
A Weighted Moving Average-based Approach for Cleaning Sensor Data

Yongzhen Zhuang†, Lei Chen†, X. Sean Wang‡, Jie Lian∗
† Department of CSE, Hong Kong University of Science and Technology, Hong Kong

‡ Department of CS, University of Vermont, Burlington, Vermont
∗ Department of E&CE, University of Waterloo, Waterloo

Abstract

Nowadays, wireless sensor networks have been widely
used in many monitoring applications. Due to the low qual-
ity of sensors and random effects of the environments, how-
ever, it is well known that the collected sensor data are
noisy. Therefore, it is very critical to clean the sensor data
before using them to answer queries or conduct data anal-
ysis. Popular data cleaning approaches, such as the mov-
ing average, cannot meet the requirements of both energy
efficiency and quick response time in many sensor related
applications.

In this paper, we propose a hybrid sensor data cleaning
approach with confidence. Specifically, we propose a smart
weighted moving average (WMA) algorithm that collects
confidence data from sensors and computes the weighted
moving average. The rationale behind the WMA algorithm
is to draw more samples for a particular value that is of
great importance to the moving average, and provide higher
confidence weight for this value, such that this important
value can be quickly reflected in the moving average. Based
on our extensive simulation results, we demonstrate that,
compared to the simple moving average (SMA), our WMA
approach can effectively clean data and offer quick re-
sponse time.

1 Introduction

In recent years, sensor networks as an emerging dis-
tributed system have been widely used in monitoring vari-
ous environmental parameters [1, 18]. However, due to dif-
ferent reasons, such as the low quality of sensing devices
and random effects of external sources [4], sensor data are
considered to be noisy. How to remove this noise or at least
reduce the effect that brought about by the noise is a key
issue to answer queries [9] or detect events [17] accurately.

One popular approach to remove noise in random sam-
ples and compute the monitoring values is to use a mov-
ing average [7, 5]. Unlike a moving average that is usu-

ally used for a one-dimensional time series, moving aver-
age in sensor networks has two dimensions. Sensor data
are averaged temporally within one sensor, and also spa-
tially among neighboring sensors. A simple moving av-
erage (SMA) algorithm for sensor networks is as follows.
At any time t, the algorithm first averages a sequence of
samples xi,t−k+1, . . . , xi,t at each sensor i, and gets x̄i =
(xi,t−k+1 + . . . + xi,t)/k. It then averages values of neigh-
boring sensors, xi = Σj∈R(i)xj/|R(i)|, where R(i) is a set
of neighboring sensors of sensor i.

However, SMA is not suitable for sensor network appli-
cations, when taking into account the two important evalua-
tion criteria: energy efficiency and query response time. In
the SMA method, both criteria cannot be met at the same
time. In order to improve energy efficiency, sampling rates
should be lowered (i.e. the interval between two consecu-
tive samples are lengthened). The consequence of low sam-
pling rates is that it takes a long time to reflect a change in
the moving average. On the other hand, if the sampling rates
are high, the response to a change can be quick. However,
more samples need to be taken and we know that sampling
is one of the costly operations in sensors [10].

In this paper, we propose a weighted moving average
(WMA) algorithm, that collects confidence data from sen-
sors and computes the weighted moving average. In partic-
ular, the temporal moving average is defined as:

x̄t
i =

wi,t−k+1xi,t−k+1 + . . . + wi,txi,t

wi,t−k+1 + . . . + wi,t
,

where wi,t is the weight of value xi,t at sensor i and times-
tamp t, which is related to the confidence of this value. We
also consider the spatial moving average of those spatially
correlated sensors. The spatial moving average is

x̄s
i =

Σj∈Neighbor(i)bj,twj,txj,t

Σj∈Neighbor(i)bj,twj,t
,

where weight bj,t is a boolean value to decide whether or
not a value of a neighboring node needs to be included in the
moving average. The rationale behind the WMA algorithm
is to let sensors report confidence value xi,t to the sink.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

We adopt low sampling rates when xi,t is smooth and pre-
dictable. Only when xi,t jumps out of the prediction range,
do we increase the sample size and obtain high confidence
xi,t. We also give more weight for this out-of-range value,
so that it can be quickly reflected in the weighted moving
average. Previous works clean data either in the sink [7] or
within a sensor [4]. In our approach, data cleaning is per-
formed on both sides. On the sensor side, we use multiple
sampling to remove random noise from data, whereas on
the sink side, we use the weighted moving average in both
temporal and spatial dimensions to further smooth the data.

The contributions of this paper are threefold:
• We propose a weighted moving average (WMA) algo-

rithm, which can provide clean data for applications
in sensor networks with high energy efficiency and a
short response time.

• We present a prediction and testing approach to eval-
uate values reported from sensors to the sink, and in-
crease the weight for a value when it is of great impor-
tance to the moving average.

• We provide an effective method that utilizes the spa-
tial information from neighbors to efficiently reduce
the sampling rates of sensors. In contrast, without us-
ing such neighboring information, a sensor has to draw
many samples at a high rate in order to increase the
confidence of its out-of-range random sample.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly introduce the weighted moving average
(WMA) algorithm. In Section 3, we discuss the three steps
of the WMA. In Section 4, we present the experimental re-
sults. Section 5 describes the related works, followed by the
conclusion in Section 6.

2 Overview

In noisy environments, the values detected by sensors are
random samples of true environmental parameters. A query
might say “find sensors in an area whose temperature are
between 30C - 40C”, “return sound sensors whose volume
are higher than 30dB”, and so on. As long as the moving
average of the sensor time series has been computed, these
queries can be answered using the clean data provided by
the moving average.

We introduce the concept of confidence in calculating
the moving average. Each value xi,t

1 reported from indi-
vidual sensors can be associated with a confidence, which
is related to the number of samples - more samples gain
higher confidence. More formally, if the noise variance of
sensor i is σ2

i and k samples are drawn, the variance of
the average x̄ is σ2

i /k. Given an error range ±e, the con-
fidence of x̄ is the cumulative probability in the interval

1A value in the moving average can be a single sample, or the combi-
nation of multiple samples.

0 5 10 15 20 25
29

30

31

32

33

34

35

36

true data
noisy samples
weighted moving average
normal moving average

reponse time to the spike

higher confidence
higher weight

Figure 1. comparing weighted moving average with nor-
mal moving average

[−√
ke/σi,+

√
ke/σi] of the normal distribution N(0, 1),

which is increasing with respect to k. If a value has a higher
confidence, we assign it more weight in computing the mov-
ing average.

We notice that it is too costly to let all sensors sample
abundantly at any time to improve their confidence. The
idea is to get more samples and increase the confidence of
a particular value only if it is important and might affect
the moving average. When the important values are as-
signed more weight, the weighted moving average is closer
to the true data than the common moving average. The im-
portant values can be identified by looking at the sensor
time series. If the trend of a sensor is smooth and slow,
we can use a single sample and the same weight for each
value to compute the moving average accurately. However,
if there exists a spike, we have to collect more samples at
that point. Since more samples provide higher spike con-
fidence, we can therefore increase the weight of the value
at the spike when computing the moving average. By this
means, a spike can be quickly and accurately reflected in
the weighted moving average. Data cleaning is performed
on two sides, that is, both in the sensor and the sink. In each
individual sensor, we adapt the sample rate to obtain more
samples when the change is significant and probably cannot
be captured quickly without increasing its weight. It can
therefore remove most of noise on the sensor side, and send
back the values with high confidence to the base station. On
the other hand, if the change is small and predictable, we
only send the raw sample (the return value is a single sam-
ple) back to the sink to save the sampling cost. Although
a single sample is noisy, noise contained in these random
samples is removed by the moving average. Figure 1 com-
pares SMA with WMA. In particular, the SMA method has
a delay in capturing the spike. In contrast, the WMA algo-
rithm can quickly reflect the spike in the weighted moving
average. The weighted moving average is energy-efficient
since most of the time sensors sample at low rates - one
sample per value. They only request more samples from a
particular value that is likely to affect the moving average.

To further reduce the number of samples, we make use
of the neighboring relationship. In the smooth environment,

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

0 50 100 150 200
25

30

35

40

45

50

55
Kalman filter estimate

observation
true
estimate

0 50 100 150 200
25

30

35

40

45

50

55
prediction range

observation
estimate
prediction range

A B

Figure 2. Kalman filter

the change in neighboring sensors is also smooth, and they
either have similar patterns or are correlated. In many sit-
uations, an important value appearing in a sensor may also
appear in the other nearby sensors. For example, a fire may
affect an area including more than one sensor. All the sen-
sors in the fire area can detect the sudden increase in tem-
perature. Therefore, whenever a sensor detects a suspicious
important value, it double-checks it with its neighbors. If
this value is also detected by neighbors, the confidence is
increased. For instance, a sensor detects a fire with the tem-
perature > 80◦C and a confidence of 60%, and it also finds
that its neighbors detect the same high temperature with a
confidence of 60%. Then, the sensor can infer the fire with
a high confidence. The more neighbors that detect the fire,
the higher the confidence. One advantage of using neigh-
boring information is that, a sensor does not need to ob-
tain that many samples to achieve a high confidence level.
Instead, it can gain confidence from its neighboring infor-
mation. Furthermore, if a sensor has low noise variance and
can offer a high confidence value yet at a low sampling cost,
all its neighbors can rely on this sensor to increase their con-
fidence rather than sampling abundantly by themselves.

3 Weighted Moving Average (WMA)

The WMA algorithm consists of three steps:
• locate important values by a range prediction;
• gain confidence for important values through sensor

testing and neighbor testing at individual sensors;
• perform weighted moving average (WMA) at the sink.

Since the communication energy cost per byte is much
larger than the computation cost per instruction by a fac-
tor of about 1000 [8], the energy cost in range prediction
(either using kalman filter or regression) and neighboring
testing is negligible. In this section, we introduce the above
three steps one by one.

3.1 Range Prediction

A range prediction computes a range for the next times-
tamp from the current and previous samples. A prediction

range for sensor i at timestamp t is denoted as [li,t, ui,t]. If
the new sample vi,t falls within the range, the raw sample
is sent to the sink (i.e. xi,t = vi,t in the moving average).
When the new sample is outside of range, however, we do
not know if it is caused by random noise or an environmen-
tal change that cannot be captured by predictions. In this
case, we have to obtain more samples and conduct tests.
We identify a change whenever we have enough confidence
to prove that the new value indeed jumps outside of the pre-
diction range. We then send the sample average, as well
as its confidence level to the sink. If this value is finally
proved to be in the prediction range after taking more sam-
ples, we only send the proved value (without attaching the
confidence) to the sink. Here, we use two methods for the
prediction: Kalman filter and linear regression. Both ap-
proaches estimate a value mt for the next timestamp t. The
prediction range is an ±e error range around mt, that is,

[mt − e,mt + e],

where ±e is a given error range.

3.1.1 Kalman Filter

A Kalman filter is a probability-based digital filter which is
capable of filtering “white noise”. The basic 1st order im-
plementation of Kalman filter can be used to smooth a noisy
sensor input for further processing. Figure 2-A demon-
strates the smoothing effect. The observation is the noisy
samples with high variance, the smoother dotted line is the
true data, and the bold line is the estimated value from the
Kalman filter. The ±e estimation range is shown in Figure
2-B.

A Kalman filter is represented by a system model:

xt = At−1xt−1 + qt−1,

which calculates state xt from its previous state, and a mea-
surement model is defined as:

zt = Htxt + rt,

which describes the relationship of observation zt and the
estimated state xt. A and H are model parameters, which
are identity matrices. The system error and measurement
error are qt−1 ∼ N(0, Qt−1) and rt ∼ N(0, Rk), respec-
tively. Given a prior distribution x0 ∼ N(m0, P0), Kalman
filter estimates mt and the variance Pt through two recur-
sive phases: predict and update. The predict phase produces
an estimate of the current state from the previous timestamp.

p(xt|z1:t−1) = N(xt|m−
t , P−

t)

In the update phase, a new measurement of the current
timestamp is used to refine this prediction.

p(xt|z1:t) = N(xt|mt, Pt)

More about kalman filter please refer to [19].

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

3.1.2 Linear Regression

Linear regression is an approach to determine the relation-
ship between two random variables. In our problem, one
random variable is timestamp t, and the other is the esti-
mated value mt. The linear regression model postulates that
mt = at + b. The coefficients a and b are determined by
the condition that the squared sum of the vertical distances
from points to line is minimized.

3.2 Local Testing

3.2.1 Sensor Testing

If a sample is not in the prediction range, we need to dis-
tinguish between a random error and a real environmental
change. We take multiple samples. If the out-of-range sam-
ple is due to a random error, we would finally obtain a sam-
ple mean in the prediction range. If it is a real environmental
change, we gain more confidence about the change by these
samples, and can return a more accurate value with a higher
confidence.

We gain confidence through hypothesis tests. If a sample
vi,t is not in the prediction range [li,t, ui,t], we get more
samples and test if the sample mean vi,t is in the range.
Usually, the intended answer is modeled as an alternative
hypothesis. Therefore, the null hypothesis in this test is H0 :
µi,t < li,t or µi,t > ui,t, where µi,t is the true value.
This hypothesis can be further divided into two one-side
hypothesis. The tests are performed by computing their test
statistics

Tl =
vi,t − li,t√

σ̂i,t

and Tu =
vi,t − ui,t√

σ̂i,t

.

In t-test, the test statistics follow t distribution of different
degrees of freedom. A rejection range with a certain confi-
dence c can be calculated from t distribution. If the size of
the test is N (i.e. N samples are drawn), we select the t dis-
tribution with the degree of freedom N − 1. The rejection
range of Tl is Tl > zl, where zl is the one-tail cut-off point
in the t distribution and the cumulative probability above zl

is 1 − c. Similarly, the rejection range of Tu is Tu < zu,
where zu is the cut-off point and the cumulative probability
below zu is 1 − c. Figure 3-A shows a family of t distri-
bution with different degrees of freedom (df). Figure 3-B
shows the two cut-off points zl and zu in a t distribution
(df=16) with confidence c = 90%.

The testing algorithm is as follows. The above t-test is
repeated once a new sample is drawn. If the null hypothesis
H0 is rejected, the test stops at a value in the prediction
range. Therefore, we conclude that the out-of-range sample
is caused by the random error, and send the sample mean to
the sink. Otherwise, we keep testing until the sample mean
is in an ±e error range with a given confidence. The sample

df = 1
df = 4
df = 16
df = infinite

−1.3368 1.3368

10%10%

A. t distribution of different df B. t distribution with cutoff points

Figure 3. t distribution

Test when the first sample vi,t is not in the prediction range [li,t, ui,t]

Step 1: Get one more sample;
Step 2: Compute sample mean vi,t and sample variance (σ̂�

i,t)
2;

Step 3: Perform hypothesis test with H0 : µi,t < li,t or µi,t > ui,t

Step 3.1: If H0 is rejected, return vi,t and go to END;
Step 4: Check the confidence of the error range ±e.

Step 4.1: If zσ̂�
i,t < e, return vi,t and confidence c, and go to END;

Step 4.2: Else, go to Step 1.
END

Table 1. Local test of the important value that falls outside
of the prediction range

mean vi,t and sample variance σ̂2
i,t for sensor i at time t are

computed from a set of N samples. Multiple samples can
improve the confidence, since the variance of the sample
mean is decreasing with the sample size N :

(σ̂�
i,t)

2 =
σ̂2

i,t

N
.

We accept the sample mean vi,t as a return value when-
ever the true value falls into the ±e error range with at
least confidence c. In other words, the cumulative prob-
ability of Gaussian distribution N(vi,t, (σ̂�

i,t)
2) in range

[vi,t − e, vi,t + e] is higher than c. This can be tested by
finding the confidence c cut-off point in the normal distri-
bution N(0, 1), denoted as z, and accept the sample mean if
zσ̂�

i,t < e. Details of the local testing are described in Table
1.

3.2.2 Neighbor Testing

Neighbor testing is performed during the mean time of the
local testing. If a sample falls outside of the prediction
range, we check if its neighbors also detect similar abnor-
mal samples. We can conclude with a higher confidence
that the abnormal sample is not due to a random error if
more neighbors have similar samples.

To use the neighboring information in the testing, a sen-
sor shares its sample mean, sample variance, and sample
size with the neighboring sensors. The sample mean and
variance of sensor i are vi,t and σ̂2

i,t, respectively, and the

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

sample size is denoted as Ni,t. We use the neighboring in-
formation of sensor i to improve and speed up the testing. If
all neighbors of sensor i share their sample mean, variance,
and size, the neighboring information collected by sensor i
is

{(vj,t, σ̂
2
j,t, Nj,t)}, j ∈ Neighbor(i).

A neighbor is included in the testing if its sample mean vj,t

is in the ±e error range of sensor i, which implies that it is
very possible that sensor i and j are affected by the same
event.

vj,t ∈ [vi,t − e, vj,t + e]
We let Neighbor′(i) denote a set of neighboring sensors
included in the test.

The idea of neighboring test is to use the neighboring
samples to increase the confidence of the current sensor.
The new confidence interval from the adjusted variance
zσ̇i,t is

[vi,t − zσ̇i,t, vi,t + zσ̇i,t]
where σ̇i,t is

σ̇i,t = min(
σ̂2

i,t

Ni,t
,
Ni,tσ̂

2
i,t + Σj∈Neighbor′(i)Nj,tσ̂

2
j,t

(Ni,t + Σj∈Neighbor′(i)Nj,t)2
)

The above formula uses samples from the neighboring sen-
sors, as well as samples from sensor i to reduce the vari-
ance of sensor i. Eventually, if zσ̇i,t ≤ e, we say that we
have found a sample mean whose error range is less than
±e with confidence higher than c. If a sensor passes the
neighboring test, its sample mean vi,t is sent to the sink, as
well as a confidence ci,t which is the probability that data
has fall within the interval [vi,t − e, vi,t + e] in distribution
N(vi,t, σ̂i,t/Ni,t). The consequence is, without neighbor-
ing test, each out-of-range change needs to be tested inde-
pendently by individual sensors until it reaches confidence
c. With neighboring information, we can probably stop at
a lower confidence ci,t < c, and do not need that many
samples in the test. In the next section, we describe how
to use the neighboring information in the calculation of the
weighted moving average (WMA).

To save transmission costs, a sensor only shares its in-
formation with neighbors when it reaches confidence c. No
matter what, the sensor needs to send the sample mean to
the sink at this time. It does not cost more messages to share
this information with neighbors since they share the same
communication channel. Sample variance and samples size
are attached to this message. When the parent node for-
wards the message to an upper level, it can delete attached
sample variance and sample size from the message. Thus,
the transmission cost of the neighboring test is very low.

3.3 Weighted Moving Average

Weighted moving average (WMA) is computed when the
sink obtains the values sent from sensors of two dimensions.

The temporal dimension averages values at different times-
tamp but from the same sensor to remove noise. The spatial
dimension averages high confidence values from neighbors
at the same timestamp to improve the confidence. There are
three kinds of values from sensors:
• a single sample mean xi,t = vi,t, sometimes it is only

one raw sample;
• a sample mean xi,t = vi,t with confidence c;
• a sample mean xi,t = vi,t with confidence ci,t.

We assign a weight wi,t to each value xi,t according to its
confidence. If xi,t is not attached by any confidence, we let
wi,t = 1. If xi,t is attached by confidence c, we magnify its
influence in the moving average. We let wi,t = wmax for
this value, where wmax is a predefined maximum weight. If
xi,t is attached by confidence ci,t < c, we scalarly assign a
weight to it: wi,t = (wmax − 1) · ci,t/c + 1.

The computation of WMA at the sink includes two parts:
a temporal average and a spatial average. The temporal part
is a weighted version of the normal moving average

x̄t
i =

ŵi,t−kxi,t−k + . . . + ŵi,txi,t

h
,

where k is a given window size and h is the accumulated
temporal weight h = ŵi,t−k + . . . + ŵi,t. To remove
the influence of a highly weighted value in future times-
tamps, we use the most recent weight strategy. Only the
right-hand most > 1 weight in wi,t−k, . . . , wi,t is used in
ŵi,t−k, . . . , ŵi,t. Other ŵi,t are set to be 1.

The spatial part includes value xj,t from sensors j, where
xj,t is in the error range of xi,t, [xi,t−e, xi,t +e], and it has
a high confidence with its weight wj,t > 1. That means xj,t

is in xi,t’s error range and has a high confidence to improve
the moving average at xi,t. We need to include the spatial
values because in the neighboring test, some of the sensors
stop at a lower confidence and they need to use their neigh-
bors’ values and their higher confidence to improve their
moving average. The spatial part of the moving average is

x̄s
i =

Σj∈Neighbor(i)bj,twj,txj,t

m
,

where m is the accumulated spatial weights:

m = Σj∈Neighbor(i)bj,twj,t

and bj,t is a boolean variable decide if a neighbor is used in
the spatial average or not:

bj,t =
{

1 if xj,t ∈ [xi,t − e, xi,t + e] and wj,t > 1
0 otherwise.

Finally, the weighted moving average is the combination
of the temporal and spatial parts:

x̄i,t =
hx̄t

i + mx̄s
i

h + m
.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

0 50 100 150 200
10

15

20

25

30

35

er
ro

r

time

noisy data
WMA − regression

0 50 100 150 200
10

15

20

25

30

35

er
ro

r

time

noisy data
WMA − KL filter

A. Error of regression B. Error of KL filter

Figure 4. Clean effectiveness

4 Simulation Results

To evaluate the weighted moving average (WMA) algo-
rithm, we build our own sensor network simulator. Sensors
are placed in a 30×30 square sensor grid with one sensor in
each square. With one sensor in each square, neighbors of
each sensor include its left, right, top, bottom, top-left, top-
right, bottom-left, and bottom right-hand-side sensors. In
more complex cases, if the correlation information of sen-
sors is known as a prior from the physical placement, we
can make use of it to identify neighbors in the neighboring
test. That means each sensor knows exactly who are the
neighbors and whose information may be usable. Neigh-
boring sensors share the same communication channel, and
can therefore overhear messages sent by other neighbors.
Although data aggregation for queries is important, it is not
the focus of this paper. Therefore, we simply consider a
data collection application. However, note that our WMA
approach can be easily modified to be used in other query
aggregation applications. For example, in a SUM query,
the weighted moving average can be computed within in-
dividual sensors, and provide clean data for calculating the
aggregated SUM.

The simulation data are from a real time-series data set.
We first assign the time series to some randomly placed ini-
tiator sensor nodes. The time series of the other sensors
is a linear combination of the initiator sensors around it,
where the closer initiator sensors have higher weights. In
this way, we set up the spatial similarity in the network.
As we did in [3], we generate noisy data by filling the data
into a re-sampling process, which adds different amounts of
Gaussian white noise to different sensors. The simulation
lasts for 200 timestamps. Sensors are loosely synchronized
and data collection is performed at each timestamp. Vari-
ous strategies, such as aggregation and compression, can be
applied to reduce the communication cost during the data
collection, which, however, is not of interest in this paper.

4.1 Clean Effectiveness

We first evaluate the effectiveness of data cleaning by the
WMA algorithm. The cleaning effectiveness is measured
by the mean square error between the cleaned and true data.
In the simulation, we test both strategies of computing the
prediction range: the KL filter and the regression approach.
Figure 4 plots errors of the raw data and smoothed data from
WMA. The raw data are random samples with a lot of noise,
and therefore have high errors. As shown in Figure 4, the
WMA algorithm can greatly reduce the random error con-
tained in the raw data. We also find that the performance of
the two prediction approaches, KL filter and regression, is
almost the same.

4.2 Response Time

In this set of experiments, we compare the response time
of WMA with that of SMA (i.e. simple moving average).
The SMA approach in our evaluation is designed to have a
constant window size w = 10, that is, we average 10 sam-
ples each time. A sensor can change its sampling rate, and
thus sample multiple times at one timestamp. For example a
sampling rate 2 in our simulation indicates that each sensor
draws two samples at each timestamp. In that case, a win-
dow with size w = 10 lasts for five timestamps. With the
SMA method, we want to remove noise and meanwhile cap-
ture the data change quickly by actively adapting the sam-
pling rates.

We evaluate both WMA and SMA algorithms in terms of
their sampling efficiency and response time to data changes.
A change in the simulation is defined as a point that first ex-
ceeds v+�t, where v is the average of 200 previous values
in the time series and �t is a pre-defined threshold. Figure
5-A plots the distribution of the response time. The WMA
algorithm can respond to most of the changes in real-time,
while SMA with sampling rate 2 shows a bell curve cen-
tering at a delay of t = 4 timestamps. In order to quickly

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

2 4 6 8 10
0

1

2

3

4

5

6

sampling rates of normal moving average

av
er

ag
e

re
sp

o
n

se
 t

im
e

WMA − regression
WMA − KL filter
SMA

A. Distribution of response time B. Average response time

Figure 5. Response time to the change point

2 4 6 8 10
0

2000

4000

6000

8000

10000

sampling rates of normal moving average

sa
m

p
le

s/
ti

m
e

st
am

p

WMA − regression
WMA − KL filter
SMA

A. Sampling cost B. Neighobor testing

Figure 6. Efficiency

respond to the change, SMA needs to use a higher sam-
pling rate for all sensors at all timestamps. Figure 5-B il-
lustrates that higher sampling rates can reduce the response
time. The WMA algorithm can automatically increase the
sampling rate at the point where changes occur. It can use a
low average sampling rate to achieve short response time.

4.3 Energy Efficiency

The use of the adaptive sampling and weighted averaging
is to save the sampling cost. Figure 6-A illustrates that the
WMA algorithm uses fewer samples compared with SMA
most of the time. In contrast to SMA with rate 2 that con-
sumes a similar number of samples to WMA, WMA needs
only about half the response time (see Figure 5-B). The use
of the neighboring test can further reduce the sampling cost,
as illustrated in Figure 6-B. The figure plots the number of
samples required in each timestamp averaged from 250 con-
tinuous timestamps. We can see that the neighboring test
can save about 18% of the sampling cost.

5 Related Works

Sensor networks have been widely used in various appli-
cations [11, 13]. Sensor readings are often noisy and error

prone due to the low quality of sensors and random effects
of the environment [4, 14]. Many works have been pro-
posed to clean noisy data before they are used for answer-
ing queries. Based on the location where data are cleaned,
these proposals can be sink-based (base station) or sensor-
based. For the sink-based methods, quite a few works have
been done. Mukhopadhyay et al. [12] proposed a model-
based approach to correct the transient errors of sensor data.
Specifically, an off-line process selects the type and order of
the models first, and then, based on the collected sampling
sensor data, the parameters of this model are estimated to
correct the data. To reduce the uncertainty associated with
the data, Elnahrawy and Nath [4] proposed a Bayesian ap-
proach, which combines prior knowledge of the true sensor
readings, the noise characteristics of this sensor and the ob-
served noisy readings. However, it is often not possible or
at least difficult to know the noise characteristics of a sen-
sor. Jeffrey et al. [7] proposed a general framework for
building sensor data cleaning infrastructures in pervasive
applications. The main idea is to utilize the spatio-temporal
correlation among the sensor data to recover lost readings
and remove outliers. Subramaniam et al. [15] proposed a
data cleaning approach with an online distribution estima-
tion model and a hierarchical network structure. Kalman
filter, as a stochastic, recursive data filter, has been used to

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

filter noise data from the senor [6]. Other than Kalman filter,
some complicated approaches using multiple sensor fusion
have also been proposed to remove noise, such as [16]. With
respect to sensor-based data cleaning approaches, not much
has been done yet. Branch et al. [2] proposed a distributed
in-network outlier detection method based on the changing
rate of the value and Zhuang et al. [20] detected outliers
within a sensor by utilizing the spatio-temporal correlation
among the sensor data.

Compared to previous works, our work is a hybrid clean-
ing approach, which cleans the data at the sink as well as
within the sensor. We use the weighted moving average to
clean the data at the sink and use spatio-temporal correlation
to verify the confidence of changing data within the sensor.

6 Conclusions

In this paper, we have proposed a weighted moving av-
erage algorithm (WMA) to clean sensor data. Moving av-
erage is a popular approach for data cleaning [7, 5]. An
SMA with higher sampling rate can improve the averaging
results by drawing more samples at each timestamp. How-
ever, this is costly for sensors with limited battery power.
On the other hand, when the sampling rate of SMA is low,
the moving average responds slowly to changes in the data.
To overcome this problem, we present a WMA which adds
confidence weight to important values in the moving aver-
age, such as a change point, a pike and so on. The important
values are detected by a prediction range computed from
the Kalman filter or linear regression. We recursively draw
samples and test whether the data is in or out of the predic-
tion range. A confidence value is then reported to the sink,
through which weights are computed for WMA.

The WMA algorithm can effectively remove random
noise in the noisy data. Compared with SMA, WMA uses
fewer samples to achieve a quicker response time to the data
change. We conduct comprehensive simulations and show
the effectiveness of the WMA algorithm and its energy effi-
ciency.

7 Acknowledgement

Funding for this work was provided by the Hong Kong
RGC grants DAG05/06.EG03, the NSFC Key Project Grant
No. 60533110, National Grand Fundamental Research 973
Program of China under Grant No. 2006CB303000, and the
US NSF grant ISI-0415023.

References

[1] P. Bonnet, J. Gehrke, and P. Seshadri. Querying the physical
world. IEEE Personal Communications, 2000.

[2] J. Branch, B. Szymanski, C. Giannella, R. Wolff, and
H. Kargupta. In-network outlier detection in wireless sen-
sor networks. In Proc. of ICDCS, 2006.

[3] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity
search for moving object trajectories. In Proc. of SIGMOD,
2005.

[4] E. Elnahrawy and B. Nath. Cleaning and querying noisy
sensors. In Proc. of MSWiM, 2003.

[5] J. Hellerstein and W. Hong and S. Madden and K.
Stanek. Beyond average: Towards sophisticated sensing
with queries. In Proc. of IPSN, 2003.

[6] A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive stream re-
source management using kalman filters. In Proc. of SIG-
MOD, 2004.

[7] S. R. Jeffery, G. Alonso, M. J. Franklin, W. Hong, and
J. Widom. Declarative support for sensor data cleaning. In
Proc. of PerCom, 2006.

[8] M. Singh and V. K. Prasanna. System level energy trade-
offs for collab-orative computation in wireless networks. In
Proc. of ICC, 2002.

[9] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
Tag: a tiny aggregation service for ad-hoc sensor networks.
In Proc. of OSDI, 2002.

[10] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
The design of an acquisitional query processor for sensor
networks. In Proc. of SIGMOD, 2003.

[11] Mo Li and Yunhao Liu. Underground structure monitoring
with wireless sensor networks. In Proc. of IPSN, 2007.

[12] S. Mukhopadhyay, D. Panigrahi, and S. Dey. Model based
error correction for wireless sensor networks. In Proc. of
SECON, 2004.

[13] L. M. Ni, Y. Liu, Y. C. Lau, and A. Patil. Landmarc: Indoor
location sensing using active rfid. ACM Wireless Networks,
2004.

[14] D. Niculescu and B. Nath. Error characteristics of ad hoc
positioning systems (aps). In Proc. of MobiHoc, 2004.

[15] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kaloger-
aki, and D. Gunopulos. Online outlier detection in sensor
data using non-parametric models. In Proc. of VLDB, 2006.

[16] G. Wu, Y. Wu, L. Jiao, Y.-F. Wang, and E. Y. Chang.
Multi-camera spatio-temporal fusion and biased sequence-
data learning for security surveillance. In Proc. of ACM MM,
2003.

[17] W. Xue, Q. Luo, L. Chen, and Y. Liu. Contour map matching
for event detection in sensor networks. In Proc. of SIGMOD,
2006.

[18] Y. Yao and J. Gehrke. Query processing for sensor networks.
In Proc. of CIDR, 2003.

[19] Zarchan Paul and Musoff Howard. Fundamentals of kalman
filtering: A practical approach. In AAAI, 2007.

[20] Y. Zhuang and L. Chen. In-network outlier cleaning for data
collection in sensor networks. In Proc. of CleanDB, 2006.

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00 © 2007

