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Abstract

Although the content of sensor messages describing
“events of interest” may be encrypted to provide confiden-
tiality, the context surrounding these events may also be
sensitive and therefore should be protected from eavesdrop-
pers. An adversary armed with knowledge of the network
deployment, routing algorithms, and the base-station (data
sink) location can infer the temporal patterns of interest-
ing events by merely monitoring the arrival of packets at
the sink, thereby allowing the adversary to remotely track
the spatio-temporal evolution of a sensed event. In this pa-
per, we introduce the problem of temporal privacy for delay-
tolerant sensor networks and propose adaptive buffering at
intermediate nodes on the source-sink routing path to ob-
fuscate temporal information from an adversary. We first
present the effect of buffering on temporal privacy using an
information-theoretic formulation and then examine the ef-
fect that delaying packets has on buffer occupancy. We eval-
uate our privacy enhancement strategies using simulations,
where privacy is quantified in terms of the adversary’s esti-
mation error.

1. Introduction

Sensor networks are being increasingly deployed to col-
lect measurements around a vast array of phenomena. Con-
ventional security services, such as encryption and authen-
tication, have been migrated to the sensor domain [15] to
keep these measurements confidential. Despite this there
are many aspects associated with the creation and deliv-
ery of sensor messages that remain unprotected by con-
ventional security mechanisms. Protecting such contextual
information, which is as important as protecting the con-
tent of sensor messages, thus demands complementary tech-
niques [8, 11, 14].

Among a broad range of contextual information that a
sensor network should protect, where and when an asset
was observed, is particularly sensitive, especially for sen-
sor networks that monitor high-value, mobile targets or as-
sets. In order to prevent such spatio-temporal information
from being leaked, the underlying sensor network must en-

sure the privacy of the following two types of information:
(1) the location of the source node(s) that observed the tar-
get, and (2) the time when the source node(s) observed the
target. The importance of source location privacy, as well
as techniques to achieve this privacy, has been extensively
studied in [11,14]. The protection of temporal information,
a problem which we refer to as temporal privacy in this pa-
per, however, has received little attention so far.

Protecting the temporal privacy of a sensor network is
a challenging issue, particularly as the concept of temporal
privacy has not yet been formally defined. In this paper, we
address this need by providing a formal definition of tempo-
ral privacy that is built upon information theoretic concepts.
Specifically, if we assume that the adversary stays at the
sink, collects all the packets that are generated by a source,
and tries to infer the creation times of these packets from
the times when they are received, then the temporal privacy
can be defined as the mutual information between the re-
ceived time sequences and the creation time sequences. In
order to minimize the mutual information, we propose to
buffer each packet at intermediate nodes along the routing
path between a source sensor and the sink. The insights
from the information-theoretic study further reveal that ran-
dom delays that follow an exponential distribution will bet-
ter protect temporal privacy than other distributions.

Buffering packets at intermediate nodes can protect tem-
poral privacy, but it may lead to the requirement of large
amount of buffer space at each node, especially for large-
scale sensor networks as considered in our study. As a re-
sult, we have also studied the buffer demands at each node
using a queuing formulation, and found that the buffer de-
mands can become rather high as the network scales. Con-
sidering the fact that sensor nodes usually have serious
resource constraints, including available buffer space, we
have devised an adaptive buffering strategy that preempts
buffered packets to accommodate newly arriving packets if
the buffer is full.

We begin the paper in Section 2 by describing our sensor
network model, overview the problem of temporal privacy
and how additional buffering can enhance privacy. We then
examine the two conflicting aspects of buffering: in Sec-
tion 3, we formulate temporal privacy from an information-
theoretic perspective, and in Section 4, we examine the



stress that additional delay places on intermediate buffers.
Then, in Section 5, we present an adaptive buffering strat-
egy that effectively manages these tradeoffs through the pre-
emptive release of packets as buffers attain their capacity
and evaluate its performance through simulations. Finally,
we present related work in Section 6, and conclude the pa-
per in Section 7.

2. Temporal Privacy in Sensor Networks
We start our overview by describing a couple of scenar-

ios that illustrate the issues associated with temporal pri-
vacy. To begin, consider a sensor network that has been
deployed to monitor an animal habitat [11, 16]. In this sce-
nario, animals (“assets”) move through the environment,
their presence is sensed by the sensor network and reported
to the network sink. The fact that the network produces data
and sends it to the sink provides an indication that the ani-
mal was present at the source at a specific time. If an adver-
sary is able to associate the origin time of the packet with a
sensor’s location, then the adversary will be able to track the
animal’s behavior– a dangerous prospect if the animal is en-
dangered and the adversary is a hunter! This same scenario
can be easily translated to a tactical environment, where the
sensor network monitors events in support of military net-
worked operations. In asset tracking, if we add temporal
ambiguity to the time that the packets are created then, as
the asset moves, this would introduce spatial ambiguity and
make it harder for the adversary to track the asset.

Temporal privacy amounts to preventing an adversary
from inferring the time of creation associated with one or
more sensor packets arriving at the network sink. In order
to protect the temporal context of the packet’s creation, it is
possible to introduce additional, random delay to the deliv-
ery of packets in order to mask a sensor reading’s time of
creation. Although delaying packets might increase tempo-
ral privacy, this strategy also necessitates the use of buffer-
ing either at the source or within the network and places new
stress on the internal store-and-forward network buffers.

The sensor network model that we use involves:
Delay-Tolerant Application: A sensor application that

is delay-tolerant, but not entirely delay insensitive, in
the sense that observations can be delayed by reasonable
amounts of time before arriving at the monitoring applica-
tion, thereby allowing us to introduce additional delay in
packet delivery.

Encrypted Payload: The payload contains application-
level information, such as the sensor reading, application
sequence number, and the time-stamp associated with the
sensor reading. Conventional encryption is used to protect
the sensor application’s data.

Cleartext Headers: The headers associated with essen-
tial network functionality are not encrypted. For example,
the routing header associated with [18], and used in the
TinyOS 1.1.7 release (described in MultiHop.h) includes
the ID of the previous hop, the ID of the origin (used in the

routing layer to differentiate between whether the packet is
being generated or forwarded), the routing-layer sequence
number (used to avoid loops, not flow-specific and hence
cannot help the adversary in estimating time of creation),
and the hop count.

The assumptions that we have for the adversary are
Deployment-Aware: By Kerckhoff’s Principle [17], we

assume the adversary has knowledge of the networking and
privacy protocols being employed by the sensor network. In
particular, the adversary knows the delay distributions being
used by each node in the network. Further, we assume the
adversary has knowledge of the positions of all sensor nodes
in the network.

Able to Eavesdrop: The adversary is able to eavesdrop
on communications in order to read packet headers, or con-
trol traffic. We emphasize that the adversary is not able to
decipher packet contents by decrypting the payloads, and
hence the adversary must infer packet creation times solely
from network knowledge and the time it witnesses a packet.

Non-intrusive: The adversary does not interfere with
the proper functioning of the network, otherwise intrusion
detection measures might flag the adversary’s presence. In
particular, the adversary does not inject or modify packets,
alter the routing path, or destroy sensor devices.

These security assumptions are intended to give the ad-
versary significant power and thus, if our temporal privacy
techniques are robust under these assumptions, they can be
considered powerful under more general threat conditions.

2.1. The Baseline Adversary Model
Our sensor network model assumes multiple source

nodes that create packets and send these packets to a com-
mon sink via multi-hop networking. The adversary stays at
the sink, observes packet arrivals, and estimates the creation
times of these packets. We note that, while it may seem like
the adversary would be better off being mobile or that the
adversary be located at several random places within the
network, it is not so. Since all activities in a sensor network
are reported to the sink, being closer to the sink enables the
adversary to maximize his chances of observing as many
traffic flows as possible.

To better focus on temporal privacy of a sensor network,
we assume a rather powerful adversary that can acquire the
following information about the underlying network:

1. The hop count hi, of flow i. This can be inferred by
the adversary by looking at hop-count information in
the packet headers.

2. The transmission delay on a node, τ .

For an observed packet arrival time z, our adversary esti-
mates the creation time of this packet as x′ = z−hτ . In the
literature, the square error is often used to quantify the esti-
mation error, i.e. (x′−x)2 where x is the true creation time.
Similarly, for a series of packet arrivals from the same flow



z1, z2, . . . , zm, our adversary estimates their creation times
as x′

1, x
′
2, . . . , x

′
m, and x′

i = zi − hτ . The total estimation
error for m packets is then calculated as the mean square
error MSE =

∑
(x′

i − xi)2/m. A network that causes
an adversary to have a higher estimation error consequently
better preserves the temporal privacy of the source.

3. Temporal Privacy Formulation
We start by first examining the theoretical underpinnings

of temporal privacy. Our discussion starts by first setting up
the formulation using a simple network of two nodes trans-
mitting a single packet, and then we extend the formulation
to more general network scenarios.

3.1. Two-Party Single-Packet Network
We begin by considering a simple network consisting of

a source S, a receiver node R, and an adversarial node E
that monitors traffic arriving at R. The goal of preserving
temporal privacy is to make it difficult for the adversary to
infer the time when a specific packet was created. Suppose
that the source sensor S observes a phenomena and creates
a packet at some time X . In order to obfuscate the time
at which this packet was created, S can choose to locally
buffer the packet for a random amount of time Y before
transmitting the packet. Disregarding the negligible time it
takes for the packet to traverse the wireless medium, both
R and E will witness that the packet arrives at a time Z =
X + Y . The legitimate receiver can decrypt the payload,
which contains a timestamp field describing the correct time
of creation. The adversary’s objective is to infer the time of
creation X , and since it cannot decipher the payload, it must
make an inference based solely upon the observation of Z
and (by Kerckhoff’s Principle) knowledge of the buffering
strategy employed at S.

The ability of E to infer X from Z is controlled by
two underlying distributions: first, is the a priori distribu-
tion fX(x), which describes the knowledge the adversary
had for the likelihood of the message creation prior to ob-
serving Z; and second, the delay distribution fY (y), which
the source employs to mask X . In classical security and
privacy, the amount of information that E can infer about
X from observing Z is measured by the mutual informa-
tion [6, 17]:

I(X ; Z) = h(X) − h(X |Z) = h(Z) − h(Y ) (1)

where h(X) is the differential entropy of X . We note
that, due to the relationship between mutual information
and mean square error [10], large I(X ; Z) implies that a
well-designed estimator of X from Z will have small MSE.
For certain choices of fX and fY , we may directly calcu-
late I(X ; Z). For general distributions, the entropy-power
inequality [6] gives a lower bound

I(X ; Z) ≥ 1
2 ln 2

(
22h(X) + 22h(Y )

)
− h(Y ). (2)

In general, however, the distribution for X is fixed and
determined by an underlying physical phenomena being
monitored by the sensor. Since the objective of the temporal
privacy-enhancing buffering is to hide X , we may formulate
the temporal privacy problem as

min
fY (y)

I(X ; Z) = h(X + Y ) − h(Y ),

or in other words, choose a delay distribution fY so that the
adversary learns as little as possible about X from Z .

3.2. Two-Party Multiple-Packet Network
We now extend the formulation of temporal privacy to

the more general case of a source S sending a stream of
packets to a receiver R in the presence of an adversary E.
In this case, the sender S will create a stream of packets
at times X1, X2, . . . , Xn, . . ., and will delay their trans-
missions by Y1, Y2, . . . , Yn, . . .. The packets will be ob-
served by E at times Z1, Z2, . . . , Zn, . . .. One delay strat-
egy would have packets released in the same order as their
creation, i.e. Z1 < Z2 < . . . < Zn, which would cor-
respond to choosing Yj to be at least the wait time needed
to flush out all previous packets. Such a strategy does not
reflect the fact that most sensor monitoring applications do
not require that packet ordering is maintained. Therefore,
a more natural delay strategy would involve choosing Yj

independent of each other and independent of the creation
process {Xj}. Consequently, there will not be an ordering
of (Z1, Z2, . . . , Zn, . . .).

In our sensor network model, however, we assumed
that the sensing application’s sequence number field was
contained in the encrypted payload, and consequently the
adversary does not directly observe (Z1, Z2, . . . , Zn, . . .),
but instead observes the sorted process ˜{Zj} = Υ({Zj}),
where Υ({Zj}) denotes the permutations needed to achieve
a temporal ordering of the elements of the process {Zj},
i.e. ˜{Zj} = (Z̃1, Z̃2, . . . , Z̃n, . . .) where Z̃1 < Z̃2 < · · ·.
The adversary’s task thus becomes inferring the process
{Xj} from the sorted process {Z̃j}. The amount of in-
formation gleaned by the adversary after observing Z̃n =
(Z̃1, · · · , Z̃n) is thus I(Xn; Z̃n), and the temporal-privacy
objective of the system designer is to make I(Xn; Z̃n)
small.

Although it is analytically cumbersome to access
I(Xn; Z̃n), we may use the data processing inequality
[6] on Xn → Zn → Z̃n to obtain the relationship
0 ≤ I(Xn, Z̃n) ≤ I(Xn, Zn), which allows us to use
I(Xn, Zn) in a pinching argument to control I(Xn, Z̃n).
Expanding I(Xn, Zn) as

I(Xn, Zn) = h(Zn) − h(Y n) =
n∑

j=1

I(Xj , Zj) (3)

we may thus bound I(Xn, Zn) using the sum of individual
mutual information terms.



As before, the objective of temporal privacy enhance-
ment is to minimize the information that the adversary
gains, and hence to mask {Xj}, we should minimize
I(Xn, Zn). Although there are many choices for the delay
process {Yj}, the general task of finding a non-trivial sto-
chastic process {Yj} that minimizes the mutual information
for a specific temporal process {Xj} is challenging and fur-
ther depends on the sensor network design constraints (e.g.
buffer storage). In spite of this, however, we may seek to
optimize within a specific type of process {Yj}, and from
this make some general observations.

As an example of this, let us look at an important and nat-
ural example. Suppose that the source sensor creates pack-
ets at times {Xj} as a Poisson process of rate λ, i.e. the in-
terarrival times Aj are exponential with mean 1/λ, and that
the delay process {Yj} corresponds to each Yj being an ex-
ponential delay with mean 1/µ. We note that our choice of
a Poisson source is intended for explanation purposes, and
that more general packet creation processes can be handled
using the same machinery. One motivation for choosing an
exponential distribution for the delay is the well-known fact
that the exponential distribution yields maximal entropy for
non-negative distributions. We note that Xj =

∑j
k=1 Ak

(and hence the Xj are j-stage Erlangian random variables
with mean j/λ). Using the result of Theorem 3(d) from [3],
we have that

I(Xj ; Zj) = I(Xj ; Xj + Yj)

= ln
(

1 +
jµ

λ

)
− D

(
fXj+Yj‖fXj+Yj

)

≤ ln
(

1 +
jµ

λ

)
.

Here, the D(f‖g) corresponds to the divergence between
two distributions f and g, while X is the mixture of a point
mass and exponential distribution with the same mean as
X , as introduced in [3]. Since divergence is non-negative
and we are only interested in pinching I(Xn; Z̃n), we may
discard this auxiliary term. Using the above result, we have
that

I(Xn, Zn) ≤
n∑

j=1

ln
(

1 +
jµ

λ

)
(4)

Our objective is to make

0 ≤ I(Xn; Z̃n) ≤ I(Xn, Zn) ≤
n∑

j=1

ln
(

1 +
jµ

λ

)

small, and we can see that by tuning µ to be small relative
to λ (or equivalently, the average delay time 1/µ to be large
relative to the average interarrival time 1/λ), we can control
the amount of information the adversary learns about the
original packet creation times. It is clear that choosing µ
too small will place a heavy load on the source’s buffer.

3.3. Multihop Networks
In the previous subsection, we considered a simple net-

work case consisting of two nodes, where the source per-
forms all of the buffering. More general sensor networks
consist of multiple nodes that communicate via multi-hop
routing to a sink. For such networks, the burden of ob-
fuscating the times at which a source node creates packets
can be shared amongst other nodes on the path between the
source and the sensor network sink. To explain, we may
consider a generic sensor network consisting of an abun-
dant supply of sensor nodes, and focus on an N -hop routing
path between the source and the network sink. By doing so,
we are restricting our attention to a line-topology network
S → F1 → F2 → · · · → FN−1 → R, where R denotes the
receiving network sink, and Fj denotes the j-th intermedi-
ate node on the forwarding path.

By introducing multiple nodes, the delay process {Yj}
can be decomposed across multiple nodes as

Yj = Y0j + Y1j + · · · + YN−1,j ,

where Ykj denotes the delay introduced at node k for the j-
th packet (we use Y0j to denote the delay used by the source
node S). Thus, each node k will buffer each packet j that it
receives for a random amount of time Ykj .

This decomposition of the delay process {Yj} into sub-
delay processes {Ykj} allows for great flexibility in achiev-
ing both temporal privacy goals and ensuring suitable buffer
utilization in the sensor network. For example, it is well-
known that traffic loads in sensor networks accumulate near
network sinks, and it may be possible to decompose {Yj}
so that more delay is introduced when a forwarding node is
further from the sink.

4. Queuing Analysis
Although delaying packets might increase temporal pri-

vacy, such a strategy places a burden on intermediate
buffers. In this section we will examine the underlying is-
sues of buffer utilization when employing delay to enhance
temporal privacy.

When using buffering to enhance temporal privacy, each
node on the routing path will receive packets and delay their
forwarding by a random amount of time. As a result, sen-
sor nodes must buffer packets prior to releasing them, and
we may formulate the buffer occupancy using a queuing
model. In order to start our discussion, let us again examine
the simple two-node case where a source node S generates
packets according to an underlying process and the packets
are delayed according to an exponential distribution with
average delay 1/µ, prior to being forwarded to the receiver
R. If we assume that the creation process is Poisson with
rate λ (if the process is not Poisson, the source may intro-
duce additional delay to shape the traffic or, at the expense
of lengthy derivations, similar results can be arrived at us-
ing embedded Markov chains), then the buffering process



can be viewed as an M/M/∞ queue where, as new packets
arrive at the buffer, they are assigned to a new “variable-
delay server” that processes each packet according to an ex-
ponential distribution with mean 1/µ. Following the stan-
dard results for M/M/∞ queues, we have that the amount
of packets being stored at an arbitrary time, N(t), is Pois-

son distributed, with pk = P{N(t) = k} = ρk

k! e
−ρ, where

ρ = λ/µ is the system utilization factor. N , the expected
number of messages buffered at S, is ρ.

The slightly more complicated scenario involving more
than one intermediate node allows for the buffering respon-
sibility to be divided across the routing path. A tandem
queuing network is formed, where a message departing
from node i immediately enters an M/M/∞ queue at node
i+1. Thus, the inter-departure times from the former gener-
ate the inter-arrival times to the latter. According to Burke’s
Theorem [4], the steady-state output of a stable M/M/m
queue with input parameter λ and service-time parameter µ
for each of the m servers is in fact a Poisson process at the
same rate λ when λ < µ. Hence, we may generally model
each node i on the path as an M/M/∞ queue with average
input message rate λ, but with average service-time 1/µi

(to allow each node to follow its own delay distribution).
In practice a sensor network will monitor multiple phe-

nomena simultaneously, and consequently there will be
multiple source-sink flows traversing the network. Con-
sider a sensor network deployment where multiple sensors
generate messages intended for the sink, and each message
is routed in a hop-by-hop manner based on a routing tree.
Message streams merge progressively as they approach the
sink. As before, let us assume for the sake of discussion that
the senders in the network generate Poisson flows, then by
the superposition property of Poisson processes the com-
bined stream arriving at node i of m independent Pois-
son processes with rate λi

j is a Poisson process with rate
λi = λi

1 + λi
2 + · · ·+ λi

m, where m is the number of “rout-
ing” children for node i. Additionally, we let 1/µi be the
average buffer delay injected by node i. Then node i is an
M/M/∞ queue, with arrival parameter λi and departure
parameter µi, yielding:

• Ni(t), the number of packets in the buffer at node i, is
Poisson distributed.

• pik = P{Ni(t) = k} = ρk
i

k! e
−ρi , where ρi = λi/µi.

• Expected number of messages at node i, Ni = ρi.

As expected, if we choose our delay strategy at node i such
that µi is much smaller than λi (as is desirable for enhanced
temporal privacy), then the expected buffer occupancy Ni

will be large. Thus, temporal privacy and buffer utilization
are conflicting system objectives.

The last issue that we need to consider is the amount of
storage available for buffering at each sensor. As sensors are
resource-constrained devices, it is more accurate to replace

the M/M/∞ queues with M/M/k/k queues, where mem-
ory limitations imply that there are at most k servers/buffer
slots, and each buffer slot is able to handle one message.
If an arriving packet finds all k buffer slots full, then either
the packet is dropped or, as we shall describe later in Sec-
tion 5, a preemption strategy can be employed. For now, we
just consider packet dropping. We note that packet drop-
ping at a single node causes the outgoing process to lose
its Poisson characteristics. However, we further note that
by Kleinrock’s Independence approximation (the merging
of several packet streams has an affect akin to restoring the
independence of interarrival times) [4], we may continue to
approximate the incoming process at node i as a Poisson
process with aggregate rate λi. Hence, in the same way
as we used a tree of M/M/∞ queues to model the net-
work earlier, we can instead model the network as a tree of
M/M/k/k queues.

The M/M/k/k formulation provides us with a means to
adaptively design the buffering strategy at each node. If we
suppose that the aggregate traffic levels arriving at a sensor
node is λ, then the packet drop rate (the probability that a
new packet finds all k buffer slots full) is given by the well-
known Erlang Loss formula for M/M/k/k queues:

α = E(ρ, k) =
ρk

k!
p0 =

ρk

k!∑k
i=0

ρi

i!

, (5)

where ρ = λ/µ. For an incoming traffic rate λ, we may use
the Erlang Loss formula to appropriately select µ so as to
have a target packet drop rate α when using buffering to en-
hance privacy. This observation is powerful as it allows us
to adjust the buffer delay parameter µ at different locations
in the sensor network, while maintaining a desired buffer
performance. In particular, the expression for E(ρ, k) im-
plies that, as we approach the sink and the traffic rate λ
increases, we must decrease the average delay time 1/µ in
order to maintain E(ρ, k) at a target packet drop rate α.

5. RCAD: Rate-Controlled Adaptive Delaying
As shown in the previous section, introducing delays

prior to forwarding packets imposes buffer demands on in-
termediate nodes. Hence we need to adjust the delay dis-
tribution as a function of the incoming traffic rate and the
available buffer space.

We propose RCAD, a Rate-Controlled Adaptive Delay-
ing mechanism, to achieve privacy and desirable buffer per-
formance simultaneously. The main idea behind RCAD is
buffer preemption– if the buffer is full, a node should se-
lect an appropriate buffered packet, called the victim packet,
and transmit it immediately rather than drop packets. Con-
sequently, preemption automatically adjusts the effective µ
based on buffer state. The victim packet is the packet that
has the shortest remaining delay time. In this way, the
resulting delay times for that node are the closest to the
original distribution. Besides, the implementation of this
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Figure 2. Temporal privacy in 1)no delay, 2) delay with un-
limited buffers and 3) delay with limited buffers (RCAD)

scheme is straightforward because each node already keeps
track of the remaining buffer time for every packet. In
this study, we have developed a detailed event-driven sim-
ulator to study the performance of RCAD. We have set the
simulation parameters, such as the buffer size and the traffic
pattern, following measurements from an actual sensor plat-
form, i.e. Berkeley motes, to model realistic network/traffic
settings. Finally, we have measured important performance
and privacy metrics.

5.1. Privacy and Performance Metrics
In our simulation studies, we have measured both the

temporal privacy and network performance of RCAD. As
discussed in Section 2.1, we use the MSE to quantify the
error the adversary has in estimating the creation times of
each packet. After introducing delays at intermediate nodes,
we need to modify our adversary estimation model to ac-
commodate this additional delay process. In addition to the
knowledge the adversary has in Section 2.1, i.e. hop-count
to the source and the average transmission delay at each
node, we also assume the adversary knows the delay process
for each flow, i.e. the delay distribution. Consequently, for
an observed packet arrival time z, our adversary now esti-
mates the creation time of this packet as x′ = z − y, where
y includes both the transmission delay and the additional
delay. Here, our baseline adversary model uses the origi-
nal delay distribution to calculate his estimations, neglect-
ing the fact that some packets may have shorter delays than
specified by the original delay distributions due to packet
preemptions. Hence, our adversary estimates the delay for
flow i as hi/µ, where hi is the hop count of flow i and
1/µ is the average per hop delay. For a sequence of packets
coming from one source, we use the MSE to measure the
temporal privacy of the underlying network. As noted ear-
lier, there is a direct relationship between the information
theoretic metric (mutual information) of privacy we defined
in Section 3 and mean square error [10]. The scheme that
has a higher estimation error consequently better preserves
the temporal privacy of the source.

Additionally, we note that it is desirable to achieve pri-

vacy while maintaining tolerable end-to-end delivery la-
tency for each packet. Our objective is to introduce mini-
mal extra latency while maximizing temporal privacy and,
hence, we also examine the average latency induced by the
RCAD algorithm.

5.2. Simulation Setup
The topology that we considered in our simulations is il-

lustrated in Figure 1. Here, nodes S1, S2, S3, and S4 are
source nodes and create packets that are destined for the
sink. Thus, we had four flows, and these flows had hop
counts 15, 22, 9 and 11 respectively. Each source gener-
ated a total of 1000 packets at periodic intervals with an
inter-arrival time of 1/λ time units. In our experiments we
varied 1/λ from 2 (i.e. the highest traffic rate) time units
to 20 (the slowest traffic rate) to generate different cases of
traffic loads for the network. The main focus of our simu-
lator is the scale of the network, so we simplified the PHY-
and MAC-level protocols by adopting a constant transmis-
sion delay (i.e. 1 time unit) from any node to its neighbors.
Unlike the poisson traffic assumption used in Section 4, we
use a realistic sensor traffic model where packets are peri-
odically transmitted by each source. When a packet arrives
at an intermediate node, the intermediate node introduces
a random delay following an exponential distribution with
mean 1/µ. Unless mentioned otherwise we took 1/µ = 30
time units in the simulations. The results reported are for
the flow S1 to the sink.

5.3. Effectiveness of RCAD
To study the effectiveness of the RCAD strategy, we

compare temporal privacy in the following situations:

1. Nodes in the network forward packets as soon as they
receive them. This scenario is the baseline case with no
effort made to explicitly provide any temporal privacy.

2. Each node in the path of a network packet introduces
an exponential delay with mean 1/µ = 30, before for-
warding the packet. This scenario adds uncertainty



to the adversary’s inference of the time of origin of
a packet. In this case, we assume that the nodes have
unlimited buffers.

3. Same as above except each node now has limited
buffers. Specifically, we assume each node can buffer
10 packets, which approximates the buffers available
on the Mica-2 motes. This models the real-world sce-
nario where sensor nodes are resource constrained.

We used the topology in Figure 1 with 4 different traffic
flows. Figure 2(a) shows the MSE in the adversary esti-
mate for the 3 situations above, with regards to flow from
S1. We can see that the error is very small in both cases
1 and 2 (it may appear to be zero, but that’s only because
of the relative scale as compared to case 3). For case 2,
the MSE is small because the adversary has adjusted for
the delay based on his knowledge of the delay distributions
used. In case 3, however, the adversary, attempts to use his
knowledge of the intermediate delay distributions (specifi-
cally the knowledge of 1/µ) to estimate the time of origin
of packets. But the preemptions at higher traffic rates (small
inter-arrival times), cause the effective latencies of the pack-
ets to be much lower than the expected latencies and this
results in very high error in the adversary’s estimate. Fig-
ure 2(b) shows the average latency for packets to reach from
the source to the sink. As expected, case 1 has the lowest
latency, as no artificial delays have been introduced. Note
that case 2 shows the highest latency, which is the average
of the combined delay distribution of all the nodes in the
path of flow from S1. Further, in case 3, we find that the
preemptions due to limited buffers actually help reduce the
average delivery latency, especially for high source traffic
rates (smaller inter-arrival times). For example at 1/λ = 2,
case 3 reduces the average latency by a factor of 2.5. These
results clearly demonstrate the efficacy of RCAD algorithm
in providing temporal privacy (high MSE for case 3) with
controlled overhead in terms of average packet latency.

5.4. The Adaptive Adversary Model
Since RCAD scheme dynamically adapts the delay

processes by adopting a buffer preemption strategy, it is
inadequate for the adversary to estimate the actual delay
times using the original delay distributions before preemp-
tion. Hence, we also enhance the baseline adversary to let
the adversary adapt his estimation of the delays depending
on the observed rate of incoming traffic at the sink. We call
such an adversary as an adaptive adversary.

In order to understand our adaptive adversary model, let
us first look at a simple example. Let us assume there is only
one node with one buffer slot between the source and sink.
Further, assume that the packet arrival follows a Poisson
process with rate λ, and the buffer generates a random de-
lay time that follows an exponential distribution with mean
1/µ. If the buffer at the intermediate node is full when a
new packet arrives, the currently buffered packet will be
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Figure 3. The estimation error for the two ad-
versary models.

transmitted. In this example, if the traffic rate is low, say
λ < µ, then the packet delay time will be 1/µ. However,
as the traffic increases, the average delay time will become
1/λ due to buffer preemptions. Following this example, our
adaptive adversary should adopt a similar estimation strat-
egy: at low traffic rates, he estimates the overall average
delay y by h/µ, while at higher traffic rates, he estimates
the overall average delay y as a function of the buffer space
and the incoming rate, i.e. hk/λ, where h is the flow hop
count, k is the number of buffer slots at each node, and λ is
the traffic rate of that flow. Given an aggregated traffic rate
λtot from n sources converging at least one-hop prior to the
sink, the adversary can compute the probability of buffer
overflow via the Erlang Loss formula in equation (5). He
can then compare this against a chosen threshold and if the
probability is less than the threshold, he will assume the av-
erage delay introduced by each hop is 1/µ. However, if the
probability is higher than the threshold, the average delay at
each node is calculated to be nk/λtot.

We studied the ability of an adaptive adversary to esti-
mate the time of creation when using RCAD with identical
delay distributions across the network. The resulting esti-
mation mean square errors are presented in Figure 3. The
adaptive adversary adopts the same estimation strategy as
the baseline adversary at lower traffic rates, i.e. hi/µ for
flow i, but it uses the incoming traffic rate to estimate the
delay at higher traffic rates, i.e. hik/λi for the average de-
lay of flow i. To switch between estimation strategies, the
adversary used the Erlang Loss formula for a threshold pre-
emption rate of 0.1. Figure 3 shows that the adaptive ad-
versary can significantly reduce (but not eliminate) the esti-
mation errors, especially at higher traffic rates (lower inter-
arrival times) where preemption is more likely.

6. Related Work

The problem of privacy preservation has been consid-
ered in the context of data mining and databases [2, 13]. A
common technique is to perturb the data and to reconstruct
distributions at an aggregate level. A distribution recon-



struction algorithm utilizing the Expectation Maximization
(EM) algorithm is discussed in [1], and the authors showed
that it converges to the maximum likelihood estimate of the
original distribution based on the perturbed data.

Contextual privacy issues have been examined in general
networks, particularly through the methods of anonymous
communications. Chaum proposed a model to provide
anonymity against an adversary conducting traffic analy-
sis [5]. His solution employs a series of intermediate sys-
tems called mixes. Each mix accepts fixed length messages
from multiple sources and performs one or more transfor-
mations on them, before forwarding them in a random or-
der. Most of the early mix related research was done on
pool mixes [9], which wait until a certain threshold number
of packets arrive before taking any mixing action. Kesdo-
gan [12] proposed a new type of mix, SG-Mix, which delays
an individual incoming message according to an exponen-
tial distribution before forwarding them on. Later, Danezis
proved in [7] using information theory that a SG-Mix is the
optimal mix strategy that maximizes anonymity. The ob-
jective of SG-Mixes, however, is to decorrelate the input-
output traffic relationships at an individual node, and the
methods employed do not extend to networks of queues.

Source location privacy in sensor networks is studied in
[11,14], where phantom routing, which uses a random walk
before commencing with regular flooding/single-path rout-
ing, protects the source location. In [8], Deng proposed ran-
domized routing algorithms and fake message injection to
prevent an adversary from locating the network sink based
on the observed traffic patterns.

7. Concluding Remarks

Protecting temporal context of a sensor reading in a sen-
sor network cannot be accomplished by merely using cryp-
tographic mechanisms. In this paper, we have proposed
a technique complimentary to conventional security tech-
niques that involves the introduction of additional delay in
the store-and-forward buffers within the sensor network.
We formulated the objective of temporal privacy using an
information-theoretic framework, and then examined the ef-
fect that additional delay has on buffer occupancy within
the sensor network. Temporal privacy and buffer utiliza-
tion were shown to be objectives that conflict, and to ef-
fectively manage the tradeoffs between these design objec-
tives, we proposed an adaptive buffering algorithm, RCAD
(Rate-Controlled Adaptive Delaying) that preemptively re-
leases packets under buffer saturation. We then evaluated
RCAD using an event-driven simulation study for a large-
scale sensor network. We observed that, when compared
with a baseline network with no artificially introduced de-
lays, RCAD was able to provide enhanced temporal privacy
with a controlled latency overhead. We further showed that
RCAD was able to sustain a better performance than base-
line case even with an improved adversary model.
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