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Relative neighborhood graph (RNG) has been widely used in topology control and geo-
graphic routing in wireless ad hoc networks. Its maximum edge length is the minimum
requirement on the maximum transmission radius by those applications of RNG. In this
paper, we derive the precise asymptotic probability distribution of the maximum edge
length of the RNG on a Poisson point process over a unit-area disk. Since the maximum
RNG edge length is a lower bound on the critical transmission radius for greedy forward
routing, our result also leads to an improved asymptotic almost sure lower bound on the
critical transmission radius for greedy forward routing.

Keywords: Relative neighborhood graph; Poisson point process; asymptotic probability
distribution.

Mathematics Subject Classification 2000:

1. Introduction

Relative neighborhood graph (RNG) [15] of a finite planar set is a bounded-degree
planar graph containing the Euclidean minimum spanning tree as a subgraph. Due
to its simple construction and maintenance, RNG has found many applications in
localized topology control (e.g. [6, 8, 9]) and geographic routing (e.g. [1, 7, 13]) in
wireless ad hoc networks. All these applications require the maximum transmission
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radius of the networking nodes be no shorter than the longest edge in the RNG.
While the maximum edge length in the RNG can be easily computed in polynomial
time, little is known about its random behavior when the underlying vertex set is
a random point set. In this paper, we derive the precise asymptotic distribution of
the maximum edge length in the RNG of a Poisson point process over a unit-area
disk with density n, which is denoted by Pn.

Denote the maximum edge length of a geometric graph G by λ(G), and the
RNG of a finite planar set V by RNG(V ). Denote by σ the geometric constant
2π
3 −

√
3

2 (whose geometric meaning will be explained in the later section). Fix a
real parameter c and let

rn =

√
ln n + c

σn
,

µ =
π

2σ
e−c.

The main result of this paper is stated in the following theorem.

Theorem 1.1. limn→∞ Pr[λ(RNG(Pn)) ≤ rn] = e−µ.

It is interesting to compare the maximum edge length of the RNG with the
maximum edge length of the (Euclidean) minimum spanning tree (MST), which is
also known the critical transmission radius for connectivity [5], and the maximum
edge length of the Gabriel graph (GG) [4], which also has many applications in
wireless ad hoc networks. Let MST (V ) and GG(V ) denote the MST and the GG
of finite planar set V . It is well-known that for any finite planar set,

MST (V ) ⊆ RNG(V ) ⊆ GG(V ).

Thus,

λ(MST (V )) ≤ λ(RNG(V )) ≤ λ(GG(V )).

The asymptotic distributions of λ(MST (Pn)) and λ(GG(Pn)) were derived in [11]
(based on an earlier result [2]) and in [16] respectfully. Specifically, for any con-
stant c,

lim
n→∞

Pr

[
λ(MST (Pn)) ≤

√
ln n + c

πn

]
= e−e−c

,

lim
n→∞

Pr

[
λ(GG(Pn)) ≤ 2

√
ln n + c

πn

]
= e−2e−c

.

So roughly speaking, the maximum edge length of the RNG (respectfully, GG) of
a Poisson point process is asymptotically about 1.6 times (respectfully, twice) its
critical transmission radius for connectivity.

Another parameter closely related to the maximum edge length of the RNG is
the critical transmission radius for greedy forward routing [3, 14]. In greedy for-
ward routing, each node discards a packet if none of its neighbors is closer to the
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destination of the packet than itself, or otherwise forwards the packet to the neigh-
bor closest to the destination of the packet. The critical transmission radius of a
planar node set V for greedy forward routing, denoted by φ(V ), is the smallest
transmission radius by V which ensures successful delivery of any packets from any
source node in V to any destination node in V . Clearly, λ(RNG(V )) ≤ φ(V ). It
was recently proved in [17] that for any constant ε > 0, it is asymptotically almost
sure (abbreviated by a.a.s.) that

(1 − ε)

√
ln n

σn
≤ φ(Pn) ≤ (1 + ε)

√
ln n

σn
.

As the immediate consequence of Theorem 1.1, a tighter a.a.s. lower bound on
φ(Pn) can be obtained: For any sequence (cn) satisfying that limn→∞ cn = ∞ and
limn→∞ cn/ lnn = 0, it is a.s.s. that

φ(Pn) ≥
√

ln n − cn

σn
.

In what follows, o is the origin of the Euclidean plane R
2, and D is the unit-area

(closed) disk centered at o. We assume that Pn is the Poisson point process over D

with density n. We denote by Xn = (X1, . . . , Xn) the uniform n-point process over
D. The symbols O, o,∼ always refer to the limit n → ∞. To avoid trivialities, we
tacitly assume n to be sufficiently large if necessary. For simplicity of notation, the
dependence of sets and random variables on n will be frequently suppressed. For
any finite set S, card(S) denotes the cardinality of S. For any set S and positive
integer k, the k-fold Cartesian product of S is denoted by Sk. The Euclidean norm
of a point x is denoted by ‖x‖, and the Euclidean distance between two points u

and v is denoted by ‖uv‖. The Lebesgue measure (or area) of a measurable set
A ⊂ R

2 is denoted by |A|. The topological boundary of a set A ⊂ R
2 is denoted

by ∂A. The open (respectively, closed) disk of radius r centered at x is denoted by
D(x, r) (respectively, D̄(x, r)).

The remaining of this paper is organized as follows. The proof for Theorem 1.1 is
presented in Sec. 3. Some preliminary results to be used in the proof for Theorem 1.1
are established in Sec. 2. The proofs for two technical lemmas on the limits of several
relevant integrals are postponed in Sec. 4.

2. Preliminaries

The lune of a line segment uv, denoted by L(uv), is the intersection of the disks
D(u, ‖uv‖) and D(v, ‖uv‖) (see Fig. 1); the line segment uv is called the waist of
L(uv); the two intersection points of ∂D(u, ‖uv‖) and ∂D(v, ‖uv‖) are called the
vertices of L(uv). It is easy to verify that

|L(uv)| = σ‖uv‖2.

Thus, σ is the area of the lune whose waist has unit length. For a finite planar set
V , RNG(V ) consists of all edges uv satisfying that L(uv) ∩ V = ∅. For a finite
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vu

Fig. 1. The lune L(uv) of a line segment uv.

planar set V and any number r > 0, the r-disk graph of V consists of all edges uv

satisfying that ‖uv‖ ≤ r.
For any line segment e, we define

ν(e) = |L(e) ∩ D|.

A geometric graph is a graph on a finite planar set whose edges are line segments.
Let H be a geometric graph. We use V (H) and E(H) to denote the vertex set and
edge set of H respectively. Let χ(H) be the indicator for H ⊆ RNG(V (H)) and
define

ν(H) = |(∪e∈E(H)L(e)) ∩ D|.

For any positive number n, define

fn(H) = χ(H)e−nν(H),

gn(H) = e−n
P

e∈E(H) ν(e).

Let ε = 0.001. Fix a sequence (cn) of real numbers satisfying that cn > c,

cn = o(ln n) and cn → ∞. Let

Rn =

√
ln n + cn

σn
,

R′
n =

(
1 +

ε

2

)√
ln n

σn
.

Then, for sufficiently large n, we have rn < Rn < R′
n < (1 + ε)rn. Define

Ω = {(x1, x2) ∈ D
2 : rn < ‖x1x2‖ ≤ Rn},

Ω′ = {(x1, x2) ∈ D
2 : Rn < ‖x1x2‖ ≤ R′

n}.

The following Lemma gives the limits of two fundamental integrals, whose proof
is postponed to Sec. 4.

Lemma 2.1. The following are true:

n2

∫
Ω

e−nv(x1x2)dx1dx2 ∼ 2µ,

n2

∫
Ω′

e−nv(x1x2)dx1dx2 = o(1).
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A topology with numbered vertices is specified by a collection of the pairs of the
indices of the numbered vertices. For any integer m ≥ 2, denote Tm set of topologies
on m numbered vertices without isolated vertex. For any τ ∈ Tm, and any sequence
U of m planar points, τ(U) denotes the geometric graph on U with topology τ .
For any τ ∈ Tm, we denote by Γ(τ) the set of x ∈ D

m satisfying that all edges of
τ(x) have length in (rn, Rn]. Note that for each x ∈ Γ(τ), the

√
3Rn-disk graph

on the midpoints of the edges in any connected component of τ(x) is connected.
Thus, the

√
3Rn-disk graph on the midpoints of the edges in τ(x) has no more

connected components than τ(x) itself. For any positive integer l no more than the
number of connected components of τ , we denote by Γl(τ) the set of x ∈ Γ(τ) such
that the

√
3Rn-disk graph on the midpoints of the edges in τ(x) has l connected

components.

Lemma 2.2. Suppose that 2 < m ≤ 2k and τ is a forest in Tm with k edges. Then,

for any positive integer l ≤ min{m − k, k − 1},

nm

∫
Γl(τ)

fn(τ(x))dx = o(1),

nm

∫
Γl(τ)

gn(τ(x))dx = o(1).

The proof for Lemma 2.2 is also postponed to Sec. 4. Lemma 2.2 implies the
following two corollaries.

Corollary 2.3. Suppose that τ ∈ T2k is a perfect matching for some k ≥ 2. Then,

n2k

∫
Γk(τ)

gn(τ(x))dx ∼ (2µ)k.

Proof. We denote by Ck the perfect matching of 2k numbered vertices
v1, v2, . . . , v2k which consists of k edges v2i−1v2i for 1 ≤ i ≤ k. By symmetry,
we only have to prove the lemma holds for τ = Ck. Note that

Γk(Ck) = Γ(Ck)\∪k−1
l=1 Γl(Ck).

Since Γ(Ck) = Ωk, we have

n2k

∫
Γ(Ck)

gn(Ck(x))dx =
k∏

i=1

(
n2

∫
Ω

e−nν(x2i−1x2i)dx2i−1dx2i

)

∼ (2µ)k.

By Lemma 2.2 for each 1 ≤ l ≤ k − 1,

n2k

∫
Γl(Ck)

gn(Ck(x))dx = o(1).

Thus, the corollary holds.
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Corollary 2.4. Suppose that τ ∈ Tm is not a perfect matching. Then,

nm

∫
Γ(τ)

fn(τ(x))dx = o(1).

Proof. Clearly, m > 2. Let τ ′ be a maximal spanning forest of τ . Then, τ ′ ∈ Tm

and τ ′ is not a perfect matching. In addition, Γ(τ ′) ⊇ Γ(τ), and for any x ∈ Γ(τ),

fn(τ ′(x)) ≥ fn(τ(x)).

Hence, ∫
Γ(τ)

fn(τ(x))dx ≤
∫

Γ(τ)

fn(τ ′(x))dx ≤
∫

Γ(τ ′)
fn(τ ′(x))dx.

Thus, it is sufficient to show that

nm

∫
Γ(τ ′)

fn(τ ′(x))dx = o(1).

Let k be the number of edges in τ ′. Then, τ has m− k tree components and hence

Γ(τ ′) = ∪m−k
l=1 Γl(τ ′).

Since τ ′ is not a perfect matching, we have m < 2k, which implies m − k ≤ k − 1.
By Lemma 2.2, for any 1 ≤ l ≤ m − k,

nm

∫
Γl(τ ′)

fn(τ ′(x))dx = o(1).

Therefore,

nm

∫
Γ(τ ′)

fn(τ ′(x))dx =
m−k∑
l=1

nm

∫
Γl(τ ′)

fn(τ ′(x))dx = o(1).

For any geometric graph H , let Bn(H) be the indicator for H ⊆ RNG(V (H) ∪
Pn) and all edges of H have length in (rn, Rn].

Lemma 2.5. For any τ ∈ Tm, if τ is a perfect matching then

nmE[Bn(τ(Xm))] ∼ (2µ)m/2;

otherwise,

nmE[Bn(τ(Xm))] = o(1).

Proof. For any τ ∈ Tm,

E[Bn(τ(Xm))] =
∫

Γ(τ)

Pr[Bn(τ(x)) = 1]dx.

For any x ∈ Γ(τ),

Pr[Bn(τ(x)) = 1] ≤ fn(τ(x)).
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In addition, if τ is a perfect matching then for any x ∈ Γm/2(τ),

Pr[Bn(τ(x)) = 1] = gn(τ(x)).

If τ is not a perfect matching, then by Corollary 2.4, we have

nmE[Bn(τ(Xm))] ≤ nm

∫
Γ(τ)

fn(τ(x))dx = o(1).

In the next, we assume that τ is a perfect matching. Let m = 2k. For k = 1,
Γ(τ) = Ω and hence by Lemma 2.1 we have

n2E[Bn(τ(X2))] = n2

∫
Ω

Pr[Bn(τ(x)) = 1]dx

= n2

∫
Ω

e−nν(x1x2)dx1dx2

∼ 2µ.

So, the Lemma holds for k = 1. So, we further assume that k ≥ 2. Note that

n2kE[Bn(τ(X2k))] = n2k

∫
Γ(τ)

Pr[Bn(τ(x)) = 1]dx

=
k∑

l=1

n2k

∫
Γl(τ)

Pr[Bn(τ(x)) = 1]dx.

By Corollary 2.3 we have

n2k

∫
Γk(τ)

Pr[Bn(τ(x)) = 1]dx = n2k

∫
Γk(τ)

gn(τ(x))dx ∼ (2µ)k,

and for any 1 ≤ l < k,

n2k

∫
Γl(τ)

Pr[Bn(τ(x)) = 1]dx ≤ n2k

∫
Γl(τ)

fn(τ(x))dx = o(1).

Thus,

n2kE[Bn(τ(X2k))] ∼ (2µ)k.

So, the Lemma holds in this case.

For any x = (x1, x2) ∈ D
2, let B′

n(x) be the indicator for x1x2 ∈ RNG({x1, x2}∪
Pn) and Rn < ‖x1x2‖ ≤ R′

n.

Lemma 2.6. n2E[B′
n(X2)] = o(1).
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Proof. For any x = (x1, x2) ∈ Ω′,

Pr[B′
n(x) = 1] = e−nv(x1x2).

By Lemma 2.1,

n2E[B′
n(X2)] = n2

∫
Ω′

Pr[B′
n(x) = 1]dx

=
n2

2

∫
Ω′

e−nv(x1x2)dx1dx2

= o(1).

3. Proof for Theorem 1.1

We first give a brief overview on our approach to prove Theorem 1.1. Let Mn

(respectively, M ′
n and M ′′

n ) denote the number of edges in RNG(Pn) with length
in (rn, Rn] (respectively, (Rn, R′

n] and (R′
n, +∞)). Then, λ(RNG(Pn)) ≤ rn if and

only if Mn + M ′
n + M ′′

n = 0. In Lemma 3.1, we will show that M ′′
n = 0 is a.a.s. In

Lemma 3.4, we will prove that E[M ′
n] = o(1), which implies that M ′

n = 0 is a.a.s.
by Markov’s inequality. In Lemma 3.6, we will prove that Mn is asymptotically
Poisson with mean µ. Consequently,

lim
n→∞

Pr[λ(RNG(Pn)) ≤ rn] = lim
n→∞

Pr[Mn + M ′
n + M ′′

n = 0]

= lim
n→∞

Pr[Mn = 0]

= e−µ.

We first utilize the tool of minimal scan statistics developed in [17] to prove that
M ′′

n = 0 is a.a.s.

Lemma 3.1. Pr[M ′′
n > 0] = o(1).

Proof. For any finite point set V ⊂ D and any r > 0, define

S(V, r) = min
{u,v}⊂D,|uv‖=r

|V ∩ L(uv)|.

For any pair of {u, v} ⊂ D with ‖uv‖ = R′
n,

n|L(uv)| = n · σ(R′
n)2 =

(
1 +

ε

2

)2

ln n > (1 + ε) ln n.

Using this fact and following the same argument in the proof of Lemma 9 in [17],
we can prove that S(Pn, R′

n) > Θ(lnn) is a.a.s. In particular, S(Pn, R′
n) > 0 a.a.s.

Next, we claim that the event M ′′
n > 0 implies the event S(Pn, R′

n) = 0. Suppose
that M ′′

n > 0. Then there are a pair of nodes {X, Y } ⊂ Pn such that ‖XY ‖ > R′
n

and L(XY ) ∩ Pn is empty. Let Y ′ be the point on the line segment XY satisfying
that ‖XY ′‖ = R′

n. Thus L(XY ′) ⊂ L(XY ). So L(XY ′)∩Pn is empty. This implies
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that S(Pn, rn) = 0. Therefore, our claim holds. Consequently,

Pr[M ′′
n > 0] ≤ Pr[S(Pn, R′

n) = 0] = o(1).

Two key techniques used in our remaining proof are the Palm theory for Poisson
processes (see, e.g. Theorem 1.6 in [12]) and the Brun’s sieve (see, e.g. Theorem 10
in [16]), which are stated below.

Theorem 3.2. Suppose that N is a non-negative integer random variable, and
B1, . . . , BN are N Bernoulli random variables. If there is a constant µ such that
for every fixed positive integer k,

E


 ∑

I⊆{1,...,N},|I|=k

∏
i∈I

Bi


 ∼

µk

k!
,

then
∑N

i=1 Bi is asymptotically Poisson with mean µ.

Theorem 3.3. Suppose that h(U, V ) is a bounded measurable function defined on
all pairs of the form (U, V ) with V being a finite planar set and U being a subset of
V . Then for any positive integer k,

E


 ∑

U⊆Pn,|U|=k

h(U,Pn)


 =

nk

k!
E[h(Xk,Xk ∪ Pn)].

Now, we apply Palm theory to show that E[M ′
n] is vanishing.

Lemma 3.4. E[M ′
n] = o(1).

Proof. For any pair (U, V ) with V being a finite planar set and U being a subset of
V , define h′(U, V ) to be the number of edges in the subgraph of RNG(V ) induced
by U with length in (Rn, R′

n]. By applying the Palm theory, we have

E[M ′
n] = E


 ∑

U⊂Pn,|U|=2

h′(U,Pn)




=
n2

2
E[h′(X2,X2 ∪ Pn)]

=
n2

2
E[B′

n(X2)].

By Lemma 2.6, the lemma follows.

For any positive integer k, denote by Hn,k the collection of k-edge subgraphs
of RNG(Pn) in which all edges have length in (rn, Rn] and no vertex is isolated.
Next, we apply Palm theory to compute the asymptotic average of card(Hn,k).
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Lemma 3.5. For any fixed positive integer k,

E[card(Hn,k)] ∼
µk

k!
.

Proof. For any pair (U, V ) with V being a finite planar set and U being a subset
of V , define h(U, V ) to be the number of k-edge subgraphs of RNG(V ) on U in
which all edges have length in (rn, Rn] and no vertex is isolated. By applying the
Palm theory, we have

E[card(Hn)] = E


 2k∑

m=2

∑
U⊂Pn,|U|=m

h(U,Pn)




=
2k∑

m=2

E


 ∑

U⊂Pn,|U|=m

h(U,Pn)




=
2k∑

m=2

nm

m!
E[h(Xm,Xm ∪ Pn)].

Thus, it is sufficient to show that

nm

m!
E[h(Xm,Xm ∪ Pn)] =




0, if 2 ≤ m < 2k;

µk

k!
, if m = 2k.

For any positive integer k and any 2 ≤ m ≤ 2k, denote Tm,k the set of topologies
in Tm with exactly k edges. Note that any topology in T2k,k is a perfect matching,
and

card(T2k,k) =
1
k!

(
2k

2, 2, . . . , 2

)
=

(2k)!
k!2k

.

By Lemma 2.5, we have

n2k

(2k)!
E[h(X2k,X2k ∪ Pn)] =

1
(2k)!

∑
τ∈T2k,k

n2kE[B(τ(X2k))]

∼ 1
(2k)!

· (2k)!
k!2k

· (2µ)k

=
µk

k!
.

Now suppose that 2 ≤ m < 2k. Then any topology in Tm,k is not a perfect matching.
By Lemma 2.5,

nmE[h(Xm,Xm ∪ Pn)] =
∑

τ∈Tm,k

nmE[Bn(τ(Xm))] = o(1).

Finally, we apply the Brun’s sieve together with Lemma 3.5 to prove Mn is
asymptotically Poisson.
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Lemma 3.6. Mn is asymptotically Poisson with mean µ.

Proof. Let En be the set of edges of RNG(Pn). For any edge e ∈ En, define B̄(e)
to be the Bernoulli random variable which equals to one if and only if rn < ‖e‖ ≤
Rn. Then

Mn =
∑
e∈En

B̄(e).

For subset F of En,
∏

e∈F B̄(e) = 1 if and only if F is the edge set of a subgraph of
RNG(Pn) in which all edges have length in (rn, Rn] and no vertex is isolated. Fix
a positive integer k. By treating each k-subset F of En as an k-edge subgraphs of
RNG(Pn), we have that ∑

F⊆En,|F |=k

∏
e∈F

B̄(e) = card(Hn,k).

Hence, by Lemma 3.5,

E


 ∑

F⊆En,|F |=k

∏
e∈F

B̄(e)


 ∼

µk

k!
.

By Theorem 3.2, Mn is asymptotically Poisson with mean µ.

4. Proofs for Lemma 2.1 and Lemma 2.2

In this section, we prove Lemma 2.1 and Lemma 2.2. We first present some useful
geometric results. For x ∈ D, let t(x) denote the distance between x and ∂D, which
is equal to 1√

π
− ‖x‖. For any 0 < ρ < 1√

π
, define

Dρ(0) = {x ∈ D : t(x) ≥ ρ},

Dρ(1) =

{
x ∈ D :

√
1
π
− ρ2 ≤ t(x) < ρ

}
,

Dρ(2) =

{
x ∈ D : t(x) <

√
1
π
− ρ2

}
.

With this notation, the midpoint of any line segment xy ⊂ D is not in D‖xy‖/2(2).
For x ∈ D and 0 < ρ < 1√

π
, define θ(x, ρ) as follows. If x ∈ Dρ(0), then θ(x, ρ) = 2π.

If x ∈ Dρ(2), then θ(x, ρ) = 0. If x ∈ Dρ(1), let u and v be the two intersection
points of ∂B(x, ρ) and ∂D, and define θ(x, ρ) = 2π − ∠uxv (see Fig. 2).

Lemma 4.1. For x ∈ D and 0 < ρ < 1√
π
,

ρθ(x, ρ) ≤ 2πt(x).
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ρ

x

t(x)
vu

Fig. 2. If x ∈ Dρ(1), then θ(x, ρ) = 2π − 2∠uxv.

Proof. The lemma holds trivially if x ∈ Dρ(0) or x ∈ Dρ(2). So, we consider the
case that x ∈ Dρ(1). It is easy to see that

θ(x, ρ) ≤ 4 arcsin
t(x)
ρ

.

Using the equality sin α ≥ 2
π α for any α ∈ [0, π/2], we obtain

θ(x, ρ) ≤ 4 · π

2
· t(x)

ρ
=

2πt(x)
ρ

.

Thus, ρθ(x, ρ) ≤ 2πt(x).

If e ⊂ D and the midpoint of e is apart from ∂D by at least
√

3
2 ‖e‖, then L(e) ⊂ D.

The next lemma gives a lower bound on |L(e) ∩ D| if otherwise.

Lemma 4.2. Consider a line segment e ⊂ D with midpoint z. If t(z) ≤
√

3
2 ‖e‖,

then

|L(e) ∩ D| ≥ 1
2
|L(e)| + ‖e‖

2
t(z).

Proof. Let a and b be the two endpoints of e, and c1 and c2 be the two vertices
of L(e) with c1 being farther away from the center of D (see Fig. 3). Then, the half
lune abc2 is fully contained in D. If c1 ∈ ∂D, then the triangle abc1 is contained in
D and its area is ‖e‖

2 ‖az‖ ≥ ‖e‖
2 t(z). So, the lemma holds if c1 ∈ ∂D. Now assume

that c1 /∈ ∂D. Let u be the intersection point of c1z and ∂D. Then, the triangle
abu is contained in D and its area is ‖e‖

2 ‖uz‖ ≥ ‖e‖
2 t(z). So, the lemma also holds if

c1 /∈ ∂D.

For any geometric graph H on a finite subset of D, an edge e of H is called an
outermost edge of H if its midpoint is the nearest to ∂D.

Lemma 4.3. Suppose that H is a geometric graph over a finite subset of D with at
least two edges satisfying that all the edges have length between R/(1+ ε) and R for
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b

c

2

1

c

u

a

z

Fig. 3. L(e) ∩ D contains the triangle abc2 and the half lune abu.

R ≤ 1
200

√
π

and the midpoints of its edges induce a connected
√

3R-disk graph. Let
e′ be an outermost edge of H, and  be the largest distance between the midpoint of
e′ and the midpoints of other edges of H. Then,∑

e∈E(H)

ν(e) ≥ ν(e′) + 0.0026R.

In addition, if χ(H) = 1 then

ν(H) ≥ ν(e′) + 0.0026R.

The proof of this lemma is very lengthy and complicated. We omit the proof
due to the limitation on the space.

Now it is ready to give the proofs for Lemma 2.1 and Lemma 2.2. We will
frequently change the integral variables using a technique introduced in [16]. Con-
sider a tree topology on k planar points x1, x2, . . . , xk, and assume without loss
of generality that xk−1xk is an edge in this tree. Let zk−1, ρ, and ω be the mid-
point, half-length and the slope of xk−1xk respectively. We root the tree at xk. For
1 ≤ i ≤ k − 2, let zi be the midpoint of the edge between xi and its parent in
such rooted tree. Then, we replace x1, x2, . . . , xk by z1, . . . , zk−1, ρ, ω. The Jacobian
determinant of this change is 4k−1ρ.

We begin with the proof for Lemma 2.1. Let ρ = ρ(x1, x2) be the half-length of
x1x2, and z = z(x1, x2) be the midpoint of x1x2. Let Ω1 be the set of (x1, x2) ∈ Ω
satisfying that z ∈ D√

3ρ(0), and let Ω2 = Ω\Ω1. First, we calculate the integration
over Ω1. If (x1, x2) ∈ Ω1, L(x1x2) is fully contained in D and v(x1x2) = 4σρ2.
Changing the integration variable x1 and x2 by z, ρ, and the slope of x1x2 yields

n2

∫
Ω1

e−nv(x1x2)dx1dx2 = 8πn2

∫ Rn
2

rn
2

e−4nσρ2
ρdρ

∫
D√

3ρ(0)

dz

∼ 8πn2

∫ Rn
2

rn
2

e−4nσρ2
ρdρ
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= −π

σ
ne−4σρ2 |

Rn
2

rn
2

∼ π

σ
e−c

= 2µ.

Next, we calculate the integration over Ω2. Let t = t(z) be the distance between z

and ∂D. By Lemmas 4.1 and 4.2, we have

ρθ(z, ρ) ≤ 2πt,

and

v(x1x2) ≥ 2σρ2 + ρt.

Changing the integration variable as above yields

n2

∫
Ω2

e−nv(x1x2)dx1dx2 ≤ n2

∫
Ω2

e−n(2σρ2+ρt)dx1dx2.

= 4n2

∫ Rn
2

rn
2

dρ

∫
D√

3ρ(1)\Dρ(2)

e−n(2σρ2+ρt)ρθ(z, ρ)dz

= 4n2

∫ Rn
2

rn
2

dρ

∫
D√

3ρ(1)\Dρ(2)

e−n(2σρ2+ρt)ρθ(z, ρ)dz

≤ 8πn2e−2nσρ2
∫ Rn

2

rn
2

dρ

∫
D

e−nρttdz

= O(1)n1.5

∫ Rn
2

rn
2

dρ

∫ 1/
√

π

0

e−nρttdt

≤ O(1)n1.5

∫ Rn
2

rn
2

dρ

∫ ∞

0

e−nρttdt

= O(1)
1√
n

∫ Rn
2

rn
2

ρ−2dρ

≤ O(1)
1√
n

r−2
n Rn

= O(1)
1√
nrn

= O(1)
1√
ln n

= o(1).



March 26, 2009 20:14 WSPC/257-DMAA 00009

On the Longest RNG Edge of Wireless Ad Hoc Networks 39

Therefore,

n2

∫
Ω

e−nvx1x2 dx1dx2 ∼ 2µ.

Note that Ω ∪ Ω′ consists of (x1, x2) ∈ D
2 satisfying that rn < ‖x1x2‖ ≤ R′

n.
Using the same argument as above, we can show that

n2

∫
Ω∪Ω′

e−nv(x1x2)dx1dx2 ∼ 2µ.

Thus, the second asymptotic equality in Lemma 2.1 holds.
We move to prove Lemma 2.2 by establishing the following two lemmas.

Lemma 4.4. Suppose that 2 < m ≤ 2k and τ is a forest in Tm with k edges. Then,

nm

∫
Γ1(τ)

fn(τ(x))dx = o(1),

nm

∫
Γ1(τ)

gn(τ(x))dx = o(1).

Proof. Enumerate the edges of τ arbitrarily by e1, . . . , ek. For any x ∈ Γ1(τ), let
zi denote the middle point of ei in F (x) for each 1 ≤ i ≤ k. For any pair of distinct
integers p and q between 1 and k, let Spq denote the set of x ∈ Γ1(τ) satisfying that
ep is an outermost edge in τ(x) and zq is the farthest from zp among all z1, . . . , zk.
Then, it suffices to prove for any such p and q,

nm

∫
Spq

fn(τ(x))dx = o(1),

nm

∫
Spq

gn(τ(x))dx = o(1).

Fix a pair of distinct integers p and q between 1 and k. Let p′ and p′′ be the indices
of the two endpoints of the edges ep. By Lemma 4.3 for any x ∈ Spq,

fn(τ(x)) ≤ e−n(v(xp′xp′′ )+ηRn‖zpzq‖),

gn(τ(x)) ≤ e−n(v(xp′xp′′ )+ηRn‖zpzq‖),

in which η is a positive constant. Thus, we only need to show that

nm

∫
Spq

e−n(v(xp′xp′′)+ηRn‖zpzq‖)dx = o(1).

We change the integral variables x1, . . . , xm as follows. For the tree component
containing ep, we replace the xi’s in this tree by the midpoints of the edges in this
tree except zp and xp′ , xp′′ (both of which are kept). For any other tree component,
we use the method introduced at the beginning of this section: pick an arbitrary
edge as the rooted edge. We replace xi’s in this tree by the midpoints of all the
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edges in this tree together with the half-length and slope of the root edge. Such
change of integration variables yields

nm

∫
Spq

e−n(v(xp′xp′′)+ηRn‖zpzq‖)dx

≤ O(1)nm

(∫
Ω

e−nvv(xp′xp′′)dxp′dxp′′

)(∫ Rn
2

rn
2

ρdρ

)m−k−1

·
(∫

R2
e−ηnRn‖zpzq‖dzq

)(∫
D̄(zp,‖zpzq‖)

dz

)k−2

∼ O(1)nm−2(R2
n − r2

n)m−k−1

∫
R2

e−ηnRn‖zpzq‖‖zpzq‖2(k−2)dzq

≤ O(1)nm−2(R2
n − r2

n)m−k−1

∫ ∞

0

e−ηnRnµµ2k−3dµ

= O(1)
nm−2(R2

n − r2
n)m−k−1

(nRn)2(k−1)

= O(1)
(nR2

n − nr2
n)m−k−1

(nR2
n)k−1

= O(1)
(cn − c)m−k−1

(ln n)k−1

= o(1),

where the asymptotic equality follows from Lemma 2.1, and the last equality follows
from cn = o(ln n) and k ≥ 2.

Lemma 4.5. Suppose that 2 < m ≤ 2k and τ is a forest in Tm with k edges. For
any integer 2 ≤ l ≤ min{m− k, k − 1},

nm

∫
Γl(τ)

fn(τ(x))dx = o(1),

nm

∫
Γl(τ)

gn(τ(x))dx = o(1).

Proof. τ has m − k tree components on m numbered vertices v1, v2, . . . , vm. Enu-
merate them arbitrarily by T1, . . . , Tm−k. For each 1 ≤ q ≤ m − k, let

Iq = {1 ≤ i ≤ m : vi is a vertex of Tq}.

Fix an integer 2 ≤ l ≤ min{m − k, k − 1}. Consider any nontrivial l-partition Π =
{Q1, Q2, . . . , Ql} of {1, 2, . . . , m−k}. It induces a partition Π′ = {P1, P2, . . . , Pl} of
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{1, 2, . . . , m} in which Pj = ∪q∈Qj Iq for each 1 ≤ j ≤ l. Let S(Π) denote the set of
x ∈ Γl(τ) such that for each 1 ≤ j ≤ l, the set of midpoints of the subgraph of τ(x)
induced by {xi : i ∈ Pj} is a connected component of the

√
3Rn-disk graph on the

midpoints of the edges in τ(x). Then Γl(τ) is the union of S(Π) over all nontrivial
l-partitions Π of {1, 2, . . . , m−k}. So, it is sufficient to show that for any l-partition
Π of {1, 2, . . . , k},

nm

∫
S(Π)

fn(τ(x))dx = o(1),

nm

∫
S(Π)

gn(τ(x))dx = o(1).

Now, fix an l-partition Π = {Q1, Q2, . . . , Ql} of {1, 2, . . . , m − k}. Let Π′ =
{P1, P2, . . . , Pl} be the partition of {1, 2, . . . , m} induced by Π. For each 1 ≤ j ≤ l,
let mj = card(Pj), τj be the topology on mj numbered vertices which is a subgraph
of τ induced by the subset of vertices {vi : i ∈ Pj}. Then, at least one mj ≥ 2. For
any x = (x1, x2, . . . , xm) ∈ D

m and each 1 ≤ j ≤ l, let

x(j) = (xi1 , xi2 , . . . , ximj
)

where i1, i2, . . . , imj are the mj indices in Pj in the increasing order. Clearly, for
each x ∈ S(Π) and each 1 ≤ j ≤ l, x(j) ∈ Γ1(τj). Hence,

S(Π) ⊆ {x ∈ D
m : x(j) ∈ Γ1(τj), 1 ≤ j ≤ l}.

For any x ∈ S(Π),

ν(τ(x)) =
l∑

j=1

ν(τj(x(j))),

χ(τ(x)) ≤
l∏

j=1

χ(τj(x(j))),

which imply

fn(τ(x)) ≤
l∏

j=1

fn(τj(x(j))).

It is obvious that for any x ∈ S(Π),

gn(τ(x)) =
l∏

j=1

gnt(τj(x(j))).
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Thus,

nm

∫
S(Π)

fn(τ(x))dx ≤ nm

∫
S(Π)

l∏
j=1

fn(τj(x(j)))dx

≤ nm

∫
{x∈Dm:x(j)∈Γ1(τj),1≤j≤l}

l∏
j=1

fn(τj(x(j)))dx

=
l∏

j=1

(
nmj

∫
Γ1(τj)

fn(τj(x(j)))dx(j)

)

= o(1),

where the last equality follows from Lemma 2.1, Lemma 4.4 and the fact that at
least one mj ≥ 2. Similarly, we can show that

nm

∫
S(Π)

gn(τ(x))dx = o(1).

So, the Lemma follows.
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