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Abstract

Large-scale distributed systems provide an atractive scalable infrastructure for network apgications. Howeve, the
loosely-couded nature of this environment can make data accessunpredictable, andin the limit, unavailable. Availahbility is
normally characterized as a binary property, yes or no, often with an associated probablility. Howeve, avail ability corveys
littl e in terms of expeded data accessperformance Using avail ahility alone, jobs may suffer intolerable resporse time, or
evan fail to complete, due to poa data access We introducethe notion o accesshility, a more general concept, to capture
both avail ahility and performance An increasing number of data-intensive apgications require not only considerations of
node computation powver but also accesshility for adequate job dlocations. For instance, seleding a noc with intolerably
slow conredions can dfset any benefit to running on afast node.

In this paper, we present accesshilit y-aware resourceselediontedchniques by which it i s possble to choose nodes that will
have dficient data accessto remote data sources. e havethat the locd data accessobservations colleded from a node's
neighbas are sufficient to characterize accesshility for that node. We then present resource seledion heuristics guided by
this principle, and show that they significantly outperform standard techniques. We also investigate the impact of churn in
which nodes change their status of participation such that theylose their memory of prior observations. Despite this leve of
unreliability, we show that the suggested techniquesyield goodresults.

1 Introduction

Large-scde distributed systems offer the goped of scdahility for hosting network applicaions. This virtue has led to
the deployment of several distributed applicaions in large-scde, loosely-couped environments such as pea-to-pee com-
puting [2], distributed storage systems [18, 24, 4], and Grids [9, 23, 22]. In particular, the ability of large-scde systems to
harvestidle gyclesof geographicdly distributed nodeshasled to agrowinginterest in cycle-sharing systems[46] and @home
projeds[1, 39]. However, amajor challengein such systemsis the network unpredictability andlimited bandwidth avail able
for data dissemination. For instance, the BOINC projed [6] reports an average throughpu of only abou 289 Kbps, and a
significant propartion of BOINC hasts hows an average throughpu of lessthan 100Kbps[2]. In such an environment, even
afew MBs of datatransfer between poaly conrneded nodes can have alarge impad onthe overall application performance
Thishas verely restricted the amourt of data used for computationin such computation patforms, with most computations
taking paceon small data objeds.

Emerging scientific gopli caions, however, are data-intensive and require accasto a significant amourt of dispersed data.
Such data-intensive gopli cations encompassa variety of domains such as high energy physics [34], climate prediction[27],
astronamy [3] and hioinformatics[5]. For example, in high energy physics applicaions auch as the Large Hadron Colli der
(LHC), thousands of physicists worldwide will reguire accasto shared, immutable data & the scde of petabytes [19].
Similarly, in the aeaof bioinformatics, a set of gene sequences could be transferred from a remote database to enable
comparison with input sequences [42]. In these examples, performance depends criticdly on efficient data delivery to the
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computational nodes. Moreover, the dficiency of data delivery for such applicationswould criticdly depend onthe location
of data and the point of access Hence in order to acoommodate data-intensive goplicaionsin loosely-couped distributed
systems, it is esentia to consider not only the computational capability, but also the data accessbility of computational
nodes to the required data objeds. The focus of this paper is on developing resource seledion techniques aiitable for such
data-intensive goplicaionsin large-scde computational platforms.

Data avail ahilit y has been widely studied over the past few yeas as akey metric for storage systems[24, 18, 4]. However,
avail ability is primarily used as a server-side metric that ignares client-side accesbility of data. While avail ability implies
that at least one instance of the data is present in the system at any given time, it does not imply that the data is aways
accessble from any part of the system. For example, while afile may be avail able with 5 nines (i.e. 99.99%% avail abilit y)
in the system, red accessfrom different parts of the system can fail due to reasons auch as misconfiguration, intolerably
slow conredions, and aher networking problems. Similarly, the avail ability metric is slent abou the dficiency of access
from different parts of the network. For example, even if afile is avail able to two diff erent clients, one may have amuch
better conredionto the file server, resulting in much lessdownload time compared to the other. Therefore, in the context of
data-intensive goplications, it isimportant to consider the metric of data accesshility: how efficiently can anode accesa
given data objed in the system. Note that accesshility depends uponthe paint of access and nd just the presence of a data
objed in the system. In this context, accesshility direcly implies avail abilit y, but not viceversa.

The challenge we addressisthe charaderizaion o accesshility from individual client nodesin large distributed systems.
This is complicated by the dynamics of wide-area networks which rule out static apriori measurement, and the cost of
onrdemand information gathering, which rules out adive probing. Additionally, relying on dobal knowledge obstructs
scdability, so any pradicd approach must rely onlocd information. To achieve accashilit y-aware resource seledion, we
exploit local, historicd data accesobservations. This has sveral benefits. First, it is fully scdable & it does not require
global knowledge of the system. Sewnd, it is inexpensive & we employ observations of the noce itself and its diredly
conreded neighbas(i.e. one-hopaway). Third, past observationsare helpful to charaderizethe accesbehavior of the node.
For example, anode with athin accesslink islikely to show slow accessmost of thetime. Last, by exploiting relevant access
informationfrom the neighbas, it is pasgble to obviate the need for explicit probing (e.g. to determine network performance
to the server), thus minimizing system and network overheal. Our key research contributions are as foll ows:

e \We present accesshility estimation heuristics which employ locd data accesobservations, and demonstrate that the
estimated datadownload timesarefairly closeto red measurements, with 90% of the estimateslyingwithin 0.5 relative
error in live experimentation onPlanetL ab.

e We infer the latency to the server based onthe prior neighba measurement withou expli citly probing the server. For
this, we extend existing estimation heuristics[20, 17, 29] to more acarrately work with alimited number of neighbas.
Our enhancement gives acarate results even with orly afew neighbars.

e We present accesshilit y-aware resource seledion techniques based on ou estimation functions and compare to the
optimal and standard techniques uch as proximity-based and randam seledion. Our resultsindicate that our approach
not only outperformsthe standard techniques, but does s over awide range of operating condtions.

o We investigate the impad of churn prevalent in loosely-couded distributed systems. The results show that our tech-
niques perform satisfadorily even under ahigh degreeof churn.

2 Accessibility-based Resource Selection

In this sdion, we first present our system model followed by an overview of the acceshbilit y-based resource seledion
algorithm that uses data accssbility to seled appropriate compute nodesin the system.

2.1 System Model

Our system model consists of a network of compute nodes that provide computational resources for exeauting applicaion
jobs, and data nodks that store data objeds required for computation. In our context, data objeds can be files, database
records, or any other data representations. We asaume both compute and data nodes are mnreded in an overlay structure.
We do nd assume any spedfic type of organizaion for the overlay. It can be constructed by using typica overlay network
architedures such as unstructured [ 7] and structured [40, 37, 38, 45], or any other techniques. However, we assume that the
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Figure 1. Accessibility-based resource selection

system providesbuilt-in functionsfor objed store andretrieval so that objeds can be disseminated and accessed by any noce
aaossthe system. Each nock in the network can be a @mpute node, data noce, or bath.

Sincescdability is one of our key requirements, we do nd assume any centrali zed entiti es holding system-wide informa-
tion. For this reason, any nock in the system can submit ajobin our system model. A jobisdefined as a unit of work which
performs computation onan objed. To allocae ajob, a submisson nock, cdled an initiator, seleds a compute node from a
set of canddates. We assume the use of a resource discovery algorithm to determine the set of candidate nodes, and leare
the dficient discovery of candidates as future work. Many existing resource discovery agorithms (e.g., SWORD [3(]) can
be used to return a set of matching candidate nodes, thoughthey may not consider locdity to data. Oncethe initiator seleds
anode, the jobis transferred to the seleded node, cdled aworker. The worker then downloads the data objed required for
the job from the network and performs the computation. When the job exeaution s finished, the worker returns the result to
the initi ator.

Formally, job J; is defined as a computation urit which requires objed o; to complete the task. We assume that objeds,
eg. o;, have drealy been staged in the network and perhaps replicated to a set of nodes R; = {r;1, 72, ...} based upon
projeded demand. Thejob J; is ubmitted by the initiator. From the given candidates C' = {¢1, ¢q, ...}, the initiator seleds
one(i.e.,, worker € C) to alocdaethe job.

2.2 Resource Selection

Figure 1 ill ustrates the resource seledion processin our system model oncethe initiator has a set of candidate nodes to
choose from. To seled one of the given candidates, the initiator may simply make a doice randamly. However, relying on
such randamnessdoes nat generall y satisfy given system performancegoalsaswe will show. Instead, queryingthe candidates
will allow the system to aqyuire relevant information for job all ocation, since there is no entity with globa information
(Figure 1(a)). The candidate off ers the relevant information (Figure 1(b)). One type of information would be proximity to
the server which is often used in today’s distributed systems. Based onthe information, the initi ator makes a dedsion, and
all ocates the job to the seleaed worker (Figure 1(c)). To incorporate the impad of data acceson the performance of job
exeadution, our goal is to seled the best candidate node in terms of accesgbility to a data node (server) holding oljed o;.
Further, due to the decentralized nature of our system, we would like to make this sledion withou asauiming any global
knowledge.

To achieve this goal, we use an accesshilit y-based ranking function to rank the different candidate nodes. Since our
goal is to maximizethe dficiency of data accesfrom the seleded worker node, we use the expeded data domnloadtime
as the metric to quentify accesshility. Thus, given a set of candidates C for job J; that requires accessto objed o;, eah
candidate nock ¢, returnsits accessbility accessibility..,, (J;) in terms of the estimated download time for the objed o;,
and the initiator then seleds the node with the smallest accessbhility value. Note that since we ae ssauming lack of any
global knowledge, these estimates are based onthe locd information avail able to the individual candidate nodes. Therefore,
sometimes it is possble that the candidate canna provide any meaningful estimate of its accesshility to the required data
objed. Inthiscase, the candidate simply returnsvalue of infinity asits estimated download time for the objed, indicaingthe
ladk of any information. The initiator would filter out such a candidate. If all candidates return infinity, one of the candidates
israndomly seleded. Formally, the seledion heuristic H is defined as foll ows:

H, : C — ¢, suchthat
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Figure 2. Ping map statistics

accessibility., (J;) = rlnml (accessibilitye.,, (J;)).
Having described the accashilit y-based resource seledion algorithm, the questionis how the candidate nodes can esti-
mate their accessbility usinglocd information (e.g., even withou having dowvnloaded ohjed o, in the past), andwhat fadors
they can use for this estimation. We explore this questionin the next sedion.

3 Accessibility Estimation
3.1 Accessibility Parameters

To answer the above question, we first investigate what parameters would impad accesshility in terms of data download
time. Intuitively, a node's accesshility to a data objed will depend ontwo main fadors: the location of the data objed
with resped to the node, and the node’s network characteristics, such as its connedivity, bandwidth, and aher networking
cgpabiliti es. We have explored avariety of parametersto charaderizethese fadors, and foundsome interesting correlations.
For thischaraderization, we conducted experimentson Planetl ab [33] with 133 hatsover threeweeks. In these experiments,
18 2VIB dataobjedsweredistributed over the nodes, and over 14,000 davnload operationswere caried ou to form adetail ed
traceof data download times. To measure inter-nock latencies, an ICMP ping test was repeaed nine times over the 3-week
period, and the minimal latency was ssleded to represent the latency for ead pair. We next give abrief description o the
main results of this gudy.

We begin by introducing the ping statistics between noces in the experimental environment. Figure 2 shows symmetry
and dstribution o roundtrip time (RTT). We can seestrong symmetry between pairs in the figure — 94% of the total pairs
have lessthan 5 ms difference The distribution dof latency is left-skewed and heavy-tail ed, so the average (107 ms) is a bit
larger than the median (87 ms).

The first result is the correlation o latency and davnload speed between noce pairs. Intuitively, it is likely that small er
latency between client and server would lead to better performancein dovnloading. Figure 3(a) plotstherelationship between
RTT and davnload speed (defined as the ratio of downloaded data size and davnload time)!. We find a negative correlation
(r = —0.56) between them, indicating that latency can be a useful factor when estimating accessbility between noce pairs.

In addition, we discovered a arrelation between the download speed of a node for a given oljed and the past average
download speed of the node, as shown in Figure 3(b) (» = 0.6). The intuition behind this correlationis that past download
behavior may be helpful to charaderizethe nodein terms of its network charaderistics such asits conredivity and bandwidth.

1We use download spead to make our results independent of objed size
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Figure 3. Correlations of access parameters

For example, if anode is conreded to the network with a bad accesslink, it is amost certain that the node will yield low
performancein data accesto any data source. This result suggests that past download kehavior of a noce can be a useful
comporent for accesshility estimation.

We had explored other parameters as well, but we could na find meaningful correlations. We introduce some of them
here. We investigated the impaa of latency affinity between two nodes. In this stting, for all combinations of threenodes,
say a, b, and ¢, we compared RTT (a,b) to |RTT(a,c) — RTT(b,c)|. We founda pretty strong correlation (r = 0.66),
which means that if RTT'(a,b) is andl, the differenceto the other one (i.e. |RTT (a,c¢) — RTT(b,c)|) is aso smal with
strongcorrelation. However, when latency risesbeyondsomepaint (e.g. RT'T (a, b) > 250ms), the results began to oscill ate,
sugeesting littl e significance. This phenomenoncan be dso explained by the triangle inequality [14, 41]. Ancther example
isa correlation o latency and dowvnload elapsed time between apair. The basic question hereisthat if the RTT between two
nodesis amall, then two nodes would show similar behaviorsin downloading. In other words, two nodeswould have simil ar
downloading capability if they resided onthe same locd or regional network. However we @uld na find any ndiceale
correlationin this experiment (r = 0.1).

Based onthestatistica correlationswe discovered, we next present estimationtechniquesto predict data accescapabiliti es
of a noce for a data objed. Note that we will not assume global knowledge of these parameters (e.g., pairwise latencies
between diff erent nodes), but use hints based onlocd information at candidate nodes to get accessbility estimates. It is
worth mentioning that it i s not necessary to estimate the exad download time; rather our intentionis to rank nocdes based on
accesshility so that we can choose agoodnoce for job al ocaion. Nonetheless if the estimation hes littl e relevanceto the
red performance, then the ranking may deviate far from the desired choices. Hencewe require that the estimation techniques
demonstrate sufficiently acairate results which can be bounded within any tolerable eror range.

3.2 Self-Estimation

Asdescribed abowe, latency to the server and davnload speed of anode are useful to assessitsaccessbility to adataobjed.
We first provide an estimation technique that uses historicd observations made by a node during its previous downloads to
estimate these parameters. Note that these past downloads can be to any oheds and need na be for the objed in question.
We refer to thistedhnique s self-estimation.

To employ past observationsin the estimation process we sssumethat the node recordsaccessinformationit has observed.
Suppase H; is the i-th dovnload entry at host 4. This entry includes following information: objedt name, objed size,
download elapsed time, server, distanceto server, and timestamp. As a convention, we use dot(.) notationto refer to an item
of the entry, for example, H .size representsthe objed sizein i-th observationat host h.
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Figure 4. Self estimation result

We first estimate adistance fador between the node and the server, based ontheir inter-node latency. We cnsider two
latency models for the distance metric: RTT and square-root of RTT. These ae often used in TCP studies to cope with
congestion efficiently to improve system throughpu. Studies of window-based [32] and rate-based [31] congestion control
reveded that RTT and square-roct of RTT are inversely propartional to system throughpd, respedively. We consider both
latency models for the distance metric and compare them to seewhich is preferable later in this ssdion. The mean distance
of nock h to the serversit has sen so far isthen cdculated as foll ows:

(M|
. Z H;,.distance
i=1

Distancey, =

[Hl

We then charaderize the network charaderistics of the node by estimating its mean dovnload speed based on pior
observations:

1 & i size
W = . _ h*
ownsSpeedy [H| ; Hj,.elapse
Usingthe ebowvefadors, we estimate the expeded download time for ahost / to dovnload objed o as:
Sel f Estimp(0) = 6 - % "
DownSpeedy,
where
5— distancey (server(0))
a Distancen,

Here, size(o) means the size of objed o, server(o) means the server for objed o, and distance,(b) means the distance
between nodes a and b.

Intuitively, The parameter § gives aratio of the distanceto the server for objed o to the mean distanceit has observed so
far. Smaller 6 means that the distance to the server is closer than the arerage distance the node has ®en so far, and hence
its estimated dawvnload time is likely to be smaller than previous downloads. The other part of Equation 1 wses the mean
download speed to derive the estimated dovnload time & being propartional to the objed size.

Figure 4 shows the results of self-estimation. In the figure, the x-axisis ratio of the estimated time to the red measured
time. Thusaratio of 1 means that the estimation is exadly corred. As shown in the figure, we can seethat v RT'T yields
better estimation resultsthan the smple RTT. Using v RTT almost 90% of the total estimations occur within aratio between
0.5and 15 (i.e. relative aror = 0.5). In contrast, the simple RTT yields 76% of the total estimations within the same aror
margin. Based onthis result, we set distance = RTT + 1, where RTT is expressed in milli seconds®. With this distance

2we ald 1to avoid division byzero.
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metric, we can seethat asignificant portion o the estimations occur aroundthe ratio, indicaingthat the estimationfunctionis
fairly acarate. We will seein Sedion 5that thislevel of acairacy is sufficient for use as aranking functionto rank diff erent
candidate nodes for resourceseledion.

We dso foundthat the self estimation produces acairate results with a limited number of observations. Figure 5 demon-
strates how the estimation results improve with the cumulated olbservations over time. In the figure, the x-axis is the number
of past observations, whil e the y-axisis the fradion o estimations which occur within arelative aror of 0.5. Initialy, the
fradionis quite small below 0.7, but it sharply increases as observations have been acaqued. With only 10 observations, for
example, the fradion gaes beyond 08, and approachesto 0.9 with 20 olservations, suggesting that the self estimationyields
sufficiently accurate results to rank nodes with resped to accessbility with asmall number (~ 10) of past observations.

Sinceself-estimationis not required to have prior observationsfor the objed in question, it must first search for the server
and then determine the network distanceto it. Search is often dore by floodngin unstructured overlays[7], or by routing
messages in structured overlays [40, 37, 38, 45|, which may introduce etratraffic. Distance determination would require
probing which adds additi onal overhead.

3.3 Neighbor Estimation

Whil e self-estimation uses a node’s prior observations to estimate the accesbility to a data objed, it is possble that the
noce may have only a few prior download observations (e.g., if it has recently joined the network), which could adversely
impad the acaragy of itsestimation. Further, as mentioned abowve, self-estimationaso needsto locae theobjed’s srver and
determine its latency to the server to get a more acarrate estimation. This srver locaion and probing could add additi onal
overhead and latency to the resource seledion.

To avoid these problems, we now present an estimation approach that utili zes the prior download observations from a
noce’s neighbas in the network overlay for its estimation. We cdl this approach neighba estimation. The goal of this
approach is to avoid any adive server locaion o probing. Moreover, by tili zing the neighbas’ information, it is likely to
obtain aricher set of observationsto be used for estimation. However, the primary challenge with using reighba information
isto correlate aneighba’ sdownload experienceto the node’' sexperiencegiven that the neighba may be a adiff erent location
and may have diff erent network charaderistics from the noce.

To asessthe downloading simil arity between a candidate node and a neighba, we first define the nation o download
power (DP) to quantify the data accescgoability of a node. The ideais that a node with higher DP is considered to be
superior in dovnloading cgpability to anode with lower DP. We formulate DP for ahost & as foll ows:

‘th

H .size .
; (Hz.elapse X Hh.dzstance) 2
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Figure 6. Neighbor estimation result

Intuitively, this metric combines the metrics of download speed and dstance defined in the previous aubsedion. As e
from Equation 2, DP « download spedl, which is intuitive, as it captures how fast a node can download data in general.
Further, we dso have DP « distanceto the server, which impliesthat for the same download speel to a server, the download
power of anode is considered higher if it is more distant from the server. Consider an example to uncerstand this relation
between download power and dstance Suppacse that two client nodes, one in the US and ore in Asia, accessdata from
servers locaed in the US. Then, if the two clients show the same download time for the same objed, the onein Asia might
be mnsidered to have better downloading cgpability for more distant servers, as the US client’s download speed could be
attributed to itslocdity. Hence accessover greaer distanceis given greaer weight in this metric. To minimizethe dfea of
download anomali es and inconsistencies, we compute DP as the average acossits history of downloadsfrom all servers.

Now, we define afunctionfor neighba estimation at host 4 by using information from neighba » for objed o:

NeighborEstimy(n,o0) = - 3 - elapse,(0) (3)
where
DPp, distancey (server(0))
o = ’ = = )
DPp, distance, (server(0))

and elapse,, (o) is the download time observed by the neighba for the objed. It is possble that the neighba has multiple
observationsfor the same objed, in which case we pick the small est download time &s the representative.

Intuitively, to estimate the download time for objed o based onthe information from neighba n, this functionfirst of all
uses the relevant download time of the neighba. As arule, the estimation result is the same if all condtionsare equivalent
to the neighba. To acourt for differences, we enploy two parameters o and 3. The parameter @ compares the download
powers of the node and the neighba for similarity. If the DP of the node is higher than the neighba, the function gves
smaller estimation time becaise the node is considered superior to the neighba in terms of accesshility. The parameter
comparesthe distancesto the server, so that if the distanceto the server is closer for the node than the neighba’s, the resulting
estimationwill be smallers.

Figure 6 ill ustrates the normali zed histogram of neighba estimation. The x-axisistheratio of the estimation result to the
red measured value, whil e the y-axisis the fradion o the estimations. As sen from the figure, a substantial portion o the
estimated values are located nea theratio 1. Nealy 85% of estimations reside within arelative eror 0.5. This suggests that
neighba estimation produces useful hintsto rank nodes with resped to accesshility.

Toredizeneighba estimation, it i snecessary to gather informationfrom the neighbas. Ascan be seenin the Neighba Es-
timfunction, it requires aggregated information from the neighba: DP, distanceto the server, and the download el apsed time
for the objed. This payload is quite small and haslow network overhead.

SWe discussbelow how the server distance can be estimated withou adive probing.
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Although reighba estimation providesa useful hint for assessment of accesshility, multiple neighbascan provide diff er-
ent informationfor the objed. Hencethe next questionishow canwe dficiently combineinformationfrom different neighbass
to oltain more accurate results? We consider the foll owing heuristics to combine the information from neighbas:

¢ RANDOM, which seleds arandam neighba for estimation.

e CLOSEST, which seledsthe dosest neighba in terms of distance.

e TRMEAN, which takes trimmed mean of all estimations except bath the lowest and the highest.
o MEDIAN, which takes the median value of all estimations

e RANK, which ranks the neighbaswith arankingfunctionrank(n;) = w - %‘m +(1-w)- % for
i=1,..,|N|, wherecisthenode, n; isaneighba, | V| isthe neighba size and M ax Distance isa mnstant to define
maximal distance (e.g. MaxDistance = 1/500). This heuristic gives higher rank to aneighba which is closer to the
server in distance and has dmilar DP with the node, and seleds the estimation of the highest ranked neighba. We set

w 100.5.

e WMEAN, which givesaweight weight(n;) = 1 — rank(n;) to neighba n; (i.e. Y, weight(n;) = 1), and then the
estimated results are weighted and averaged, thus resultingin ore estimation value.

Figure 7 compares combining heuristics with resped to the number of neighbas. Overall, MEDIAN and TRMEAN
work better than others. For bath heuristics, the fradion readies 0.88 with 4 neighbas, as shown in the figure. Given that
the number of neighbas providing relevant observations may be limited in many cases, we beli eve that either MEDIAN or
TRMEAN will be agoodchoice For thisreason, we use MEDIAN as the combining heuristic as follows:

Neighbor Estimy,(0) = mediany, ey (Neighbor Estimy,(n;, 0))
3.4 Inferring Server Latency without Active Probing

While the neighba estimation requires latency to the server as a parameter (Equation 3), we can avoid the need for
adive probing by exploiting the server latency estimates obtained from the neighbas themselves. This makesit possble to
minimize alditional overhead in estimationin terms of server locationand pnging.

Acoording to the study in [41], a dominant portion o total paths (> 90%) satisfied the property of triangle inequality.
We dso observed that 95% of total pathsin our data satisfied this property. The trianguated heuristic estimates the network
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distance based on this property. It infers latency between pees with a set of landmarks which hdd precdculated latency
information between the peas and themselves [29]. The basic ideais that the latency of node a and ¢ may lie between
[latency(a,b) — latency(b, ¢)| and latency(a,b) + latency(b, c), where b is one of landmarks (b € B). With a set of
landmarks, it is possble to oktain a set of lower bounds (L 4) and upger bounds (Uy4). If we define L = max(L4) and
U = min(U,), thentherange [L, U] shoud be thetightest stretch with which all i nferred results may agree For theinferred
value, Hotz [20] suggested L based onA*, Guyton and Schwartz [17] employed (L + U)/2, and most recently Eugene and
Zhangreported U performs better than the others[29].

In ou system model, we can use neighbas as the landmarks because they hold latency information bah to the candidate
andto the objed server. By applyingthe trianguated heuristic, therefore, we can infer the latency between the candidate and
the server withou probing. However we foundthat the existing heuristics are inacarate with a small number of neighbas
which may be mmmonin our system model. Hencewe enhancethe trianguated heuristic to acount for alimited number of
neighbas.

Our approach works by handling several situations that contribute to inacairagy. Figure 8 shows example cases of infer-
ence based onthe triangle inequality property. There ae threelandmarks which offer a pair of low and high bound like
(Ls, U3), (L, Uy), and (L, Uy). Figure 8(a) shows adesired case in which the mnvergencesuccessully has been occurred.

However, in some cases, it might fail to converge. As mentioned, a mgjority of the paths stisfy the property of triangle
inequality, but afew paths do na. We observed some cases of L > H for which triangle inequality does nat hold. Consider
the following situation: all but one landmark give reasonable latencies, but if that one givesfairly largelow and high bound
(e.g. because it is conneded with a relatively slow link) , the expeded convergence would na occur, thus leading to an
inacarate answer. Figure 8(b) ill ustrates this problem. In this case, picking any one of the existing approadhesis erroneous.
To overcome this problem, we remove dl L; € L4 which is greaer than U, so we cax make anew stretch that satisfies
L < U. After doing so, we observed that taking simple mean produces gredaly better results than the existing approades.

Ancther potential problem takes placewhen all the landmarks are similarly apart from both nodes (e.g. « and ¢ in the
abowe explanation). Figure 8(c) ill ustrates a passble situation in which the stretch [L, U] is too wide, so picking any ore of
L,U,and (L + U)/2islikely to be highly inacairate. Sinceitisan intrinsic limitation o the trianguated heuristic, we take
the inacairate result and leave it as afurther study.

We dso observed a problematic situation as ill ustrated in Figure 8(d). In this case, a significant portion o the inferred
low bounds auggest similar values, but high bound have a cetain degreeof variance This usually happens where noce c is
close to a but the landmarks are dl apart from node a. For this, we consider a weighted mean which is based on standard
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Figure 9. Latency inference results

deviations (o) of both low and high bound:

OLA OUA
mean = L (1 (ULA+UUA))+U (1 (ULA+0UA))

Theintuition behindthisisthat if multipleinferred bound suggest similar valuesfor either low or high bound;, it islikely
that the red latency is aroundthat point. We employ this weighted mean if the heuristic fail s to converge due to the stretch
being toowide (eg. |L — U| > 50, in ou evaluation). If the heuristic can properly converge, we simply takes the simple
mean(i.e. (L +U)/2).

We evaluated this enhanced heuristic with our data set. Even though ou data set contains a relatively small number of
nodes, we observed similar results with those reported in [29]. According to the resultsin [29], 90 percentil e relative arors
for thetriangle heuristic taking U astheinferred value were 1.05 (6 landmarks), 0.8 (9 landmarks), 0.69 (12 landmarks), and
0.59 (15landmarks). Our results show 1.26, 0.84, 0.62 and 057, respedively.

We report the evaluationresults with the absolute error aswell asthe relativeerror for clarity. For example, if we think of
two measured latencies 1 msand 100ms and the correspondngestimations 2 ms and 200ms, then those two estimations give
the same picture with resped to the relative aror (i.e. relative aror = 1, in this example). In contrast, they convey diff erent



information with resped to absolute eror. In fad, 1 msdifferenceis usually acceptable, but 200ms error is not for latency
inference

Figure 9 demonstratesthe inferenceresults. Asreported in [29], the heuristic enploying U is overall better than the other
two existing heuristics. However, we can seethat our enhanced heuristic substantially outperformsthe existing heuristics. In
particular, the enhanced heuristic works well even when the number of landmarksis gnall. Sincethe number of neighbas
which can offer the relevant latency information may be limited, the enhanced heuristic is desirable in our design. With 4
neighbas, the enhanced heuristic gpproximates 56% of the total estimationswithin 10msas shown in Figure 9(c), and 83%
of the estimations are corredly estimated within 30ms as shown in Figure 9(d).

A few words abou the tolerance of error in the inferred result. Our estimation functions are not very sensitive to inferred
results because the square-root of RTT is used. Thus, some range of errors are tolerable in our design. While those ae
tolerable, our focus is to exploit the neighbas’ information. Other sophisticated latency prediction techniques can be used
if available. To summarize, the proposed technique estimates latency accurately withou depending onexplicit probing o
other assumptions.

4 Resource Selection Techniques

Resource seledion is the process by which a noce is chosen to exeaute the job. In this sdion, we present seledion
techniques based onthe self and rneighba estimation tedhniques discussed in the previous ®dion. Before doing this, we
discussrandam and proximity-based seledions as gandard techniques.

4.1 Standard Techniques

We nsider randanseledion (RANDOM) and proximity-based seledion (PROXIM) as g¢andard techniques. The primary
advantage of randam seledionisits smplicity. It ssmply seleds a candidate & randam. The pricepaid for this smplicity, is
poa performance

Proximity-based seledionis a common choicein today’s distributed systems. In this technique, a node with the small est
latency to the server is chasen. Thisis reasonable since we observed a significant correlation between RTT and dovnload
spead. To makeit attainable, the relevant server must be discovered first, and then latency to the server from the candidates
measured to identify which candidate node is closest to the server. In general, the processof server discovery and latency
measurement introduces extra traffic.

4.2 SELF: Self Estimation-based Selection
In self estimation-based seledionthe acceshility isdiredly obtained from the self-estimation function:

accessibility.,, (J;) = {SelejStimCM(Oi) " ava”'.able
infinite otherwise

Note that the candidate need nat have prior download experiencewith thisobjed. The candidate providesthe result of the
self estimationfunctionasits accesshility. However, the candidate returnsinfinitein the casethat it canna make any relevant
estimation dueto aladk of observations. Sincethe seledion heuristic chooses the small est accesshilit y, this candidate will be
filtered out. However, if all candidates return infinite, arandam seledionis made®. Initially when the system starts, random
seledionswill be made urtil the nodes have a@uired download information.

The procedure is dmilar to ore of the proximity-based seledion technique, since this technique dso requires srver
discovery and latency estimation if no prior interadions are recorded. This technique, therefore, may introduce alditional
traffic as well. The primary differenceis in the seledion principle. While the proximity-based technique considers only
proximity for seledion, this technique exploits the past accesshehaviorsaswell as proximity. For example, evenif anodeis
fairly close to the server, it would na be chosen if it has shown bad performancein data accesprevioudly.

4In this case, it is possble to selea a candidate by latency information as the proximity-based seledion dees; however, we do nd consider such a
fine-level optimizaion for simplicity.



Table 1. Download Traces

Trace | # of nodes | # of objeds | # of downloads
M 153 72 22,509
2M 231 83 25934
am 167 107 28,439
8M 158 85 26,105

4.3 NEIGHBOR: Neighbor Estimation-based Selection

Neighba estimation-based seledionemploysneighba estimation, so the candidate accssbility isderived from theneigh-
bor estimation function:
Neighbor Estim,.,, (0;) if available

accessibilit J;) = .
Yen (i) {infz’m'te otherwise

Like self estimation-based seledion, the candidate returns either the relevant estimation result or infinite. Then the selec
tion heuristic will seled the small est estimation. If no candidate providesthe relevant estimation, it simply performsrandam
seledion. The main difference from the self estimation-based seledion is that this technique can reduce alditional efforts
for server discovery and latency measurement by sharing related information with neighbas. Thus this technique shoud be
useful more in environments where messaging cost is expensive so minimizing explicit interactionis crucial.

4.4 HYBRID: Hybrid Selection Technique

One of the strong pants of the neighba estimation-based seledion is the minimal messaging requirement. It colleds
relevant information dredly from the neighbas. Such communicaionislocd as oppcsed to queryingthe data servers. That
is, it does not require aditional traffic to search for objeds or to measure distance to servers, if the relevant information
exists. Thisis a significant benefit given the bandwidth scarcity in loosely-couged distributed systems. On the other hand,
thistechnique cax make apoa choiceif no neighbas have relevant observations.

In contrast, the self estimation-based seledion may not diminish explicit probing. However, it is highly likely that some
candidates can compute aself estimation because it does not require dired observation o the objed. This lealsto better
results by avoiding randam seledion.

The hybrid seledion technique incorporates these heuristics to exploit their benefits. In this technique, candidate nodes
consult their neighbasfirst to aaquirethe relevant accessinformation. If thisinformationexists, they run neighba estimation-
based seledion. If nat, they attempt to compute accsshility using self estimation instead of sending an infinite value. By
doing so, it is passhle to diminish the chance of random seledion which may degrade system performance Therefore, the
hybrid seledion technique would be helpful asit takes advantage of both the neighba and self estimation-based seledions.

5 Evaluation

Inthis £dion, we evaluate our accesshilit y-based resourceseledion techniques. We employ two performancemetricsfor
our evaluation: (1) mean davnloadtime and (2) mean dowvnloadtime ratio to optimal seledion. The former is useful to un
derstandthe asolute performance, whil e the latter helpsto compare the performanceof diff erent algorithms, complementing
the former.

5.1 Experimental Setup

We conducted over 100K adual downloadingfor aspan of 5 monthswith 241Planetl ab nodes geographicaly distributed
aaossthe globe. For this, we deployed a Pastry [38, 15] network, a structured overlay based ona DHT ring. We distributed
data objeds of four sizes: 1M, 2M, 4M, and 8M bytes, over the network, eat objed with a unique key. Table 2 shows the
distribution of objeds. We then generated a series of randam queries  that the seleded nodes perform downloading the
relevant objeds. Table 1 providesthe detail s of the download traces. In the simulations, we use amixture of all traces rather
than individual traces, unlessotherwise mentioned.



Table 2. Object Distribution
# of objeds | Fradion o nodes
0.29
0.26
0.25
0.10
0.10

A WNPEFO

Ratio comparison over time (Mix, C=8, N=8, Allocation=100k)

9 T T T T T T T T T
RANDOM
gl PROXIM
SELF
Tr —+— NEIGHBOR |1
<
K}
8 6r 1
£
O 5f/ 7
=}
o a4} g
T
A Akttt A 0
V.. Y A kAL g A 7 /]
3\ ‘i" VA "N 4‘,« Mo W N, R4 4\‘,
2 . .
1 Il Il Il Il Il Il Il Il Il '
0 1 2 3 4 5 6 7 8 9 10
Time % 10"

Figure 10. Performance over the time

To evaluate resource seledion techniques, we design and implement a simulator which inpus the ping maps and the
colledive downloading traces and outputs performanceresults acording to the seledion algorithms. Initially, the simulator
constructs a network in which noces are cmnreded to ead other with a predefined neighba size To minimize aror due to
the construction, we repeaed simulations 50 times and report the results with 95% confidence intervals as needed. After
constructing the network, the simulator runs ead resourceseledion algorithm. Initially, it constructsavirtual tracein which
the list of candidates and the download time from ead candidate ae recmrded. The candidate nodes are randamly chasen
for eath alocdion. Asthe candidate may have more than ore adual download record for a server, the download timeis also
randamly seleded from them. The simulator then seleds a worker based onead seledion algorithm. Based onthe seleded
worker, the download timeis returned from the virtual trace One virtual traceis consumed in ore simulation time step.

For our evaluation, we compare the resource seledion techniques described in the previous sdion. In addition, we
consider omniscient seledion (OMNI) for the purpose of comparison which always returns the best node based onfuture
knowledge of download times.

5.2 Performance Comparison over Time

We begin by presenting the performance @mparison ower time. Figure 10 compares the performance over the 100K
consealtivejob all ocations. As the default, we set both the candidate size and the neighba sizeto 8 (andit isapplied to all
the foll owing experiments, unless otherwise mentioned). Overall the proposed techniques yield goodresults: SELF is the
best acosstime and NEIGHBOR works better than PROXIM most of the time. RANDOM yields poar performancewith a
significant degreeof variation, as expeded. PROXIM is abou 3 times of optimal with a relatively high degreeof variation
compared to the suggested techniques. NEIGHBOR is poa at first (due to warming up), but shows better results compared
to PROXIM after abou 6K simulation time steps. SELF works best approaching abou 1.4 of optimal at the end o the
simulation.
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Figure 11. Impact of warming-up size

5.3 Impact of Warming-up Size

As we observed that SELF approadhes to the optimal over the time, we further investigate the impad of the warming-up
size We preloaded aportion o tracedatain advance and olserved the changesin performance The preloading hes been dore
with randamly seleded observationsin thetrace It it certain that RANDOM and PROXIM will nat change sincethey do na
employ past observations. In contrast, we exped that increasing warming-up sizewould benefit SELF and NEIGHBOR.

Figure 11 compares the performance of the seledion techniques with resped to warming-up size. In this experiment,
we dtempted 1K trials to seethe impad at the first stage. As expeded, SELF approadhes to ogima as warming-up
sizeis greaer, while RANDOM and PROXIM show little correlation. NEIGHBOR also improves as dramatic as SELF
acosswarming-up size It isinteresting that NEIGHBOR aways outperforms PROXIM in terms of mean download time
as shown in Figure 11(a), while it shows a cosver between PROXM and NEIGHBOR in term of mean ratio to optimal in
Figure11(b). Thisisbecausethat randam seledionin NEIGHBOR (dueto lad of observations) contributesto the largeratio
to optimal (seethat averageratio of RANDOM is quite bigger than the others).

5.4 Impact of Candidate Size

In our system model, a set of candidate nodes are evaluated for their accessbility before dlocding a job. We now
investigate the impad of candidate size (|C|). Figure 12 demonstrates the performance danges with resped to candidate
size In Figure 12(a), SELF continuesto producediminished elapsed times as the candidate sizeincreases, yielding the best
results among seledion techniques. NEIGHBOR foll ows SELF with considerable gaps against the standard techniques. In
particular, the proposed heuristics dramaticaly improve performancewith |C| = 8, and then the improvement gain reduces
after |C| > 8. Interestingly, PROXIM shaws unstable results with greaer fluctuation than RANDOM over the candidate
sizes. In Figure 12(b), mean ratio to optimal increases along the candidate size This is becaise OMNI has many more
candidates to chocse from, resulting in the larger performance gaps. However, we can seethat the suggested techniques
work better with more many candidates, making the slopes gentle compared to the standard ores. This result indicaes that
the proposed techniques not only work better than standad ones across canddate sizes, but also further improve as the
canddate sizeincreases.

5.5 Impact of Neighbor Size

We next investigate the impad of neighba size on NEIGHBOR (the other heuristics are not aff eded by this parameter).
Figure 13 shows how the seledion techniques respondaaossthe number of neighbas (|V]). As can be seen in the both
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performancefigures, increasing the neighba size dramaticaly improves the performance whil e the others make no changes
as expeded. For example, the average download timein |[N| = 16 is dropped to abou 70% of the time for |N| = 2. The
ratio to optimal is also dropped from 4.0 a |[N| = 2to 26 a |[N| = 16. Thisis becaise it has more chances to oltain
relevant observations with more many neighbas, thus deaeasing the posshility of randaom seledion. This result suggests
that NEIGHBOR will work better in environments where the node has conredivity with a greater number of neighbas.

5.6 Impact of Data Size

We oontinue to investigate how the seledion techniques work over different data sizes. Sincethe size of accessed oljeds
can vary depending onapplicationsin redity, seledion techniques shoud work consistently acdossa range of data sizes.
In this experiment, we run the simulation with individud traces rather than the mixture of the traces. Figure 14 compares
performancewith various data sizes. In Figure 14(a), we can seelinea relationship between data size and mean download
time. However, eat technique shows a different degree of dope: SELF and NEIGHBOR increase more gently than the
standard heuristics. With simple cdculation, the slopes (i.e. Ay/Ax) of thetechniques are RANDOM=10.9, PROXIM=8.1,
SELF=3.8, and NEIGHBOR=5.1. In addition, Figure 14(b) shows that the suggested techniques consistently outperform the
standard ones in terms of ratio to otimal regardliessof data size. This result i mplies that the propased techniques not only
work consistently acrossdifferent data sizes, but theyare also much more useful for data-intensiveappli cations.

5.7 Timeliness

It is crucial to choose goodnodes for job allocaion. On the other extreme, it is also important to avoid bad nodes when
making a dedsion. For instance seleding intolerably slow conredions may lead to job incompletion dwe to excessve
downloading cost or time-outs. However, it is ailmost impaosshble to pick good nodas every time becaise there ae many
contributing fadors.

We observed hav many times the techniques choase slow connedions. Figure 15 shows thiswith two figures: cumulative
distributions of the speed of conredions with log-log scades and frequencies of the seledion o bad conredions. In bah
figures, we can seethat the propaosed techniques more often avoid slow conredions. SELF most successully excludes
low speead conredions, and NEIGHBOR aso performs better than the standard techniques. When we court the number
of poa conredions sleded, SELF has chasen under 5 KB/s conredions less than 30 times, while PROXIM made over
290 seledions which is almost an order of magnitude larger than SELF. One interesting result is that PROXIM seleds
poa conredions more frequently than RANDOM (293 and 194times respedively). This implies that relying oy on
proximity information done greatly increases the chance of very poa conredions, thus leading to ungredictable response
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time. Compared to this, our proposed techniques auccesgully reduce cances to choose low speed conredions by taking
accesshility into acourt.

5.8 Impact of Churn

Churn is prevalent in loosely-couded distributed systems. To see the impad of churn, we as3ume that mean sesson
lengths of nodes are exporentially distributed. In this context, the sesson length is equivalent to the simulation time. For
example, if the sesdon length of anodeis 100, the node changesits datusto inadive dter 100 simulation time steps. The
noce then joins again after ancther 100time steps. We asume that nodes lose all past observations when they change status.
Therefore, churn will have agreaer impad on ou selediontechniques becaise we rely on historic observations. In contrast,
the standard techniques auff er littl e from churn sincethey do nd have any dependenceon past observations. Thevirtual trace
excludes objeds for which the relevant servers are inadive.

We tested threemean sesson lengths: s = 100, s = 1000, and s = 10000, correspondngto exreme, sevee, and light
churn rates respedively. As can be seenin Figure 16, with bah s = 100 and s = 1000, the number of adive nodes dropped
to around 5@ right at the beginning d the ssimulation (< 1200 al ocaions), whileit takes 10K simulationtime stepsto drop
to 50% of inadive nodes with s = 10000. The reason why 50% of nodes are adive (or inadive) is that departing nodesjoin
again with the same probability of leaszing. Hence, ultimately the fradion o adive nodesis gabili zed at 50% of total nodes
throughou the simulation.

Figure 17 ill ustrates performance danges under churn. As mentioned, there is littl e impad on standard techniques. In
contrast, our techniques are degraded in performance due to lossof observations. In Figure 17(a), SELF is comparable to
PROXIM even uncer extreme churn. NEIGHBOR degrades and becomes worse than PROXIM under severe churn (s =
1000). This is becaise NEIGHBOR is likely to fail to colled the relevant observations, thus relying more on randam
seledion, while SELF can perform reasonably acairate estimation with only a dozen of observations, as we have seen in
Figure 5. Nonetheless NEIGHBOR still works better than PROXIM in light churn (s = 10000) with lower overhead. In
terms of ratio to optimal as shown in Figure 17(b), SELF is comparable to PROXIM under severe churn, but worse under
extreme churn. NEIGHBOR also shows worse than PROXIM under light churn due to an increasing number of random
seledion attempts.

We now explore why NEIGHBOR suff ers under severe and extreme churn. Figure 18 shows how NEIGHBOR performs
under churn. The neighba estimationrate meansthe fradionthat NEIGHBOR succesgully estimates based onthe neighba
estimation, while the number of offered neighbas means that the arerage number of neighbas that provide observations
when NEIGHBOR performs successully, not relying onrandam seledion. Under normal conditi ons, the neighba estimation
rate is amost 100% as on as the simulation starts (Figure 18(a)), and the number of offered neighbas continuowsly
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increases over the time (Figure 18(b)). Under churn, both the neighba estimation rate and the number of offered neighba's
drop with resped to the degreeof churn. Under light churn, the neighba estimationrateis gill over 90%, and the number of
offered neighbasis 1.3—15 onaverage. Under severe churn, the estimation rate dropsto 60—7®b, implying that 30—40% of
the dedsions have been made by randam seledion. Under extreme churn, the neighba estimation rate drops below 10%, so
it esentialy reducesto RANDOM.

To summarize, the proposed techniques are stable under churnin which nodes auffer fromlossof observations. The result
showsthat SELFisat least comparableto PROXIM even uncer extreme churn, while NEIGHBOR is comparableto PROXIM
when churnislight.

5.9 Performance of HYBRID

HY BRID combinesthe behavior of SELF and NEIGHBOR. Under normal condtionsor light churn, it workslike NEIGH-
BOR throttling extra traffic, but it encourages =If estimation if the candidate can aayuire no relevant information from the
neighbas. By doing so, it diminishes the possbility of randam seledion.

Figure 19 compares the performance of HYBRID with the other techniques. Under normal circumstance HYBRID isa
littl e worse than SELF, but it shaws comparableresultsto SELF under churn. Inall cases, HY BRID yields better results than
NEIGHBOR. Figure 20 shows the salf estimation rate under normal and churn circumstances. As can be seen in the figure,
even under normal condtions, half of the candidate nodes perform self estimation as the basis for forming the accsshility
value. Under extreme dhurn, most nodes rely on self observations, while 80-9®% of nodes attempt self estimation under
severe churn. Thusit can reducethe chanceof random seledion.

5.10 Impact of Replication

In loosely-couped distributed systems, replicationis often used to disseminate objedsto provide locality in data acces
as well as high avail ahility. We investigate the impaa of replicaionto seeif the proposed techniques consistently work in
repli cated environments.

For this, we construct replicated environments in which same-sized oljeds in the traces are grouped acording to the
replicaion fador and the objed in the groupis considered as areplica The virtual traceis then constructed based onthe
group d the objeds. In details, for al objedsin the group arandamly seleded daovnload time from ead candidate is
recorded in thevirtual trace The simulator then returnsthe download time acordingto the seleded candidate and the server.

RANDOM will work same & in no replicaion environment with a randam function to chocse both a candidate and a
replicaserver. PROXIM measures latencies from every candidate to every server, and then the pair with the small est latency
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will beseleaed. SELF is gmilar to PROXIM: eat candidate cdculatesthe accashility for eat server, and reports the best
ore. In the cae of NEIGHBOR, the candidate gathers al the relevant information from the neighbas. If it finds more than
one server, Neighbor Estim(o) functionis performed against ead server, and then the best oneis reported to the initi ator.
For both SELF and NEIGHBOR, the initi ator finally seleds the candidate with the best accessbilit y.

Figure 21 shows performance danges aaossreplication fadors (Ry). It is likely that the performance of &l seledion
techniques improve &s the replicaion fador increases becaise of data locdity, and the result agrees with this expedation,
as shown in Figure 21(a). PROXIM has sgnificantly diminished mean dovnload time (nealy half) under replication, but it
is dill behind the proposed techniques. SELF and NEIGHBOR outperform the standard techniques over all the replication
fadors. In Figure 21(b), we can seethat SELF further reducesratio to optimal as replicationfador increases, whil e the others
increase. In the meantime, NEIGHBOR widen gaps against standard techniques alongreplicaion fadors. For example, the
gap between NEIGHBOR and PROXIM is greély widened at Ry = 2 comparedto Ry = 1 (i.e. noreplication).

Figure 22 demonstrates the impad of churn uncer replicated environments. In Figure 22(a), we fix the replicaion fador
at 4, and olserved the performance change over a set of mean sesson lengths. By and large, the results are similar with the
ones in the nonrepli cated environment. However, SELF is alittl e worse than PROXIM under extreme churn. NEIGHBOR
is comparable to PROXIM under light churn, but degrades under severe and extreme churn as in no replicaion. Next,
we investigated performance sensitivity to the replication fador under severe churn (i.e. s = 1000). As can be seen in
Figure 22(b), SELF is better than PROXIM acaossthe replicaion fador. NEIGHBOR shows worse results than PROXIM
under severe churn same as noreplicaion case.

To summarize, the proposed seledion techniques consistently outperform the standad techniques in repli cated environ-
ments. The results under churn are fairly consistent with the results without replication: SELF is dill better than PROXIM
under severe churn, and NEIGHBOR is comparable to PROXIM under light churn.

6 Reated Work

Distributed storage systems. A grea ded of research on dstributed storage systems has been carried out for past several
yeas [4, 24, 18, 12]. Since they target large-scde systems, their main focus is to provide ahigh degree of avail ability
and duahility of data objeds against independent or correlated failures [10, 28]. Despite ahigh probability of avail ability,
objeds can till be inaccessbleto nodesin wide-area loosely-couped systems. Our work focuses on accessbility in order
to preserve predictable data accss

Replication strategy. Several techniques have been introduced to improve data acces Some readive or proadive
repli caiontedniques have been studied in unstructured overlays[11, 26] and structured overlays[12, 16]. Thesereplication
techniques are helpful in data accas by diseminating oljeds in advance, but they tend to use proximity as a guiding
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principle. We have foundthat proximity is not sufficient to guaranteegoodaccessbilit y.

Bandwidth prediction. Prediction o network bandwidth and data transfer times may also be useful to estimate data
accesswhen dlocding jobs. Previous dudiesin [44, 13] suggested prediction methods, but their approaches were based
on explicit network probing. Unlike this, we rely on locd, historic observations without intrusive probing which may be
expensive in loosely-couped environments. In previous work [21], we showed how afixed group d client nodes can seled
replicaed data servers by a soft prediction of server capadty or load. In this paper, we consider where a dient shoud run
such that it has goodavail abilit y to a data server.

Resour ce discovery. Resourcediscovery is aso closely related to our work. Conda provides a matchmaking framework
which provides a statelessmatching service[35]. Jik-Sooet al. [22] presented a deceantralized matchmaking based onaggre-
gation o resource information and CAN (Content Addressable Network) routing [37]. The CCOF (Cluster Computing on
the Fly) projed [46] seeksto harvest CPU cycles by using seach methodsin a pea-to-pee computing environment. These
resource discovery techniques focus on the spedfications of individual nodes, e.g. CPU, memory, and dsk space However,
they are lessconcerned about data accesperformance

Data Grid. Finaly, the Data Grid has been propaosed to enable reseachers to accessand analyze significant volumes of
data on the order of terabytes[8, 19, 36, 43, 25]. For efficient data accas the Data Grid provides integrated functionaliti es
for data store, replicaion, and transfer. However all these df orts have been made under the assumption of well-organized
environments where sites are managed carefully and interconneded with high bandwidth links to ead other. Unlike this
assumption, our intentionis to acammodate such applicalionsin loosely-couped distributed systems where bandwidth may
belessavail able. For thisreason, we focus more on decentrali zation, minimal message overhead, and predictabledata acces

7 Conclusion

Accesshility is a aucia concern for an increasing number of data-intensive gpplicaions in loosely-couped distributed
systems. Such applicationsrequire more sophisticated resource seledion die to bandwidth and conredivity unpredictabilit y.
In this paper, we presented decentralized, scdable, and efficient resource seledion techniques based on accessbility. Our
techniques rely only on local, historic observations, so it is passble to ke network overheal tolerable. We showed our
estimation techniques are sufficiently acairrate to provide ameaningful rank order of nodes based on their accesshility.
Our techniques outperform standard approaches and are reasonably close to the optimal seledion. In particular, the self
estimation-based seledion approached 1.4 of optimal over time, the neighba estimation-based seledion was within 2.6 of
optimal with 16 reighbas, compared to a proximity-based seledion that was over 3 times the optimal. With resped to the
mean elapsed time, the self and reighba estimation-based seledions were 52% and 70% more dficient respedively than
proximity-based seledion. We dso investigated haw our techniques work under node churn and showed that they work



well under churn circumstances in which nodes auffer from loss of observations. Finally, we showed that our techniques
consistently outperform standard techniquesin repli cated environments.

References

(1]
(2]
(3]

(4]
(5]
(6]
(7]
(8]
(9]
(10
(11

(12]
(13]

(14

(15
(16]

(17
(18]
(19
(20
(21]
(22
(23]
(24
(25
(26]

(27

(28]

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@home: an experiment in pulic-resource mmputing.
Comnunications of the ACM, 45(11):56-61, 2002

D. P Anderson and G. Fedak. The computational and storage patential of voluntee computing. In Procealings of CCGRID’ 06,
pages 73-8Q 2006

G. B. Berriman, A. C. Laity, J. C. Good, J. C. Jamb, D. S. Katz, E. Dedman, G. Singh M.-H. Su, and T. A. Prince Montage:
The achitecture and scientific applications of a national virtual observatory service for computing astronamica image mosaics. In
Procedlings of Earth Sciences Techndogy Conference, 2006

R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker. Total recdl: system suppat for automated avail abilit y management.
In Procealings of NSDI’ 04, pages 2525 2004

BLAST: Thebasic locd alignment search tod, http://www.ncbi.nim.nih.gov/blast.

BOINC: Berkeley open infrastructure for network computing, http://boinc.berkeley.edu.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making gnuella-like p2p systems <dable. In Procealings of
S GCOMM’ 03, pages 407—-418 2003

A. Chervenak, I. Foster, C. Kesslman, C. Salisbury, and S. Tuedke. The Data Grid: Towards an architecure for the distributed
management and analysis of large scientific datasets. J. of Network and Computer Appli cations, 23(3):187—200 200Q

A. Chien, B. Cdder, S. Elbert, and K. Bhatia. Entropia. architecure and performance of an enterprise desktop grid system. J.
Parall el Distrib. Comput., 63(5):597-610 2003

B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weaherspoon M. F. Kaashoek, J. Kubiatowicz, and R. Morris. Efficient replica
maintenance for distributed storage systems. In Proceedings of NSDI' 06, pages 4—4, 2006

E. Cohen and S. Shenker. Replicaion strategies in urstructured pea-to-pea networks. In Procealings of SGCOMM '02, pages
177-1902002

P. Druschel and A. Rowstron. PAST: A large-scde, persistent pea-to-pea storage utility. In HotOS VIII, pages 75-8Q May 2001
M. Fagman, A. Su, R. Wolski, and F. Berman. Adaptive performancepredictionfor distributed data-intensive gpplications. Technicd
Report CS19990619 18, 1999

P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz Y. Shavitt, and L. Zhang. Idmaps: a global internet host distance estimation service
IEEEACM Trans. Netw., 9(5):525-540 2001

FreePastry, http://fregpastry.org.

V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee and P. Keleher. Adaptive replication in pea-to-pee systems. In Procealings of
ICDCS 04, pages 360—369 2004

J. D. Guyton and M. F. Schwartz. Locaing neaby copies of replicated internet servers. SGCOMM Comput. Comnun. Rev,
25(4):288-298 1995

A. Haeberlen, A. Mislove, and P. Druschel. Glader: Highly durable, decentralized storage despite masdve wrrelated failures. In
Procealings of NSDI' 05, May 2005

W. Hoschek, F. J. Jaén-Martinez A. Samar, H. Stockinger, and K. Stockinger. Data management in an international datagrid projed.
In Procealings of GRID’ 00, pages 77-9Q 200Q

S. Hotz. Routing information arganization to suppat scalable interdomain routing with heterogeneous path requirements. PhD
thesis, 1994

J. Kim, A. Chandra, and J. B. Weissman. Exploiting heterogeneity for coll edive data downloading in voluntea-based networks. In
Proceealings of CCGRID’ 07, pages 275-282 2007.

J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattacharjeg and A. Susaman. Resource discovery techniques in distributed desktop
grid environments. In Proceedings of GRID 2006 September 2006

D. Kondg A. A. Chien, and H. Casanova. Resource management for rapid appli cation turnaround onenterprise desktop gids. In
Procealings of SC' 04, page 17, 2004

J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geds, R. Gummadi, S. Rhea H. Weaherspoon W. Weimer, C. Well s, and B. Zhao.
Oceastore: An architecture for global-scade persistent storage. In Proceedings of ACM ASPLOS, November 200Q

Y.-F. Lin, P. Liu, and J.-J. Wu. Optimal placament of replicas in data grid environments with locdity assurance. In Procealings of
ICPADS 06, pages 465—-474 2006

Q. Lv, P. Can, E. Cohen, K. Li, and S. Shenker. Seach and replicaion in urstructured pea-to-pee networks. In Procealings of
S GMETRICS’ 02, pages 258-259 2002

N. Massy, T. Aina, M. Allen, C. Christensen, D. Frame, D. Goodman, J. Kettleborough A. Martin, S. Pascoe, and D. Stainforth.
Data accesand analysis with distributed federated data servers in climateprediction.net. Advances in Geosciences, 8:49-56 June
2006

S. Nath, H. Yu, P. B. Gibbors, and S. Seshan. Suhtletiesin tolerating correlated fail uresin wide-areastorage systems. In Proceadings
of NSDI' 06, pages 17—-17 2006



(29
(30
(31
(32
(33
2
(36]
(37
(38]

(39
(40

(41]
(42

(43
(44
(49
[46]

E. NgandH. Zhang. Predictinginternet network distancewith coordiantes-based approaches. In Procealings of IEEEINFOCOM' 02,
pages 170-1792002

D. Oppenheimer, J. Albredht, D. Patterson, and A. Vahdat. Design and implementation tradeoff s for wide-arearesource discovery.
In Procealings of HPDC' 05, 2005

Ozgur B. Akan. On the throughput analysis of rate-based and window-based congestion control schemes. Comput. Networks,
44(5):701-711 2004

J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose. Modeling tcp reno performance a simple model and its empiricd validation.
IEEEACM Trans. Netw., 8(2):133-1452000Q

PlanetL ab, http://www.planet-lab.org.

PPDG: Particle physics data grid, http://www.ppdgnet.

R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource management for high throughpu comptuting. In Pro-
cedalings of HPDC' 98, page 140 1998

K. Ranganathan and |. Foster. Demugding computation and data schedulingin distributed data-intensive goplicaions. In Proceedings
of HPDC' 02, page 352 2002

S. Ratnasamy, P. Francis, M. Handey, R. Karp, and S. Schenker. A scdable cntent-addressable network. In Procealings of
S GCOMM' 01, pages 161-1722001

A. Rowstron and P. Druschel. Pastry: Scdable, decentralized oljed locaion, and routing for large-scde pea-to-pea systems.
Ledure Notesin Computer Science, 2218329+, 2001

Seach for extraterrestrial i ntelli gence (SETI) projed, http://setiathome.berkeley.edu.

I. Stoica R. Morris, D. Karger, M. F. Kaasshoek, and H. Balakrishnan. Chord: A scdable pea-to-pee lookup service for internet
applications. In Procealings of SGCOMM'’ 01, pages 149-160 2001

L. Tangand M. Crovella. Virtual |andmarks for the internet, 2003

Y.-M. Teo, X. Wang, and Y.-K. Ng. Glad: a system for developing and deploying large-scde bioinformatics grid. Bioinformatics,
21(6):794-802 2005

S. Venugom, R. Buyya, and L. Winton. A grid service broker for scheduling e-science gplications on goba data grids: Reseach
articles. Concurr. Comput. : Pract. Exper., 18(6):685-699 2006

R. Wolski. Dynamicdly forecating retwork performance using the network weaher service Cluster Computing, 1(1):119-132
1998

B. Zhao, L. Huang, J. Stribling, S. Rhea A. Joseph, and J. Kubiatowicz. Tapestry: A resilient global-scde overlay for service
deployment. In IEEE Journa on Sleded Areasin Comrrunications, 2003

D. Zhouand V. Lo. Cluster computing onthe fly: resource discovery in a ¢g/cle sharing pea-to-pea system. In Procealings of
CCGRID’ 04, pages 66—73 2004



