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Stéphane Devismes
CNRS

Université Paris-Sud
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Abstract

Self-stabilization is a strong property which guarantees
that a network always resume a correct behavior starting
from an arbitrary initial state. Weaker guarantees have
later been introduced to cope with impossibility results:
probabilistic stabilization only gives probabilistic conver-
gence to a correct behavior. Also, weak-stabilization only
gives the possibility of convergence.

In this paper, we investigate the relative power of weak,
self, and probabilistic stabilization, with respect to the set
of problems that can be solved. We formally prove that in
that sense, weak stabilization is strictly stronger that self-
stabilization. Also, we refine previous results on weak sta-
bilization to prove that, for practical schedule instances, a
deterministic weak-stabilizing protocol can be turned into a
probabilistic self-stabilizing one. This latter result hints at
more practical use of weak-stabilization, as such algorithms
are easier to design and prove than their (probabilistic) self-
stabilizing counterparts.

1. Introduction

Self-stabilization [11, 12] is a versatile technique to
withstand any transient fault in a distributed system or net-
work. Informally, a protocol is self-stabilizing if, starting
from any initial configuration, every execution eventually
reaches a point from which its behavior is correct. Thus,
self-stabilization makes no hypotheses on the nature or ex-
tent of faults that could hit the system, and recovers from
the effects of those faults in a unified manner.

Such versatility comes with a cost: self-stabilizing pro-
tocols can make use of a large amount of resources, may
be difficult to design and to prove, or could be unable to
solve some fundamental problems in distributed computing.
To cope with those issues, several weakened forms of self-
stabilization have been investigated in the literature. Proba-
bilistic self-stabilization [18] weakens the guarantee on the
convergence property: starting from any initial configura-
tion, an execution reaches a point from which its behavior

is correct with probability 1. Pseudo-stabilization [7] re-
laxes the notion of “point” in the execution from which the
behavior is correct: every execution simply has a suffix that
exhibits correct behavior, yet the time before reaching this
suffix is unbounded. The notion of k-stabilization [2, 13]
prohibits some of the configurations from being possible
initial states, and assumes that an initial configuration may
only be the result of k faults (the number of faults being
defined as the number of process memories to change to
reach a correct configuration). Finally, the weak-stabilizat-
ion [14] stipulates that starting from any initial configura-
tion, there exists an execution that eventually reaches a point
from which its behavior is correct.

Probabilistic self-stabilization was previously used to re-
duce resource consumption [17] or to solve problems that
are known to be impossible to solve in the classical deter-
ministic setting [15], such as graph coloring, or token pass-
ing. Also, it was shown that the well known alternating bit
protocol is pseudo-stabilizing, but not self-stabilizing, es-
tablishing a strict inclusion between the two concepts. For
the case of k-stabilization, [19] shows that if not all pos-
sible configurations are admissible as initial ones, several
problems that can not be solved in the self-stabilizing set-
ting (e.g. token passing) can actually be solved in a k-
stabilizing manner. As for weak-stabilization, it was only
shown [14] that a sufficient condition on the scheduling hy-
potheses makes a weak-stabilizing solution self-stabilizing.

From a problem-centric point of view, the probabilis-
tic, pseudo, and k variants of stabilization have been
demonstrated strictly more powerfull that classical self-
stabilization, in the sense that they can solve problems that
are otherwise unsolvable. This comforts the intuition that
they provide weaker guarantees with respect to fault recov-
ery. In contrast, no such knowledge is available regarding
weak-stabilization.

In this paper, we address the latter open question, and
investigate the power of weak-stabilization. Our contri-
bution is twofold: (i) we prove that from a problem-
centric point of view, weak-stabilization is stronger than
self-stabilization (both for static problems, such as leader
election, and for dynamic problems, such as token passing),



and (ii) we show that there exists a strong relationship be-
tween deterministic weak-stabilizing algorithms and prob-
abilistic self-stabilizing ones. Practically, any deterministic
weak-stabilizing protocol can be transformed into a prob-
abilistic self-stabilizing protocol performing under a prob-
abilistic scheduler, as we demonstrate in the sequel of the
paper. This results has practical impact: it is much easier to
design and prove a weak-stabilizing solution than a proba-
bilistic one; so if new simple weak-stabilizing solutions ap-
pear in the future, our scheme can automatically make them
self-stabilizing in the probabilistic sense.

The remaining of the paper is organized as follows. In
the next section we present the model we consider in this pa-
per. In Section 3, we propose weak-stabilizing algorithms
for problems having no deterministic self-stabilizing solu-
tions. In Section 4, we show that under some scheduling
assumptions, a weak-stabilizing system can be seen as a
probabilistic self-stabilizing one.

Due to the lack of space, many technical proofs have
been removed from the paper. These proofs are available
in the technical report [10].

2. Model

Graph Definitions. An undirected graph G is a couple
(V ,E) where V is a set of N nodes and E is a set of edges,
each edge being a pair of distinct nodes. Two nodes p and
q are said to be neighbors iff {p,q} ∈ E. Γp denotes the
set of p’s neighbors. ∆p denotes the degree of p, i.e., |Γp|.
By extention, we denote by ∆ the degree of G, i.e., ∆ =
max({∆p, p ∈ V }). A path of lenght k is a sequence of
nodes p0, . . . , pk such that ∀i, 0 ≤ i < k, pi and pi+1

are neighbors. The path P = p0, . . . , pk is said elemen-
tary if ∀i,j, 0 ≤ i < j ≤ k, pi 6= pj . A path P = p0,
. . . , pk is called cycle if p0, . . . , pk−1 is elementary and
p0 = pk. We call ring any graph isomorph to a cycle. An
undirected graph G = (V ,E) is said connected iff there ex-
ists a path in G between each pair of distinct nodes. The dis-
tance between two nodes p and q in an undirected connected
graph G = (V ,E) is the length of the smallest path be-
tween p and q in G. We denode the distance between p and
q by d(p,q). The diameter D of G is equal to max({d(p,q),
p ∈ V ∧q ∈ V }). The eccentricity of a node p, noted ec(p),
is equal to max({d(p,q), q ∈ V }). A node p is a center of
G if ∀q ∈ V , ec(p) ≤ ec(q). We call tree any undirected
connected acyclic graph. In a tree graph, we distinghish
two types of nodes: the leaves (i.e., any node p such that
Γp = 1) and the internal nodes (i.e., any node p such that
Γp > 1). Below, we recall a well-known result about the
centers in the trees.

Property 1 ([5]) A tree has a unique center or two neigh-
boring centers.

Distributed Systems. A distributed system is a finite set
of communicating state machines called processes. We rep-
resent the communication network of a distributed system
by the undirected connected graph G = (V ,E) where V
is the set of N processes and E is a set of edges such that
∀p,q ∈ V , {p,q} ∈ E iff p and q can directly commu-
nicate together. Here, we consider anonymous distributed
systems, i.e., the processes can only differ by their degrees.
We assume that each process can distinguish all its neigh-
bors using local indices, these indexes are stored in Neigp.
For sake of simplicity, we assume that Neigp = {0, . . . ,
∆p − 1}. In the following, we will indifferently use the la-
bel q to designate the process q or the local index of q in the
code of some process p.

The communication among neighboring processes is car-
ried out using a finite number of shared variables. Each pro-
cess holds its own set of shared variables where it is the only
able to write but where each of its neighbors can read. The
state of a process is defined by the values of its variables.
A configuration of the system is an instance of the state of
its processes. A process can change its state by executing
its local algorithm. The local algorithm executed by each
process is described by a finite set of guarded actions of the
form: 〈label〉 :: 〈guard〉 → 〈statement〉. The guard of an
action at Process p is a boolean expression involving some
variables of p and its neighbors. The statement of an action
of p updates some variables of p. An action can be executed
only if its guard is satisfied. We assume that the execution
of any action is atomic. An action of some process p is said
enabled in the configuration γ iff its guard is true. By ex-
tention, p is said enabled in γ iff at least one of its action is
enabled in γ.

We model a distributed system as a transition system
S = (C, 7→,I) where C is the set of system configuration,
7→ is a binary transition relation on C, and I ⊆ C is the set
of initial configurations. An execution of S is a maximal
sequence of configurations γ0, . . . , γi−1, γi, . . . such that
γ0 ∈ I and ∀i > 0, γi−1 7→ γi (in this case, γi−1 7→ γi is
referred to as a step). Any configuration γ is said terminal
if there is no configuration γ′ such that γ 7→ γ′. We denote
by γ ; γ′ the fact that γ′ is reachable from γ, i.e., there
exists an execution starting from γ and containing γ′.

A scheduler is a predicate over the executions. In any
execution, each step γ 7→ γ′ is obtained by the fact that a
non-empty subset of enabled processes atomically execute
an action. This subset is chosen according to the sched-
uler. A scheduler is said central [11] if it chooses one en-
abled process to execute an action in any execution step. A
scheduler is said distributed [6] if it chooses at least one en-
abled process to execute an action in any execution step. A
scheduler may also have some fairness properties ([12]). A
scheduler is strongly fair (the strongest fairness assumption)
if every process that is enabled infinitely often is eventually



chosen to execute an action. A scheduler is weakly fair if
every continuously enabled process is eventually chosen to
execute an action. Finally, the proper scheduler is the weak-
est fairness assumption: it can forever prevent a process to
execute an action except if it is the only enabled process.
As the strongly fair scheduler is the strongest fairness as-
sumption, any problem that cannot be solved under this as-
sumption cannot be solved for all fairness assumptions. In
contrast, any algorithm working under the proper scheduler
also works for all fairness assumptions.

We call P-variable any variable v such that there exists
a statement of an action where v is randomly assigned. Any
variable that is not a P-variable is called D-variable.
Each random assignation of the P-variable v is assumed
to be performed using a random function Randv which re-
turns a value in the domain of v. A system is said prob-
abilistic if it contains at least one P-variable, otherwise
it is said deterministic. Let S = (C, 7→,I) be a proba-
bilistic system. Let Enabled(γ) be the set of processes
that are enabled in γ ∈ C. S satisfies: for any subset
Sub(γ) ⊆ Enabled(γ), the sum of the probabilities of the
execution steps determined by γ and Sub is equal to 1.

Stabilizing Systems. Let S = (C,7→,I) be a system such
that C = I (n.b., in the following any system S = (C,7→,I)
such that C = I will be simply denoted by S = (C, 7→)).
Let SP be a specification, i.e., a particular predicate defined
over the executions of S.

Definition 1 S is deterministically self-stabilizing for SP
if there exists a non-empty subset of C, noted L, such that:
(i) Any execution of S starting from a configuration of L al-
ways satisfies SP (Strong Closure Property), and (ii) Start-
ing from any configuration, any execution of S reaches in a
finite time a configuration of L (Certain Convergence Prop-
erty).

Definition 2 S is probabilistically self-stabilizing for SP if
there exists a non-empty subset of C, noted L, such that: (i)
Any execution of S starting from a configuration of L al-
ways satisfies SP (Strong Closure Property), and (ii) Start-
ing from any configuration, any execution of S reaches a
configuration of L with Probability 1 (Probabilistic Conver-
gence Property).

Definition 3 S is deterministically weak-stabilizing for
SP if there exists a non-empty subset of C, noted L, such
that: (i) Any execution of S starting from a configuration
of L always satisfies SP (Strong Closure Property), and
(ii) Starting from any configuration, there always exists an
execution that reaches a configuration of L (Possible Con-
vergence Property).

Note that the configurations from which S always satisfies
SP (L) are called legitimate configurations. Conversely,
every configuration that is not legitimate is illegitimate.

3. From Self to Weak Stabilization

In this section, we exhibit two problems that can not
be solved by a deterministic self-stabilizing protocol, yet
admit surprisingly simple deterministic weak-stabilizing
ones. Thus, from a problem-centric point of view, weak-
stabilization is stronger than self-stabilization. This result is
mainly due to the fact that a given scheduler is appreciated
differently when we consider self or weak stabilization. In
the self-stabilizing setting, the scheduler is seen as an adver-
sary: the algorithm must work properly despite the “bad be-
havior” of the scheduler. Indeed, it is sufficient to exhibit an
execution that satisfies the scheduler predicate yet prevents
the algorithm from converging to a legitimate configuration
to prove the absence of self-stabilization. Conversely, in
weak-stabilization, the scheduler can be viewed as a friend:
to prove the property of weak-stabilization, it is sufficient
to show that, for any configuration γ, there exists an execu-
tion starting from γ that satisfies the scheduler predicate and
converges. As a matter of fact, the effect of the scheduler
is reversed in weak and self stabilization: the strongest the
scheduler is (i.e. the more executions are included in the
scheduler predicate), the easier the weak-stabilization can
be established, but the harder self-stabilization is.

When the scheduler is synchronous [16] (i.e., a sched-
uler that chooses every enabled process at each execution
step) the notions of deterministic weak-stabilization and de-
terministic self-stabilization are equivalent, as claimed be-
low.

Theorem 1 Under a synchronous scheduler, an algorithm
is deterministically weak-stabilizing iff it is also determini-
stically self-stabilizing.

We now exhibit two examples of problems that admit weak-
stabilizing solutions but no self-stabilizing ones: the token
passing and the leader election.

3.1. Token Circulation

In this subsection, we consider the problem of Token Cir-
culation in a unidirectional ring, with a strongly fair dis-
tributed scheduler. This problem is one of the most stud-
ied problems in self-stabilization, and is often regarded as a
“benchmark” for new algorithms and concepts. The consis-
tent direction is given by a constant local pointer Pred: for
any process p, Predp designates a neighbor q as the prede-
cessor (resp. p is the successor of q) in such way that q is
the predecessor of p iff p is not the predecessor of q.

Definition 4 The token circulation problem consists in cir-
culating a single token in such way that every process holds
the token infinitely often.



In [16], Herman shows, using a previous result of An-
gluin [1], that the deterministic self-stabilizing token circu-
lation is impossible in anonymous networks because there
is no ability to break symmetry. We now show that, con-
trary to deterministic self-stabilization, deterministic weak-
stabilizing token circulation under distributed strongly fair
scheduler exists in an anonymous unidirectional ring.

Our starting point is the (N − 1)-fair algorithm of
Beauquier et al. proposed in [3] (presented as Algorithm
1). Algorithm 1 is actually a deterministic weak-stabilizing
token circulation protocol. Roughly speaking, (N − 1)-
fairness implies that in any execution, (i) every process p
performs actions infinitely often, and (ii) between any two
actions of p, any other process executes at most N − 1 ac-
tions. The memory requirement of Algorithm 1 is log(mN )
bits per process where mN is the smallest integer not divid-
ing N (the ring size). Note that it is also shown in [3] that
this memory requirement is minimal to obtain any proba-
bilistic self-stabilizing token circulation under a distributed
scheduler (such a probabilistic self-stabilizing token circu-
lation can be found in [9]).

Algorithm 1 Code for every process p
Variable: dtp ∈ [0 . . . mN − 1]
Macro:

PassTokenp = dtp ← (dtP redp + 1) mod mN

Predicate:
Token(p) ≡ [dtp 6= ((dtP redp + 1) mod mN )]

Action:
A :: Token(p) → PassTokenp

A process p maintains a single counter variable: dtp such
that dtp ∈ [0 . . .mN − 1]. This variable allows p to know
if it holds the token or not. Actually, a process p holds a
token iff dtp 6= ((dtPredp

+1) mod mN ), i.e., iff p satisfies
Token(p). In this case, Action A is enabled at p. This action
allows p to pass the token to its successor.

Figure 1 depicts an execution of Algorithm 1 starting
from a legitimate configuration, i.e., a configuration where
there is exactly one process that satisfies Predicate Token.
In the figure, the outgoing arrows represent the Pred point-
ers and the integers represent the dt values. In this example,
the ring size N is equal to 6. So, mN = 4. In each configu-
ration, the process with an asterisk is the only token holder:
by executing Action A, it passes the token to its successor.

Theorem 2 Algorithm 1 is a deterministic weak-stabilizing
token passing algorithm under a distributed strongly fair
scheduler.

3.2. Leader Election

In this subsection, we consider anonymous tree-shaped
networks and a distributed strongly fair scheduler.

Definition 5 The leader election problem consists in distin-
guishing a unique process in the network.

Theorem 3 Assuming a distributed strongly fair scheduler,
there is no deterministic self-stabilizing leader election al-
gorithm in anonymous trees.

We now provide two weak-stabilizing solutions for the
same problem in the same setting, with different space com-
plexities. Both solutions are more intuitive and simpler to
design than self-stabilizing ones in slightly different set-
tings.

A solution using log N bits. A straighforward solution is
to use the algorithm provided in [4]. This algorithm uses
log N bits and finds the centers of a tree network: starting
from any configuration, the system reaches in a finite time
a terminal configuration where any process p satisfies a par-
ticular local predicate Center(p) iff p is a center of the tree.
From Property 1, two cases are then possible in a terminal
configuration: either a unique process satisfies Center or
two neighboring processes satisfy Center.

If there is only one process p satisfying Center(p), it is
considered as the leader.

Now, assume that there are two neighboring processes
p and q that satisfy Center. In this case, p (resp. q) is
able to locally detect that q (resp. p) is the other center
(see [4] for details). So, we use an additional boolean B to
break the tie. If Bp 6= Bq, then the only center satisfying
B = true is considered as the leader. Otherwise, both p and
q are enabled to execute B ← ¬B. So, from any configu-
ration where the two centers have been found but no leader
is distinguished, this is always possible to reach a terminal
configuration where a leader is distinghished in one step: if
only one of the two centers moves.

Another solution using log ∆ bits. In this solution (Algo-
rithm 2), each process p maintains a single variable: Parp

such that Parp ∈ Neigp ∪ {⊥}. p considers itself as the
leader iff Parp =⊥. If Parp 6=⊥, the parent of p is the
neighbor pointed out by Parp, conversely p is said to be a
child of this process.

Algorithm 2 tries to reach a terminal configuration
where: (i) exactly one process l is designated as the leader,
and (ii) all other processes q point out using Parq their
neighbor that is the closest from l. In other words, Algo-
rithm 2 computes an arbitrary orientation of the network in
a deterministic weak-stabilizing manner.

Algorithm 2 uses the following strategy:

1. If a process p such that Parp 6=⊥ is pointed out by
all its neighbors, then this means that all its neigh-
bors consider it as the leader. As a consequence, p sets
Parp to ⊥ (Action A1), i.e., it starts to consider itself
as the leader.

2. If a process p such that Parp 6=⊥ has a neighbor which
is neither its parent nor one of its children, then this
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Figure 1. Example of an execution starting from a legitimate configuration.

Algorithm 2 Code for any process p
Variable: Parp ∈ Neigp ∪ {⊥}
Macro:

Childrenp = {q ∈ Neigp, Parq = p}
Predicates:

isLeader(p) ≡ (Parp =⊥)
Actions:
A1 :: (Parp 6=⊥) ∧ (|Childrenp| = |Neigp|) → Parp ←⊥
A2 :: (Parp 6=⊥) ∧ [Neigp \ (Childrenp ∪ {Parp}) 6= ∅] → Parp ← (Parp + 1) mod ∆p

A3 :: (Parp =⊥) ∧ (|Childrenp| < |Neigp|) → Parp← min≺p (Neigp \ Childrenp)

means that not all processes among p and its neigh-
bors consider the same process as the leader. In this
case, p changes its parent by simply incrementing its
parent pointer modulus ∆p (Action A2). Hence, from
any configuration, it is always possible that all pro-
cesses satisfying Par 6=⊥ eventually agree on the
same leader.

3. Finally, if a process p satisfies Parp =⊥ and at least
one of neighbor q does not satisfy Parq = p, then this
means that q considers another process as the leader.
As a consequence, p stops to consider itself as the
leader by pointing out one of its non-child neighbor
(Action A3).

Figure 2 depicts an example of execution of Algorithm 2
that converges. In the figure, the circles represent the pro-
cesses and the dashed lines correspond to the neighboring
relations. The labels of processes are just used for the ease
of explanation. Then, if there is an arrow outgoing from
process Pi, this arrow designates the neighbor pointed out
by ParPi . In contrast, ParPi =⊥ holds if there is no arrow
outgoing from process Pi. Any label Aj beside a process Pi

means that Action Aj is enabled at Pi. Finally, some labels
Aj are sometime asterisked meaning that their correspond-
ing actions is executed in the next step.

In initial configuration (i), no process satisfies Par =⊥,
i.e., no process consider itself as the leader. However, P1,
P2, P7, and P8 are pointed out by all their respective neigh-
bors. So, these processes are candidates to become the
leader (Action A1). Also, note that P3, P5, and P6 are en-
abled to execute Action A2: they have a neighbor that is

P1 P2 P3 P4

P1 P2 P3 P4

A1 A2

A3 A2 A2 A3

A2 A1* * * *

* * * *

(i)

(ii)

Figure 3. Example of an execution that does
not converge.

neither their parent or one of their children. Finally, note
that P4 is in a stable local state. In the first step (i) 7→ (ii),
P6 and P8 execute their enabled action: in (ii), there is a
unique leader (P8) but it has no child, i.e., no other process
agrees on its leadership. So P8 is enabled to lose its leader-
ship (Action A3). In (ii) 7→ (iii), P8 looses its leadership
(Action A3) but P2 becomes a leader (Action A1). So, there
is still a unique leader (P2) in the configuration (iii). In the
step (iii) 7→ (iv), P3 and P5 change their parent to P5 and
P3, respectively. As a consequence, Action A1 becomes en-
abled at P5 in (iv). However, P2 is also enabled in (iv) to
lose its leadership (Action A3). In (iv) 7→ (v), P2 and P5

execute their respective enabled action and the system reach
the terminal configuration (v).

Figure 3 illustrates the fact that Algorithm 2 is deter-
ministically weak-stabilizing but not deterministically self-
stabilizing under a distributed scheduler (for all fairness as-
sumptions). Actually Figure 3 show that there is some in-
finite executions of Algorithm 2 that never converge. This
example is quite simple: starting from the configuration (i),
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Figure 2. Example of possible convergence.

if the execution is synchronous, the system reaches config-
uration (ii) in one step, then we retreive configuration (i)
after two steps, and so on. This sequence can be repeated
indefinitely. So, there is a possible execution starting from
(i) that never converges.

Theorem 4 Algorithm 2 is a deterministic weak-stabilizing
leader election algorithm under a distributed strongly fair
scheduler.

4. From Weak to Probabilistic Stabilization

In [14], Gouda shows that deterministic weak-
stabilization is a “good approximation” of deterministic
self-stabilization1 by proving the following theorem:

Theorem 5 ([14]) Any deterministic weak-stabilizing sys-
tem is also a deterministic self-stabilizing system if:

- The system has a finite number of configurations, and

- Every execution satisfies the Gouda’s strong fairness
assumption where Gouda’s strong fairness means that,

1This result has been proven for the central scheduler but it is easy to
see that the proof also holds for any scheduler.

for every transition γ 7→ γ′, if γ occurs infinitely often
in an execution e, then γ 7→ γ′ also appears infinitely
often in e.

From Theorem 5, one may conclude that deterministic
weak-stabilization and deterministic self-stabilization are
equivalent under the distributed strongly fair scheduler.
This would contradict the results presented in Section 3.
Actually, this is not the case: we prove in Theorem 6 that
the Gouda’s strong fairness assumption is (strictly) stronger
than the classical notion of strong fairness. A less am-
biguous and more practical characterization of deterministic
weak-stabilization is the following: under Gouda’s strong
fairness assumption, the scheduler does not behave as an
adversary but rather as a probabilistic one (i.e., a determin-
istic weak-stabilizing system may never converge but if it
is lucky, it converges). Hence, under a distributed random-
ized scheduler [8], which chooses among enabled processes
with a (possibly) uniform probability which are activated,
any weak-stabilizing system converges with probability 1
despite an arbitrary initial configuration (Theorem 7).

Theorem 6 The Gouda’s strong fairness is stronger than
the strong fairness.

Proof. As Algorithm 1 (page 4) is a deterministic weak-
stabilizing token circulation with a finite number of con-



figurations, it is also a deterministic self-stabilizing token
circulation under the Gouda’s strongly fairness assumption
(Theorem 5). We now show the lemma by exhibiting an
execution of Algorithm 1 that does not converge under the
central strongly fair scheduler (a similar counter-example
can be also derived for a synchronous scheduler).

Consider a ring of six processes p0, . . . , p5. Consider a
configuration γ0 where only p0 and p3 hold a token. Both
p0 and p3 are enabled in γ0. Assume that only p0 passes
its token in the step γ0 7→ γ1. In γ1, p1 and p3 hold a
token. Assume now that only p3 passes its token in the step
γ1 7→ γ3 and so on. It is straightforward that if the two
tokens alternatively move at each step, then the execution
never converges despite it respects the central strongly fair
scheduler. 2

We now show that the randomized scheduler is a notion
that is, in some sense, equivalent to the Gouda’s strong fair-
ness.

Theorem 7 Let P be a deterministic algorithm having a
finite number of configurations. P is deterministically self-
stabilizing under the Gouda’s fairness assumption iff P is
probabilistically self-stabilizing under a randomized sched-
uler.

Proof. Let P be a deterministic algorithm having a finite
number of configurations.

If. Assume that P is deterministically self-stabilizing
under the Gouda’s fairness assumption. First, P satisfies
the strong closure property. Hence, it remains to show that
P also satisfies the probabilistic convergence property.

Assume, by the contradiction, that there exists an execu-
tion e of P that do not converge with a probability 1 under a
distributed randomized scheduler. As the number of config-
urations of P is finite, there exists at least one configuration
γ0 that occurs infinitely often in e. Then, asP is determinis-
tically self-stabilizing under the Gouda’s fairness assump-
tion, there exists an execution γ0, γ1, . . . , γk such that γk

is a legitimate configuration. Now, as the scheduler is ran-
domized, there is a strictly positive probability that γ0 7→ γ1

occurs starting from γ0. Hence, γ0 7→ γ1 occurs with a
probability 1 after a finite number of occurences of γ0 in e
and, as a consequence, γ1 occurs infinitely often (with the
probability 1) in e. Inductively, it is then straightforward
that ∀i ∈ [1 . . . k], γi occurs infinitely often in e with the
probability 1. Hence, the legitimate configuration γk even-
tually occurs in e with the probability 1, a contradiction.

Only If. Assume that P is probabilistically self-
stabilizing under a distributed randomized scheduler. First,
P satisfies the strong closure property. Then, starting from
any configuration, there exists at least one execution that
converges to a legitimate configuration: P satisfies the pos-
sible convergence property. Hence, P is weak-stabilizing

and, by Theorem 5, P is deterministically self-stabilizing
under the Gouda’s fairness assumption. 2

Theorem 7 claims that if the distributed scheduler does
not behave as an adversary, then any deterministic weak-
stabilizing system stabilizes with a probability 1. So, we
could expect that under a synchronous scheduler, which cor-
responds to a “friendly” behavior of the distributed sched-
uler, any weak-stabilizing system also stabilizes. Unfortu-
nately, this is not the case: for example, Figure 3 (page
5) depicts a possible synchronous execution of Algorithm
2 that never converges. In contrast, it is easy to see that
under a central randomized scheduler, Algorithms 1 and 2
are still probabilistically self-stabilizing (to prove the weak-
stabilization of Algorithms 1 and 2 under a distributed
scheduler we never use the fact that more that one pro-
cess can be activated at each step). Hence, this means that
in some cases, the asynchrony of the system helps its sta-
bilization while the synchrony can be pathological. This
could seem unintuitive at first, but this is simply due to the
fact that a synchronous scheduler maintains symmetries in
the system. However, it is desirable to have a solution that
works with both a distributed randomized scheduler and a
synchronous one. This is the focus of the following para-
graph.

Breaking Synchrony-induced Symetries. We now pro-
pose a simple transformer that permits to break the syme-
tries when the system is synchronous while keeping the
convergence property of the algorithm under a distributed
randomized scheduler. Our transformation method consists
in simulating a randomized distributed scheduler when the
system behaves in a synchronous way (this method was
used in the conflict manager provided in [15]): each time an
enabled process is activated by the scheduler, it first tosses
a coin and then performs the expected action only if the toss
returns true.

In our scheme, we add a new boolean random variable
Bi in the code of each processor i. We then transform any
action A :: GuardA → SA of the input (deterministic weak-
stabilizing) algorithm into the following action Trans(A):

Trans(A) :: GuardA → Bi ← Randi(true,false); if Bi then SA

Of course, our method does not absolutely forbid syn-
chronous behavior of the system: at any step, there is a
strictly positive probability that every enabled process is
activated and wins the toss. Such a property is very im-
portant because some deterministic weak-stabilizing algo-
rithms under a distributed scheduler require some “syn-
chronous” steps to converge. Such an exemple is provided
below.

Consider a network consisting of two neighboring pro-
cesses, p and q, having a boolean variable B and executing
the following algorithm:



Algorithm 3 Code for a process i
Input: j: the neighbor of i
Variable: Bi: boolean
Actions:
A1 (¬Bi ∧ ¬Bj) → Bi ← true
A2 (Bi ∧ ¬Bj) → Bi ← false

Trivially, Algorithm 3 is deterministically weak-stabilizing
under a distributed strongly fair scheduler for the following
predicate: (Bp ∧ Bq). Indeed, if (Bp,Bq) = (true,false)
or (false,true), then in the next configuration, (Bp,Bq) =
(false,false) and from such a configuration, three cases
are possible in the next step: (i) only Bp ← true, (ii) only
Bq ← true, or (iii) (Bp,Bq)← (true,true). In the two first
cases, the system retreives a configuration where (Bp,Bq)
= (true,false) or (false,true). In the latter case, the sys-
tem reaches a terminal configuration where (Bp∧Bq) holds.
Hence, Algorithm 3 requires to converge that p and q move
simultaneously when (Bp,Bq) = (false,false). The trans-
formed version of Algorithm 3 trivially converges with the
probability 1 under a distributed randomized scheduler as
well as a synchronous one because while the system is not
in a terminal configuration, the system regulary passes by
the configuration (Bp,Bq) = (false,false) and from such
a configuration, there is a strictly positive probability that
both p and q executes B ← true in the next step.

Let SDet = (CDet,7→Det) be a system that is determin-
istically weak-stabilizing for the specification SP under a
distributed scheduler and having a finite number of configu-
rations. Let SProb = (CProb, 7→Prob) be the probabilistic sys-
tem obtained by transforming SDet according to the above
presented method. We have the two following theorems:

Theorem 8 Assuming a synchronous scheduler, SProb is a
probabilistic self-stabilizing system for SP .

Theorem 9 Assuming a distributed randomized scheduler,
SProb is a probabilistic self-stabilizing system for SP .

5. Conclusion

Weak-stabilization is a variant of self-stabilization that
only requires the possibility of convergence, thus enabling
to solve problems that are otherwise impossible to solve
with self-stabilizing guarantees. As seen throughout the
paper, weak-stabilizing protocols are much easier to de-
sign and prove than their self-stabilizing counterparts. Yet,
the main result of the paper is the practical impact of
weak-stabilization: all deterministic weak-stabilizing algo-
rithms can automatically be turned into probabilistic self-
stabilizing ones, provided the scheduling is probabilistic
(which is indeed the case for practical purposes). Our ap-
proach removes the burden of designing and proving prob-
abilistic stabilization by algorithms designers, leaving them

with the easier task of designing weak stabilizing algo-
rithms.

Although this paper mainly focused on the theoretical
power of weak-stabilization, a goal for future research is
the quantitative study of weak-stabilization, evaluating the
expected stabilization time of transformed algorithms.
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