
Accessibility-based Resource Selection in Loosely-coupled Distributed Systems

Technical Report

Department of Computer Science

and Engineering

University of Minnesota

4-192 EECS Building

200 Union Street SE

Minneapolis, MN 55455-0159 USA

TR 07-028

Accessibility-based Resource Selection in Loosely-coupled Distributed

Systems

Jinoh Kim, Abhishek Chandra, and Jon Weissman

November 20, 2007

Accessibility-based Resource Selection in Loosely-coupled Distributed Systems ∗

JinohKim, Abhishek Chandra, and JonB. Weissman
Department of Computer Science and Engineering

University of Minnesota, Twin Cities
Minneapolis, MN 55455, USA

{jinohkim,chandra,jon}@cs.umn.edu

Abstract

Large-scale distributed systems provide an attractive scalable infrastructure for network applications. However, the
loosely-coupled natureof thisenvironment canmakedata accessunpredictable, andin the limit, unavailable. Availabilit y is
normally characterized as a binary property, yes or no, often with an associated probabilit y. However, availabilit y conveys
littl e in terms of expected data accessperformance. Using availabilit y alone, jobs may suffer intolerable response time, or
even fail to complete, due to poor data access. We introducethe notion of accessibilit y, a more general concept, to capture
both availabilit y and performance. An increasing number of data-intensiveapplications require not only considerations of
node computation power but also accessibilit y for adequate job allocations. For instance, selecting a node with intolerably
slow connectionscan offset any benefit to running on afast node.

In thispaper, wepresent accessibilit y-awareresourceselection techniquesby which it ispossible to choosenodesthat will
have efficient data accessto remote data sources. We havethat the local data accessobservations collected from a node’s
neighbors are sufficient to characterize accessibilit y for that node. We then present resourceselection heuristics guided by
this principle, andshow that theysignificantly outperform standard techniques. We also investigate the impact of churn in
which nodeschangetheir statusof participationsuch that theylose their memory of prior observations. Despite this level of
unreliabilit y, we show that the suggested techniquesyield goodresults.

1 Introduction

Large-scale distributed systems offer the appeal of scalabilit y for hosting network applications. This virtue has led to
the deployment of several distributed applications in large-scale, loosely-coupled environments such as peer-to-peer com-
puting [2], distributed storage systems [18, 24, 4], and Grids [9, 23, 22]. In particular, the abilit y of large-scale systems to
harvest idle cyclesof geographically distributed nodeshasled to agrowinginterest in cycle-sharingsystems[46] and@home
projects[1, 39]. However, amajor challengein such systemsis thenetwork unpredictabilit y andlimited bandwidth available
for data dissemination. For instance, the BOINC project [6] reports an average throughput of only about 289Kbps, and a
significant proportion of BOINC hosts showsan averagethroughput of lessthan 100Kbps[2]. In such an environment, even
a few MBs of data transfer between poorly connected nodescan have alarge impact on the overall application performance.
Thishas severely restricted the amount of dataused for computationin such computation platforms, with most computations
taking placeonsmall dataobjects.

Emergingscientific applications, however, aredata-intensive and require accessto a significant amount of dispersed data.
Such data-intensive applicationsencompassa variety of domains such as high energy physics [34], climate prediction [27],
astronomy [3] and bioinformatics [5]. For example, in high energy physics applications such as the Large Hadron Colli der
(LHC), thousands of physicists worldwide will require access to shared, immutable data at the scale of petabytes [19].
Similarly, in the area of bioinformatics, a set of gene sequences could be transferred from a remote database to enable
comparison with input sequences [42]. In these examples, performancedepends critically on efficient data delivery to the

∗This work was supported in part by National ScienceFoundation grant ITR-0325949.

computational nodes. Moreover, the efficiency of data delivery for such applicationswould critically depend onthe location
of data and the point of access. Hence, in order to accommodate data-intensive applications in loosely-coupled distributed
systems, it is essential to consider not only the computational capabilit y, but also the data accessibilit y of computational
nodes to the required data objects. The focus of this paper is on developing resourceselection techniques suitable for such
data-intensive applications in large-scale computational platforms.

Data availabilit yhasbeen widely studied over thepast few yearsasakey metric for storagesystems[24, 18, 4]. However,
availabilit y is primarily used as a server-side metric that ignores client-side accessibilit y of data. While availabilit y implies
that at least one instance of the data is present in the system at any given time, it does not imply that the data is always
accessible from any part of the system. For example, while afile may be available with 5 nines (i.e. 99.999% availabilit y)
in the system, real access from different parts of the system can fail due to reasons such as misconfiguration, intolerably
slow connections, and other networking problems. Similarly, the availabilit y metric is silent about the efficiency of access
from different parts of the network. For example, even if a file is available to two different clients, one may have amuch
better connection to the file server, resulting in much lessdownload time compared to the other. Therefore, in the context of
data-intensive applications, it is important to consider the metric of data accessibilit y: how efficiently can a node accessa
given data object in the system. Note that accessibilit y dependsuponthe point of access, and not just the presenceof a data
object in thesystem. In this context, accessibilit y directly impliesavailabilit y, but not viceversa.

The challengewe addressis the characterization of accessibilit y from individual client nodes in largedistributed systems.
This is complicated by the dynamics of wide-areanetworks which rule out static a-priori measurement, and the cost of
on-demand information gathering, which rules out active probing. Additionally, relying on global knowledge obstructs
scalabilit y, so any practical approach must rely on local information. To achieve accessibilit y-aware resourceselection, we
exploit local, historical data accessobservations. This has several benefits. First, it is fully scalable as it does not require
global knowledge of the system. Second, it is inexpensive as we employ observations of the node itself and its directly
connected neighbors(i.e. one-hopaway). Third, past observationsarehelpful to characterizethe accessbehavior of thenode.
For example, anodewith a thin accesslink is likely to show slow accessmost of the time. Last, by exploitingrelevant access
informationfrom theneighbors, it ispossibleto obviatetheneed for explicit probing(e.g. to determinenetwork performance
to theserver), thusminimizingsystem and network overhead. Our key research contributionsare as follows:

• We present accessibilit y estimation heuristics which employ local data accessobservations, and demonstrate that the
estimated datadownloadtimesarefairly closeto real measurements, with 90%of the estimateslyingwithin 0.5 relative
error in live experimentation onPlanetLab.

• We infer the latency to the server based onthe prior neighbor measurement without explicitly probing the server. For
this, we extendexistingestimation heuristics [20, 17, 29] to more accurately work with a limited number of neighbors.
Our enhancement givesaccurate resultseven with only a few neighbors.

• We present accessibilit y-aware resource selection techniques based on our estimation functions and compare to the
optimal andstandard techniques such asproximity-based andrandom selection. Our results indicatethat our approach
not only outperformsthestandard techniques, but does so over a wide rangeof operatingconditions.

• We investigate the impact of churn prevalent in loosely-coupled distributed systems. The results show that our tech-
niquesperform satisfactorily even under ahigh degreeof churn.

2 Accessibility-based Resource Selection

In this section, we first present our system model followed by an overview of the accessibilit y-based resourceselection
algorithm that usesdata accessibilit y to select appropriate computenodes in thesystem.

2.1 System Model

Our system model consistsof anetwork of computenodes that provide computational resourcesfor executingapplication
jobs, and data nodes that store data objects required for computation. In our context, data objects can be files, database
records, or any other data representations. We assume both compute and data nodes are connected in an overlay structure.
We do not assume any specific type of organization for the overlay. It can be constructed by using typical overlay network
architectures such as unstructured [7] and structured [40, 37, 38, 45], or any other techniques. However, we assume that the

� � � � � � � � � � � � � 	
 	 � � � � 	 	 �
 � � � � �� 	 � � � � � � � � � � � � � � � � � � � 	 �
 � � � � � � � � � � � � � � � 	 � 	 � � � � � � �� � � � 	 	 �
 � 	 � � � � � 	 � � �
 � 	 � � � � � � � � � �
 � 	 � � � � � � � � � � � � � � � � � � � 	 	 �
 � � � � �
Figure 1. Accessibility-based resource selection

system providesbuilt -in functionsfor object storeand retrieval so that objectscan bedisseminated andaccessed byany node
acrossthesystem. Each node in the network can be a computenode, datanode, or both.

Sincescalabilit y isoneof our key requirements, we do not assume any centralized entitiesholdingsystem-wide informa-
tion. For this reason, any node in the system can submit a job in our system model. A job isdefined as a unit of work which
performscomputation onan object. To allocate ajob, a submission node, called an initiator, selects a computenode from a
set of candidates. We assume the use of a resourcediscovery algorithm to determine the set of candidate nodes, and leave
the efficient discovery of candidates as future work. Many existing resourcediscovery algorithms (e.g., SWORD [30]) can
beused to return a set of matchingcandidatenodes, thoughthey may not consider locality to data. Oncethe initiator selects
a node, the job is transferred to the selected node, called a worker. The worker then downloads the data object required for
the job from the network and performs the computation. When the job execution is finished, the worker returns the result to
the initiator.

Formally, job Ji is defined as a computation unit which requiresobject oi to complete the task. We assume that objects,
e.g. oi, have already been staged in the network and perhaps replicated to a set of nodes Ri = {ri1, ri2, ...} based upon
projected demand. The job Ji is submitted by the initiator. From the given candidatesC = {c1, c2, ...}, the initiator selects
one(i.e., worker ∈ C) to allocate the job.

2.2 Resource Selection

Figure 1 ill ustrates the resourceselection processin our system model once the initiator has a set of candidate nodes to
choose from. To select one of the given candidates, the initiator may simply make a choicerandomly. However, relying on
such randomnessdoesnot generally satisfy givensystem performancegoalsaswewill show. Instead, queryingthe candidates
will allow the system to acquire relevant information for job allocation, since there is no entity with global information
(Figure 1(a)). The candidate offers the relevant information (Figure 1(b)). One type of information would be proximity to
the server which is often used in today’s distributed systems. Based onthe information, the initiator makes a decision, and
allocates the job to the selected worker (Figure 1(c)). To incorporate the impact of data accesson the performanceof job
execution, our goal is to select the best candidate node in terms of accessibilit y to a data node (server) holding object oi.
Further, due to the decentralized nature of our system, we would like to make this selection without assuming any global
knowledge.

To achieve this goal, we use an accessibilit y-based ranking function to rank the different candidate nodes. Since our
goal is to maximize the efficiency of data accessfrom the selected worker node, we use the expected data download time
as the metric to quantify accessibilit y. Thus, given a set of candidates C for job Ji that requires accessto object oi, each
candidate node cm returns its accessibilit y accessibilitycm

(Ji) in terms of the estimated download time for the object oi,
and the initiator then selects the node with the smallest accessibilit y value. Note that since we are assuming lack of any
global knowledge, these estimates arebased onthe local informationavailable to the individual candidatenodes. Therefore,
sometimes it is possible that the candidate cannot provide any meaningful estimate of its accessibilit y to the required data
object. In thiscase, the candidatesimply returnsvalueof infinity as itsestimated download timefor theobject, indicatingthe
lack of any information. The initiator would filter out such a candidate. If all candidatesreturn infinity, oneof the candidates
is randomly selected. Formally, theselection heuristic Hs is defined as follows:

Hs : C → cm such that

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

450

500

RTT(n1,n2)

R
T

T
(n

2,
n1

)

cor=0.95

(a) RTT Symmetry

0 100 200 300 400 500
0

500

1000

1500

2000

2500

RTT

F
re

qu
en

cy

(b) RTT Histogram

Figure 2. Ping map statistics

accessibilitycm
(Ji) = min

n=1,..,|C|
(accessibilitycn

(Ji)).

Having described the accessibilit y-based resourceselection algorithm, the question is how the candidate nodes can esti-
matetheir accessibilit y using local information(e.g., even without having downloaded object oi in thepast), andwhat factors
they can use for thisestimation. We explorethisquestion in thenext section.

3 Accessibility Estimation

3.1 Accessibility Parameters

To answer the abovequestion, we first investigatewhat parameterswould impact accessibilit y in terms of data download
time. Intuitively, a node’s accessibilit y to a data object will depend ontwo main factors: the location of the data object
with respect to the node, and the node’s network characteristics, such as its connectivity, bandwidth, and other networking
capabiliti es. We have explored a variety of parameters to characterizethese factors, and foundsome interestingcorrelations.
For thischaracterization, we conductedexperimentsonPlanetLab [33] with 133 hostsover threeweeks. In these experiments,
18 2MB dataobjectsweredistributed over thenodes, and over 14,000 download operationswere carried out to formadetailed
traceof data download times. To measure inter-node latencies, an ICMP ping test was repeated nine times over the 3-week
period, and the minimal latency was selected to represent the latency for each pair. We next give abrief description of the
main resultsof this study.

We begin by introducing the ping statistics between nodes in the experimental environment. Figure 2 shows symmetry
and distribution of roundtrip time (RTT). We can seestrongsymmetry between pairs in the figure — 94% of the total pairs
have lessthan 5 ms difference. The distribution of latency is left-skewed and heavy-tailed, so the average (107ms) is a bit
larger than themedian (87ms).

The first result is the correlation of latency and download speed between node pairs. Intuitively, it is likely that smaller
latency betweenclient andserver would lead to better performancein downloading. Figure3(a) plotstherelationship between
RTT and download speed (defined as the ratio of downloaded data size and download time)1. We finda negative correlation
(r = −0.56) between them, indicating that latency can bea useful factor when estimating accessibilit y between nodepairs.

In addition, we discovered a correlation between the download speed of a node for a given object and the past average
download speed of the node, as shown in Figure 3(b) (r = 0.6). The intuition behind this correlation is that past download
behavior may behelpful to characterizethenodein termsof itsnetwork characteristics suchasitsconnectivity and bandwidth.

1Weusedownload speed to make our results independent of object size.

0 100 200 300 400 500
0

200

400

600

800

1000

1200

RTT (msec)

D
ow

nl
oa

d
S

pe
ed

 (
K

B
/s

)

Correlation between RTT and Download Speed

cor = −0.56

(a) Correlation of RTT and download speed

0 50 100 150 200 250 300 350 400 450
0

200

400

600

800

1000

1200

Past Download Speed (KB/s)

D
ow

nl
oa

d
S

pe
ed

 (
K

B
/s

)

Correlation between Past Download Speed and Download Speed

cor = 0.60

(b) Correlation of download speed and past average download
speed

Figure 3. Correlations of access parameters

For example, if a node is connected to the network with a bad accesslink, it is almost certain that the node will yield low
performancein data accessto any data source. This result suggests that past download behavior of a node can be a useful
component for accessibilit y estimation.

We had explored other parameters as well , but we could not find meaningful correlations. We introducesome of them
here. We investigated the impact of latency affinity between two nodes. In this setting, for all combinationsof threenodes,
say a, b, and c, we compared RTT (a, b) to |RTT (a, c) − RTT (b, c)|. We founda pretty strong correlation (r = 0.66),
which means that if RTT (a, b) is small , the differenceto the other one (i.e. |RTT (a, c) − RTT (b, c)|) is also small with
strongcorrelation. However, when latency risesbeyondsomepoint (e.g. RTT (a, b) > 250ms), theresultsbegan to oscill ate,
suggesting littl e significance. This phenomenoncan be also explained by the triangle inequality [14, 41]. Another example
isa correlation of latency and download elapsed timebetween apair. Thebasic question here is that if theRTT between two
nodes is small , then two nodeswould show similar behaviors in downloading. In other words, two nodeswould havesimilar
downloading capabilit y if they resided on the same local or regional network. However we could not find any noticeable
correlation in thisexperiment (r = 0.1).

Based onthestatistical correlationswediscovered, wenext present estimationtechniquesto predict data accesscapabiliti es
of a node for a data object. Note that we will not assume global knowledge of these parameters (e.g., pairwise latencies
between different nodes), but use hints based on local information at candidate nodes to get accessibilit y estimates. It is
worth mentioning that it is not necessary to estimate the exact download time; rather our intention is to rank nodesbased on
accessibilit y so that we can choose agoodnode for job allocation. Nonetheless, if the estimation has littl e relevanceto the
real performance, then therankingmay deviatefar from thedesired choices. Hencewerequirethat the estimationtechniques
demonstratesufficiently accurate resultswhich can bebounded within any tolerable error range.

3.2 Self-Estimation

Asdescribedabove, latency to theserver and downloadspeed of anode areuseful to assessitsaccessibilit y to adataobject.
We first provide an estimation technique that uses historical observations made by a node during its previousdownloads to
estimate these parameters. Note that these past downloadscan be to any objects and need not be for the object in question.
We refer to this technique asself-estimation.

To employ past observationsin the estimation process, we assumethat thenoderecordsaccessinformationit hasobserved.
Suppose Hi

h is the i-th download entry at host h. This entry includes following information: object name, object size,
download elapsed time, server, distanceto server, and timestamp. As a convention, we usedot(.) notation to refer to an item
of the entry, for example, Hi

h.size represents theobject sizein i-th observationat host h.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio = (Estimated/Measured)

F
(x

)

CDF Comparison of Self Estimation Results

Distance=RTT+1
Distance=sqrt(RTT+1)

Figure 4. Self estimation result

We first estimate adistance factor between the node and the server, based on their inter-node latency. We consider two
latency models for the distance metric: RTT and square-root of RTT. These are often used in TCP studies to cope with
congestion efficiently to improve system throughput. Studies of window-based [32] and rate-based [31] congestion control
revealed that RTT and square-root of RTT are inversely proportional to system throughput, respectively. We consider both
latency models for the distancemetric and compare them to seewhich is preferable later in this section. The mean distance
of nodeh to theservers it has seen so far is then calculated as follows:

Distanceh =
1

|Hh|
·
|Hh|
∑

i=1

Hi
h.distance

We then characterize the network characteristics of the node by estimating its mean download speed based on prior
observations:

DownSpeedh =
1

|Hh|
·
|Hh|
∑

i=1

Hi
h.size

Hi
h.elapse

Using the abovefactors, we estimate the expected download time for a host h to download object o as:

SelfEstimh(o) = δ · size(o)

DownSpeedh

(1)

where

δ =
distanceh(server(o))

Distanceh

Here, size(o) means the size of object o, server(o) means the server for object o, and distancea(b) means the distance
between nodesa and b.

Intuitively, The parameter δ givesa ratio of the distanceto the server for object o to the mean distanceit hasobserved so
far. Smaller δ means that the distance to the server is closer than the average distance the node has seen so far, and hence
its estimated download time is likely to be smaller than previous downloads. The other part of Equation 1 uses the mean
download speed to derive the estimated download time asbeing proportional to theobject size.

Figure 4 shows the results of self-estimation. In the figure, the x-axis is ratio of the estimated time to the real measured
time. Thus a ratio of 1 means that the estimation is exactly correct. As shown in the figure, we can seethat

√
RTT yields

better estimationresults than thesimpleRTT. Using
√

RTT almost 90% of the total estimationsoccur within aratio between
0.5 and 1.5 (i.e. relative error = 0.5). In contrast, the simple RTT yields 76% of the total estimations within the same error
margin. Based onthis result, we set distance =

√
RTT + 1, where RTT is expressed in milli seconds2. With this distance

2we add 1to avoid division byzero.

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of past observations

F
ra

ct
io

n
(R

el
at

iv
e

E
rr

or
 <

 0
.5

)

Self Estimation Trace

Figure 5. Self estimation trace result

metric, we can seethat asignificant portion of the estimationsoccur aroundtheratio, indicatingthat the estimationfunctionis
fairly accurate. We will seein Section 5that this level of accuracy is sufficient for use asaranking functionto rank different
candidatenodes for resourceselection.

We also foundthat the self estimation producesaccurate results with a limited number of observations. Figure 5 demon-
strateshow the estimation results improvewith the cumulated observationsover time. In thefigure, the x-axis is the number
of past observations, while the y-axis is the fraction of estimations which occur within a relative error of 0.5. Initially, the
fraction is quite small below 0.7, but it sharply increases as observationshave been accrued. With only 10 observations, for
example, the fraction goesbeyond 0.8, andapproachesto 0.9 with 20 observations, suggesting that the self estimationyields
sufficiently accurateresults to rank nodeswith respect to accessibilit y with asmall number (∼ 10) of past observations.

Sinceself-estimation isnot required to haveprior observationsfor theobject in question, it must first search for theserver
and then determine the network distance to it. Search is often done by flooding in unstructured overlays [7], or by routing
messages in structured overlays [40, 37, 38, 45], which may introduce extra traffic. Distance determination would require
probingwhich addsadditional overhead.

3.3 Neighbor Estimation

While self-estimation uses a node’s prior observations to estimate the accessibilit y to a data object, it is possible that the
node may have only a few prior download observations (e.g., if it has recently joined the network), which could adversely
impact the accuracy of itsestimation. Further, asmentioned above, self-estimationalso needsto locatetheobject’s server and
determine its latency to the server to get a more accurate estimation. This server location and probing could add additional
overhead and latency to the resourceselection.

To avoid these problems, we now present an estimation approach that utili zes the prior download observations from a
node’s neighbors in the network overlay for its estimation. We call this approach neighbor estimation. The goal of this
approach is to avoid any active server location or probing. Moreover, by utili zing the neighbors’ information, it is likely to
obtain aricher set of observationsto beused for estimation. However, theprimary challengewith using neighbor information
isto correlate aneighbor’sdownloadexperienceto thenode’sexperiencegiven that theneighbor may be at adifferent location
andmay havedifferent network characteristics from thenode.

To assessthe downloading similarity between a candidate node and a neighbor, we first define the notion of download
power (DP) to quantify the data accesscapabilit y of a node. The idea is that a node with higher DP is considered to be
superior in downloadingcapabilit y to anodewith lower DP. We formulateDP for a host h as follows:

DPh =
1

|Hh|

|Hh|
∑

i=1

(Hi
h.size

Hi
h.elapse

×Hi
h.distance

)

(2)

0 0.5 1 1.5 2 2.5 3
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Ratio = (Estimated/Measured)

F
ra

ct
io

n
of

 E
st

im
at

io
ns

Density of Neighbor Estimation Results

Figure 6. Neighbor estimation result

Intuitively, this metric combines the metricsof download speed and distancedefined in the previous subsection. As seen
from Equation 2, DP ∝ downloadspeed, which is intuitive, as it captures how fast a node can download data in general.
Further, we also haveDP∝ distanceto theserver, which implies that for thesamedownload speed to aserver, thedownload
power of a node is considered higher if it is more distant from the server. Consider an example to understand this relation
between download power and distance. Suppose that two client nodes, one in the US and one in Asia, accessdata from
servers located in the US. Then, if the two clients show the same download time for the same object, the one in Asia might
be considered to have better downloading capabilit y for more distant servers, as the US client’s download speed could be
attributed to its locality. Hence, accessover greater distanceis given greater weight in this metric. To minimizethe effect of
download anomaliesand inconsistencies, we computeDP as the average acrossits history of downloadsfrom all servers.

Now, wedefine afunction for neighbor estimationat host h by using informationfrom neighbor n for object o:

NeighborEstimh(n, o) = α · β · elapsen(o) (3)

where

α =
DPn

DPh

, β =
distanceh(server(o))

distancen(server(o))
,

and elapsen(o) is the download time observed by the neighbor for the object. It is possible that the neighbor has multiple
observationsfor thesameobject, in which case we pick the smallest download time as the representative.

Intuitively, to estimate the download time for object o based onthe information from neighbor n, this functionfirst of all
uses the relevant download time of the neighbor. As a rule, the estimation result is the same if all conditionsare equivalent
to the neighbor. To account for differences, we employ two parametersα and β. The parameter α compares the download
powers of the node and the neighbor for similarity. If the DP of the node is higher than the neighbor, the function gives
smaller estimation time because the node is considered superior to the neighbor in terms of accessibilit y. The parameter β
comparesthedistancesto theserver, so that if thedistanceto theserver iscloser for thenodethan theneighbor’s, theresulting
estimationwill besmaller3.

Figure6 ill ustrates the normalized histogram of neighbor estimation. Thex-axis is the ratio of the estimation result to the
real measured value, while the y-axis is the fraction of the estimations. As seen from the figure, a substantial portion of the
estimated valuesare located near the ratio 1. Nearly 85% of estimations reside within a relative error 0.5. This suggests that
neighbor estimation producesuseful hints to rank nodeswith respect to accessibilit y.

To realizeneighbor estimation, it isnecessary to gather informationfrom theneighbors. Ascan beseen in theNeighborEs-
tim function, it requiresaggregated informationfrom theneighbor: DP, distanceto theserver, andthedownload elapsed time
for theobject. Thispayload isquitesmall and has low network overhead.

3Wediscussbelow how theserver distance can be estimated without active probing.

0 5 10 15 20 25 30 35
0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

Number of Neighbors

F
ra

ct
io

n
of

 R
el

at
iv

e
E

rr
or

 <
 0

.5

Comparison of Combining Heuristics

RANDOM
CLOSEST
TRMEAN
MEDIAN
RANK
WMEAN

Figure 7. Comparison of combining heuristics

Although neighbor estimation providesauseful hint for assessment of accessibilit y, multipleneighborscan providediffer-
ent informationfor theobject. Hencethenext questionishow canwe efficiently combineinformationfromdifferent neighbors
to obtain moreaccurateresults? We consider the following heuristics to combinethe informationfrom neighbors:

• RANDOM, which selectsa random neighbor for estimation.

• CLOSEST, which selects the closest neighbor in termsof distance.

• TRMEAN, which takes trimmed mean of all estimationsexcept both the lowest and thehighest.

• MEDIAN, which takes themedian valueof all estimations

• RANK, which ranks the neighborswith a ranking functionrank(ni) = ω · distancec(ni)
MaxDistance

+ (1 − ω) · |DPni
−DPc|

DPc
for

i = 1, .., |N |, wherec is thenode, ni isaneighbor, |N | is theneighbor size, andMaxDistance isa constant to define
maximal distance(e.g. MaxDistance =

√
500). Thisheuristic giveshigher rank to a neighbor which is closer to the

server in distance and has similar DP with the node, andselects the estimation of the highest ranked neighbor. We set
ω to 0.5.

• WMEAN, which givesa weight weight(ni) = 1 − rank(ni) to neighbor ni (i.e.
∑

i weight(ni) = 1), and then the
estimated resultsareweighted andaveraged, thus resulting in one estimation value.

Figure 7 compares combining heuristics with respect to the number of neighbors. Overall , MEDIAN and TRMEAN
work better than others. For both heuristics, the fraction reaches 0.88 with 4 neighbors, as shown in the figure. Given that
the number of neighborsproviding relevant observationsmay be limited in many cases, we believe that either MEDIAN or
TRMEAN will be agoodchoice. For this reason, we useMEDIAN as the combining heuristic as follows:

NeighborEstimh(o) = medianni∈N (NeighborEstimh(ni, o))

3.4 Inferring Server Latency without Active Probing

While the neighbor estimation requires latency to the server as a parameter (Equation 3), we can avoid the need for
active probing byexploiting the server latency estimates obtained from the neighbors themselves. This makes it possible to
minimize additional overhead in estimation in termsof server locationand pinging.

According to the study in [41], a dominant portion of total paths (≫ 90%) satisfied the property of triangle inequality.
We also observed that 95% of total paths in our data satisfied thisproperty. The triangulated heuristic estimates the network

Figure 8. Example cases of inference

distance based on this property. It infers latency between peers with a set of landmarks which hold precalculated latency
information between the peers and themselves [29]. The basic idea is that the latency of node a and c may lie between
|latency(a, b) − latency(b, c)| and latency(a, b) + latency(b, c), where b is one of landmarks (b ∈ B). With a set of
landmarks, it is possible to obtain a set of lower bounds (LA) and upper bounds (UA). If we define L = max(LA) and
U = min(UA), then therange [L, U] should bethetightest stretch with which all i nferred resultsmay agree. For the inferred
value, Hotz [20] suggested L based onA* , Guytonand Schwartz [17] employed (L + U)/2, and most recently Eugene and
Zhangreported U performsbetter than the others [29].

In our system model, we can use neighborsas the landmarksbecause they hold latency information both to the candidate
andto theobject server. By applyingthe triangulated heuristic, therefore, we can infer the latency between the candidate and
the server without probing. However we foundthat the existing heuristics are inaccurate with a small number of neighbors
which may be commonin our system model. Hencewe enhancethetriangulated heuristic to account for a limited number of
neighbors.

Our approach works by handling several situations that contribute to inaccuracy. Figure 8 shows example cases of infer-
ence based on the triangle inequality property. There are threelandmarks which offer a pair of low and high bounds like
(Li, Ui), (Lj, Uj), and(Lk, Uk). Figure8(a) showsa desired case in which the convergencesuccessfully hasbeen occurred.

However, in some cases, it might fail to converge. As mentioned, a majority of the paths satisfy the property of triangle
inequality, but a few pathsdo not. We observed some cases of L > H for which triangle inequality doesnot hold. Consider
the followingsituation: all but one landmark givereasonable latencies, but if that onegives fairly large low and high bounds
(e.g. because it is connected with a relatively slow link) , the expected convergencewould not occur, thus leading to an
inaccurate answer. Figure8(b) ill ustrates thisproblem. In this case, pickingany oneof the existingapproachesiserroneous.
To overcome this problem, we remove all Li ∈ LA which is greater than U , so we can make anew stretch that satisfies
L < U . After doingso, we observed that takingsimplemean producesgreatly better results than the existingapproaches.

Another potential problem takes placewhen all the landmarks are similarly apart from both nodes (e.g. a and c in the
above explanation). Figure 8(c) ill ustrates a possible situation in which the stretch [L, U] is too wide, so pickingany one of
L, U , and (L + U)/2 is likely to be highly inaccurate. Sinceit is an intrinsic limitation of the triangulated heuristic, we take
the inaccurateresult and leave it asa further study.

We also observed a problematic situation as ill ustrated in Figure 8(d). In this case, a significant portion of the inferred
low bounds suggest similar values, but high boundshave a certain degreeof variance. Thisusually happenswhere node c is
close to a but the landmarks are all apart from node a. For this, we consider a weighted mean which is based onstandard

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

Number of Landmarks (Neighbors)

A
bs

ol
ut

e
E

rr
or

 (
m

se
c)

RTT Inference Absolute Error

L
U
(L+U)/2
Enhanced

(a) Absolute Error

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

Number of Landmarks (Neighbors)

R
el

at
iv

e
E

rr
or

RTT Inference Relative Error

L
U
(L+U)/2
Enhanced

(b) Relative Error

0 5 10 15 20 25 30 35
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Landmarks (Neighbors)

F
ra

ct
io

n

Absolute Error <= 10 ms

L
U
(L+U)/2
Enhanced

(c) Fraction of Absolute Error ≤ 10 ms

0 5 10 15 20 25 30 35
0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Landmarks (Neighbors)

F
ra

ct
io

n

Absolute Error <= 30 ms

L
U
(L+U)/2
Enhanced

(d) Fraction of Absolute Error ≤ 30 ms

Figure 9. Latency inference results

deviations(σ) of both low and high bounds:

mean = L ·
(

1 − σLA

(σLA
+ σUA

)

)

+ U ·
(

1 − σUA

(σLA
+ σUA

)

)

Theintuition behindthis is that if multiple inferred bounds suggest similar valuesfor either low or high bounds, it is likely
that the real latency is aroundthat point. We employ this weighted mean if the heuristic fails to convergedue to the stretch
being too wide (e.g. |L − U | > 50, in our evaluation). If the heuristic can properly converge, we simply takes the simple
mean (i.e. (L + U)/2).

We evaluated this enhanced heuristic with our data set. Even though our data set contains a relatively small number of
nodes, we observed similar results with those reported in [29]. According to the results in [29], 90 percentile relative errors
for the triangleheuristic takingU as the inferred valuewere1.05(6 landmarks), 0.8 (9 landmarks), 0.69(12 landmarks), and
0.59(15 landmarks). Our results show 1.26, 0.84, 0.62and 0.57, respectively.

We report the evaluationresultswith theabsoluteerror aswell as the relativeerror for clarity. For example, if we think of
two measured latencies1 msand 100msandthe correspondingestimations2 msand 200ms, then thosetwo estimationsgive
the same picture with respect to the relative error (i.e. relative error = 1, in this example). In contrast, they convey different

informationwith respect to absolute error. In fact, 1 ms differenceis usually acceptable, but 100ms error is not for latency
inference.

Figure9 demonstrates the inferenceresults. As reported in [29], theheuristic employingU is overall better than theother
two existing heuristics. However, we can seethat our enhanced heuristic substantially outperformsthe existing heuristics. In
particular, the enhanced heuristic works well even when the number of landmarks is small . Sincethe number of neighbors
which can offer the relevant latency information may be limited, the enhanced heuristic is desirable in our design. With 4
neighbors, the enhanced heuristic approximates56% of the total estimationswithin 10msas shown in Figure9(c), and 85%
of the estimationsare correctly estimated within 30msas shown in Figure9(d).

A few wordsabout the toleranceof error in the inferred result. Our estimation functionsare not very sensitive to inferred
results because the square-root of RTT is used. Thus, some range of errors are tolerable in our design. While those are
tolerable, our focus is to exploit the neighbors’ information. Other sophisticated latency prediction techniques can be used
if available. To summarize, the proposed technique estimates latency accurately without depending onexplicit probing or
other assumptions.

4 Resource Selection Techniques

Resource selection is the processby which a node is chosen to execute the job. In this section, we present selection
techniques based on the self and neighbor estimation techniques discussed in the previous section. Before doing this, we
discussrandom and proximity-based selectionsas standard techniques.

4.1 Standard Techniques

We consider randomselection(RANDOM) andproximity-basedselection(PROXIM) as standard techniques. Theprimary
advantageof random selection is its simplicity. It simply selects a candidate at random. The pricepaid for this simplicity, is
poor performance.

Proximity-based selection is a commonchoicein today’sdistributed systems. In this technique, a node with the smallest
latency to the server is chosen. This is reasonable sincewe observed a significant correlation between RTT and download
speed. To make it attainable, the relevant server must be discovered first, and then latency to the server from the candidates
measured to identify which candidate node is closest to the server. In general, the processof server discovery and latency
measurement introducesextra traffic.

4.2 SELF: Self Estimation-based Selection

In self estimation-based selection the accessibilit y isdirectly obtained from theself-estimation function:

accessibilitycm
(Ji) =

{

SelfEstimcm
(oi) if available

infinite otherwise

Note that the candidateneed not haveprior download experiencewith thisobject. The candidateprovidestheresult of the
self estimationfunctionasitsaccessibilit y. However, the candidatereturns infinite in the casethat it cannot make any relevant
estimation dueto alack of observations. Sincetheselection heuristic choosesthesmallest accessibilit y, thiscandidatewill be
filtered out. However, if all candidates return infinite, a random selection is made4. Initially when the system starts, random
selectionswill bemadeuntil the nodeshave acquired download information.

The procedure is similar to one of the proximity-based selection technique, since this technique also requires server
discovery and latency estimation if no prior interactions are recorded. This technique, therefore, may introduce additional
traffic as well . The primary difference is in the selection principle. While the proximity-based technique considers only
proximity for selection, this technique exploits thepast accessbehaviorsaswell asproximity. For example, even if anode is
fairly close to theserver, it would not be chosen if it has shown bad performancein data accesspreviously.

4In this case, it is possible to select a candidate by latency information as the proximity-based selection does; however, we do not consider such a
fine-level optimization for simplicity.

Table 1. Download Traces
Trace # of nodes # of objects # of downloads
1M 153 72 22,509
2M 231 83 25,934
4M 167 107 28,439
8M 158 85 26,105

4.3 NEIGHBOR: Neighbor Estimation-based Selection

Neighbor estimation-basedselectionemploysneighbor estimation, so the candidate accessibilit y isderivedfromtheneigh-
bor estimation function:

accessibilitycm
(Ji) =

{

NeighborEstimcm
(oi) if available

infinite otherwise

Like self estimation-based selection, the candidate returnseither the relevant estimation result or infinite. Then the selec-
tion heuristic will select thesmallest estimation. If nocandidateprovidesthe relevant estimation, it simply performsrandom
selection. The main differencefrom the self estimation-based selection is that this technique can reduce additional efforts
for server discovery and latency measurement by sharing related informationwith neighbors. Thus this techniqueshould be
useful more in environmentswhere messagingcost isexpensiveso minimizingexplicit interaction iscrucial.

4.4 HYBRID: Hybrid Selection Technique

One of the strong points of the neighbor estimation-based selection is the minimal messaging requirement. It collects
relevant information directly from theneighbors. Such communicationis local asopposed to queryingthedataservers. That
is, it does not require additional traffic to search for objects or to measure distance to servers, if the relevant information
exists. This is a significant benefit given the bandwidth scarcity in loosely-coupled distributed systems. On the other hand,
this technique can make apoor choiceif no neighborshaverelevant observations.

In contrast, the self estimation-based selection may not diminish explicit probing. However, it is highly likely that some
candidates can compute aself estimation because it does not require direct observation of the object. This leads to better
resultsby avoidingrandom selection.

The hybrid selection technique incorporates these heuristics to exploit their benefits. In this technique, candidate nodes
consult their neighborsfirst to acquiretherelevant accessinformation. If thisinformationexists, they run neighbor estimation-
based selection. If not, they attempt to compute accessibilit y using self estimation instead of sending an infinite value. By
doing so, it is possible to diminish the chanceof random selection which may degrade system performance. Therefore, the
hybrid selection techniquewould behelpful as it takesadvantageof both theneighbor andself estimation-based selections.

5 Evaluation

In this section, we evaluateour accessibilit y-based resourceselectiontechniques. We employ two performancemetricsfor
our evaluation: (1) mean downloadtime and (2) mean downloadtime ratio to optimal selection. The former is useful to un-
derstandthe absoluteperformance, whilethelatter helpsto comparetheperformanceof different algorithms, complementing
the former.

5.1 Experimental Setup

We conducted over 100K actual downloadingfor aspan of 5 monthswith 241PlanetLab nodesgeographically distributed
acrossthe globe. For this, we deployed a Pastry [38, 15] network, a structured overlay based ona DHT ring. We distributed
data objects of four sizes: 1M, 2M, 4M, and 8M bytes, over the network, each object with a unique key. Table 2 shows the
distribution of objects. We then generated a series of random queries so that the selected nodes perform downloading the
relevant objects. Table1 providesthe detailsof the download traces. In the simulations, we use amixture of all t races rather
than individual traces, unlessotherwisementioned.

Table 2. Object Distribution
of objects Fraction of nodes

0 0.29
1 0.26
2 0.25
3 0.10
4 0.10

0 1 2 3 4 5 6 7 8 9 10

x 10
4

1

2

3

4

5

6

7

8

9

Time

R
at

io
 to

 O
m

ni
sc

ie
nt

Ratio comparison over time (Mix, C=8, N=8, Allocation=100k)

RANDOM
PROXIM
SELF
NEIGHBOR

Figure 10. Performance over the time

To evaluate resource selection techniques, we design and implement a simulator which inputs the ping maps and the
collectivedownloading traces and outputsperformanceresults according to the selection algorithms. Initially, the simulator
constructs a network in which nodes are connected to each other with a predefined neighbor sizeTo minimize error due to
the construction, we repeated simulations 50 times and report the results with 95% confidence intervals as needed. After
constructingthenetwork, thesimulator runseach resourceselectionalgorithm. Initially, it constructsavirtual tracein which
the list of candidates and the download time from each candidate are recorded. The candidate nodes are randomly chosen
for each allocation. As the candidatemay havemorethan one actual download record for aserver, thedownload time isalso
randomly selected from them. Thesimulator then selectsa worker based oneach selection algorithm. Based onthe selected
worker, thedownload time is returned from thevirtual trace. Onevirtual traceisconsumed in onesimulation timestep.

For our evaluation, we compare the resource selection techniques described in the previous section. In addition, we
consider omniscient selection (OMNI) for the purpose of comparison which always returns the best node based on future
knowledgeof download times.

5.2 Performance Comparison over Time

We begin by presenting the performance comparison over time. Figure 10 compares the performance over the 100K
consecutive job allocations. As the default, we set both the candidatesize and the neighbor sizeto 8 (and it is applied to all
the following experiments, unlessotherwise mentioned). Overall the proposed techniques yield goodresults: SELF is the
best acrosstime and NEIGHBOR worksbetter than PROXIM most of the time. RANDOM yields poor performancewith a
significant degreeof variation, as expected. PROXIM is about 3 times of optimal with a relatively high degreeof variation
compared to the suggested techniques. NEIGHBOR is poor at first (due to warming up), but shows better results compared
to PROXIM after about 6K simulation time steps. SELF works best approaching about 1.4 of optimal at the end of the
simulation.

0% 1% 5% 10% 20% 30% 50%
5

10

15

20

25

30

35

40

45

50

55

Warming−up Size (%)

M
ea

n
E

la
ps

e
T

im
e

(s
ec

)
Impact of Warming−up Size (Mix, C=8, N=8, Allocation=10k)

OMNI
RANDOM
PROXIM
SELF
NEIGHBOR

(a) Mean download elapsed time

0% 1% 5% 10% 20% 30% 50%
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Warming−up Size (%)

R
at

io
 to

 O
m

ni
sc

ie
nt

Impact of Training Size (Mix, C=8, N=8, Allocation=10k)

RANDOM
PROXIM
SELF
NEIGHBOR

(b) Mean ratio to optimal

Figure 11. Impact of warming-up size

5.3 Impact of Warming-up Size

As we observed that SELF approaches to the optimal over the time, we further investigate the impact of the warming-up
size. Wepreloadedaportion of tracedatain advance and observed the changesin performance. Thepreloading hasbeen done
with randomly selected observationsin the trace. It it certain that RANDOM andPROXIM will not changesincethey do not
employ past observations. In contrast, we expect that increasingwarming-upsizewould benefit SELF andNEIGHBOR.

Figure 11 compares the performanceof the selection techniques with respect to warming-up size. In this experiment,
we attempted 10K trials to see the impact at the first stage. As expected, SELF approaches to optimal as warming-up
size is greater, while RANDOM and PROXIM show littl e correlation. NEIGHBOR also improves as dramatic as SELF
acrosswarming-up size. It is interesting that NEIGHBOR always outperforms PROXIM in terms of mean download time
as shown in Figure11(a), while it showsa crossover between PROXM and NEIGHBOR in term of mean ratio to optimal in
Figure11(b). This isbecausethat random selectionin NEIGHBOR (dueto lack of observations) contributesto thelargeratio
to optimal (seethat averageratio of RANDOM isquitebigger than theothers).

5.4 Impact of Candidate Size

In our system model, a set of candidate nodes are evaluated for their accessibilit y before allocating a job. We now
investigate the impact of candidate size (|C|). Figure 12 demonstrates the performance changes with respect to candidate
size. In Figure12(a), SELF continues to producediminished elapsed times as the candidatesizeincreases, yielding the best
results amongselection techniques. NEIGHBOR follows SELF with considerable gaps against the standard techniques. In
particular, the proposed heuristics dramatically improveperformancewith |C| = 8, and then the improvement gain reduces
after |C| > 8. Interestingly, PROXIM shows unstable results with greater fluctuation than RANDOM over the candidate
sizes. In Figure 12(b), mean ratio to optimal increases along the candidate size. This is because OMNI has many more
candidates to choose from, resulting in the larger performancegaps. However, we can see that the suggested techniques
work better with more many candidates, making the slopes gentle compared to the standard ones. This result indicates that
the proposed techniques not only work better than standard ones acrosscandidate sizes, but also further improve as the
candidatesize increases.

5.5 Impact of Neighbor Size

We next investigate the impact of neighbor sizeon NEIGHBOR (the other heuristics are not affected by this parameter).
Figure 13 shows how the selection techniques respondacrossthe number of neighbors (|N |). As can be seen in the both

2 4 8 16 32
0

10

20

30

40

50

60

70

80

90

Candidate Size

M
ea

n
E

la
ps

e
T

im
e

(s
ec

)

Impact of Candidate Size (Mix, N=8, Allocation=50k)

OMNI
RANDOM
PROXIM
SELF
NEIGHBOR

(a) Mean download elapsed time

2 4 8 16 32
1

2

3

4

5

6

7

8

9

Candidate Size

R
at

io
 to

 O
m

ni
sc

ie
nt

Impact of Candidate Size (Mix, N=8, Allocation=50k)

RANDOM
PROXIM
SELF
NEIGHBOR

(b) Mean ratio to optimal

Figure 12. Impact of candidate size

2 4 8 16 32
0

5

10

15

20

25

30

35

40

45

50

55

Neighbor Size

M
ea

n
E

la
ps

e
T

im
e

(s
ec

)

Impact of Neighbor Size (Mix, N=8, Allocation=50k)

OMNI
RANDOM
PROXIM
SELF
NEIGHBOR

(a) Mean download elapsed time

2 4 8 16 32
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Neighbor Size

R
at

io
 to

 O
m

ni
sc

ie
nt

Impact of Neighbor Size (Mix, C=8, Allocation=50k)

RANDOM
PROXIM
SELF
NEIGHBOR

(b) Mean ratio to optimal

Figure 13. Impact of neighbor size

1MB 2MB 4MB 8MB
0

10

20

30

40

50

60

70

80

90

100

Data Size

M
ea

n
E

la
ps

e
T

im
e

(s
ec

)
Impact of Data Size (C=8, N=8, Allocation=50k)

OMNI
RANDOM
PROXIM
SELF
NEIGHBOR

(a) Mean download elapsed time

1MB 2MB 4MB 8MB
0

1

2

3

4

5

6

7

Data Size

R
at

io
 to

 O
m

ni
sc

ie
nt

Impact of Data Size (C=8, N=8, Allocation=50k)

RANDOM
PROXIM
SELF
NEIGHBOR

(b) Mean ratio to optimal

Figure 14. Impact of data size

performancefigures, increasing theneighbor sizedramatically improvestheperformance, while theothersmakenochanges
as expected. For example, the average download time in |N | = 16 is dropped to about 70% of the time for |N | = 2. The
ratio to optimal is also dropped from 4.0 at |N | = 2 to 2.6 at |N | = 16. This is because it has more chances to obtain
relevant observations with more many neighbors, thus decreasing the possibilit y of random selection. This result suggests
that NEIGHBORwill work better in environmentswhere thenodehasconnectivity with a greater number of neighbors.

5.6 Impact of Data Size

We continueto investigatehow theselection techniqueswork over different data sizes. Sincethe sizeof accessed objects
can vary depending onapplications in reality, selection techniques should work consistently acrossa range of data sizes.
In this experiment, we run the simulation with individual traces rather than the mixture of the traces. Figure 14 compares
performancewith various data sizes. In Figure 14(a), we can seelinear relationship between data size and mean download
time. However, each technique shows a different degreeof slope: SELF and NEIGHBOR increase more gently than the
standard heuristics. With simple calculation, theslopes(i.e. ∆y/∆x) of the techniquesareRANDOM=10.9, PROXIM=8.1,
SELF=3.8, andNEIGHBOR=5.1. In addition, Figure14(b) shows that thesuggested techniquesconsistently outperform the
standard ones in terms of ratio to optimal regardlessof data size. This result implies that the proposed techniques not only
work consistently acrossdifferent data sizes, but theyarealso much moreuseful for data-intensiveapplications.

5.7 Timeliness

It is crucial to choose goodnodes for job allocation. On the other extreme, it is also important to avoid badnodes when
making a decision. For instance, selecting intolerably slow connections may lead to job incompletion due to excessive
downloading cost or time-outs. However, it is almost impossible to pick good nodes every time because there are many
contributingfactors.

Weobserved how many timesthetechniqueschooseslow connections. Figure15showsthiswith two figures: cumulative
distributions of the speed of connections with log-log scales and frequencies of the selection of bad connections. In both
figures, we can see that the proposed techniques more often avoid slow connections. SELF most successfully excludes
low speed connections, and NEIGHBOR also performs better than the standard techniques. When we count the number
of poor connections selected, SELF has chosen under 5 KB/s connections less than 30 times, while PROXIM made over
290 selections which is almost an order of magnitude larger than SELF. One interesting result is that PROXIM selects
poor connections more frequently than RANDOM (293 and 194times respectively). This implies that relying only on
proximity information alone greatly increases the chanceof very poor connections, thus leading to unpredictable response

10
−1

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Download Speed (KB/s)

F
(x

)
CDFs of Download Speed (Mix, C=8, N=8, Allocation=100k)

SELF

NEIGHBOR

RANDOM

PROXIM

(a) CDF of download speed

<1KB/s <5KB/s <10KB/s
0

100

200

300

400

500

600

700

Download Speed

F
re

qu
en

cy

Timeliness (Mix, C=8, N=8, Allocation=50k)

RANDOM
PROXIM
SELF
NEIGHBOR

(b) Frequency of low download speed

Figure 15. Timeliness

time. Compared to this, our proposed techniques successfully reduce chances to choose low speed connections by taking
accessibilit y into account.

5.8 Impact of Churn

Churn is prevalent in loosely-coupled distributed systems. To see the impact of churn, we assume that mean session
lengths of nodes are exponentially distributed. In this context, the session length is equivalent to the simulation time. For
example, if the session length of a node is 100, the node changes its status to inactive after 100simulation time steps. The
nodethen joinsagain after another 100time steps. We assumethat nodes loseall past observationswhen they changestatus.
Therefore, churn will have agreater impact on our selectiontechniquesbecausewerely on historic observations. In contrast,
thestandard techniques suffer littl e from churn sincethey do not have any dependenceon past observations. Thevirtual trace
excludesobjects for which the relevant serversare inactive.

We tested threemean session lengths: s = 100, s = 1000, and s = 10000, corresponding to extreme, severe, and light
churn rates respectively. Ascan beseen in Figure16, with both s = 100 ands = 1000, the number of active nodesdropped
to around 50% right at thebeginning of thesimulation(≤ 1200 allocations), while it takes10K simulationtimesteps to drop
to 50% of inactivenodeswith s = 10000. The reason why 50% of nodesare active (or inactive) is that departing nodes join
again with the same probabilit y of leaving. Hence, ultimately the fraction of activenodes is stabili zed at 50% of total nodes
throughout thesimulation.

Figure 17 ill ustrates performance changes under churn. As mentioned, there is littl e impact on standard techniques. In
contrast, our techniques are degraded in performancedue to lossof observations. In Figure 17(a), SELF is comparable to
PROXIM even under extreme churn. NEIGHBOR degrades and becomes worse than PROXIM under severe churn (s =
1000). This is because NEIGHBOR is likely to fail to collect the relevant observations, thus relying more on random
selection, while SELF can perform reasonably accurate estimation with only a dozen of observations, as we have seen in
Figure 5. Nonetheless, NEIGHBOR still works better than PROXIM in light churn (s = 10000) with lower overhead. In
terms of ratio to optimal as shown in Figure 17(b), SELF is comparable to PROXIM under severe churn, but worse under
extreme churn. NEIGHBOR also shows worse than PROXIM under light churn due to an increasing number of random
selectionattempts.

We now explorewhy NEIGHBOR suffersunder severe and extreme churn. Figure 18 shows how NEIGHBOR performs
under churn. Theneighbor estimationratemeansthefractionthat NEIGHBOR successfully estimatesbased ontheneighbor
estimation, while the number of offered neighbors means that the average number of neighbors that provide observations
when NEIGHBOR performs successfully, not relying onrandomselection. Under normal conditions, theneighbor estimation
rate is almost 100% as soon as the simulation starts (Figure 18(a)), and the number of offered neighbors continuously

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Time

A
ct

iv
e

N
od

es
 (

%
)

Percentage of Active Nodes (Mix, C=8, N=8, Allocation=100k)

No churn
SessionLength=100
SessionLength=1000
SessionLength=10000

Figure 16. Active node ratio under churn circumstances

No churn 10000 1000 100
0

10

20

30

40

50

60

70

Mean Session Length

M
ea

n
E

la
ps

e
T

im
e

(s
ec

)

Impact of Churn (Mix, C=8, N=8, Allocation=50k)

OMNI
RANDOM
PROXIM
SELF
NEIGHBOR

(a) Mean download elapsed time

No churn 10000 1000 100
0

1

2

3

4

5

6

7

8

Mean Session Length

R
at

io
 to

 O
m

ni
sc

ie
nt

Impact of Churn (Mix, C=8, N=8, Allocation=50k)

RANDOM
PROXIM
SELF
NEIGHBOR

(b) Mean ratio to optimal

Figure 17. Impact of churn

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Time

N
ei

gh
bo

r
E

st
im

at
io

n
R

at
e

(%
)

Neighbor Estimation Rate (Mix, C=8, N=8, Allocation=100k)

No churn
SessionLength=100
SessionLength=1000
SessionLength=10000

(a) Neighbor estimation rate

0 2 4 6 8 10

x 10
4

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

Time

N
um

be
r

of
 O

ffe
re

d
N

ei
gh

bo
rs

Mean Number of Offered Neighbors (Mix, C=8, N=8, Allocation=100k)

No churn
SessionLength=100
SessionLength=1000
SessionLength=10000

(b) Number of offered neighbors

Figure 18. Impact of churn in NEIGHBOR

increasesover the time (Figure 18(b)). Under churn, both the neighbor estimation rate and the number of offered neighbors
dropwith respect to thedegreeof churn. Under light churn, theneighbor estimationrate is still over 90%, andthenumber of
offered neighborsis 1.3–1.5 onaverage. Under severe churn, the estimation ratedrops to 60–70%, implyingthat 30–40% of
thedecisionshavebeen madeby random selection. Under extreme churn, theneighbor estimation rate dropsbelow 10%, so
it essentially reducesto RANDOM.

To summarize, theproposed techniquesarestableunder churn in which nodes suffer fromlossof observations. Theresult
showsthat SELF isat least comparableto PROXIM even under extreme churn, whileNEIGHBOR iscomparableto PROXIM
when churn is light.

5.9 Performance of HYBRID

HYBRID combinesthebehavior of SELFandNEIGHBOR. Under normal conditionsor light churn, it workslikeNEIGH-
BOR throttling extra traffic, but it encourages self estimation if the candidate can acquire no relevant information from the
neighbors. By doingso, it diminishes thepossibilit y of random selection.

Figure 19 compares the performanceof HYBRID with the other techniques. Under normal circumstance, HYBRID is a
littl eworsethan SELF, but it showscomparableresults to SELF under churn. In all cases, HYBRID yieldsbetter results than
NEIGHBOR. Figure 20 shows the self estimation rate under normal and churn circumstances. As can be seen in the figure,
even under normal conditions, half of the candidate nodes perform self estimation as the basis for forming the accessibilit y
value. Under extreme churn, most nodes rely on self observations, while 80–90% of nodes attempt self estimation under
severe churn. Thus it can reducethe chanceof random selection.

5.10 Impact of Replication

In loosely-coupled distributed systems, replication is often used to disseminate objects to provide locality in data access
as well as high availabilit y. We investigate the impact of replication to seeif the proposed techniques consistently work in
replicated environments.

For this, we construct replicated environments in which same-sized objects in the traces are grouped according to the
replication factor and the object in the group is considered as a replica. The virtual traceis then constructed based on the
group of the objects. In details, for all objects in the group, a randomly selected download time from each candidate is
recorded in thevirtual trace. Thesimulator then returnsthedownload time accordingto theselected candidate andtheserver.

RANDOM will work same as in no replication environment with a random function to choose both a candidate and a
replicaserver. PROXIM measures latencies from every candidate to every server, and then the pair with the smallest latency

No churn 10000 1000 100
0

10

20

30

40

50

60

Mean Session Length

M
ea

n
E

la
ps

ed
 T

im
e

(s
ec

)

Impact of Churn (Mix, C=8, N=8, Allocation=50k)

OMNI
PROXIM
SELF
NEIGHBOR
HYBRID

(a) Mean download elapsed time

No churn 10000 1000 100
0

1

2

3

4

5

6

Mean Session Length

R
at

io
 to

 O
m

ni
sc

ie
nt

Performance of HYBRID (Mix, C=8, N=8, Allocation=50k)

PROXIM
SELF
NEIGHBOR
HYBRID

(b) Mean ratio to optimal

Figure 19. Performance of HYBRID

0 2 4 6 8 10

x 10
4

0

10

20

30

40

50

60

70

80

90

100

Time

S
el

f E
st

im
at

io
n

R
at

e
(%

)

Self Estimation Rate (Mix, C=8, N=8, Allocation=100k)

No churn
SessionLength=100
SessionLength=1000
SessionLength=10000

Figure 20. Self-estimation rate

1 2 4 8
0

5

10

15

20

25

30

35

40

45

50

Replication Factor

M
ea

n
E

la
ps

e
T

im
e

(s
ec

)
Impact of Replication (Mix, C=8, N=8, Allocation=50k)

OMNI
RANDOM
PROXIM
SELF
NEIGHBOR

(a) Mean download elapsed time

1 2 4 8
1

2

3

4

5

6

7

8

9

10

11

Replication Factor

R
at

io
 to

 O
m

ni
sc

ie
nt

Impact of Replication (Mix, C=8, N=8, Allocation=50k)

RANDOM
PROXIM
SELF
NEIGHBOR

(b) Mean ratio to optimal

Figure 21. Performance under replicated environments

will beselected. SELF is similar to PROXIM: each candidate calculates the accessibilit y for each server, andreports thebest
one. In the case of NEIGHBOR, the candidategathersall the relevant information from the neighbors. If it finds more than
one server, NeighborEstim(o) function is performed against each server, and then the best one is reported to the initiator.
For both SELF andNEIGHBOR, the initiator finally selects the candidatewith thebest accessibilit y.

Figure 21 shows performance changes acrossreplication factors (Rf). It is likely that the performanceof all selection
techniques improve as the replication factor increases because of data locality, and the result agrees with this expectation,
as shown in Figure 21(a). PROXIM has significantly diminished mean download time (nearly half) under replication, but it
is still behind the proposed techniques. SELF and NEIGHBOR outperform the standard techniques over all the replication
factors. In Figure21(b), we can seethat SELF further reducesratio to optimal asreplicationfactor increases, whiletheothers
increase. In the meantime, NEIGHBOR widen gapsagainst standard techniquesalongreplication factors. For example, the
gap between NEIGHBOR andPROXIM is greatly widened at Rf = 2 compared to Rf = 1 (i.e. no replication).

Figure 22 demonstrates the impact of churn under replicated environments. In Figure 22(a), we fix the replication factor
at 4, and observed the performance change over a set of mean session lengths. By and large, the results are similar with the
ones in the non-replicated environment. However, SELF is a littl e worse than PROXIM under extreme churn. NEIGHBOR
is comparable to PROXIM under light churn, but degrades under severe and extreme churn as in no replication. Next,
we investigated performance sensitivity to the replication factor under severe churn (i.e. s = 1000). As can be seen in
Figure 22(b), SELF is better than PROXIM acrossthe replication factor. NEIGHBOR shows worse results than PROXIM
under severe churn same asno replicationcase.

To summarize, the proposed selection techniques consistently outperform the standard techniques in replicated environ-
ments. The results under churn are fairly consistent with the results without replication: SELF is still better than PROXIM
under severe churn, andNEIGHBOR iscomparableto PROXIM under light churn.

6 Related Work

Distributed storage systems. A great deal of research on distributed storagesystemshasbeen carried out for past several
years [4, 24, 18, 12]. Since they target large-scale systems, their main focus is to provide a high degreeof availabilit y
and durabilit y of data objects against independent or correlated failures [10, 28]. Despite ahigh probabilit y of availabilit y,
objects can still be inaccessible to nodes in wide-area, loosely-coupled systems. Our work focuses on accessibilit y in order
to preservepredictabledata access.

Replication strategy. Several techniques have been introduced to improve data access. Some reactive or proactive
replicationtechniqueshavebeen studied in unstructured overlays[11, 26] andstructured overlays[12, 16]. Thesereplication
techniques are helpful in data access by disseminating objects in advance, but they tend to use proximity as a guiding

No churn S=10000 S=1000 S=100
0

5

10

15

20

25

30

35

40

45

50

55

Mean Session Length

M
ea

n
E

la
ps

ed
 T

im
e

(s
ec

)
Impact of Churn under Replication (Mix, C=8, N=8, Allocation=50k, Replication=4)

RANDOM
PROXIM
SELF
NEIGHBOR

(a) Replication factor = 4

1 2 4 8
0

5

10

15

20

25

30

35

40

45

50

Replication Factor

M
ea

n
E

la
ps

e
T

im
e

(s
ec

)

Impact of Churn under Replication (Mix, C=8, N=8, Allocation=50k, Session=1000)

OMNI
RANDOM
PROXIM
SELF
NEIGHBOR

(b) Mean session length = 1000

Figure 22. Impact of churn under replication

principle. We havefoundthat proximity isnot sufficient to guaranteegoodaccessibilit y.
Bandwidth prediction. Prediction of network bandwidth and data transfer times may also be useful to estimate data

accesswhen allocating jobs. Previous studies in [44, 13] suggested prediction methods, but their approaches were based
on explicit network probing. Unlike this, we rely on local, historic observations without intrusive probing which may be
expensive in loosely-coupled environments. In previouswork [21], we showed how a fixed group of client nodescan select
replicated data servers by a soft prediction of server capacity or load. In this paper, we consider where a client should run
such that it hasgoodavailabilit y to a dataserver.

Resource discovery. Resourcediscovery isalso closely related to our work. Condor providesa matchmakingframework
which providesa statelessmatchingservice[35]. Jik-Sooet al. [22] presented a decentralized matchmaking based onaggre-
gation of resource information and CAN (Content Addressable Network) routing [37]. The CCOF (Cluster Computing on
the Fly) project [46] seeks to harvest CPU cyclesby using search methods in a peer-to-peer computingenvironment. These
resourcediscovery techniques focuson the specificationsof individual nodes, e.g. CPU, memory, and disk space. However,
they are lessconcerned about data accessperformance.

Data Grid. Finally, the Data Grid has been proposed to enable researchers to accessand analyzesignificant volumes of
data on the order of terabytes [8, 19, 36, 43, 25]. For efficient data access, the Data Grid provides integrated functionaliti es
for data store, replication, and transfer. However all these efforts have been made under the assumption of well -organized
environments where sites are managed carefully and interconnected with high bandwidth links to each other. Unlike this
assumption, our intention is to accommodatesuch applicationsin loosely-coupled distributed systemswherebandwidth may
belessavailable. For thisreason, wefocusmoreon decentralization, minimal messageoverhead, and predictabledata access.

7 Conclusion

Accessibilit y is a crucial concern for an increasing number of data-intensive applications in loosely-coupled distributed
systems. Such applicationsrequiremoresophisticated resourceselection dueto bandwidth andconnectivity unpredictabilit y.
In this paper, we presented decentralized, scalable, and efficient resourceselection techniques based on accessibilit y. Our
techniques rely only on local, historic observations, so it is possible to keep network overhead tolerable. We showed our
estimation techniques are sufficiently accurate to provide a meaningful rank order of nodes based on their accessibilit y.
Our techniques outperform standard approaches and are reasonably close to the optimal selection. In particular, the self
estimation-based selection approached 1.4 of optimal over time, the neighbor estimation-based selection was within 2.6 of
optimal with 16 neighbors, compared to a proximity-based selection that was over 3 times the optimal. With respect to the
mean elapsed time, the self and neighbor estimation-based selections were 52% and 70% more efficient respectively than
proximity-based selection. We also investigated how our techniques work under node churn and showed that they work

well under churn circumstances in which nodes suffer from lossof observations. Finally, we showed that our techniques
consistently outperform standard techniques in replicated environments.

References

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. Seti@home: an experiment in public-resource computing.
Communications of the ACM, 45(11):56–61, 2002.

[2] D. P. Anderson and G. Fedak. The computational and storage potential of volunteer computing. In Proceedings of CCGRID’06,
pages 73–80, 2006.

[3] G. B. Berriman, A. C. Laity, J. C. Good, J. C. Jacob, D. S. Katz, E. Deelman, G. Singh, M.-H. Su, and T. A. Prince. Montage:
The architecture and scientific applications of a national virtual observatory servicefor computing astronomical image mosaics. In
Proceedings of Earth Sciences Technology Conference, 2006.

[4] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, andG. M. Voelker. Total recall: system support for automated availabilit y management.
In Proceedings of NSDI’ 04, pages 25–25, 2004.

[5] BLAST: Thebasic local alignment search tool, http://www.ncbi.nlm.nih.gov/blast.
[6] BOINC: Berkeley open infrastructure for network computing, http://boinc.berkeley.edu/.
[7] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making gnutella-li ke p2psystems scalable. In Proceedings of

SIGCOMM’03, pages 407–418, 2003.
[8] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The Data Grid: Towards an architecture for the distributed

management andanalysis of large scientific datasets. J. of Network andComputer Applications, 23(3):187–200, 2000.
[9] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: architecture and performance of an enterprise desktop grid system. J.

Parallel Distrib. Comput., 63(5):597–610, 2003.
[10] B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F. Kaashoek, J. Kubiatowicz, and R. Morris. Efficient replica

maintenancefor distributed storage systems. In Proceedings of NSDI’ 06, pages 4–4, 2006.
[11] E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer networks. In Proceedings of SIGCOMM ’02, pages

177–190, 2002.
[12] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage utilit y. In HotOSVIII , pages 75–80, May 2001.
[13] M. Faerman, A. Su, R. Wolski, andF. Berman. Adaptiveperformancepredictionfor distributed data-intensive applications. Technical

Report CS1999-0619, 18, 1999.
[14] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. Idmaps: a global internet host distance estimation service.

IEEE/ACM Trans. Netw., 9(5):525–540, 2001.
[15] FreePastry, http://freepastry.org.
[16] V. Gopalakrishnan, B. Silaghi, B. Bhattacharjee, and P. Keleher. Adaptive replication in peer-to-peer systems. In Proceedings of

ICDCS’04, pages 360–369, 2004.
[17] J. D. Guyton and M. F. Schwartz. Locating nearby copies of replicated internet servers. SIGCOMM Comput. Commun. Rev.,

25(4):288–298, 1995.
[18] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly durable, decentralized storage despite massive correlated failures. In

Proceedings of NSDI’ 05, May 2005.
[19] W. Hoschek, F. J. Jaén-Martı́nez, A. Samar, H. Stockinger, andK. Stockinger. Datamanagement in an international datagrid project.

In Proceedings of GRID’00, pages 77–90, 2000.
[20] S. Hotz. Routing information organization to support scalable interdomain routing with heterogeneous path requirements. PhD

thesis, 1994.
[21] J. Kim, A. Chandra, and J. B. Weissman. Exploiting heterogeneity for collective data downloading in volunteer-based networks. In

Proceedings of CCGRID’07, pages 275–282, 2007.
[22] J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Sussman. Resourcediscovery techniques in distributed desktop

grid environments. In Proceedings of GRID 2006, September 2006.
[23] D. Kondo, A. A. Chien, and H. Casanova. Resourcemanagement for rapid application turnaround onenterprise desktop grids. In

Proceedings of SC’04, page 17, 2004.
[24] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, andB. Zhao.

Oceanstore: An architecture for global-scale persistent storage. In Proceedings of ACM ASPLOS, November 2000.
[25] Y.-F. Lin, P. Liu, and J.-J. Wu. Optimal placement of replicas in data grid environments with locality assurance. In Proceedings of

ICPADS’06, pages 465–474, 2006.
[26] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured peer-to-peer networks. In Proceedings of

SIGMETRICS’02, pages 258–259, 2002.
[27] N. Massey, T. Aina, M. Allen, C. Christensen, D. Frame, D. Goodman, J. Kettleborough, A. Martin, S. Pascoe, and D. Stainforth.

Data accessand analysis with distributed federated data servers in climateprediction.net. Advances in Geosciences, 8:49–56, June
2006.

[28] S. Nath, H. Yu, P. B. Gibbons, andS. Seshan. Subtletiesin toleratingcorrelated failuresin wide-areastoragesystems. In Proceedings
of NSDI’ 06, pages 17–17, 2006.

[29] E. Ng andH. Zhang. Predictinginternet network distancewith coordiantes-based approaches. In Proceedingsof IEEEINFOCOM’02,
pages 170–179, 2002.

[30] D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and implementation tradeoffs for wide-arearesourcediscovery.
In Proceedings of HPDC’05, 2005.

[31] Özgür B. Akan. On the throughput analysis of rate-based and window-based congestion control schemes. Comput. Networks,
44(5):701–711, 2004.

[32] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose. Modeling tcp reno performance: a simple model and its empirical validation.
IEEE/ACM Trans. Netw., 8(2):133–145, 2000.

[33] PlanetLab, http://www.planet-lab.org.
[34] PPDG: Particlephysics data grid, http://www.ppdg.net.
[35] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resourcemanagement for high throughput computing. In Pro-

ceedings of HPDC’98, page 140, 1998.
[36] K. Ranganathan andI. Foster. Decouplingcomputationand datascheduling in distributed data-intensive applications. In Proceedings

of HPDC’02, page 352, 2002.
[37] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker. A scalable content-addressable network. In Proceedings of

SIGCOMM’01, pages 161–172, 2001.
[38] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems.

Lecture Notes in Computer Science, 2218:329+, 2001.
[39] Search for extraterrestrial intelli gence(SETI) project, http://setiathome.berkeley.edu.
[40] I . Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookupservice for internet

applications. In Proceedings of SIGCOMM’01, pages 149–160, 2001.
[41] L. Tang andM. Crovella. Virtual landmarks for the internet, 2003.
[42] Y.-M. Teo, X. Wang, and Y.-K. Ng. Glad: a system for developing and deploying large-scale bioinformatics grid. Bioinformatics,

21(6):794–802, 2005.
[43] S. Venugopal, R. Buyya, and L. Winton. A grid servicebroker for scheduling e-science applications on global data grids: Research

articles. Concurr. Comput. : Pract. Exper., 18(6):685–699, 2006.
[44] R. Wolski. Dynamically forecasting network performance using the network weather service. Cluster Computing, 1(1):119–132,

1998.
[45] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz. Tapestry: A resili ent global-scale overlay for service

deployment. In IEEEJournal on Selected Areas in Communications, 2003.
[46] D. Zhou and V. Lo. Cluster computing onthe fly: resource discovery in a cycle sharing peer-to-peer system. In Proceedings of

CCGRID’04, pages 66–73, 2004.

