is always followed by S’. This contradicts the pre-
vious lemma that the system must eventually reach and re-
main in a state S = f(f(5)) = f(5).

Alternate Specification From the above discussion, an
alternate specification is to design an algorithm in which
S = f(S) is stable and is eventually reached. Therefore,
the original specification (3) can be replaced with:

stable (S = f(9)) “4)
(8=25)~ (8= f(9)) ©)

3.3 Consequences of Self Similarity

From the conservation law, any state transition conserves
f(S). We design algorithms in which transitions by all
groups of agents are self-similar. In particular, any group
B behaves like the entire system and hence preserves f for
that group.

Group Conservation Law Every state transition from
Sp to S%; of a group B preserves f for that group:

f(SB) = f(Sp)

IEE |-:

COMPUTER
SOCIETY

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007 IEEE

Suppose the set of agents is partitioned into groups B and
C, both of which take concurrent steps that preserve f for
their groups. These steps constitute a step of group B U C'
and therefore must preserve f for that group. We restrict
attention to functions f for which the following property
holds:

Local Conservation Implies Global Conservation

(f(SB) = f(SB)) A (f(Sc) = f(Sc)) N (BN C = o)
= (f(SBuc) = f(SBuc))

3.4 Super-ldempotent Functions

A function f from (finite) multisets to multisets is de-
fined to be super-idempotent if and only if it satisfies the
following equation for any multisets X and Y':

fXUY) = f(f(X)uY)

A super-idempotent function is also idempotent as is evi-
dent by setting Y to the empty set in the above equation.
The next theorem states that super-idempotent functions
are exactly those idempotent functions for which the “local
conservation implies global conservation” property holds.

Theorem: Local Conservation Implies Global Con-
servation Exactly for Super-Idempotent Functions A
function f is super-idempotent if and only if it is idempo-
tent and satisfies the following property.

For any multisets X, X', Y and Y:

(f(X) = FXND A) = F)
= (f(XUY)=fX"UY)

The following theorem allows for simpler checks to deter-
mine if a function is super-idempotent.

Theorem: A function f from multisets to multisets is
super-idempotent if and only if it is idempotent and it satis-
fies the following property. For any multiset X and value v:

fXU{o}) = F(FX)U{v}) ©)

The next lemma identifies a sufficient condition for a
function to be idempotent. This condition is easily checked
for some problems (see section 4 for examples). Let o be a
binary, associative, commutative operator on multisets. Let
X be a nonempty multiset consisting of elements x; for
0 <j < JanddefineoX asoX = {zg}o{z1}o...0{x;}.

Lemma: A sufficient condition for a function f from mul-
tisets to multisets to be super-idempotent is that there ex-
ists a binary, associative, commutative operator on multisets
such that: f(@) = @ and f(X) = oX for nonempty X.

3.5 Variant Functions

We use a variant function h over the state S, where the
range of the function is a well-founded set for some order >.
We design algorithms where each state change reduces the
value of the variant function. From (5), the goal state is S*
from any state .S, and hence we propose that the minimum
value of h subject to the invariant f(S) = S* is taken when
S=5*

(f(S) = ST)A(S#5%) = h(S)>h(57)

Next we present results for A that follow in exactly the
same way as the corresponding results for f. We call a state
change an improvement exactly when it reduces the value
of h. Since our algorithms are self-similar we design them
with the following property:

Group State Changes are Improvements
sition of a group B from Sp to S’5:

For any tran-

Sp # Sp = h(Sp) < h(Sp)

Local Improvement Implies Global Improvement For
any disjoint sets B and C' of agents, and any state transitions
from Sp to S and from S¢ to S¢ that conserve f for both

groups (i.c.. /(Sp) = f(Sp) and £(SL) = f(Sc):

(h(SE) < h(SB)) A (Sc = Sc)

= (MSBuc) < h(Ssuc))
(h(SB) < h(SB)) A (h(Se) < h(Sc))

= (h(Spuc) < h(SBuc)) (1)

Theorem: Function h satisfies (7) if function f is super-
idempotent and for all multisets X and X', and element v
where f(X') = f(X):

(M(X") <h(X)) = (WX U{v}) <h(XU{v}))

In many cases, the desired properties of function A can
be verified without having to resort to the previous theorem
by using the following lemma:

Lemma: Given a super-idempotent function f, a suffi-
cient condition for h to satisfy (7) is that it has the following
form, for some family of functions h,:

h(Sp) = ha(Sa) (8)

a€B

IEE |-:

COMPUTER
SOCIETY

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007 IEEE

3.6 Casting the Given Problem as Con-
strained Optimization

The previous section shows that we design R as a con-
strained optimization algorithm, using the constraint that f
is preserved and some objective function h. Therefore, we
expect R to be a refinement of the relation > defined as
follows:

Sp>Sp = (f(SB) = f(Sp)) A (h(SB) > h(SE))
SB ESIB = (S I>S/B) vV (Sp = S/B)
The relation > expresses that groups of agents take opti-

mization steps in which f is conserved and h decreases for
the group.

3.7 Distributed Algorithms for
strained Optimization

Con-

To verify the correctness of an algorithm defined in terms
of B>, designers must discharge three proof obligations. The
proof obligations are as follows, where S and S’ are univer-
sally quantified over all the reachable states of the system:

Proof Obligation: R Implements >
(G,.9R(G,S)) = (SEY)

This first proof obligation expresses that every step taken by
the algorithm R is a valid optimization step.

Proof Obligation:
Nonoptimal States

(S#£5) = Qe Q: S+ Q))

This second proof obligation expresses that nonoptimal
states can be escaped when each predicate in Q is enabled
infinitely often. Note that this proof obligation deals with
both the environment and R. Once proved, this formula
can be combined with the assumption on the environment
(2) and the escape postulate (1) to show that agents eventu-
ally transit from any nonoptimal state.

Agents Eventually Transit out of

Proof Obligation: Local-to-Global Property

(SBES%)/\(SCIZS%)/\(BQC =g) = (SBUCES/Buc)

(10)
The last proof obligation expresses that if two groups of
agents take optimization steps concurrently, their set union
changes state in a way that is compatible with >.

Theorem (Correctness): An algorithm specified by a
transition relation R and a set Q such that they satisfy (3.7),
(9) and (10) solves the problem of computing f(S®)) ac-
cording to specifications (4) and (5).

4 Systematic Derivation of Algorithms

In this section we develop algorithms for several prob-
lems using our method. We illustrate consensus and non-
consensus examples, as well as examples for which the
given function f is not super-idempotent. For each exam-
ple, we propose a suitable function / that has the summation
form of (8). Therefore, the resulting constrained optimiza-
tion step D> satisfies the local-to-global proof obligation as
long as the function f is super-idempotent.

We present one or more possible sets Q to constrain the
environment. These sets are defined in terms of a graph in
the following way. Consider a graph (A, E') whose vertices
are agents and edges are communication links. Consider an
edge e from E and define a predicate (). to mean that the
edge e exists and is available for communication. Define
Qp =1{Q. |ec E}.

We do not describe explicit refinements R of the rela-
tion >. Such refinements depend on specific assumptions
on the environment of the system (e.g., what type of com-
munication is available to agents) and are beyond the scope
of this paper. When it is informative, we briefly describe
possible strategies for implementing > through K.

4.1 Minimum of a Set

As a first example, consider the task of computing the
minimum of a distributed set of values as a consensus prob-
lem: The desired final state is one in which every agent has
computed the minimum.

Agents State:
T4, initially equal to 9:((10). We assume that Va : xflo) > 0.

Each agent a has a single integer variable

Distributed Function: The task is to compute f(S(®)
where S0 = {xgo) | a € A} and f of a multiset is
a multiset of same cardinality in which all the values are
equal to the minimum of the original multiset. For in-
stance, f({3,5,3,7}) = {3,3,3,3}. Note that f(X) is
of the form oX for a commutative associative operator o
and hence is super-idempotent.

Objective Function:
as follows:

We define the objective function h

hS)=> a4

acA

Function A is integer valued and only takes nonnegative val-
ues, so its range is well-founded.

Algorithm R: The relation R can be any algorithm where
each state change maintains the minimum of a group while
reducing the sum of that group. For instance, all the agents

IEE |-:

COMPUTER
SOCIETY

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007 IEEE

in a group may update their value to any value between their
current value and the minimum of the group.

Assumption QO on the Environment: It is straightfor-
ward to verify that, for any connected graph F, the set Qp
satisfies the proof obligation (9).

4.2 Sum of a Set

Consider now a similar problem where the task is to
compute the sum of values held by individual agents. Un-
like the minimum, this problem cannot be solved as a sim-
ple consensus, because if each agent replaces its value with
the global sum, this sum changes. In other words, as a con-
sensus, the function f that defines the sum problem is not
idempotent. Instead, we solve a different problem in which
the requirement is for one agent to obtain the sum while all
the other agents have value zero.

Agents State:
T4, initially equal to x((lo). We assume that Va : m((lo) > 0.

Each agent a has a single integer variable

Distributed Function: The function f transforms a mul-
tiset into a multiset with only two distinct values: the sum
of the numbers from the original multiset (with multiplic-
ity 1) and zero (with multiplicity N — 1). For instance,
f({3,5,3,7}) = {18,0,0,0}. Function f is defined by a
commutative associative operator and is super-idempotent.

Objective Function: We choose a function h defined as:

2
)= (L a) - X

ac€A ac€A
As in the previous example, function A is nonnegative and

integer-valued and hence its range is well-founded.

Algorithm R: The relation R defines state changes that
maintain the sum of a group while increasing the squares of
the values of that group. This can be achieved by having
values move away from each other, for instance by making
small values smaller and large values larger.

Assumption Q on the Environment: In this example, it
is important that the agent that will eventually compute the
sum keeps interacting with other non-zero agents directly.
Zero agents do not have any meaningful interaction and
cannot be used as intermediates between non-zero agents.
Since the assumption Q that we can make on the environ-
ment is independent from the values of agents, the weak-
est assumption that guarantees termination is that any two
agents have the opportunity to communicate infinitely often.
This corresponds to a Qg in which E is a complete graph.

4.3 Second Smallest Value

This example is a variation of the minimum example.
This time, the problem is to compute the second smallest
value of a set. We define the second smallest value of a
multiset as the smallest value that is different from the min-
imum, if such a value exists. When all the values in a multi-
set are equal, we define the second smallest to be this value.
Agents State: Each agent a has a single integer variable
T4, initially equal to xgo).

Distributed Function: The task is to compute f(S())
where S(©) = {ng) | a € A} and f of a multiset is a mul-
tiset of same cardinality in which all the values are equal to
the second smallest value of the original multiset, as defined
above. For instance, f({3,5,3,7}) = {5,5,5,5}.

Function f is idempotent but not super-idempotent: Let
X={1,3} and Y={2}; f(X) = {3,3} and f(f(X)UY)
= f({3,3,2}) = {3,3,3}, but f(XUY) = f({1,3,2}) =
{2,2,2}.

Since f is not super-idempotent, optimization steps de-
fined by the relation > cannot satisfy the local-to-global
proof obligation (10). Therefore, the self-similar approach
we advocate cannot be applied directly to this problem. It
is possible, however, to generalize the given problem to one
for which the self-similar approach works: compute both
the smallest and second smallest values.

Agents State: Each agent ¢ now has a pair of variables
(4, Ya), initially equal to (acflo), xgo)) (i.e., the first and sec-
ond members of each pair are identical). We assume that

33((10) > 0, for all agents a.

Distributed Function: The task is to compute f(S())
where 5 = {(2{?,2{") | a € A} and f of a multiset
is a multiset of same cardinality in which all the values are
equal to the pair (x,y), where = and y are the smallest two
of all the values that appear in the original multiset, as a
first or second element of a pair, except when all the values
of the original multiset are equal, in which case the multi-
set is unchanged. For instance, f({(2,5),(3,4),(2,7)}) =
{(2.3),(2,:3). 2.9} F({(2.2). 2.2)}) = {(2,2), (2.2)}.
Function f is clearly idempotent. To show that it is
super-idempotent, one needs to verify that it satisfies (6),
for any multiset X and any pair (z,y) (see [2] for details).

Objective Function: The objective function & is defined
as a generalization of the summation function used in the
minimum example:

hS) =" (ra +)

acA

IEE |-:

COMPUTER
SOCIETY

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007 IEEE

This example shows how one can deal with an idem-
potent function that is not super-idempotent by transform-
ing the original problem into a suitable (super-idempotent)
problem. The strategy is illustrated again in section 4.5 on
a different example. An obvious downside is that the trans-
formed problem requires agents to have access to a larger
memory (two values instead of one), a drawback that will
be even worse if one is interested in computing the k-th
smallest value of set. An alternative to computing the k-th
smallest value this way is to sort the entire set of values in
place (no additional memory required). We study the prob-
lem of sorting a set of values in the following section.

4.4 Sorting

The problem is to sort an array of numbers in nonde-
creasing order, where each agent holds one value from the
array. The proposed solution can easily be generalized to
the case where each agent holds one or more contiguous
ranges of the array instead of a single value.

Agents State: Each agent a holds a pair of values (i4, 4),
which represent an index and a corresponding value in the
distributed array. We assume that the set of indexes is to-
tally ordered for some order relation < and that the set of
values is totally ordered for some order relation <, possibly
distinct from <. We also assume that all the 7, are distinct.

Distributed Function: The task is to compute f(S(®)
where 5© = {(i%, 2{") | a € A} and f of a multiset
X is the unique multiset Y of same cardinality with the fol-
lowing properties:

(V(iasxa), (ip,xp) EY g <ip = x4 X Tp)
{i|(i,x) e X} ={i]| (i,2) €Y}
{z|(i,2) e X} ={z|(i,z) €Y}

For example, f({(1,3),(2,5),(3,3),(4,7)}) equals
{(1,3),(2,3),(3,5), (4,7)}. This function is clearly idem-
potent (sorting a sorted array has no effect). To see that
function f is also super-idempotent, observe that f(X) dif-
fers from X by a permutation of the values w.r.t. the in-
dexes. To sort an array directly of after some values have
been permuted yields the same sorted array.

Objective Function: A classic objective function for sort-
ing problems is a function that counts the number of out-of-
order pairs in the array:

h(S) = {(a,b) € Ax A| (iqg < ip) A (p < xq)}]

The range of h is well founded. However, this objective
does not satisfy the desired local-to-global property (10) of
relation >, as shown on the following counterexample.

h=10 614[312[1]— [6] h=9
h=14 [7]516]4[3[2[1]|— [6]5[7[3[4[1[2] =15

Figure 1. “Number of out-of-order pairs” does
not have the local-to-global property.

Suppose that A consists of 7 agents and that the set of
indexes and the set of values are both equal to the set of in-
tegers {1---7}. We represent the state S of the system as
the list of values held by agents, in order of their indexes.
Consider the state S = [7,5,6,4,3,2,1]; this is a state in
which agent 1 holds value 7, agent 2 holds value 5, etc.
Let A be partitioned into two groups B = {1,3,4,5,6,7}
and C = {2} and assume a transition from S to S’ =
[6,5,7,3,4,1,2]. We have f(Sz) = f(Sp) and S;, = Sc.
One can also see that h(Sp) = h([7,6,4,3,2,1]) = 10 and
h(S%) = h([6,7,3,4,1,2]) = 9. Thus, the pair (5, 5’) sat-
isfies Sp > S and S¢ > S(.. However, we can see that
h(Seuc) = h([7,5,6,4,3,2,1]) = 14 and h(Sh o) =
h([6,5,7,3,4,1,2]) = 15. Therefore, Spuc > Sp o is
not satisfied and (10) does not hold. Fig. 1 describes the
transition from Sg to S% (for which h decreases) and the
corresponding transition from Spyc to Sz, (for which h
increases).

It is important to note that the situation here is different
from the second smallest value example, in which (10) was
not satisfied because f was not super-idempotent. Since
f here is super-idempotent, a different objective function
h might be chosen to make relation > satisfy the local-to-
global property. We propose to replace the previous func-
tion with a new objective function. To simplify the defini-
tion, assume the indexes 7, are a consecutive range of inte-
gers and the values wgo) to be sorted are distinct. Then, each
value z, can be associated with a unique index ord(z,,) that
is the desired position of x, in the sorted array. The objec-
tive function is defined as follows:

h(S) =Y (ia — ord(z,))?

acA

Informally, / is the sum of the squares of the distances be-
tween the current position and the desired position in the
array, for all values. This new objective function has the
summation form of (8) and its range is well-founded.

Algorithm R: The relation R can be any algorithm that
permutes the elements of a group while reducing h. It can
be verified, from the definition of h, that any swap of one
or more out-of-order pairs of elements decreases the value
of the function. Therefore, any sorting algorithm that works
by swapping out-of-order pairs is acceptable.

IEE |-:

COMPUTER
SOCIETY

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007 IEEE

Figure 2. “Circumscribing function” not
super-idempotent.

Assumption Q on the Environment: Although this ex-
ample is, like the sum, an example of a non-consensus al-
gorithm, it does not require the environment to enable the
edges of a complete graph. It is enough that each agent can
communicate infinitely often with the agents corresponding
to the positions on the left and on the right of its own index
in the array. Therefore, a possible constraint on the envi-
ronment is a set Qg in which F is a linear graph of all the
agents in order of their indexes.

4.5 Circumscribing Circle

As alast example, we consider a consensus problem with
a geometric flavor. In this example, each agent represents a
point in a two-dimensional space, and agents need to com-
pute the circumscribing circle of all these points, i.e., the
unique circle of smallest area such that all the points are on
or inside the circle.

Agents State: Each agent ¢ maintains its (constant) co-
ordinates, as well as its own estimate of the circumscribing
circle, as a center point and radius. So, the state of an agent
is a 5-tuple (X,, Y, z,y,r), where (X,,Y,) represent the
coordinates of the agent and (z,y,) is the agent’s current
view of the circumscribing circle. Initially, 20 = X,
y© =Y, and r(®) = 0.

Distributed Function: Informally, the function f to be
computed is defined as follows. Given a multiset of agent
states, it builds a multiset of same size in which the (z,y,7)
part of each 5-tuple is modified so they are all equal to
(X,Y, R), where (X,Y, R) defines the smallest circle that
contains all the circles (x, y,) of the agents in the multiset.
It follows immediately that f(S()) is the circumscribing
circle of the points represented by the agents. It is also clear
that f is idempotent. However, as shown on fig. 2, the func-
tion f is not super-idempotent.

Assume B is the set that consists of agents 1, 2 and 3 and
C is the singleton {4}, agents 1, 2 and 3 have computed the

Figure 3. “Convex hull function” is super-
idempotent.

exact circumscribing circle for these three agents, and the
state of agent 4 is a point (circle of radius zero) centered
on (X4,Yy). In the case depicted in fig. 2, f(Sp U S¢)
(solid line circle) and f(f(Sp) U Sc¢) (dashed line circle)
are different, which means that f is not super-idempotent.

As in the example of the second smallest value, the given
problem needs to be transformed into a more general prob-
lem for which the computed function is super-idempotent
and a suitable objective function h can be found. In this
case, a possible generalized problem is to compute the con-
vex hull of a given set of points, from which the circum-
scribing circle can easily be obtained.

Fig. 3 shows a set of points and their convex hull (on the
left) and one additional point (on the right). A geometrical
argument can be used to show that the convex hull of all
the points is equal to the convex hull of all the points of the
original convex hull plus the additional point. From this, it
follows that the convex hull function is super-idempotent.

Agents State: Each agent maintains, in addition to its (con-
stant) coordinates (X,,Y;), a set of points V, that repre-

sents its current hull. Initially, v = {(Xéo), Ya(o))}.

Distributed Function: The function f transforms a mul-
tiset of agent states into a multiset of same size in which
all variables V, are equal to the convex hull of the union of
all the points in the V,, sets of the original multiset. This
function is super-idempotent.

Objective Function: A possible objective function & is
defined in terms of a constant P and a function perimeter:

h(S) = |A[.P =) perimeter(V,)
acA

P is the perimeter of the global convex hull to be computed
and perimeter(V,) is the perimeter of the convex hull de-
fined by V,,. The range of £ is a finite set (the perimeters of
the convex hulls of all the subsets of points) and therefore
is well-founded for <.

IEE |-:

COMPUTER
SOCIETY

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007 IEEE

Algorithm R: A possible strategy to define relation R is
for groups to compute convex hulls that include two or more
of the current hulls as already computed by agents. A group
of agents (a;) each with a convex hull V,,, can replace their
hull with the convex hull of the points in | J; V;. A geomet-
rical argument shows that such a step increases the sum of
the perimeters of the hulls, hence that h decreases. There
are however more possible strategies. In particular, it is not
required that all the agents in a group compute the same
hull at each step; so R can be easily implemented by asyn-
chronous message passing: an agent a can update V, upon
receiving a message without requiring that the sender of the
message changes its own estimate of the hull.

Assumption Q on the Environment: A suitable choice
for parameter Q is Q@ where F is any connected graph.

5 Related Work and Conclusions

A methodology for solving the problems discussed in
our paper is for each agent to take repeated global snapshots
or to employ group communication protocols—see the sur-
vey [3]; these approaches work well in systems that are rel-
atively static but are inefficient in dynamic systems.

Fault tolerance in dynamic distributed systems is studied
in [11, 7, 9]. Pioneering studies and surveys of consensus
algorithms include [5, 8]. Decentralized iterative schemes
for consensus problems have been proposed by [4, 12]. Dis-
tributed algorithms based on convex optimization are pre-
sented in [1]. Consensus problems in networks of agents
with switching topology are treated in [10].

This paper builds upon earlier work by: (i) dealing with a
class of problems that includes, but is not restricted to, con-
sensus among agents; (ii) developing classes of algorithms
for each problem where all algorithms are specified in terms
of increasing the value of an objective function subject to a
constraint and where the algorithm class includes efficient
algorithms as well as algorithms that behave correctly even
in adverse circumstances; (iif) proposing a compositional
model of the environment and agents which is more gen-
eral than many of the models considered earlier; and (iv)
providing a general approach with necessary conditions and
sufficient conditions for application of the methodology.

The distributed systems model presented here deviates
from most models used in the literature in two significant
ways. First, common models in the literature, such as pro-
cess networks, are static. By contrast, this paper presents
algorithms that adapt to dynamic environments by exploit-
ing whatever resources are available to them; the algorithms
permit efficient computations in benign environments and
computations that progress slower in adversarial environ-
ments. Second, most algorithms in the literature are speci-
fied in terms of a program for each agent. By contrast, algo-

rithms in this paper are specified as goals for agents: each
agent and group of agents has a utility (objective) function
that they attempt to maximize subject to a constraint—the
conservation law. Our design task is to identify an agent’s
utility function.

Many papers in the literature present efficient programs
for agents that operate in specific types of environments.
For most practical problems, such as designing distributed
file systems, traditional approaches are preferable to design-
ing systems of agents that attempt to improve their utili-
ties by exploiting available resources. Systems specified in
terms of goal-driven agents operating in dynamic environ-
ments, about which very little is assumed, help in develop-
ing theories of robust distributed systems.

References

[1] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed
computation: Numerical methods. Prentice Hall, 1989.

[2] K. M. Chandy and M. Charpentier. Self-similar algorithms
for dynamic distributed systems. Technical Report CS—-TR—
2007-001, California Institute of Technology, Mar. 2007.

[3] B. Charron-Bost. Agreement problems in fault-tolerant dis-
tributed computing. In 28th Annual Conference on Current
Trends in Theory and Practice of Informatics, volume 2234
of LNCS, pages 10-32, 2001.

[4] S. Chatterjee and E. Seneta. Towards consensus: some con-
vergence theorems on repeated averaging. Journal of Ap-
plied Probability, 14(1):89-97, 1977.

[5]1 N. Lynch. Distributed algorithms. Morgan Kaufmann Pub-
lishers, 1997.

[6] Z. Manna and A. Pnueli. The Temporal Logic of Reactive
and Concurrent Systems: Specification. Springer-Verlag,
1992.

[7]1 S. M. Pike and P. A. G. Sivilotti. Dining philosophers with
crash locality 1. In International Conference on Distributed
Computing Systems (ICDCS’04), pages 22-29, 2004.

[8] W.Ren, R. W. Beard, and E. M. Atkins. A survey of consen-
sus problems in multi-agent coordination. In Proceedings of
the 2005 American Control Conference, pages 1859-1864,
2005.

[9] K. Soharabi, J. Gao, V. Ailawadho, and G. Pottie. Protocols
for self organization of a wireless sensor network. [EEE
Personal Communication Magazine, 7(5):16-27, 2000.

[10] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Dy-
namic consensus on mobile networks. In /6th IFAC world
congress, 2005.

[11] N. Sridhar. Decentralized local failure detection in dynamic
distributed systems. In 25th International Symposium on
Reliable Distributed Systems (SRDS’05), pages 143-152,
2005.

[12] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed
asynchronous deterministic and stocastic gradient optimiza-
tion algorithms. IEEE Transactions on Automatic Control,
31(9):803-812, Sept. 1986.

IEE |-:

COMPUTER
SOCIETY

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007 IEEE

