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Abstract: The k-set agreement problem is a generalization of the consensus problem: considering a system made
up of n processes where each process proposes a value, each non-faulty process has to decide a value such that a
decided value is a proposed value, and no more than £ different values are decided. While this problem cannot be
solved in an asynchronous system prone to ¢ process crashes when ¢t > k, it can always be solved in a synchronous
system; L%J + 1 isthen alower bound on the number of rounds (consecutive communication steps) for the non-faulty
processes to decide. The condition-based approach has been introduced in the consensus context. Its aim was to both
circumvent the consensus impossibility in asynchronous systems, and allow for more efficient consensus algorithms
in synchronous systems. This paper addresses the condition-based approach in the context of the k-set agreement
problem. It has two main contributions.

Thefirst is the definition of a framework that allows defining conditions suited to the /-set agreement problem.
More precisely, a condition is defined as a set of input vectors such that each of its input vectors can be seen as
“encoding” ¢ values, namely, the values that can be decided from that vector. A condition is characterized by the
parameters ¢, ¢, and a parameter denoted d such that the greater d + ¢, the least constraining the condition (i.e., it
includes more and more input vectors when d + £ increases, and there is a condition that includes all the input vectors
when d + ¢ > t). The conditions characterized by the triple of parameterst, d and ¢ define the class of conditions
denoted S7*/, 0 < d < t,1 < £ < n — 1. The properties of the sets S{"‘ are investigated, and it is shown that they
have alattice structure.

The second contribution is a generic synchronous &-set agreement algorithm based on a conditionC' € S td’f, i.e,
a condition suited to the /-set agreement problem, for ¢ < k. This algorithm requires at most [d*T”"’J + 1 rounds
when the input vector belongsto C', and [%J + 1 rounds otherwise. (Interestingly, this algorithm includes as particular
cases the classical synchronous k-set agreement algorithm that requires | £ | + 1 rounds (cased = ¢ and ¢ = 1), and
the synchronous consensus condition-based al gorithm that terminatesin d + 1 rounds when the input vector belongs
to the condition, and in ¢ 4 1 rounds otherwise (case k = ¢ = 1).)

Key-words: Agreement problem, Condition, Crash failure, Distributed algorithm, Efficiency, Fault-tolerance, Input
vector, Lower bound, Round-based computation, Set agreement, Synchronous system.
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Conditions pour I’accord ensembliste

Résumé : Ce rapport présente des conditions adaptées a I’ accord ensembliste et un protocole synchrone fondé sur
ces conditions.

Mots clés : Accord ensembliste, condition.



1 Introduction

1.1 Context of the paper

The consensus problem and the condition-based approach The condition-based approach has been introduced
to circumvent the impossibility of solving the consensus problem in asynchronous systems prone to process crashes.
That problem can be stated as follows. Each process proposes a value, and the processes have to cooperate in such a
way that each non-faulty process decides a value (termination), a decided value is a proposed value (validity), and no
two processes decide different values (agreement). Consensus is a fundamental problem that lies at the core of nearly
al the distributed coordination or consistency problems encountered in fault-tolerant distributed computing. Despite
its very simple definition, it is surprising that this problem cannot be solved in asynchronous systems prone to process
crashes (even in presence of a single crash), be the underlying communication medium a reliable message passing
system [10] or a shared memory made up of read/write registers[17].

Given a problem, the condition-based approach analyzes restrictions of the problem to subsets of its inputs [20].
Each restriction defines a new problem that is a particular instance of the origina problem. Conditions have given
rise to two lines of research, one focused on decidability, the other on efficiency. More precisely, it addresses the two
following questions.

* Given an unsolvable problem (e.g., asynchronousconsensus), for what restrictionsonitsinputs doesthe problem

become solvable?

 Given a solvable problem (e.g., synchronous consensus), for what restrictions on its inputs does the problem

become easier to solve (i.e., solvable in a more efficient way)?

Up to now, nearly all the results of the condition-based approach concernsthe consensus problem (seee.g., [11, 14,
15, 20, 22, 24, 29]). Let aninput vector be avector with one entry per process, the entry associated with agiven process
containing the value proposed by that process. Each input vector can be seen as a codeword encoding one of its values,
namely, the value decided by the non-faulty processes [11]. A condition is a set of input vectors (codewords). In this
context, the asynchronous consensus impossibility can be restated as follows: no condition can contain all the possible
input vectors. So, one of the most fundamental question of the condition-based approach is the characterization of
the largest set of conditions that allows to solve the consensus problem in a crash-prone asynchronous system. This
guestion has been answered in [20] where is introduced the notion of z-legal condition and is proved the following
characterization: acondition C' allows to solve consensus in an asynchronous system proneto up to = process crashes
iff itisz-legal [20] (aconditionis z-lega if each of its input vectors contains the same value more than z times, and
the Hamming distance of two vectors from which different values can be decided is greater than z).

Condition-based synchronous consensus The consensus problem can be solved in a synchronous system prone
to any number of process crashes. In such systems, the time efficiency of an algorithm is measured in terms of the
number R of rounds (consecutive communication steps) needed for the non-faulty processes to decide. It has been
shown that ¢ + 1 isalower bound for R wheret is an upper bound on the number of faulty processes (2, 9].

Asshown in [22, 29], the condition-based approach allows bypassing that lower bound each time the input vector
belongs to the condition. Families of conditions, denoted (S¢) ., areintroducedin [22]; the parameter d is called
the degree of the condition (and the quantity (# — d) measuresthe difficulty of the condition). A condition C' belongsto
Sdif itis (t — d)-legal. Thefollowing hierarchy of sets of conditions for synchronous consensus has been established
in[22]:

SlcSc--cStc---cSl
Let us consider a synchronous system where up to ¢ processes can crash, a condition C' € S¢ and an input vector 1.
The main result of [22] isthe following. if I € C', consensus can be solved in two roundswhend = 0, andind + 1
roundswhen 1 < d < ¢t. When I ¢ C, the number of roundsis ¢ + 1 rounds (as aready known). That paper also
provesthat d + 1 is atight lower bound for R, when the input vector belongto C (withC € S andC ¢ S{1).

It is worthwhile looking at the “extreme” sets SP and Sf. One one side, S} includes the condition that contains
al the possible input vectors. On the other side, the family of conditions S, that is the largest set of conditions that
alow to solve the consensus problem in asynchronous systems proneto up to ¢ crashes, is aso the family of conditions
that allows to solve the consensus problem optimally in a synchronous system proneto ¢ crashes. Asfar as consensus
is concerned, this establishes a simple and well-defined borderline relating efficiency in synchronous systems and
computability in asynchronous systems.
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Set agreement The k-set agreement problem has been introduced to investigate how the number of choices (k)
allowed to the processes is related to the maximum number (¢) of processes that can crash [6]. More precisely, the
processes are alowed to decide up to k different values (consensus is 1-set agreement). While that problem can be
trivially solved in asynchronous systems where k > t, it has no solution in these systemsassoonas k < ¢ [5, 13, 28].
The situation is different in synchronous systems where the &-set agreement problem can always be solved, whatever
the values of ¢ and k. In these systems, the lower bound on the number of roundsis R = | %J +1[7].

Few works have considered the condition-based approach for solving the k-set agreement problem. A topology-
based characterization of the conditions that allow to wait-free solve the (n — 1)-set agreement problem is presented
in [3] (wait-free means that the only value of ¢ that is considered ist = n — 1). Condition-based asynchronous
shared memory k-set agreement algorithms are presented in [23] (without characterizing conditions suited to k-set
agreement). An asynchronous shared memory algorithm is presented in [21] *. Assuming that the input vector I
belongs to a condition C' € S, that algorithm solves the k-set agreement problem for k = d + 1. That algorithm can
trivially be transformed in a one-round synchronous algorithm. (It is also shown in [21] that, for £ < d, thereis ho
k-set agreement algorithm when C' € S¢ and C ¢ S{~ 1)

1.2 Motivation and content of the paper

This paper ison the condition-based approach for solving the k-set agreement problem. It originatesfrom thefollowing
observations and associated questions.

A question on the dividing power of conditions in synchronous systems Let us assume that the input vector 1
belongsto a condition C' € S{ (i.e., C allows to solve consensus in an asynchronous system in which up to (¢t — d)
processes may crash). Moreover, let us consider the pair (k, R) where R isthe number of roundsto solve synchronous
k-set agreement despite up to ¢ crashes.

When looking at the results described in [21, 22], we have two synchronous algorithms: (i) one solves consensus
ind + 1rounds[22], i.e, it realizesthe pair (1,d + 1); (ii) the other solves (d + 1)-set agreement in one round [21],
i.e.,itrealizesthepair (d+ 1,1). This observation givesrise to the following questions: Are there algorithmsfor other
(k, R) pairs? If yes, what is the generic formulation of the (k, R) pair, i.e., what istherelation linking R, k and d?

Thisissue wastheinitial question this paper originated from. The paper answersit by presenting a condition-based
algorithm for the generic pair (&, | %J + 1). Thismeansthat if the algorithm stops after ~ rounds, the processes decide
on at most k valueswhere k isthe smallest integer suchthat [ 4] + 1 < r.

Interestingly, this generalizesto conditions the fact that, when we go from synchronous consensus to synchronous
k-set agreement, the time complexity is aways divided by k. Thiswas not a priori evident, as the bound | %J +1is
purely “syntactic” (it isonly based on theworst failure pattern), while the condition-based approachis more* semantic”
(it is based on the actual input values).

From smaller conditions for consensus to larger conditions for set agreement The set of conditions (Sf) _,_,

have been designed with the consensus problem in mind. This meansthat, for any C' € S ¢, each input vector I € C'is
seen as “encoding” asingle value, namely, the value decided when the input vector is I. Aswe havejust seen [21, 22],

such aconsensus condition C' can be used to solve the k-set agreement with around complexity (| %J + 1) smaller than
the one required for solving consensus (d + 1). Thiscan be seen asasimple“side effect” of the fact that the conditions
of S{ are defined for solving the consensus problem. It is not at all counter-intuitive that using a condition designed

for astronger problem (consensus) can allow for more efficient solutions when used to solve weaker problems (%-set

agreement for & > 1).

This observation suggests the following question. Considering the /-set agreement problem (¢ > 1) in a syn-
chronous system prone to ¢ process crashes, is it possible to design conditions directly suited to that problem, i.e.,
devise families of conditions S7*‘, 0 < d < ¢, such that there are conditions C' € S* that allow to solve efficiently
the /-set agreement problem while they do not necessarily allow to solve efficiently (¢ — 1)-set agreement?? Said

1That algorithm actually combines a condition C' € &' and a failure detector of a class denoted ¥} . It solves k-set agreement with k =
1 4+ max(0, d — y). Here we consider the case where the failure detector offers no additional power, i.e., y = 0.

2As a simple example, the condition C' that contains all the vectors whose entries contain exactly two different values allows to solve very
efficiently the 2-set agreement problem despite any number of process crashes, while it does not alow to solve efficiently consensus in the same
failure context.
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differently, can an input vector be seen as encoding up to ¢ different values? (Taking ¢ = 1 boils down to a condition
inC e S =8ht)

The paper presents and investigates such a family of conditions Std’z, 0 < d < t. Aswewill seein the paper,
when/ >t —d, St‘” contains thetrivial condition including all the possible input vectors. More generally, the paper
establishes the following hierarchy for the synchronous /-set agreement problem:

Stcstc. St st =gt - = §hE

Given such a hierarchy, an important question is the following one. Considering a condition C' € S;” and
assuming ¢ < k (otherwise, acondition C' € Std”“] is useless to solve k-set agreement), how can C' help solve the k-set
agreement problem in a synchronous system prone to ¢ crashes? The paper answers this question by presenting an
algorithm that, when the input vector belongsto the conditionC' € S t“ the algorithm isinstantiated with, realizes the

pair (k, R) where
d—1+¢
= |—"| +1.
N E

When the input vector does not belong to C, the algorithm requires at most L%J + 1 rounds. Given t and ¢, this means

that, when we consider the previous hierarchy (Std”“]) 0<d<ii1_¢ thereareless and less conditions when d decreases
(and these conditions contain less and less vectors), but these conditions always allow for a faster decision each time
the input vector belongs to the condition.

This noteworthy formula pieces together all the relevant parameters. It involves, on one side, the coordination
degree k associated with the set agreement problem we want to solve (i.e., the difficulty of the problem instance we
want to solve, which increases when & decreases), and, on the other side, the pair (d, ¢) characterizing the condition
the input vector belongsto (i.e., the help we receive to solve the problem, which increases when d or ¢ decreases).

Asasimple example, let us consider the casewhered =t + 1 — ¢, i.e., the set Sf“_“. As previously indicated,
that set includes the condition containing al the possible input vectors. We consequently obtain R = | %J + 1, the
classical lower bound when no condition is used [7].

1.3 Roadmap

The paper is made up of 8 sections. Section 2 defines the notion of (, ¢)-legality (the conditionsin S ™ are (t — d, ¢)-
legal). Section 3 investigates the structure of the sets of (z, ¢)-legal conditionsfor 0 < z < nand0 < ¢ < n.
More precisely, for each pair of pairs, (z1,¢;) and (x2,¢>), that section states if an (zy, ¢;)-lega condition is also
an (z,¢2)-lega condition or not. Interestingly, this structure shows also the following: the condition including
all the input vectors is (z, ¢)-legal only if ¢ > xz, and, for ¢ > =z, the set of (z,¢)-legal conditions contains the
condition including al input vectors®. Section 4 briefly considers (z, £)-legality in asynchronous systems, while
Section 5 presents hierarchies of sets of conditions suited to synchronous ¢-set agreement. Then, Section 6 presents
a synchronous k-set agreement algorithm whose properties have been previously described. Section 7 proves its
correction. Finally, Section 8 provides concluding remarks and presents open problems.

2 Conditions for set agreement

This section and the following (on the structure of the set of conditions) are independent of the underlying synchrony
assumption and the way processes communicate (message-passing vs shared memory).

2.1 Preliminaries

Process Model The system consists of afinite set of n processes denoted IT = {p;,... ,p,}. A processis faulty
during an execution if it prematurely stops its execution (crash). After it has crashed, a process does nothing. A
correct process is a process that is not faulty. As already mentioned, ¢ denotes the upper bound on the number of
faulty processes (1 <t < n).

SIntuitively, this seems to be related to the impossibility to solve the £-set agreement problem in an asynchronous system prone to x process
crashes when £ < x. Impossibility means here that there is no asynchronous a gorithm when the actual input vector can be any input vector.
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The set agreement problem The k-set agreement problem has been informally stated in the Introduction: every
process p; proposes avaue v; and al correct processes have to decide on avaue v, in relation to the set of proposed
values. More precisely, the problem is defined by the following three properties:

e Termination. Every correct process eventually decides.
« Validity. If aprocess decides v, then v was proposed by some process.
* Agreement. At most £ different values are decided.

Notation Inthefollowing V denotesthe set of valuesthat can be proposed by the processes, and L denotes adefault
value that cannot be proposed by the processes.

Aninput vector I isavector of size n (denoted || = n), whose i-th entry contains the value proposed by p ;, or L
if p; did not take any step in the execution, where L denotes a default value such that L ¢ V andVa € V, L < a. We
usually denote by I avector with all entriesin V', and with .J avector that may have some entriesequal to L; such a
vector J iscalled aview.

Thevaluesof V that are present in I defines a subset of V denoted val(I); |val(I)| denotesits cardinality.

Let J1,J2 with some entries are possibly equal to L. W e say “J2 contains J1” (denoted J1 < J2) if
Vk . J1[k] # L = J1[k] = J2[k]. The number of occurrences of avalue a in the vector .J, witha € VU {L} is
denoted #,(J).

dg (J1, J>) denotes the Hamming distance separating J; and J», i.e., the number of entries in which J; and J»

differ. Moreover, given a non-empty set of vectors {.J1,...,J.}, da(J1,...,J,) denotes the number of distinct
entries for which at least two vectorsin Jy, ... , J, differ. We call dg(J1, ... , J.) the generalized distance of the set
of vectors Jy, J, ... ,J,. Asan example, di([a, L,a,e,b,b],[a, L,a,e,c,cl,[a, L, f,e,b,c]) = 3. Aswe can see,
when d () is on two vectors, it boils down to the Hamming distance.

Let I,,...,I. beaset of vectors. N;<;<.I; denotes the vector containing the n — dg (14, ..., I.) entries that
belongto al thevectors 14, ... , .. Itiscalled theintersecting vector of I, ... , I.. When clear from the context, the

notation N < ;<. I; is also used to denote the set of valuesin that intersecting vector.

2.2 The notion of (z, ¢)-legality

Definition 1 A condition is a set of input vectors.

Definition 2 Let 0 < ¢ < n. A condition C is (z,¢)-legal if there is a function h,() that satisfies the following
properties:
1. (z,0)-Validity. VI € C : hy(I) Cval(I) and |he(I)| = min(¢, jval(I)|).
2. (z,0)-Density. VI € C : Zyep,(n#o(I) > =,
3. (z,¢)-Distance.Va: 0 < a <z, VIy,... ,I. € C:
d(;(fl, . ,Iz) =r—a = Evenlgjgz hg(Ij)#v(mlgjgsz) > Q.

As already indicated, intuitively, an input vector I of an (z, £)-legal condition can be seen as a codeword encoding
an “abstract” value. That “abstract” value can be instantiated by any value of a set of £ “concrete” values, namely, the
values defined by h¢(I). The am of the validity, density and distance properties is to ensure that the function & ,()
providesacorrect “ decoding”.

Thevalidity property states that at most ¢ values can be decided and those are values that bel ong to the input vector.
The density property guarantees that a decided value can be extracted from an input vector, despite up to = crashes
(from an operational point of view, the corresponding entries in the input vector can possibly remain forever equal to
1).

Finally, the distance property guarantees that if a set of input vectors differ in some number of entries (namely,
x — «), then they must contain valuesthat (1) can be decided from each of them, and (2) are present enough in each of
them (namely, more than « times): the intersecting vector M << I; must contain “enough” valuesof (), ;. h¢(1;).

*)

41t could be possible to integrate the density property inside the distance property by considering the case o = x. We have not done it, because
in some proofs, the case @ = x has to be treated separately.
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Definition 3 A function k() that makes (z, £)-legal a condition C' is called an (z, £)-recognizing function for C. If
additionally the addition to C' of any new vector I is such that the condition C' U {I} is not (z, £)-legal, the function
he() is called an (z, £)-generating function for C.

Remark When we consider ¢ = 1, the previous definition of (z, £)-legality boils down to notion of z-legality intro-
duced in [20]. The distance property simplifies and becomes i1 (I1) # ho(Iy) = dy(I1,1I>) > z. It followsthat a
condition C' alows to solve the consensus problem in an asynchronous system prone to = process crashesif and only
ifitis(z,1)-legal.

Theorem 1 Let C be an (x, £)-legal condition, J a vector such that # , (J) < x, and I,... , I, input vectors in C
suchthat J < I,...,J < LI.. 0 < [, he(Lj) Nval(J)] < L.

Proof Let usfirst observethat, dueto the validity property, wehaveV I,...,L.: |he(I;)| < ¢, fromwhichit follows
that | (), ;<. he(L;) Nwal(J)| < L.

Let us now show that the set ), ;. he(Z;) (val(J) isnot empty. Let # (J) =z — B with0 < 3 < z. Let
dg(l,...,.)=oz—a. AsJ < IL,...,J < I,,wedsohavedg(I,...,I,) = #,(J) — v withy > 0. Finaly,
as#.,(J)—vy=(z—-p)—v,wehavez —a=(x— ) —v,i.e,f+v=awitha,3,7 > 0.

Due either to the density property (case a = x) or the distance property (case 0 < a < x), if follows that we
have Xoen, . o1 #o(M<jcad) > oo Asa+1 = 47+ 1> v, morethan y entries of this intersecting
vector Ny <<, 1; contain values of Mi<j<- he(I;). Aseachentry of (), ;. he(I;) is an entry of J and no entry of
ﬂlgjg; he(I;) isequa to L, it followsthat at least one valuein ﬂlgjgz_hﬂlj) belongsto J. O heorem 1

Thanks to the previouslemma, the function k() can be extended to vectors J with at most « entriesequal to L.

Definition 4 Let C be an (z, ¢)-legal condition, and .J a vector such that # , (J) < z. Let I, ... , I, be the inputs
vectors in C (if any) such that J < Iy,... ,J < I,. The definition of h,() is extended to such vectors J as follows:
he(J) = N1 <j<. he(L;) Nval(J). (If there is no input vector I such that J < I, h,(J) is left undefined.)

2.3 (xz,0)-legality with h,() = max,()

This section investigates the case where hy(I) returns the ¢ greatest values of I. This function is denoted max ()
(max; () is denoted max()). Let us observethat all the theoremsin this section remain true when the function max ()
is replaced by the function min ().

Theorem 2 Let C' be the condition the vectors of which satisfy the (z, £)-validity and (xz, £)-density properties when
considering the function i, () = max,(). The condition C'is (z, ¢) legal.

Proof Let usconsider the condition C' that containsall the vectors I that setisfy the (z, £)-size property and the (z, £)-
density property,i.e., I € C = ¥, cmax, (1) #v(I) > x. Let usobservethat C' is not empty. So, to prove the theorem,
we have to show that any set of vectors {I;,...,I.} C C suchthat dg(I1,...,I,) =z —a (With0 < a < z)

satisfies the (, £)-distance property, i.e, wehave X ey ., (1) #o(Mi<jc1j) > o
LetD = dg(I4,... ,I.). Letusconsiderany vector I; € {I,,... ,I.}. AsI; € C,wehave X cmax, (1;)#o (I;) >
z+1=D+ a+ 1. Intheworst casg, (1) the same D entries of the vectors I, ... , I, contain only values among
their ¢ greatest values, and (2) these entries contain different values. As, foreach I , ¥, cpnay, (1) #0 (j) > D +a+1,
it follows that the vectors I, ... , 1. share a + 1 entries that contain values belonging to their ¢ greatest values.
DTheorem 2

Size of the condition defined by /() = max() This section computes the number of distinct input vectorsthat are
inthe (z, 1)-legal condition defined by the function max().

Let m denote the number of different values that can be proposed. Without loss of generality let {1,... ,m} be
this set of values. Moreover, let n denote the number of processes, and Comb(n, 3) denote the number of subsets of
0 elementsin a set of n elements (binomial -or Pascal- coefficient).

Let NB(z,1) be the number of input vectorsin the (z, 1)-legal condition defined from max() (we trivialy have
NB(0,1) =m™).
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Theorem 3 NB(z,1) =" 35, Comb(n, ) x (o —1)"F.

Proof Let usfirst determinethe value of NB(1,1). Asxz = 1, avalue hasto appear at least twice in avector in order
to be decided. We have the following cases.

« If m isthe greatest valuein the vector, there are Comb(n, 2) x (m — 1) "2 vectorsin which the value m appears
exactly twice, and more generally, there are Comb(n, 3) x (m — 1)™~# vectorsin which m appears exactly 3
times, for2 < g < n.

« If m — 1 isthe greatest value in the vector, there are Comb(n, ) x (m — 2)"~? vectors in which the value
m — 1 appearsexactly g timesfor2 < g < n.

e And similarly, for the cases wherem — 2, m — 3, ..., 2,1 isthe greatest value in the vector. (Let us notice that
when o = 1, i.e, the case of the smallest value, we have a single vector.)

« Summing up al the possible cases, we obtain the following formula®:

NB(1,1) = > " Comb(n, 8) x (a — 1)"7.
a=1p3=2
More explicitly, o denotes the greatest valuein avector, 3 its cardinality in that vector, Comb(n, 3) the number

of vectorswith 3 entries equal to a,, and (e — 1)~ the number of possibilities for placing the values smaller
than « in the vector.

When 2 = 2, asimple observation showsthat 5 has to vary from 3 to n, instead of from 2 to n. More generally, a
straightforward generalization gives the following formula:

NB(z,1) = Z Z Comb(n, ) x (a —1)" 7.
a=1pB=z+1

DTheorem 3

The computation of NB(z, ¢) (the size of the maximal condition generated by % ;() = max,()) is moreinvolved.
It is determined in Appendix A.

3 The structure of the sets of (z, ¢)-legal conditions

This section investigates the structure of the sets of (z, £)-legal conditions, for 0 < z < nand 0 < ¢ < n. Thewhole
picture relating these sets of conditionsis described in Figure 1.

Theorem 4 Let0 <z <n —1and0 < ¢ < n. Ifacondition C is (z + 1, ¢)-legal, it is also (z, £)-legal.

Proof AsCis(z + 1,()-legal we have VI € C : ¥,cp,()#o(I) > = + 1 > =z, from which the (z, £)-density
property of C' trivially follows. As far as the («, £)-distance property is concerned, let us observe that the domain of
the parameter o used in the statement of the (z + 1, £)-distance property is {0, ... , z}. Hence, the (z + 1, £)-distance
property is the addition of the (z, £)-distance property (that addresses the cases 0 < « < z), plus the particular case
a = z, which completes the proof. O heorem 4

Theorem 5 Let0 <z <n —1and0 < ¢ < n. There are conditions that are (z, £)-legal, but not (z + 1, ¢)-legal.

Proof Given a vector I, let S,(I) denote a set of ¢ values appearing in I. Let C' be the (z,¢)-legal condition,
recognized by the function max (), that contains only the vectors I suchthat V S(1) : ¥,cs,(n#o(I) <z + 1.

It is easy to see that C' is not empty. Moreover, it follows from the additional constraint on the vectors I that,
whatever the function g,(), we cannot have X ,¢ ., (1) #. () > = + 1. So, no (z + 1, £)-recognizing function g, () can
be associated with C. It followsthat C isnot (z + 1, ¢)-legal. O T heorem 5

5The case of the single vector that contains only the smallest value (case o« = 1) appearsimplicitly intheformula. As®—# = 0for2 < 8 < n,
and 0"~ # = 1for 8 = n,whena = L wehave >3%;_, Comb(n, §) x (a —1)"# = 1.
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Theorems4 and 5 are associated with the vertical arrow in the figure
at theright. Inthat figure (asin Figure 1), apair (z, ¢) representsthe
set of all the (z, ¢)-legal conditions, and an arrow from a pair (a, b)
toapair (a’,b") means“the set of (a, b)-legal conditionsisincluded
inthe set of (a’, b')-legal conditions’. Theorems6 an 7 (that follow)
are associated with the horizontal arrow.

Theorem 6 Let0 <z <nand0 < ¢ < n. Ifacondition C'is (z, )-legal, it is also (z, £ + 1)-legal.

Proof Let h.() bean (x, £)-recognizing function for the condition C'. The proof consistsin defining afunction g 441 ()
that is (z, ¢ + 1)-recognizing for C'. Let g1 () be defined asfollows (9,41 () isan appropriate extension of h()). Let
IecC.
o If hy(I) = wal(I) (i.e., he(I) containsal the valuesin I), then g,y 1 (1) = he(I).
o If he(I) C wal(I),then goy1(I) = he(I) U {a}, wherethe value a is defined as follows.
Let I bethe vector I whose all entries containing avalue of h¢(I) have been suppressed. (Ash,(I) € val(I),

I isavector with at least one entry). Let a = f(Ir), where f is adeterministic function that extracts a value
from a vector.

It directly follows from its definition that g, () satisfiesthe (x, ¢ + 1)-size property for any vector I € C. Let us
consider the (z, ¢ + 1)-density property. Let I € C. We consider two cases.
* ger1(I) = hy(I). As,inthat case, wehave h(I) = val(I), weconcludethat X ¢, ., (n#v(I) = Zyen, () #o(l) =
n. Itfollowstrivialy that ¥, ¢, (n#v (1) > .

* gerr(I) = he(I)U{a}. ASZyep, (n#o(l) > 2, Zoeg,r (nFo(I) = Sen (n#o (D) +#a(I), and #4(1) > 1,
we concludethat ¥,cy,, , (1) #o(I) >z +1> .

To show that g, () satisfies the (z, ¢ + 1)-distance property, let us consider a set of vectors {I;,... ,I.} C C
suchthat dg(1y,... ,I:) =z — a, With0 < o < 2. Wehaveto show that Xy, g0y, (1) #o(Migji<aLy) > a
According to its definition, we have g1 (1) = he(L;) U Aj, with A5 = {a;} or A; = 0. So, N, ;. gey1(Lj) =
Mi<jcs (he(T)VA;) = (Nicjes he(T)) U+ U (Ni<j<; 4j), and consequently Sven, oy (1) #o(Migjc=1j) >

E”€n1g,§z hg(Ij)l(mlgjgz[j)- Finally, ang(Il, - ,Iz) =r—a = E”€n1g,§z hg([j)l(mlgjgzlj) > «, We can
conclude that Eveﬂqu gern () Fo(Mi<j<=I;) > o, which completes the proof of the (z, ¢ + 1)-distance property
for the function go+1 (_)_ O 7T heorem 6

Theorem 7 Let 0 < z < nand 0 < ¢ < n. There are conditions that (z, ¢ 4+ 1)-legal, but not (z, £)-legal.

Proof The proof is similar to the proof of Theorem 5. Given a vector I, let S ,(I) denote a set of ¢ values appearing
inI. Let C bethe (z,¢ + 1)-legal condition, recognized by the function max ¢4 (), that contains only the vectors
I such that V.S¢(I) : Zyes,(n#o(I) < 2. Itiseasy to seethat C' is not empty. Let us observe that the additional
constraint states that no vector of C' has a set of ¢ values that appear in it more than x times. It follows from that
observation that no function g,() can be (x, £)-recognizing for C (i.e., there is no function g,() such that, for any
I e, EUEQ@(I) s #.(D) > o). UTheorem 7

Theorem 8 Let ¢ > z. The set of (z, £)-legal conditions contains the condition including all input vectors.
Proof Let C,; be the condition including all input vectors. Let us consider any vector I € C . ASE > x, its

greatest values appear at least ¢ > x + 1 timesin I. Consequently, when considering the function 4 () = max,(),
the vectorsof C,;; satisfy the (z, £)-vaidity and (z, £)-density properties. It then follows from Theorem 2 that C',;; is

(Z’, g)-l%al . UTheorem 8

Theorem 9 The condition made up of all the input vectors is (z, £)-legal only if £ > z.
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Proof Let C,;; bethe condition including al input vectors. We claim that C ,;; cannot be (z, z)-legal. Assuming that
claim, we show that C,;; isnot (z, £)-legal for ¢ < z. The proof is by contradiction. Let us assumethat C .; is (z, £)-
legal for ¢ < . It then follows by successive applications of Theorem 6 that C' oy is (z, £ + 1)-legd, (z, ¢ + 2)-legd,
..., (z, z)-legal, contradicting the claim, and proving the theorem.

Proof of the clam. Taking x = ¢, Theorem 7 states that there are conditions that are (x, z + 1)-legal but not
(z,z)-legal. Let C besuch acondition. We trividly have C' C C,;;. AsC isnot (z, z)-legd, it followsthat C' is not
(z, z)-legal either (adding vectorsto a condition that is not (z, z)-legal cannot makeit (x, z)-lega). O Theorem 9

/(n —1,1): wait-free consensus

Wait-freeline n—1 4

n—277 —_——— = = 9\1/%

r+1 1l = = S

z-reslienceline p -

z—1 |

2 T tains the

he vectors
14

1 .
Reliableline ¢

N
SSNES
{ (41 n—1 n

From the strongest to the weakest agreement

Figure 1: Theglobal inclusionpicture, 0 <z <n,0< {<n

Theorems4, 5, 6, 7, 8 and 9 are summarized, for all the values of = and /, in the lattice described in Figure 1. It is
shown in Appendix B that there are conditionsthat are (x, £)-legal and not (z+ 1, £+ 1)-legal, and there are conditions
that are (z + 1,¢ + 1)-legal and not (x, £)-legal.

Theorems 8 and 9 relate the (i, £)-legality of the condition made up of al input vectors with the property ¢ > .
As aready suggested (footnote 3, Introduction), this is the condition-based way to express the impossibility to solve
the /-set agreement in an asynchronous system prone to x process crasheswhen ¢ < z [5, 13, 28].

4 (z,{)-Legality in asynchronous systems

As indicated in the introduction, when ¢ = 1, the notion of (z, ¢)-legality boils down to the notion of z-legality
introduced in [20], where it is shown that a condition C' alows solving the consensus problem in asynchronous
systems proneto x process crashesif and only if C' isz-legal.

The asynchronous condition-based algorithm decried in [20] can easily be generalized to solve the /-set agreement
problem in asynchronous systems prone to « process crashes, when the input vector belongs to an (z, £)-legal condi-
tion. Proving (or disproving), for £ > 1, that (x, £)-legality is necessary for any condition-based solution to the ¢-set
agreement problem remains an open problem.
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5 Synchronous hierarchies

A hierarchy on the sets of conditions that allow solving the consensus problem in synchronous systems prone to ¢
process crashes has been established in [22], namely, S ¢ S} ¢ --- C S C --- C 8!, where S includes al the
conditions that allows solving consensus in asynchronous systems proneto @ = ¢t — d crashes [20]. (Let us remind
that S} contain the condition that includes all input vectors, and S contains all the conditions that allow solving
asynchronous consensus despite ¢ process crashes.)

This hierarchy is such that, when the input vector belongs to a condition C' € S¢, it is possible to solve optimally
synchronous consensus in d + 1 rounds. The degree d of a condition is related to its size. There are conditions with
more and more vectors when d increases, showing an inherent tradeoff relating the size of a condition and the number
of rounds required for the processes to decide.

Considering the (z, £)-legality (instead of z-legality, that correspondsto the case ¢ = 1), let us define St‘” asthe
set of al (¢t — d, £)-legal conditions. Replacing x by ¢ — d in Figure 1, we obtain the following two hierarchiesfor the
(-set agreement problem in synchronous systems prone to up to ¢ process crashes:

o lfixed: SPP S-St e oS =S = 2 S

o dfixed: S c S c--cSHc. cSHTTT S gt — L g,

6 A synchronous condition-based set agreement algorithm

This section presents a k-set agreement a gorithm for synchronous message-passing systemsin which up to ¢ processes
can crash. The algorithm is instantiated with a condition C' € S{-".

6.1 Requirements and properties of the algorithm

Requirements on the values of d and ¢ The values of k£ and ¢ being fixed, the algorithm considers a condition
Ce St‘” suchthat £ < ¢t — d. Thisrequirement is motivated by the following observation. On one side, (as announced
in the introduction and proved bel ow), the maximal number of rounds required for a processto decideis | %J +1
when the input vector belongs to the condition. On another side, as (€ + d) > t = (|4 +1 > [L] +1), it
follows that a synchronous k-set agreement algorithm cannot benefit from a condition such that ¢ + d > t (©).

Thealgorithm considersalso that k > ¢. Thisis because, when k < ¢, acondition C' € S provides no additional
power a k-set algorithm could benefit from in order to expedite decision. (When k& < ¢, acondition C' € Sf”f does not
restrict enough the set of input vectorsin order to obtain a more efficient k-set agreement algorithm.)

Properties of the algorithm  Let 7 bethe current input vector, C' € Std”“] bethe conditionthe algorithmisinstantiated
with, and f be the number of processes that crash in the current run. As far the number of rounds is concerned, the
a gorithm guarantees the following properties:
e If I eC:
— If f <t — d: no process executes more than two rounds.
— If t — d < f: no process executes more than Ld*T”’fJ + 1 rounds.
« I ¢ C: no process executes morethan | £ | + 1 rounds. Moreover, if more than ¢ — d processes have crashed
before the algorithm starts, no process decides after | <=£ | + 1 rounds.

Remark Let us observe that, up to now, no k-set agreement synchronous algorithm based on consensus conditions
C € S hasbeen proposed, that requires at most L%J +1rounds. Thiscase (that we have considered in theintroduction)
appears as a particular instance of the proposed algorithm when considering £ = 1, i.e., when the proposed k-set
algorithm is instantiated with a condition that allows solving consensus in an asynchronous system proneto ¢t — d
crashes.

8Thisisnot at al counter-intuitive. Aswe have seen in Theorem 8, when £ > t — d the set S” contains the condition C,,;; including all the
input vectors. As the algorithm depends on the parameters ¢, £ and d only (it does not depend on other parameters of the condition, such as the
number of input vectors it is made up), it implicitly assumes that it is instantiated with (;;;, and the number of rounds is then upper bounded by
L%J + 1.
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6.2 Synchronous computation model

Round-based synchronous computation The synchronous model isthe sameasin[22]. The processesp,... ,pn
communicate and synchronize by sending and receiving messages through channels. Every pair of processesp ; and p;
is connected by a channel. The underlying communication system is assumed to be failure-free: thereis no creation,
alteration, loss or duplication of message.

The system is round-based synchronous, i.e., its executions consists of a sequence of rounds identified by the
successive integers 1, 2, etc. For the processes, the current round number appears as a global variable r that they can
read, and whose progress is managed by the underlying system. A round is made up of three consecutive phases:

« A send phase during which each process sends messages.

We assume that there is a predetermined order in the sending of messages. More precisely each process sends
amessage first to py, then to po, etc., until p,,. Thus, if a process crashes during a send phase, only a (possibly
empty) prefix of these messagesis delivered.

A receive phase during which each process receives messages.

The fundamental property of the synchronous model lies in the fact that a message sent by a process p; to a
process p; at round r, is received by p; at the same round r.

e A computation phase during which each process processes the messages it received during that round and

executes|ocal computation.

A note on the synchronous model of this paper Inthe standard synchronous model [4, 18, 26], a process p ; sends
messages to other processesin each round, and if p; failsduringaroundr, any subset of the messagesit has sent during
r can belost. Inthe model used in this paper, each process sends messages to other processesin a predetermined order.

This alows the processes to obtain views of the input vector that ordered by containment (this containment is denoted

J1 < J2in Section 2.1), similarly to what can be obtained when using snapshotsin read/write shared memory systems
[1]. Actualy, only the first round of the algorithm requires this this sending order property. (Let us notice that some

lower bound results on synchronous agreement use a similar model where the “adversary” can drop messages in a
predetermined order only [8, 16, 19].)

6.3 A synchronous condition-based set agreement algorithm

The synchronousround-based algorithmis described in Figure 2. Asindicated, the round number appears asacommon
variable r whose progressis ensured by the underlying system (lines 2 and 11). The value proposed by the processp ;
is denoted v;.

Given avector J such that # , (J) < t, the predicate P(J) returns true, if 3 € C suchthat J < I. Let usrecall
that it is possible that several input vectors Iy, ... ,I, € C canexistsuchthat J < I,...,J < I,. Inthat case, due
to Theorem 1 and Definition 4, we have ¢ (J) =, <, he(L;) (Nval(J) with 0 < [h,(J)] < L.

The agorithm uses the default value L, that is assumed to be smaller than any value proposed by a process. The
notationa = b # L (resp.,a = b = 1) isused asashortcut fora =bAa # L (resp.,a =bAa = 1).

Local variables and their meaning Each process p; manages the following local variables.
* Vi[1 : n]isalocal array, initialized to [L, ..., L]. Thisarray is used only during the first round, namely, if
during that round p; receives the value v; proposed by p;, it updates accordingly V;[j] to v; (line5). V; isthe
view of the input vector obtained by p;. max(V;) denotesthe greatest (non-_L) valuein V;.
e v_cond;, v_tmf; and v_out; arethreelocal variables (initialized to L) whose aim isto contain a proposed value.
Their meaning is the following. (In all the cases, p; is possibly p;.)

- Whenv_cond; = v # L, p; knowsthat thereis a process p; that, during the first round, obtained a local
view V; such that 37 € C with V; < I. Consequently, it is possible that the actual input vector belongs to
the condition C. So, p; has computed avaue v from h,(V;) that could be decided (line 6), and that value
is currently known by p; (line 15).

— When v_tmf; = v # L, p; knows that there is a process p; that, during the first, round obtained a
local view V; whose number of L witnesses too many failures (hence the name ¢mf). That process has
consequently computed a value v that could be decided from its view (line 8), and that value is currently
known by p; (line 16).

Irisa



- Whenwv_oout; = v # L, p; knows that there is a process p; that, during the first, round obtained a local
view V; that allows it to conclude that the input vector does not belong to the condition (line 7). That
process p; has consequently computed a value v that could be decided from its view V;, and that value is
currently known by p; (line 17).

Function Set_Agreement(v;)

@) Vi« [L,...,L]; Vi[i] + vs; vcond; < L;voout; < L;v_tmf; + L;
2 whenr=1

(©)] begin round

(4) send (v;) topi,p2, ... ,pn in that order;

(5) for_each v; received do V;[j] < v; end do;

(6) case (#, (Vi) <t—d) A P(V;) then v_cond;< max(h,(V;))
(M (#.L(Vi) <t—d) N =P(V;)thenv_out; < max(V;)

©) (#L (Vi) >t—d) then v_tmf; <« max(V;)

9) end case
(10) end round;

(11) whenr =2,..., L/ +1do

(12) begin round

(13) send (v_cond;, v_out;, v_tmf;) topi,p2, ... ,pn (in any order);

(14)  if (v_cond; # L) then return (v_cond;) end if;

(15)  w_cond; < max(v-cond; received); % Vv; : L < v; %

(16)  v_tmf; < max(v_tmf; received);

(17)  w_out; <« max(v_out; received),

(18) if(r =[S + 1) Avitmfi £ L Avoout; = L) V (r = [ L] +1) then

(19) if (v_cond; # L) then return (v_cond;)

(20) elseif (v_tmf; # L) then return (v_tmf;)

(21) else return (v_out;) end if
(22) endif

(23) end_round

Figure 2: A synchronous condition-based set agreement algorithm (codefor p ;)

Process state Let UP" bethe set of the processes that have not crashed by the end of the round r, and var | be the
value of the local variable var; of p; at the end of theround r (if p; € UP"). Moreover, for eachp;, € UP", let state]
bethetriple (v_cond;, v_tmf;, v_out;). Thistriple represents the state of p; from the agreement point of view. Let

def (v_condf = v_cond] # J_) V
(state] = state?) = (vcond] = v_condj = L A vitmfi" = v_tmf;" # 1) \/
(U_condf = v_cond; = v_tmfi" = v_tmf;" = L A v_out; = v_out; # J_)

Underlying principle and process behavior The aim of the algorithm is to ensure that there are no more than &
different states when it terminates. To that end, the processes execute consecutive rounds. During each round, they

(1) use aclassical flood-set technique to disseminate their states, and (2) reduce the number of values in each “class’

(the class of v_cond; variables, the class of v_tmf; variables, and the class of v_out; variables) with the help of a
deterministic function (namely, max()).

The behavior of a process p; is fully described in Figure 2. To complete the presentation, let us look at the way a
process decides. A process p; decides when it executes return (v) at line 14, 19, 20, or 21.

Assuggested in the definition of the equality of two process states, the algorithm establishes apriority onthe values
defining a process state. If v_cond; # L, that value has priority to be decided. If v_cond; = L and v_tmf; # L,
v_tmf; has priority with respect to v_out;.

When v_cond; becomes equal to some valuev # L, p; learns that v can be decided from the condition point of
view. So, when this occurs, p; first sent v to al the processes (line 13) and then decides v (14).
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In the other cases, a process decides during theround r = | 4=+£ | + 1 or during the lastroundr = | £] + 1. In
both cases, it decidesavaluein its state according to the priority mentioned above. In order for p ; to decide during the
round r = L%J + 1, somelocal predicate hasto be satisfied (line 18). This predicate states that, to p; knowledge,
(1) there is a process that has seen more than ¢ — d crashes when it executed the first round (this is witnessed by
v_tmf; # L), and (2) no process can conclude that the input vector is outside the condition (withessed v out ; = ).
This predicate is used to force the decision at round L%J + 1, when, while p; has not yet decided, there is no
evidence that the input vector does not belong to the condition.

Let usfinally observe that the algorithm possesses an additional first class property, namely, design simplicity.

7 Proof of the algorithm

In thefollowing, we consider that the algorithmisinstantiated with acondition C' € St‘”. Moreover, weassume k > /
and/ < t —d. Theconstraint k£ > £ isto allow the algorithm to benefit from the condition. The constraint ¢ < ¢t —d is
to eliminate the case where the condition could include all input vectors. Asit has been seen in the previous sections,
in both cases, the condition-based approach does not allow bypassing the bound | %J +1.

7.1 Proof of the termination property

Lemma 1 Let us assume that the input vector belongs to the condition. The protocol described in Figure 2 terminates
in (i) 2 rounds when no more than (¢ — d) processes crash by the end of the first round, and (ii) at most Ld%”] +1
rounds otherwise.

Proof

If the input vector belongs to the condition, no process executes line 7, and consequently al local variablesv out ;
remain forever equal to L. Let us partition the set of processes (denoted UP ') that terminate the first round in two
sets: A = {p; |v_cond} # L} and B = {p; | v_tmf;" # L}. We consider two cases.

* Case |UP'| > t — d. Astheinput vector belongs to the condition, every process that does not crash by the end
of the first round belongsto A. Thus, every such process that does not crash proceeds to the second round and
decidesin line 5, which provesthe case (i).

* Case |UP'| < n — (t — d). Aspreviously, every processin UP' N A decidesin two rounds. Consider now a
processp; € B that neither crashes nor decides before the round L%J + 1. Such aprocessp; set v_tmf; to
anon-_L value during the first round (line 8) and then that variable remains forever different from L (because
any process p;, always receives its own value v_tmf;, line 16). It follows that, when p; executes the round
| 4= ] + 1, thelocal predicate v_tmf; # L Av_out; = L issatisfied. The process p; executes consequently
areturn() statement (lines 19-21).

IjLemma 1

Lemma 2 Let us assume that the input vector does not belong to the condition. The protocol described in Figure 2
terminates in (i) Ld*Tl”J + 1 rounds when more than ( — d) processes have initially crashed, (ii) and at most | £ | + 1
rounds otherwise.

Proof The fact that the protocol always terminates by round L%J + 1 follows directly from the protocol code (line
18) and the fact that the system is synchronous). So, let us consider the runs where more than (¢ — d) processes have
initially crashed. In that case, each process p; € UP' getsaview V' with more than (¢ — d) entriesequal to L, and
consequently v_tmyf; is set to anon-_L value (line 8), while v_cond; and v_out; remain forever equal to L. Hence, for
any process p; that executes the round Ld*Tl”J + 1, we havev_tmf; # L andv_out; = L. It followsthat no process

executes more than | 2=+ | + 1 rounds. Oremma 2

Theorem 10 The algorithm described in Figure 2 guarantees that no process executes more than | £ | + 1 rounds.
Moreover, if the input vector belongs to the condition, no process executes more than Ld*Tl“J + 1 rounds, and if
additionally no more than (¢ — d) processes crash, any process executes at most two rounds.

Proof The proof followsfrom the Lemmas 1 and 2. U Theorem 10
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7.2 Proof of the validity property
Theorem 11 The algorithm described in Figure 2 guarantees that a decided value is a proposed value.

Proof Let usfirst observe that, for any process p; that terminates the first round, one of the local variable v cond;,
v_tmf; or v_out; is different from_L. Moreover, due to the lines 15-17, this property remains satisfied at any round
r> 2.

When they are not equal to L, thelocal variables v _tmf; and v_out; can contain only aproposed value (thisfollows
from the lines 7, 8, 16, and 17). On another side, when v cond ; is updated at line 6 during the first round, its new
valueisavalue fromthe set h,(V;) that contains only values of V; (this follows from Theorem 1 and Definition 4).

The validity property follows then directly from the fact that a process decides a non-_L value from a variable
v_cond;, v_tmf; Or v_out;. O7heorem 11

7.3 Proof of the agreement property
Theorem 12 The algorithm described in Figure 2 guarantees that at most % values are decided.

Proof Let aprocess p; belong to the set cond_winner if (1) vcond} # L and (2) p; executes line 13 of the sec-
ond round (i.e., it sends v cond} to al the processes). The sets tmf _winner and out winner are defined similarly;
pi € tmf _winner (resp., p; € out_winner) if v_tmf;' # L (resp., v_out} # 1) and and it executes line 13 of the
second round. Let us observe that a process that executes line 13 of the second round belongsto either cond winner,
or tmf _winner, or out_winner). The proof considers three cases.

Case 1: cond_winner # . Let p;, p;, etc., be the processes of the set cond_winner. Due to the sending order
during the first round (line 4), the vectors V;, V, ..., are ordered by containment, e.g., V; < V; < ---. Itfollowsfrom
that containment property and Theorem 1 that 4 ¢(V;) 2 he(V;) 2 ---. Consequently, as0 < |he(V;)| < £Land { < k,
no more than k values (1) are deposited in the v cond ; variables during the first round, and (2) can be decided during
the second round.

Let p,, be aprocess that does not decide during the second round. During that round, p ,,, receives at least one
v_cond; valuethat is different from L. Hence, if it executes the third round, p ,,, decides one of the (at least one and
most /) non-_L values v_cond; it has received during the second round, from which it follows that at most ¢/ < k
different values can be decided when cond awinner # ().

Case 2: cond_winner = () A out_winner # (). We consider two cases.
e A process p,, decidesat line 14. Let us observethat this can appear only at around r > 2 (otherwise, we would
have cond_winner # ().

In that case, p,,, has sent v_cond,,, # L to all the processes during r, from which it follows that, from r, only
non-_L v_cond; values can be decided (they are decided at line 14 or at line 19). It follows from the the previous
case discussion (Case 1. cond_winner # ()) that there are at most ¢ such v_cond,, # L values. The result
followsthen from /¢ < k.

* No process decides at line 14.

In that case, the variables v_out; of al the processes that execute line 17 during the second round are such that

voout} # L, forr > 2. Consequently, due to thefirst predicate of line 18, no process can decide at lines 19-21
beforetheround R = | £ |+1 round. We claimthat, theset { state | p; is a process that decides at lines 19-21 during R}
contains at most k different states. It follows from that claim, the definition of the equality of state ; variables,

and lines 19-21 that at most % different values can be decided (one from each different state ;).

Proof of the claim. The proof is by contradiction. Let us assume that there are £ + 1 different states at the end
of round R. This means that there are k processes that crash during R and there were at least & + 1 different
states at the end of round R — 1, which in turn means that k& processes crashed during R — 1 and there were at
least k + 1 different states at the end of round R — 1, etc. until roundr = 1.

Let us consider the number of crashes that have to occur during the first round, in order to have & + 1 different
states at the end of that round. In the worst case, as the vectors are ordered by containment, and as each vector
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givesriseto asinglevalue (thisis dueto the use of the function max() at lines6-8), k + 1 different vectors (loca

views) are needed in order to obtain k£ + 1 different states (some vectors providing values ¢ out ; # L, others
providing values c_cond; # L, and others providing values v tmf; # L1)’. To obtain k + 1 different vectors,
we need to have k crashes during the first round.

When we sum up the number of crashes needed to have k + 1 different states at theend of round R = | £] + 1,
weobtain k(| £] + 1) process crashes. Lett = ak + Swith0 < 8 < k. Wehavek x (| £] + 1) = ka + k =
t — B + k > t, acontradiction with the fact that there are at most ¢ crashes.

Case 3. cond_winner = () A out_winner = (). As previously, there are two cases. If a process p,,, decides at
line 14, the proof is the same as the first item of Case 2. So, in the following we consider that no process decides at
line 14.

(cond_winner = O A out.winner = 0) = (tmf_winner # (), from which follows that any process p; that
terminates the second round is such that v _tmf,” # L for » > 2. Consequently (due the priority among the values of
the variables v_cond;, v_tmf; and v_out; as defined by the equality on the process states and used in the predicates of
lines 19-21), from the second round, the non-_L values kept in v out ; (if any) become irrelevant. This means that a
process can decide only at line 19 or at line 20.

Therest of the proof consists in showing that at most £ values can be decided by these processes. To that end, we
show that there are no more than k different states at end of round R = | 4=1£] 4 1.

Let us assume by contradiction that thereare & + 1 different states (or more) at the end of theround R. This means
that there are k crashes during R, and there were at least k + 1 different states at the end of theround R — 1. Etc. until
the end of thefirst round.

Let us compute the minimal number of crashes that have to occur during the first round in order to have k& + 1
different states at the end of that round. First, there are at most £ distinct values obtained by the processes p ,,, such that
P(V,,) is satisfied. Second, as, from the second round, v _tnf; # L for al the processes p;, we conclude that there
were more than ¢ — d process crashes during the first round. Different vectorsV; such that (# 1 (V;) > t — d) can give
riseto different values v _tmf; # L.

In order to have k + 1 different states at the end of » = 1, we need to have at least (k + 1) — ¢ different vectors V;
such that #, (Vi) > ¢t — d. As, the vectors are ordered by containment, this means that, in the worst case, we need to
have avector V;; suchthat #, (Vi1) = (¢t — d) + 1, asecond vector V;, suchthat # , (Vi2) = (¢t — d) + 2, etc., until a
vector V;, suchthat #, (Vo) = (t —d) + (k— €+ 1),i.e,aleast (t — d) + (k — £ + 1) processes have to crash by
the end of thefirst round.

Let us sum up the number of crashes needed to have at least k + 1 different states at the end of the round R. There
are k crashes from the second round until the round R = | “=+£| + 1, and (¢t — d) + (k — £ + 1) crashes during
thefirst round. Weobtain S = (t —d+k —(+ 1) + k x ([ 9=EE]). Letd — 1+ = ka+ B with0 < 8 < k.
S=@t—d+k—L+1)+ka=(t—-d+k—C+1)+(d—1+¢—p3) =t+k— 3. Acontradictionast + k — 3 > t.

UTheorem 12

8 Concluding remarks

Early decision Early decision and early termination address the fact that, while L%J + 1 rounds are necessary in
the worst case (when conditions are not used or when the input vector does not belong to the condition), less rounds
can be necessary when less than ¢ processes crash. let f, 0 < f < t, be the number of processes that crash in the
current run. It has been shown that the early deciding lower bound is R = min(| %J +2,[£] +1) [12]. Synchronous
early-deciding k-set algorithms can be found in [12, 25, 27].

By using the technique introduced in [22], it is possible to extend the proposed synchronous k-set agreement
algorithm in order that, in addition to its previous properties, it never requires more than | {J + 2 rounds.

The main challenge The paper leaves open the following great challenge: show (or disprove) that, when we consider
the condition-based approach in the context of asynchronous systems proneto x process crashes, the /-set agreement
problem can be solved iff theconditionis (z, £)-legal. The“if” partiseasy (asalready noticed, the consensusalgorithm

7k + 1 different vectors can give rise to lessthan k + 1 different states, but we are interested in the worst case.
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described in [20] designed for z-legal conditions (i.e., the (x, 1)-legal in the proposed framework), can easily be
generalized to solve the /-set agreement problem when the condition it is instantiated with is (z, £)-legal). The other
part isthe realy difficult side. We spent time and efforts to take up that challenge, but have not yet succeeded.
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A Size of the condition generated by the function max;()

This appendix providesaformulafor NB(z,¢), the size of the (z, £)-legal condition generated by 4 () = max,().

Notation Considering an input vector I, let a;; denote its ith greatest value, and j3; its occurrence number, i.e.,
Bi = #a,(I). let usrecal that m is the number of different values that can be proposed, and that these values are
denoted 1, ... ,m. Moreover, let B; = Z;Zl B; (the number of occurrences of the i greatest values in a vector; by
definition, By = 0).

Theorem 13 NB(z,/¢) = A + B where

I SN (OIS I | i

i=1 1<B1<n—(j—1) k=1
1<B2<n—B1—(j—2)
1<Bj—1<n—Bj_2—1
Bj=n—Bj_1
¢
_ n — Byp_1
B= > > (g — 1)" BexH( 8 :
(<ar<m 1<B1<n—(£-1) k=1 k
t—1<az<ai—1 1<B2<n—P1—(0~2)
t—(i-1)<ai<ai—1—1 1<B;<n—B;_1—(l—1)
2<ar-1<ap_o—1 1<Be_1<n—B¢_s—1

ISaesae—1—1  max(l,e+1-By_1)<Be<n—Be_:

Proof We show that A isthe number of vectorsthat have less than ¢ distinct values (let us notice that all these vectors
trivialy satisfy the (z, £)-density property), and B is the number of (x, ¢)-dense vectors generated by the function
max(), that have ¢ or more distinct values.
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Determination of A Let A;, 1 < j < ¢, denote the number of vectors that have exactly j distinct values. We have
the following.

e A; = m. Thistrivialy follows from the fact that there are m different values.

o Ay = Comb(m,2) Zlgﬁlgn—l Comb(n, ).
Comb(m, 2) isthe number of sets of two values, taken from the set of /. possible values. The greatest of these
two values can be placed into one, two, ..., or n — 1 entries of the vector (hence, 1 < 3, < n — 1). Moreover,
for each value of 3, there are Comb(n, 3,) possibilities to select 5, entriesin the vector of size n. As soon

as these 3, entries have been filled with the greatest value, the entries for the other value are fully determined.
Hence, the formulafor A,.

o A3 = Comb(m, 3) Zlgﬁlgn—2 Comb(n, 1) Elgﬁggn—ﬁl—l Comb(n — f, 32).
Similarly to the previous case, Comb(m, 3) is the number of distinct sets of three values, and, as we consider

the case of a vector containing three distinct values, 3, variesfrom1ton — 2 (hence >, 5 -,,_»). Thereare
Comb(n, 5;) possibilities to place this value in the vector. -

The number of occurrences 3, of the second greatest value (out of three) can vary from1ton — 31 — 1 (hence
Y 1<po<n—p—1)- Findly, there are Comb(n — B1,3:) different ways to select entries for that value in the
vector. Once the two greatest values (out of three) have been placed in a vector, the entries for the third value
are fully determined.

e Similarly we have:
Ay = Comb(m,4) Zlgﬁlgn—3 Comb(n, 1) 21S52Sn—51—2 Comb(n — 1, f2) x
2 1<z <n—p1—Ba—1 COMb(N = B = B2, B3).
e And so on until
Ay = Comb(m,l—2) x
Zl§51§n7(573) Comb(n, B1) X
1<Bs<n—p—(t—1) Comb(n — B, B2) X
21 <y <n—5r—pa—(t—5) Comb(n — B1 — B2, B3) X
%
Zlﬁﬁe—aﬁn—ﬁl—ﬁz—---—ﬁg,z;—l Comb(n —B1— = Bea, /3[73)-
Asin the previous cases, as soon as ¢ — 3 values have been placed in a vector, the entries for the last value (the
smallest valuein the set of (¢ — 2) valuesto be placed) are fully determined.

* Andfinally
Aoy = Comb(m,l—1) x
>1<B <n—(t—2) Comb(n, B1) x
1<Bs<n—p—(t—3) Comb(n — B, B2) X
DY X
Elﬁﬁz—zﬁn*m*52*---7[3@_371 Comb(n — 81 — -+ — Be_3,Be_2).

Summingup A; +- - -+ A, 1, using classical commutativity and associativity rules, and factoring terms, we obtain
the formula A stated in the theorem®,

Determination of B Let us now consider the number of vectors, generated by the function max ¢(), that have ¢ or
more distinct values. As before, let «; denote the ith greatest value in the vector. As the vectors we consider now
have at least ¢ distinct values, we have the following possibilities for the ¢ greatest valuesvalues a1, . . . , a, and their
occurrence numbers 31, . .. , B¢:

8In the case of the vectors that contain exactly £ — 1 distinct values, the formula A usesthe fact that @ + - + By—2 + 81 = m, i€,
Bi—1=n—(B1+ -+ Be_z), andthen Comb(n — B1 — -+ — By_2,B¢—1) = Comb(By_1,B¢—1) = 1. Thisappearsin the formula A in
thecasej = ¢ — 1.
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Input vectors of C' hi(
L =Ja,a,c,d] hi(Iy) = {a}
Iz = b,b,C,d hl(Iz) = {b}
I3 =Ja,b,c,c hi(I3) = {c}
I, = [aabvda dJ hl( ) {

Table 1: A (1,1)-legal condition C'

i possible valuesfor a; corresponding occurrence number 3
(<o <m 1<pi<n—-(-1)
2 (—1<ay<a;—1 1<B<n—-p—({-2)
(—=1]2<ap1<ars—1 1<Br1<n—p1—Br— - —fra-1
¢ I<ar<ap =1 |max(Le+1-081—--=B1) <Be<n—01 =B — - = B

Let us observe that «; > ¢ is due to the fact that the vectors considered here contain at least ¢ different values.
Similarly, as > ¢ — 1 isdueto the fact that the vectors whose greatest valueis ¢ contain ¢ — 1 values different from 2.
Etc. for a3 until vy

Thevalue of 3, hasnot to bypassn — (¢ — 1) in order to |eave available enough entries of the vector for the other
values (there are at least £ — 1 such values). The same observation applies to each other value 3;, i < ¢ (52 hasnot to
bypassn — 31 — (£ — 2), etc.)

On another side, a; (the smallest of the ¢ greatest values) hasto be present enough in order these ¢ values appear at
least = + 1 timesin avector (thisis required by the (z, £)-density property). So,whenz +1 > (81 +---+ B¢_1), we
needtohave 8, > x+1— (81 +---+B¢—1). Hence, thelowest valuethat 3, canhaveismax(1,z+1—81—- - —Br—1).

According to these observationson the values of «; and 3;, 1 < i < £, the number of vectorswith at least ¢ distinct
valuesis egual to the following “sigmaof sigmas’ quantity:

Do t<an<m 221<6 <n—(t—1) Comb(n, B1) X
D t—1<az<ar—1 2u1<Bs<n—fi—(0—2) Comb(n — B1, B2) X
Zl*ZS&gS&zfl Zlgﬁggn—ﬁlfﬁéf(lfa Comb(n — 1 — B2, 33) x

X
Zl§a2—1§02—2*1 Zlﬁﬁe—1§”*51*“‘*ﬁe—2*1 Comb(n - ﬂl - ﬂl*z’ﬂlfl) X
Zlﬁazﬁaz—lfl Emax(17m+1*51*-"*Be—l)ﬁﬁzﬁn*ﬁ’l*52*---*,3@—1 Comb(n - /31 - ﬂf*l’ﬁl) X
(ap — 1) PP,
The ¢ greatest values used in a vector are aq,... ,ay. SO, given such a set of £ values, the last term (namely,

(cp — 1)n=Fr==F¢) represents the number of different vectors that are due to the a., — 1 remaining values (these
values are smaller than or equal to ay — 1). After rewriting this sum, we obtain the quantity denoted B in the statement
of the theorem. UTheorem 13

Givenapair (z,¢), thevalue of NB(x, () can easily be computed using a mathematical software.

B (z,¢)-Legality vs (z + 1, ¢ + 1)-legality
Theorem 14 There are conditions that are (x, £)-legal and not (z + 1, ¢ + 1)-legal.

Proof The proof consists in exhibiting a counter-example. Let us consider a system made up of n = 4 processes, and
r=0=1.

Let C be the condition composed of the four vectors described in Table 1 and /1 () the function defined in the
second column of that table. It is easy to see that this function () is a recognizing function for C' for the pair of
parametersz = ¢ = 1, and consequently C'is (1, 1)-legal.

We show that C' isnot (2, 2)-legal. To that end let ustry to define an appropriate function 4 »().
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* Définition of h2(11). As he(I;) hasto include no more than two elements, we have a € ho(1;) (otherwise the
density property could not be satisfied). For the second element of 4 (I, ), we have the choice between ¢ or d.
We take arbitrarily ha (1) = {a, c}. (Dueto the symmetry relating 7, and I on oneside, and I3 and I, on the
other side, if we had chosen h»(I;) = {a,d}, we should exchange the vectors I3 and I4 in the reasoning that
follows.)

* Definition of hy(I3). Trividly, ha(Iz) hastoinclude b. To select the second element of /. (1>), we have to take
into account thefact d¢ (11, I,) = 2, in order the (2, 2)-distance property be satisfied. Asd g (I, L) =z —a =
2 = a=0,wemust have X, cp, (1,)nh, (1) #o (I N I2) > 0. It followsthat c has to be selected, and we have
consequently ho(I2) = {b, c}.

« Définition of ho(I4). Similarly to the previous cases, hy(I4) hasto include d.

Moreover, asdg(I1,1s) = v —a =2 (i.e, a = 0), we must have 1, (1,)nh, (1) Fo (11 N I5) > 0. It follows
that h2([4) = {(1, d}

Butasdg(ly,I4) =2 —a =2(i.e,a = 0), wemust dso have Xy, (1.)nh,(1s) #o (12 N Iy) > 0, with means
that hy(Iy) = {d, c}.

S0, ha(14) hasto equal to both {a, d} and {d, ¢}: an impossibility.

It follows that no recognizing function can be associated with C' for z = ¢ = 2. The condition C is not (2, 2)-legal.
DTheorem 14

Theorem 15 Let0 <2 <n—1and0 < ¢ < z. There are conditions that are (z + 1, £+ 1)-legal and not (z, £)-legal.

Proof Aszand/aresuchthat0 < ¢ <z <n—1,wehavel+1<n—xz+{—1. Letvy,ve,... ,vp_pt¢—1 bEQA
set of n — x + £ — 1 different values. Let us consider the condition C' made up of the ¢ + 1 following vectors with n
entries. All these vectorsdiffer in their x — ¢ + 1 first entries only. More precisely, they are such that:

° lefa’entpartlg]gl’—[-{—]. = Il[j]:’l)l A Iz[j]:’l)z A - A I[Jrl[j]:U[Jrl.
e Commonpart: 1<j<n—z+l(—-1= Lz—{l+1+j]=--Ip1jz—L+1+j] =0,

Itiseasy to verify that C' is (z + 1, £ + 1)-recognized by the function .1 () defined asfollows: V j : hey1 (L) =
{v1,v2, ., ve41 )

We now show that C' is not (x,¢)-legal. The proof is by contradiction. Let us assume that there is an (x, £)-
recognizing function g, () for C. For eachvector I; € C' (1 < j < {+ 1) wehavev; € g.(;) (thisfollows from the
fact that ¢ < xz and v; isthe only value that appears more than oncein I ;).

When we apply the (z, ¢)-distance property to thewhol e set of vectorsdefining the condition, wehaved ¢ (I, ... , Ir41) =
x—{+1 = z—a. Consequently, the (x, £)-recognizing function g, () issuch that LoeNcicrn ge(ry) Fo(Mi<j<es ) >
a = ¢ — 1 (Observation O). We have also the following.

* Dueto (z, ¢)-size property, each g,(I;) hasat most ¢ values. Moroever, inorder to have | (), ;. 9¢(I;)| = ¢,
we need to have g,(I1) = ge(I2) = --- = ge(Is+1). But, these sets are not all equal because (J, -, 9¢(;)
contains ¢ + 1 different values. It followsthat the set (1, ;. , g¢(I;) contains at most £ — 1 values.

» On another side, as (from the definition of the vectors) ﬂ1<j<£+1 I; = [v1,v2, - ,Un—gte—1], that intersecting
vector contains only distinct values.

It follows that Eveﬂquﬂ he(1;)Fo(Ni<j<er1ly) < £ — 1, which contradicts Observation O, and completes the
pI'OOf. T DTheorem 15
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