A Nonblocking Approach for Reaching an Agreement on Request Total Orders *

Yun Wang
Key Lab of CNII, MOE
School of Computer Science and Engineering
Southeast University, Nanjing, China, 210096
yunwang @seu.edu.cn

Abstract

In distributed systems that use active replication to
achieve robustness, it is important to efficiently enforce
consistency among replicas. The nonblocking mode helps
to speed up system execution. Unfortunately, this benefit
comes at the expense of introducing decision conflicts when
the replicas form a single logical token ring and client re-
quests are processed in sequence following the ring. In or-
der to reach an agreement regarding request total orders,
this paper proposes a forward-confirmation (FC) approach
to identify and solve decision conflicts when up to k suc-
cessive replicas fail simultaneously. The FC approach can
obtain consistent decisions among replicas. An implemen-
tation of the FC approach, namely, the queueing method, is
proposed. Test results show that our protocol in the non-
blocking mode outperforms the Totem protocol regarding
delays and failure recovery.

Keywords: Agreement, nonblocking, performance, replica
consistency, total order.

1 Introduction

As applications of distributed systems continue to grow,
robustness becomes more and more important. Usually a
critical application service is replicated. Replicas run con-
currently on different computers. The active replication
technique is an effective approach [6], [11] which gives all
replicas the same role without any centralized control. In
distributed systems that use active replication, failures are
masked by a sufficiently large group of replicas that fail
independently. Replicas execute a total ordering protocol

*This work was supported in part by NSF grants ANI 0073736, EIA
0130806, CCR 0329741, CNS 0422762, CNS 0434533, and CNS 0531410
in USA, and NSFC 60273038, NCET-04-0478 by MOE, and Jiangsu STT
Project in China. This work of Yun Wang was completed when visiting
FAU.

Jie Wu
Dept. of Computer Science and Engineering
Florida Atlantic University
Boca Raton, FL 33431, USA
jie@cse.fau.edu

which guarantees that requests issued by clients will be pro-
cessed by all functioning replicas in the same order. As-
suming that the behavior of a replica is deterministic, repli-
cas will obtain the same ending state from the same starting
state. The active replication technique is useful in many ap-
plications, such as CORBA fault tolerant service [10] and its
applications [15], P2P file systems [18], globally distributed
data repository [6] and real-time scheduling in fault-tolerant
systems [21].

There are numerous literatures regarding total ordering
protocols [7], especially using the logical token ring [1],
[2], [12]. A logical token ring is composed of replicas. Nor-
mally, a ring has one token circulating in an unidirectional
way. Replicas hold the token in turn. Only the token holder
can make a decision. Achieving a consistent total order for
client requests is non-trivial in distributed systems that are
subject to various failures. To our best knowledge, exist-
ing total ordering protocols using the logical token ring are
blocking in failure scenarios: when there is failure, all func-
tioning replicas in the corresponding ring are paused until
an agreement about the evolving ring and current decision is
reached. In the nonblocking mode, a replica independently
handles the failures as they occur. However, the benefit of
nonblocking comes at the expense of introducing decision
conflicts because a new decision might be made before the
current decision is resolved. Hence, the challenges in the
nonblocking mode include determining how to handle deci-
sion conflicts and how to maintain consistency in the deci-
sions of the replicas in the presence of decision conflicts.

In the nonblocking mode, a client request is first broad-
cast. Then a message containing the decision is broadcast
in terms of associating the request with a total-order value.
A decision is an action that associates a client request with
a total-order value. Due to decision conflicts, replicas need
to confirm the decision locally. A decision confirmation is a
commitment on the relationship between the request and the
total-order value in the decision. A decision is not final be-
fore its confirmation. In the system’s viewpoint, if all func-
tioning replicas confirm the same decision, an agreement

client

requests

Figure 1. The conflicting decisions of m: (ps,
r5y, 1y and m’: (po, r1, 1). The order refers to
the event sequence.

on the decision is reached. No explicit agreement operation
exists in the nonblocking mode.

Regarding the scenario illustrated in Figure 1, 5 replicas
p1, - -+, P5 in sequence, form a logical token ring. 10 client
requests of 7y, - - -, r1¢ are broadcast. Assume that replicas
receive the client requests in arbitrary orders. The current
token-holding replica can make a decision, usually repre-
sented by a tuple (replicalD, requestID, TONum), where
the parameters stand for decision-making replica, client re-
quest, and total-order value, respectively. For simplicity, we
assume that one decision is associated with only one client
request. The replica randomly chooses a received and un-
ordered client request and computes the total-order value in
its decision (Section 2.2). Suppose p; currently holds the
token, and broadcasts its decision m of (py, r5, 1), but p;’s
immediate successor ps does not receive m due to p;’s fail-
ure. po will observe a timeout exception, and regard this as
atoken loss. Hence, it generates a new token independently.
Since po does not receive m, it still associates the total-order
value 1 in its decision m’ of (ps, 71, 1) and broadcasts m’.
m and m’ are in conflict because they break the one-to-one
correspondence between the client requests and the total-
order values.

In this paper, we propose a forward-confirmation (FC)
approach to resolve decision conflicts in the nonblocking
mode. Using the FC approach, a replica locally confirms a
decision made by p; based on a subsequent decision made
by pis successor, namely the first conflict-free decision
(Section 2.3). The first subsequent conflict-free decision in-
creases the total-order value by one correct decision among
the conflicting decisions. The FC approach needs to (1)
identify a decision conflict; (2) determine the number of
decisions in conflict; and (3) confirm one decision among
the conflicting decisions. It is difficult to guarantee consis-
tency among replicas for the following two reasons. First,
areplica may locally receive parts of some conflicting deci-
sions due to failures. In Figure 1, p4 finds m and m/’ in con-
flict, but ps does not notice it. Second, it is an independent

operation when a replica confirms a decision. In the exam-
ple, p2 and p4 confirm m or m’ independently. We prove
that all functioning replicas confirm the same decisions us-
ing the FC approach, and based on the confirmed decisions,
a consistent total order of client requests is obtained.

In our previous work [22], we proposed a nonblocking
total ordering protocol under the assumption that no two
successive replicas fail simultaneously. The assumption is
relatively strong in practice. We relax this in the FC ap-
proach and address a more general problem: replicas reach
an agreement on the total-order values of client requests
when up to k(0 < k < |n/2] — 1) successive replicas fail
simultaneously. Note that the FC approach does not affect
the other parts of the protocol presented in [22], including
token, request, and membership management. Regarding
the issues of handling multiple tokens, ring (re)construction
and group membership, please refer to [22].

Our contributions in this paper can be summarized as
follows: (1) we introduce the concept of decision conflicts
into total ordering protocols in a nonblocking mode; (2) we
present the FC approach to handle decision conflicts when
up to k successive replicas fail simultaneously in a ring and
yet are still regarded as eligible to satisfy consistency; (3)
we propose an FC implementation, and performance results
show that the nonblocking mode helps to speed up system
execution.

The remainder of the paper is organized as follows. Sec-
tion 2 describes the model. The FC approach and its correct-
ness proof are presented in Section 3. An implementation
and performance analysis are given in Section 4. Section 5
reviews the related work. Section 6 concludes this paper.

2 Model
2.1 The Model and Assumptions

The distributed system under study comprises n repli-
cas of pi1, pa, - -+, pn. Each replica resides on a different
computer. Replicas communicate with each other only via
message exchange. There is no upper bound of time for
message transmission or action execution.

Replicas form a logical token ring. Normally, only one
token circulates in the ring in an unidirectional way. Only
the current token holder can make a decision. After the cur-
rent token holder broadcasts its decision, it automatically
releases the token. Its immediate successor obtains the to-
ken if the message containing the decision is received. To
simplify the discussion, we assume the following: (1) the
replicas are fully-connected although we require that the
replicas are inter-reachable; (2) each time, a replica can only
send one message; (3) a message can contain only one de-
cision; (4) a decision can randomly associate at most one

received and unordered client request. Initially, replicas be-
gin to function, and have the same ring view, which covers
all the replicas, and the same ring version, which is 1. Each
replica knows its position in the ring. Usually, the replica
with the smallest ID initially holds the token.

In our model, we assume that replicas receive the same
set of client requests in arbitrary orders. If a replica does not
receive a message from its immediate predecessor, the im-
mediate predecessor can be regarded as a failure regardless
of the underlying reasons, such as replica crash, message
loss, or a slow link. We treat this as replica failure. We as-
sume that at least [n/2] + 1 replicas do not fail. A system
can mask up to k (k < [n/2] — 1) successive replicas’ fail-
ures simultaneously. We do not consider network partition
in the paper. Please refer to [13] for various solutions re-
garding the topic. Replicas conform to the fail-stop model,
i.e., a failed replica will not take part in computation.

Each replica is equipped with a queue and maintains a
waiting timer. Each replica is also equipped with an FC
implementation and runs the FC approach locally.

2.2 Decision and Confirmation

A decision is an action to associate a client request with
a total-order value. In a fault-free environment, a decision is
represented by (replicalD, requestID, TONum), where the
parameters stand for decision-making replica, client request
and total-order value, respectively. Each time, a replica can
only make one decision.

The current token holder always makes a decision even
if no client requests are available. The reason for this is
that the current token holder may not have unordered client
requests, but it is still necessary to reflect the ring’s opera-
tional status via token circulation. Thusly, the requestI D
issetto NULL.

In faulty environments, the failed replica should be re-
moved from the ring. This incurs a ring evolution. We
should include this information in the decision. We use a
ring version and a ring view to represent the ring evolution
information. Ring version is an assigned value that is in-
creased by 1 once a ring evolution occurs. The ring view is
the set of current replicas. Hence, a decision can be repre-
sented by (replicalD, requestID, TONum, rversion, rview),
where rversion and rview stand for ring version and ring
view, respectively.

Due to decision conflicts (Section 2.3), a decision is not
final before its confirmation. A decision confirmation is a
commitment of the relationship between the request and the
total-order value in the decision. Once a decision is con-
firmed by all functioning replicas using the FC approach,
the order of the client request in the decision is agreed upon.
Once the orders of all client requests are agreed upon, the
total-ordered sequence of client requests is formed by sort-

ing client requests in ascending order of their associated
total-order values. Due to space limitation, we can only
briefly specify the method we use to set a total-order value
in a decision.

Usually, the total-order value starts at 1. Therefore, the
very first decision in a ring includes the total-order value 1.
Thereafter, the current token holder sets a total-order value
of 1 larger than the maximum total-order value in decisions
it has received. Thusly, the total-order values in the deci-
sions made by successive replicas are in ascending order.

We now consider the example in Figure 1 in a fault-free
environment. Suppose p; is the current token holder. It
makes a decision of (p;, r4, 1) and broadcasts it, and all
of the replicas receive it. Hence, p;’s immediate succes-
sive replica p, automatically obtains the token. Because the
maximum total-order value in decisions ps receives is 1, pa
sets 2 to TONwum in its decision. A decision of (po, r3,
2) is made and broadcast. This process continues until 10
client requests associate total-order values in the decisions.
Each replica receives the decisions, confirms the decisions,
and sorts the client requests according to their associated
total-order values in ascending order. Therefore, replicas
locally obtain a total-ordered sequence of client requests be-
ginning with r4 and r3 and so on, no matter what the receiv-
ing orders of the client requests are. The local sequence of
client requests on each replica is consistent among replicas.

2.3 Conflicted Decision

In a token ring, the current token holder p; normally
broadcasts its decision and automatically releases the to-
ken by sending a message containing the decision. Once
p; releases the token, it sets a timer locally. It expects to
re-obtain the token before the timer expires. p;;; receives
the decision made by p; and automatically obtains the to-
ken. However, if p;;; does not receive the message con-
taining the decision and notices a local timeout exception,
pi+1 regards it as a token loss and generates a new token.
In the nonblocking mode, decision conflicts may occur. As
shown in Figure 1, m and m’ are conflicting decisions that
mistakenly share the same total-order value 1 in different
decisions.

Definition 1. (Conflict) For any decisions m and m', m’
and m are conflicting decisions if and only if the following
expression holds:

m.replical D # m/.replical D A m. TONum =
m/ . TONum.

In order to maintain the total order property, only one
of the conflicting decisions could be confirmed by replicas
using the FC approach discussed in Section 3.

@ detect afailure

(a) The conflicting decisions of m1, mo and m3 when p; and p2
fail. my is (p1, 77, 1, 1, {p1. p2. p3. p4. p5}). ma is (p2, 1, 1,

2, {pa. p3. pa. p5}). m3 is (p3, 73, 1, 2, {p3, pa. ps}). ma is
(p4,76,2,2, NULL).

(2 mistakenly detect afailure

@ detect afailure

5 @<r7eciei>v_e ma

4

(b) The conflicting decisions of m1, m2 and m3 when p2 and p3
fail. 1, mo and mg are the same as in (a). m4 is (p4, 76, 2, 2,
{p1,pa,p5}).

Figure 2. The scenarios of conflicting deci-
sions when k = 2.

Definition 2. (Conflict-freedom) For any decisions m and
m/, m' is a conflict-free decision to m if and only if the
following expression holds:

m.replical D # m/ .replical D A m' TONum >
m.TONum.

Consider the scenarios of conflicting decisions when k =
2 in Figure 2. Suppose that p; and p fail in Figure 2(a).
When p; holds the token, it makes a decision m; of (p1, r7,
1, 1, {p1, p2, P3, P4, p5}) and broadcasts m;. pa does not
receive mq; it observes a timeout exception, and regards
it as a token loss. po generates a new token, and regards
its immediate predecessor as a failure. Therefore, the ring
evolves. py makes a decision mg of (pa, r1, 1, 2, {p2, ps,
P4, p5 }) and broadcasts mo. Again, p; does not receive ma;
it finds a timeout exception, and regards it as a token loss.
ps generates a new token. It does not receive m;, either.
Thusly, ps still sets TONwum to 1, and makes a decision
ms of (p3, r3, 1, 2, {ps3, Pa, P5}). M1, Mo and my are

conflicting decisions. As shown in Figure 2(b), if ps and p3
fail, and if the failing replica p, mistakenly regards p; as
failed, m1, ms and mgs, which are made by p;, p2 and p3
respectively, are conflicting decisions, too. We observe that
in these two scenarios, my is almost the same except for its
ring view.

3 The FC Approach

3.1 The Overview

In order to achieve the system objective, i.e., replicas
reach an agreement on the total-order values of client re-
quests when up to k successive replicas fail simultane-
ously, the FC approach is proposed. In the nonblocking
mode, there is no explicit agreement operation for a deci-
sion. Replicas confirm the decisions independently and do
not exchange such confirmation results.

The main idea of the FC approach is to let a replica con-
firm a decision by the decision’s first subsequent conflict-
free decision. Consider that a replica tries to confirm
my. It finds that a decision cfd is the first subsequent
conflict-free decision to m,. Because cfd is conflict-free
to my, cfd.TONum > m1.TONwum. Further, because
cfd is the first subsequent conflict-free decision to m;,
based on the rules to set total-order values in decisions,
cfd TONum = m1. TONum+1. The reason behind pro-
gressing the total-order value in cfd is that cfd.replical D
receives at least one of the conflicting decisions. The FC
approach needs to trace which conflicting decision is con-
firmed by cfd.replical D, and let the host replica confirm
the same conflicting decision.

In fault-free environments, a replica confirms a decision
m made by p; by the decision m’ made by p;’s immediate
successor p;41. This is because p; 1 always receives m,
and sets m’. TONum to m. TONum + 1. Thusly, m' is
always the first subsequent conflict-free decision to m. It
is more complicated in faulty environments. In Figure 2(a),
ps tries to confirm one conflicting decision among m1, mo
and mg. Based on the assumption that only p; and p, fail,
ps does not fail and hence p,4 receives mg. Then, py auto-
matically obtains the token. It makes a decision my of (py,
re, 2, 2, NULL). my is the first subsequent conflict-free
decision to m1. ps receives my, and using the FC approach,
it confirms m3. A tricky situation is that although k = 2
holds in both Figure 2(a) and Figure 2(b), and m;, ms and
mg are conflicting decisions, ps confirms mg in Figure 2(a)
while confirming m; in Figure 2(b) (details are discussed in
Section 3.2).

The function of the FC approach has two tasks. In the
first task, a replica checks every message containing a de-
cision it receives until it finds the first subsequent conflict-
free decision cfd. The replica stores all conflicting deci-

Algorithm 1 FC

Require: mi: (p;, req,val, ringver, ringview).
Ensure: A decision is confirmed.
1: Initialization: queue < NULL ; queue[l] «— m; z — 1;
cfd— NULL;
Task 1: (Find cfd for m1)
2: while (True) do
3: Receive a decision m made by p;’s j* (j < (k + 1))
successor

4: if (m.TONum is val) then

5: queue[j + 1] «— m

6: else if (queue[j].TONum is val and m.TONum is
(val+1)) then

7: cfd «— m; z « j; break;

8: endif

9: end while

Task 2: (Confirm a decision in queue based on cfd)
10: if (z is 1) then
11: Confirm queue[1]
12: elseif (cfd.rview is NULL) then
13: Confirm queue[z]; Discard queue[1] to queue[z — 1];
14: else
15: Confirm queue[1]; Discard queue[2] to queue|z];
16: end if

sions it observes during the processing. In the second task,
the replica confirms one conflicting decision based on cfd
by deduction. The FC approach guarantees that (1) for a
set of conflicting decisions, only one decision is confirmed
by each replica independently; and (2) replicas confirm the
same decision even if some replicas suffer from conflicts
while the others do not. Regarding confirmed decisions, a
one-to-one correspondence is set up between client requests
and total-order values.

3.2 The FC Algorithm

In this section, we first discuss the FC algorithm (Al-
gorithm 3.1) in general. Then we describe the algorithm
in two cases, i.e., when exactly k successive replicas fail
simultaneously and when up to k successive replicas fail
simultaneously. Suppose that a decision m; of (p;, req,
val, ringver, ringview) is under consideration. The pa-
rameters in m; mean that replica p; associates a total-order
value val to a client request 7eq when the ring version is
ringver and the ring view is ringview. cfd is the first
subsequent conflict-free decision to m;. In the algorithm,
we use two additional variables. One is queue, which is a
variable-length array to temporarily store m;’s conflicting
decisions. The other is z. It is an integer, and is used for
recording the index in the queue of the conflicting decision
which is exactly before cfd.

In the initialization, queue is emptied. m; is inserted
into queue with the index of 1. zis setto 1. ¢fdis NULL.

Task 1: Find cfd for m; (lines 2-9).

A replica checks every message containing a decision m
it receives. If m is made by p;’s j* successor and j < (k+
1), the replica goes on to further check on m. Otherwise,
the replica just ignores m because m is not related to m1’s
confirmation. If m.T’ONum equals val, according to the
definition of conflict, m and m; are conflicting decisions.
m is inserted to queue with the index of j 4+ 1. Otherwise,
if m.TONwum equals val 4+ 1, and further if the decision
just before m is a conflicting decision to my, m is the first
subsequent conflict-free decision to m;. Therefore, cfd is
m made by p; ., and z is set to j.

Task 2: Confirm a decision in queue based on cfd (lines
10-16).

If z = 1, it means only that m; is in queue, and that
me is the cfd. There is no decision conflict. Hence, m;
is confirmed. Otherwise, the further processing depends on
cfd.rview.

1. cfd.rviewis NULL. This means that p; . regards its
immediate predecessor p;4,_; as normal because p; .
receives m., and no ring evolution occurs. Therefore,
the z — 1 successive replicas from p; to p;4,_o fail.
Only m is confirmed, and all the other conflicting de-
cisions, namely mq, ---, m,_1, which are in queue
with the index from 1 to z — 1, are discarded.

2. cfd.rview is not NULL. This means that p; . re-
gards its immediate predecessor p;4,_; as a failure. It
generates a new token and makes a new decision in-
cluding the evolving ring information. Because simul-
taneously failed replicas are successive, and only one
of the replicas making conflicting decisions succeeds,
the only possible situation is that the replica making
the first conflicting decision m; does not fail. z — 1
successive replicas from p;41 to p;4+.—1 fail. p; does
not fail. p;, receives m;. Therefore, only m; is con-
firmed and all the other conflicting decisions, namely
ma, - -+, M,, which are in queue with the index from
2 to z, are discarded.

We describe the FC algorithm in the following cases.

Exactly k£ Successive Replicas Fail Simultaneously

In Task 1, my. o, made by p;’s (k + 1) successive suc-
cessor, is cfd .

Like the discussion in Section 3.1, if &k = 0, cfd is mo
made by p; 1. Now k£ > 0 is under consideration. If p; 1
does not receive my, consequently, p;+1 generates a new
token and makes a new decision my of (p;41, req;, val,
ringver+1, ringview-{p;}). Then p; broadcasts my and
fails. p; o does not receive my or mo. It then assumes there
has been a token loss and generates a new token. Further, it
makes a new decision ms of (p;12, regs, val, ringver+l,

ringview-{p;, p;+1}). It broadcasts mg and fails. All k de-
cisions made by p;’s k successive successors associate the
same total-order value val. The k decisions, i.e., mag, - - -,
my+1, are conflicting decisions to m;. The k decisions plus
my are in conflict. Furthermore, p;; x11, p;’s (k+1)*" suc-
cessive successor, does not view all of its (k + 1) succes-
sive predecessor’s failures simultaneously because exactly
k successive replicas fail simultaneously. It receives at least
one of the conflicting decisions. Hence, my_2 associates a
total-order value val + 1. Therefore, cfd is my4o.

A replica may receive parts of the conflicting decisions
because some of the conflicting decisions may be lost, or
some of the failed replicas do not make any decisions before
they fail. No matter which case, my o is always necessary.

In Task 2, a replica confirms one decision among the
conflicting decisions based on my_o. If £ = 0, no decision
conflict exists. m is confirmed. Otherwise, if my42.1view
is NULL, only my1 is confirmed. If myo.rview is not
NULL, only m; is confirmed.

We now reconsider the example when k£ = 2 in Figure
2. In the situation of Figure 2(a), p; and po fail simultane-
ously. py and ps try to confirm m; locally. p4 and ps5 receive
m1, me and ms. According to Task 1, p4 and p5 know that
cfd is a decision made by p;’s 3"¢ successor py. ps re-
ceives mg and automatically obtains the token, then makes
a decision my of (p4, 76, 2, 2, NULL). Therefore, cfd is
my. According to Task 2, because my.rview is NULL,
p4 and ps confirm mg and discard both m; and ms. In the
situation of Figure 2(b), p4 and ps try to confirm m;, too.
ps receives conflicting decisions mq, mo and ms. py re-
ceives mq. Both of the replicas know that cfd is m,4 and
wait for it. p4 does not receive mg, observes a timeout ex-
ception, and generates a new token. Because p, receives
my with m1. TONum = 1, py sets 2 to my. TONum. Be-
cause p4 regards ps as a failure and & = 2, the only possi-
ble situation is that ps and po fail simultaneously. Hence,
the ring evolves. p, makes a decision my of (p4, 76, 2, 2,
{p1,p4,05}). psa and ps receive my. Again according to
Task 2, because my.rview is not NULL, p4 and ps con-
firm my and discard ms and mj if received. So, in the two
scenarios when k& = 2, mg is confirmed in Figure 2(a) while
my 1s confirmed in Figure 2(b).

Up To k Successive Replicas Fail Simultaneously

If up to k successive replicas fail simultaneously, mgo
made by p; k41 1s possibly not the first conflict-free deci-
sion to m1 made by p;. For instance in Figure 2(a), suppose
k = 2 and actually only 1 replica p; fails. cfd is mg rather
than my. The first subsequent conflict-free decision appears
earlier because a system may suffer from a number of fail-
ures less than k.

The processing is exactly the same as that shown in Al-
gorithm 3.1. In Task 1, c¢fdis m ;1. In Task 2, if 2 = 1, no
conflict decision exists, and m is confirmed. Otherwise, if

cfd.rview is NULL, only m, is confirmed. All the other
conflicting decisions, i.e., my, ---, m,_1, are discarded.
If cfd.rview is not NULL, only m; is confirmed. All the
other conflicting decisions, i.e., mao, - - - , m,, are discarded.

Now we revisit the example in Figure 2. In the situation
of Figure 2(a), as we discussed, p4 and p5 confirm m3. For
ps, it receives mg as its first decision without receiving mq
and meo. Thusly, ps tries to confirm mg rather than m, or
mso because it does not even know of these decisions’ ex-
istence. Then p3 receives my. It is the cfd to mg. There
is no decision conflict. According to Task 2, ps confirms
ms. Until now, all functioning replicas in Figure 2(a) con-
firm m3 among my, mo and ms. The processing of m1’s
confirmation is similar in Figure 2(b).

As we discussed, the FC approach can determine a def-
inite set of conflicting decisions to any decision m;, and
therefore finds ¢fd. The FC approach further traces the
decision confirmed by cfd.replical D and allows the host
replica to confirm the same decision. All functioning repli-
cas locally confirm the same decision among conflicting de-
cisions using the FC approach, and then they achieve a con-
sistent total order of client requests based on all confirmed
decisions.

4 Implementation and Analysis

If up to k successive replicas fail simultaneously, up to
k + 1 decisions are in conflict. These k£ + 1 decisions are
temporarily stored in a local queue. The queue length rep-
resents how many conflicting decisions there are, and also
reflects how long a replica has to wait before launching the
FC approach. A straightforward way to implement the FC
approach is to set up a queue with the maximum length of
k + 1. The FC implementation with the queueing method is
presented in this section. Further, the performance issue is
analyzed.

4.1 The Queueing Method

Each replica is equipped with a local queue with the
maximum length of k£ + 1 if up to k successive replicas fail
simultaneously. The worst case work flow in the queueing
method is described as follows. If p; tries to confirm m1,
it inserts m; to its queue as the first element. p; possibly
receives k + 1 conflicting decisions to m1, and inserts them
to the queue. As soon as p; receives the first subsequent
conflict-free decision my-2, it locally launches the FC ap-
proach, and confirms either m; or mg; based on my4o.
Then p; empties the queue, inserts my2, and starts to con-
firm myyo.

It is not necessary for p; to use the maximum length of
the queue because the number of failed successive replicas
may be less than k in an FC processing. Hence, fewer than

NBTOP —+—
60 I Totem

50
40
30
20 -

+—*e et 4+
10 f + 1

The Average Total-Ordering Delay (ms)

0 L L L L L L L L L L L L
100 200 300 400 500 600 700 800 90010001100120013001400
Request Size (bytes)

Figure 3. The relationship between request
size and request total-ordering delay.

k + 1 conflicting decisions are inserted to the queue. The
rest of the procedure remains the same.

4.2 Performance Comparison

The FC approach is added to the previous protocol
in [22] called NBTOP, which is implemented with Vi-
sual C++ 6.0. We compare the performance of NBTOP
with the Totem protocol under the same circumstances. A
Spread version 3.17.4 of Totem is used which is available at
http://www.spread.org. The test environment is composed
of 5 PCs (Windows XP, Intel 1.6GHz Pentium 4, 1GB of
RAM, connecting to 100Mbps Switched Ethernet). The ma-
chines compose a logical ring.

Figure 3 demonstrates the relationship between request
size and request total ordering delay. It shows that the aver-
age total ordering delay in NBTOP and Totem is quite even
- around 12ms - if the request size is less than 600 bytes.
Regarding the NBTOP, the average total ordering delay re-
mains stable with the growth of the request size. The delay
is 13.134ms when the request size is 1400 bytes. Compara-
tively, the average total ordering delay in the Totem protocol
goes up drastically. The delay is 61.278ms with the request
size of 1400 bytes.

Further, we observe that a replica using NBTOP takes,
on average, 11ms to detect and recover from its immediate
predecessor replica failure, and 11.455ms from 2 succes-
sive replicas’ simultaneous failures if the waiting timer is
set to 100ms. These are better results than when using the
Totem protocol of 40ms with the same interval of Token
Loss timeout.

5 Related Work

Total-ordering protocols. Several literatures addressed
the issue of message total ordering with the logical token
ring. In Totem developed by UCSB, a symmetrical fault
tolerant protocol based on the logical token ring was im-
plemented, including total ordering protocol with single
ring and multiple rings respectively [1], [2]. The function-
ing replicas had to stay in the Recovery state before they
were switched to the Operational state if some faults oc-
curred and all functioning replicas needed to reach an ex-
plicit agreement on their decisions about the ring before any
new decisions were made. [12] proposed a total ordering
protocol with a logical token ring. A decision needed to
wait for ACKs from all the other replicas in the presence
of failures. Total order is useful in many applications. [3]
proposed a method to sort a directed graph geographically
in a total order for processing line segments.

Consensus Problem. [9] gave an impressive result that
any protocol for consensus problem in asynchronous dis-
tributed systems has the possibility of nontermination, even
with only one faulty process. Chandra and Toueg gave a
solution to the consensus problem with failure detectors,
which at least satisfied ¢S (the properties of both even-
tually strong completeness and eventually weak accuracy)
requirements [4]. The communication problem in the con-
sensus problem also attracts much research. [7] presented a
survey and classification on total order broadcast and mul-
ticast algorithms. [5] showed different kinds of algorithms
to achieve group communication. A secure ring group com-
munication protocol was studied in [14]. [8] applied group
communication to reach dynamic load balancing. [19] pro-
posed new specifications of dynamic reliable broadcast, dy-
namic atomic broadcast and group membership.

Nonblocking approaches. There are numerous liter-
atures on the nonblocking property and its applications.
[17] presented the protocols solving the nonblocking atomic
commitment problem. A nonblocking k-fold multicast net-
work is studied in [23]. A nonblocking checkpointing mode
was given in [16] to support concurrency in the execution of
state saving and other simulation-specific operations. Non-
blocking synchronization in concurrent programming was
studied in [20]. The research results showed that nonblock-
ing mode helps improve system effectiveness.

6 Conclusion

This paper presents the FC approach to achieve total-
order values of client requests in a nonblocking mode with
the logical token ring. It defines the decision conflict in-
troduced by the nonblocking mode. The FC approach is
presented in detail to handle decision conflicts when up to k

successive replicas fail simultaneously. A queueing method
to implement the FC approach is proposed. Test results
show that the nonblocking mode helps to improve the total
ordering protocol’s performance compared to Totem’s. We
will further study on how to improve delay performance in
a large ring in order to make the system performance better.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

D. A. Agarwal, L. E. Moser, S. P. Melliar-Smith, and
R. K. Budhia. The Totem multiple-ring ordering and
topology maintenance protocol. ACM Transactions on
Computer Systems, 16(2):93-132, 1998.

Y. Amir, L. E. Moser, S. P. Melliar-Smith, D. A. Agar-
wal, and P. Ciarfella. The Totem single-ring order-
ing and membership protocol. ACM Transactions on
Computer Systems, 13(4):311-342, 1995.

L. Arge, D. E. Vengroff, and J. S. Vitter. External-
memory algorithms for processing line segments in
geographic information systems. Algorithmica, 47:1—
25, 2007.

J. Chandra and S. Toueg. Unreliable failure detectors
for reliable distributed systems. Journal of the ACM,
43(2):225-267, 1996.

G. V. Chockler, 1. Keidar, and R. Vitenberg. Group
communication specifications: A comprehensive
study. ACM Computing Surveys, 33(4):1-43, 2001.

H. Decher, B. L. Irun-Briz, M. R. Juan-Marin, J. E. Ar-
mendariz, and F. Munoz-Escoi. Wide-area replication
support for global data repositories. In Proceedings of
16th International Workshop on Database and Expert
Systems Applications, pages 1117-1121, 2005.

X. Defago, A. Schiper, and P. Urban. Total order
broadcast and multicast algorithms: Taxonomy and
survey. ACM Computing Surveys, 36(4):372-421,
2004.

S. Dolev, R. Segala, and A. Shvartsman. Dynamic
load balancing with group communication. Theoreti-
cal Computer Science, 369:348-360, 2006.

M. J. Fisher, N. Lynch, and M. S. Paterson. Impossi-
bility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374-382, 1985.

Object Management Group. Fault tolerant CORBA,
common object request broker architecture, v.3.0,
2002.

[11]

[16]

[17]

[21]

R. Guerraoui and A. Schiper. Software-based replica-
tion for fault tolerance. IEEE Computer, 30(4):68-74,
1997.

W. Jia, J. Cao, T. Cheung, and X. Jia. A multicast
protocol based on a single logical ring using a vir-
tual token and logical clocks. The Computer Journal,
42(3):402-420, 1999.

J.Wu. Distributed System Design. CRC Press, 1998.

K. Kihlstrom, L. E. Moser, and S. P. Melliar-Smith.
The secure ring group communication system. ACM
Transactions on Information and System Security,
4(4):371-406, 2001.

P. Narasimhan, L. E. Moser, and S. P. Melliar-Smith.
Lessons learned in building a fault-tolerant CORBA
system. In International Conference on Dependable
Systems and Networks, pages 39-44, 2002.

F. Quaglia and A. Santoro. Nonblocking checkpoint-
ing for optimistic parallel simulation: description and
an implementation. IEEE Transactions on Parallel
and Distributed systems, 14(6):593-610, 2003.

M. Raynal. Revisiting the non-blocking atomic com-
mitment problem in distributed systems. In Proceed-
ings of 2nd IPPS IEEE Workshop on Fault-Tolerant
Farallel and Distributed Systems, pages 116-133,
1997.

S. Sai and J. Carter. Flexible consistency for wide area
peer replication. In Proceedings of 25th IEEE Interna-
tional Conference on Distributed Computing Systems
(ICDCS 2005), pages 199 — 208, 2005.

A. Schiper. Dynamic group communication. Dis-
tributed Computing, 18(5):359-374, 2006.

L. Wang and S. Stoller. Static analysis of atomicity for
programs with non-blocking synchronization. In Pro-
ceedings of 10th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages
61-71, 2005.

Y. Wang, E. Anceaume, F. Brasileiro, F. Greve, and
M. Hurfin. Solving the group priority inversion prob-
lem in a timed asynchronous system. IEEE Transac-
tions on Computers, 51(8):900-915, 2002.

Y. Wang and J. Wang. A non-blocking message total
ordering protocol. Science in China, 2007. To appear.

Y. Yang and J. Wang. Nonblocking k-fold multicast
networks. [EEE Transactions on Parallel and Dis-
tributed systems, 14(2):131-141, 2003.

