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Abstract

Sensor localization in wireless sensor networks is an
important component of many applications. Previous work
has demonstrated how localization can be achieved using
various methods. In this paper we focus on achieving fine-
grained localization that does not require external infras-
tructure, specialized hardware support, or excessive sen-
sor resources. We use a real sensor network and provide
measurements on the actual system. We adopt a localiza-
tion approach that relies on acoustic sounds and clock
synchronization. The contribution of our work is achieving
consistent sound pulse detection at each sensor and precise
range estimation using a high-precision clock synchroniza-
tion implementation. We first describe our technique and
then we evaluate our approach using a real setup. Our
results show that our approach achieves an average clock
synchronization accuracy of 5µs. We verify this accuracy
using an external global clock via an interrupt mechanism.
Our sound detection technique is able to consistently identify
sound pulses up to 10m distances in indoor environments.
Combining the two techniques, we find that our localization
method results in accurate range estimation with an average
error of 11cm in distances up to 7m and in consistent range
estimation up to 10m in various indoor environments.

1. Introduction

Over the last few years, wireless sensor networks have
been used in various application domains: indoor or outdoor
monitoring, health applications, structural monitoring of
buildings, smart house applications, and robot navigation
or even emergency navigation, when a target needs to be
directed through a region. Most of these applications require
some sort of location awareness, e.g. for recording coordi-
nates with sampled information or to detect proximity. In
most cases, systems used in these applications are statically
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built, that is location information is set once for each sensor
at system configuration time. This however, is not only
cumbersome, but limits possible applications as well only
to domains where static configuration is possible and there
is no motion involved, e.g. of objects or humans.

A more practical approach is to provide sensors with the
ability to calculate relative positions using some range esti-
mation mechanism and reference points. A number of such
techniques have been proposed that use various methods for
estimating distances based on the speed of either acoustic
sound [1]–[4] or ultrasound [5]–[7], using GPS receivers,
infrared [8] or even RSSI [9], [10]. These approaches differ
in the resources and support they require both in terms of
the surrounding environment and the sensors themselves, the
range they are able to cover (typically short or long range
methods) and the accuracy they provide.

Our approach uses acoustic ranging that measures distance
by calculating time of flight for sound pulses. This approach
is less susceptible to interference than other types of pulses
(e.g. RF), audible sound is omni-directional, and ranging
can be implemented with low-cost hardware that can be
embedded in the nodes without posing any extra demand
for power.

Previous work using acoustic ranging techniques has
examined how localization can be achieved through accurate
sound detection. The most prominent approaches apply
signal processing methods in software such as correlating
the sound time series obtained using a sliding correlator
and looking for the point of maximum correlation [1], [2]
or embedding tone detectors in order to detect sound by
specialized hardware [3]. Previous work aims at lower accu-
racy, short-range localization, evaluates proposed techniques
in simulated environments, or requires specialized support.
Instead, in our work we achieve fine-grained localization,
at the level of tens of centimeters, primarily for indoor
environment applications, without requiring any additional
infrastructure in the environment, nor any sensor hardware
support or excessive sensor resources.

Acoustic sound localization techniques can be categorized
broadly in differential time of arrival (DToA) [4] or simply
time of arrival (ToA) techniques [1]–[3]. In DToA tech-



niques, a node emits simultaneously two different types of
signal at once, such as an RF and ultrasound or audible
sound signal. The RF signal, whose speed of transmission
is much faster triggers the start of counting at the listener till
the sound signal arrives. This allows the listener to calculate
distance based on the speed of the second signal and the time
elapsed from the arrival of the first signal. DToA has two
main disadvantages: First, using a local timer in calculations
may cause erroneous measurements from node to node, due
to drift between timers. Second, switching to listening for
the second sound signal right after listening for the RF
signal can be a high-overhead task, especially when nodes
are close to each other and switching overhead can impact
the accuracy of measurements. ToA techniques on the other
hand, maintain synchronized clocks independently and use
these clocks to measure the time of flight for a second, e.g.
acoustic sound signal, based on some coordination protocol.
Nodes then use time of flight measurements and sound speed
to estimate point to point distance.

In our work we use a ToA-based method. Our approach
relies on two techniques: employment of a novel method for
consistent sound pulse detection along with high-precision
clock synchronization via RF communication. Furthermore,
we implement and evaluate our approach on a real sensor
network that consists of Mica2dot sensors in various config-
urations. Our clock synchronization technique uses only RF
communication to exchange clock values. The strong points
of our approach is the accuracy in estimating communication
overheads during message exchange and the design of a
protocol that results in high precision, incurs low overhead,
scales to large numbers of nodes and accounts for clock
drift.

Our clock synchronization technique is designed to op-
erate at the MAC-layer. It calculates transmission delays
during message exchange, takes into account interrupt and
RF communication protocol overheads, and does not re-
quire calibration for different types of sensors (and antenna
chipsets). For scalability purposes, we use message broad-
casts to allow multiple sensors to synchronize with a single
master and we avoid any point to point communication
between slave and master that would impose a high overhead
on the master. Our results on a real system show that our
approach achieves clock synchronization with an error of
5µs. To verify the precision of our approach we perform
controlled measurements with a global external clock via
interrupts.

Our localization technique using acoustic sound relies on
consistent sound pulse detection. Each node is equipped
with an off-the-shelf, low-cost buzzer that generates sound
pulses at an audible frequency of 2.4 kHz and a microphone.
Unlike most techniques proposed so far, all the processing
is done online by the sensor node. Each sensor serving as
a reference point generates a series of sound pulses with
a predetermined period. All other sensors detect arrival of

these pulses using a low-overhead calculation and filtering.
By having the reference point broadcast the corresponding
timestamp after every sound pulse, each sensor can estimate
the time-of-flight for the sound pulse and calculate point to
point distance.

We implement our localization technique, FLASH, on the
Mica2dot [11] coin-sized motes that use an 8-bit, 3.6MHz
AVR processor, communicate via RF at 915MHz, and in-
corporate sound sensing and generation ability. The runtime
system on the sensors is CORMOS [12], an event-based
environment that uses the notion of the communication path
in task execution. To the best of our knowledge, in such
a restricted environment, FLASH is the first technique to
manage estimation of relative position of sensors within
11cm for single-hop distances of up to 7m and in various
setups. Moreover, range estimation behaves consistently for
single-hop distances of up to 10m and allows for the use of
multiple reference points to cover larger areas in a multi-hop
manner.

The rest of this paper is organized as follows. Section 2
presents the design of FLASH and the clock synchronization
and sound detection techniques it uses. Section 3 presents
our experimental setup and results for indoors environments.
Section 4 discusses related work, whereas Section 5 draws
our main conclusions.

2. System Design and Implementation

2.1. Clock Synchronization

The clock synchronization scheme we use relies on cal-
culating message delays between nodes, exchanging local
clock values, and combining the two to build a single
(logical) synchronized clock. Next, we discuss (a) how
point-to-point message delays are calculated, (b) how we
generate and use timestamps with physical clocks, and (c)
how we deal with clock drift.

2.1.1. Message Delays. Previous work [13], [14] has al-
ready categorized the main stages during sensor RF com-
munication as (Figure 1): send time that includes message
creation time above the MAC layer and is non-deterministic
and typically in the order of milliseconds, access time that
includes the time required to get access to the channel and is
non-deterministic and typically in the order of milliseconds,
transmission time that includes the time required for message
transmission and depends mostly on RF speed and the
communication subsystem employed, propagation time that
is the time of flight between the sender’s and the receiver’s
antenna, depends almost exclusively on the distance between
the antennas, reception time that includes the time required
for the receiver to receive the message and has similar
characteristics to transmission time, and receive time that
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Figure 1. Stages of message delivery.

is the amount of time needed for the receiver application to
be notified of the received message.

We eliminate the uncertainty of the higher layers for send,
access, and receive time by developing a protocol at the
MAC-Layer, as close to the transmission phase as possible.
This allows us to focus on transmission, propagation and
reception delays. Propagation time can be calculated based
on the speed of light (3×108 m/s). For a distance of 135m,
which is the maximum transmission range for Mica2dot
motes [11], propagation time is less than 0.5µs. Since we
target that are significantly smaller, in the rest of our analysis
we ignore propagation time.

Estimating the transmission and reception phase is more
involved. For simplicity, let’s consider that the data unit to
be sent is the smallest possible (i.e. a byte in the case of
Mica2dot) and suppose that the sender and the receiver are
already configured to send and receive correspondingly. The
steps that take place during transmission are as follows:

(i) The sender writes a byte to the antenna interface (SPI
interface). (ii) The byte gets shifted into the antenna at a rate
determined by the antenna transmission rate. When the last
bit has been shifted into the antenna, an interrupt is raised
to the processor. After a time delay equal to the interrupt
routine delay the processor will write the next send byte to
the interface buffer. (iii) Every bit that enters the antenna
needs some time to get modulated into electromagnetic
waves. Although modulation time may vary in different
antenna chipsets and configurations, it is quite stable for each
type of chipset and configuration. (iv) Modulated bits are
propagated, demodulated at the receiver’s antenna chipset,
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Figure 2. Message timestamping.

and shifted into the receiver SPI register. (v) As soon as eight
consequent bits have been shifted into the SPI register, an
interrupt is raised and the processor collects the received
byte and handles it, typically storing it temporarily in a
buffer until the whole message is received. (v) Usually, the
receiver receives bytes in different alignment than the sender
byte alignment. Therefore, the interrupt at the receiver is
not raised at the time the actual byte has been received, but
rather, when the byte and a few extra offset bits have been
shifted into the SPI register. These offset bits either belong
to the next byte in the transmitted sequence or are just noise.

For accurate clock synchronization it is essential to mea-
sure the exact transmission delay d = TB − TA (Figure 2).
The transmission delay is the time between the last bit of the
transmitted byte has been shifted into the sender’s antenna
(timestamp TA) and the time the last bit of the same byte has
been shifted into the receiving (SPI interface) register at the
receiver (timestamp TB). Therefore, we need to accurately
capture local timestamps TA and TB.

At the receiver we generate the local timestamp within the
interrupt routine that is executed right after the full byte has
been received and then we account for the time that was
needed for the extra (8 minus offset) bits that have been
received because of the misalignment. The interrupt service
delay is in the range of µs and may vary significantly only
if another interrupt routine is being executed at the time
with the receiving (SPI interface) interrupt. We handle this
uncertainty by capturing multiple timestamps for a sequence
of transmitted bytes. Thus, we may estimate the amount of
time any byte needs to be transmitted at the receiver by using
a median filter. Using this self-calibration mechanism before
the byte of interest, allows us to compensate for any delay
noticed in the execution of the interrupt routine for the byte
of interest. A similar mechanism is used on the transmitting
side as well. Timestamps TA, TB are then used to provide
an accurate value for the message delay d, as described next.
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Figure 3. Error between synchronous and asynchronous physical (top) and logical (bottom) timers, without and with
drift compensation.

2.1.2. Short-term Synchronization. The main idea for
transmission delay calculation is similar in almost all clock
synchronization protocols: two nodes (A and B) exchange
timestamps through a symmetric transaction. The times-
tamps are captured as described in 2.1.1 so that T1A + d
and T1B refer to the same moment in absolute time. The
same is true for T2B and T2A − d. Thus, assuming clock
skew introduced between timers during T1A to T2A period
is negligible:

d =
(T2A − T1A) − (T2B − T1B)

2
(1)

Every sensor node A in the network first measures d
between itself and a pre-assigned or elected master B. This
procedure need occur only once, as long as the same node
B is used as master. Then, node B periodically broadcasts
synchronization messages that contain synchronized clock
timestamps. Upon receiving a synchronization timestamp
TB , TB = TA−d and node A can use TB to compensate for
the offset between the two clocks. As already argued in [15]
nodes should not set their clock or discipline their frequency,
rather than let it run in its natural rate. In accordance to that,
node A stores timestamps TB, TA − d over a time window
and uses linear regression of this sequence to project local
time to synchronized time.

2.1.3. Long-term Synchronization. In Mica2dot there are
two timer clock sources available. The timer can be clocked
either synchronously at 3.6 MHZ (3,686,400 Hz) or asyn-
chronously by an external crystal of 32,768 Hz frequency.
We evaluate drift for the two different timer sources, by
simultaneously producing a series of external interrupts
to pairs of motes. Each mote, at the beginning of the
interrupt routine execution produces a timestamp using the

synchronous time source and another one using the asyn-
chronous time source and broadcasts them. We collect the
timestamps to an external PC system. Suppose that the first
timestamps collected were used to synchronize clocks, we
calculate the accumulated and the drift compensated error
for both timer sources, as given in Figures 3(a) and 3(b).
We find that fine-granularity, synchronous timers introduce
a drift in the range of milliseconds per second, whereas
coarse-granularity asynchronous timers introduce a drift in
the range of microseconds per second.

For that reason, we use the asynchronous timer to adjust a
virtual synchronous timer. This results in a virtual clock that
has the granularity of the synchronous timer and the drift of
the asynchronous one. As shown in Figures 3(c) and 3(d) the
virtual clock error remains in the scale of microseconds for
long time periods, thus allowing for longer resynchronization
intervals reducing communication and computation over-
heads. For long term synchronization every node maintains a
set of the four most recently formed pairs of local and remote
timestamps, all of which are produced using the virtual
clock, and uses linear regression to calculate synchronized
time st(TA) for any given local timestamp TA.

This scheme allows for synchronizing a single master with
all nodes in range of its RF antenna (maximum of 135m for
our setup): Resynchronization intervals can be long and only
message delays need to be calculated in a pairwise manner
between each node and the master. This calculation is very
infrequent as it only depends on the type of the sensor and
the environment conditions. Our scheme can be extended to
multi-hop synchronization, but we do not examine this in
this work.
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2.2. Sound-based Localization

We now describe our sound-based localization scheme.
For simplicity, let’s assume we have a network of two
synchronized sensor nodes. The basic idea, as discussed in
previous work [1], [2], is to have one node produce a sound
pulse while the other listens to the audio frequency spectrum.
The node that produces the sound pulse (emitter) generates
a timestamp TS right before the sound is produced. The
listening node (listener) generates a timestamp TL at the
moment the timestamp is detected. The two timestamps are
generated in a global, synchronized scale and TL−TS is the
sound time-of-flight (ToF), i.e. the time needed for the sound
to travel from the emitter to the listener. Given that the speed
of sound in the air is VS = 344m/s, the distance between
the two nodes can be calculated as Dist = VS · (TL − TS).

Timestamp TS can be easily generated and refers to the
moment the emitter applies high voltage to the general
purpose input/output (GPIO) pin where the buzzer is con-
nected. Generating timestamp TL in the listener to ensure
proper marking of the start of the received sound pulse is
more challenging. The listener, while waiting for the sound,
is operating in ADC free running mode, with the ADC
converter continuously converting sound measurements that
are captured from the microphone into 10-bit values. Every
time a new measurement is produced, an interrupt is raised.
Our purpose is to generate a timestamp at the beginning of
the ADC interrupt handler call which corresponds to the
first measurement that we accept (detect) as the starting
point of the sound pulse. A new ADC measurement is
produced every 52µs (208 processor cycles), which means
that the maximum feasible accuracy is equal to 1.7cm. In
this process, the role of the clock synchronization scheme
is to ensure that the synchronization error is at any moment
less than 52µs, so that TL will not mistakenly refer to a
wrong ADC interrupt, increasing maximum feasible distance
accuracy to more than 1.7cm.

Beyond clock synchronization, we also need to cope with
the uncertainties posed by sound creation, propagation, and
reception, as discussed next.

2.2.1. Sound Devices. In our work we use the default,
low-cost, microphone of the Mica2dot sensor platform,
which operates in audible sound frequencies from 20Hz
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Figure 5. Raw sound measurements.

to 16kHz. The microphone is connected to an analog to
digital converter that is configured to have a sampling rate
of 17.7KHz. In order to to detect a sound pulse of a certain
frequency we have to be able to reconstruct the sound pulse
at the receiver. This requires that the sound pulse is of less
than 8.85KHz frequency, half the sampling rate frequency.
Having the acoustic time series corresponding to the sound
pulse available, to locate the beginning of the pulse in time
we can apply signal processing techniques, but doing so
entails more resources than the ones the sensor can dispose.
Otherwise, we may take advantage of the sound pulse’s
properties, that is amplitude and frequency, and build a
dynamic online processing mechanism that locates the first
noticeable peak of the sound pulse and avoid excessive
storage and processing requirements.

Since Mica2dot sensors do not include a buzzer, we use
EMX-7T01SP 1.5V external buzzer devices, at 2.3KHz. The
buzzer is controlled by the INT0 GPIO pin of the sensor.
Connecting external buzzers to each mote requires a lot
of experimentation. The buzzer has to be able to operate
efficiently in supply voltage of 2.5Volt that can be provided
by the sensor mote. Moreover, there is a limitation in how
much current it may draw. The recommended INT0 pin for
connecting the buzzer can provide slightly more than 10mA,
which is not enough for the buzzer to function properly.
Thus, it is important that the mote generating the sound
pulse is powered adequately, otherwise, it may not generate
reasonably shaped sound pulses, which will result in false
detection at the receiver and erroneous measurements. For
this reason, we use a transistor to ensure that the buzzer
draws current from the Vcc pin which can provide current
up to 100mA, when INT0 is activated.

2.2.2. Theoretical Scheme. Ideally a single tone sound-
wave that appears in room has the sinusoid waveform given
in Figure 4. Figure 5 shows the raw samples for a sound
pulse generated at 300cm distance from the listener. Our
scheme relies on two main steps: (a) Calculating peak-to-
peak values for this signal, which results in a graph with
a sharp increase at the start of the sound. (b) Applying
a dynamically calculated threshold (THRESH-A), which
allows us to identify the start of the sound and attach
timestamp TL to the right (first) peak of the sound-wave.



2.2.3. Scheme Adaptation. Given that the emitter fre-
quency is 2.3KHz, whereas the sampling frequency is
17.7KHz, it takes 7 to 8 ADC conversions to sample a
single period of the signal. We identify as sound-wave peaks
the measurements whose value is greater than four previ-
ous measurements and greater or equal to four subsequent
measurements and subtract the lowest value between con-
secutive peaks. This allows us to calculate the peak-to-peak
amplitude. We also use elapsed time between consecutive
peaks to calculate the period of the sound pulse. Figure 6
shows the peak-to-peak amplitude and period of the sound
as calculated by the measurements taken at the beginning of
a sound pulse, for distances of 100cm, 300cm, and 500cm.
In all cases the transition from silence to sound is apparent,
yet with increasing distance the starting point of the sound
pulse becomes less clear.

THRESH-A has to be dynamically calculated, based on
the properties of the actual sound pulse. The reason is that
the same peak-to-peak amplitude may correspond to differ-
ent sound levels due to, e.g. difference in sensor components,
variations in reference voltage, or just characteristics of
sound propagation in the environment.

Noticing that the sound pulse needs no more than eight
peak-to-peak measurements to reach its full magnitude,
we use as metric the increase between the most recent
measurement and the oldest one of the eight previous
measurements. As can be seen in Figure 7, the increase
takes its maximum value INCMAX at the beginning of the
sound pulse. We use INCMAX to define THRESH-A as
INCMAX/2. Since INCMAX refers to the beginning of
the sound pulse, THRESH-A is free of distortion caused by
sound reflections. We only use a fraction of INCMAX as
a threshold because we need THRESH-A to correspond to
the part of the graph where peak-to-peak values are sparser,
so that the likelihood of choosing the right one is greater.

2.2.4. Average Filtering. To avoid detecting false sounds
in indoors environments, e.g. due to noise by other sources
in the room or reflections of the sound pulse, we apply
two types of filtering on the measurements: First, we apply
a 16-amplitude simple moving average filter. The average
produced by the filter has to surpass a predefined threshold
(THRESH-B) to ensure that the sound received is of a
certain duration and therefore a potential ranging sound
pulse. The value of THRESH-B will typically be quite low,
since undesired sounds are normally of small duration and
averaging makes them look like noise. Naturally, in case of
an environment with persistent sounds at the same frequency
as the buzzer, it is difficult to identify the ranging pulses.
Figure 6 shows the impact of this filter on a sound pulse
of 90ms duration, produced at 100cm, 300cm, and 500cm
distance. Second, we require that the period of the sound
wave received agrees with the pre-defined period used for
the ranging sound pulses in the localization protocol.
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Figure 7. THRESH-A calculation at 300cm.

2.2.5. Implementation. In our scheme, the emitter produces
a pulse of 90ms duration and generates a timestamp right
before raising the pin that will produce the pulse. The
listener detects the sound pulse and then generates a times-
tamp. The listener disables RF interrupts when listening for
ranging pulses to avoid losing ADC measurements when
polling the microphone. Whenever a new INCMAX value
is sampled, the 32 most recent peak-to-peak measurements
and their corresponding timestamps are stored in a buffer.
Should the captured INCMAX correspond to the beginning
of the sound pulse, then with high likelihood the peak-to-
peak measurement that surpassed THRESH-A exists among
the 32 most recent peak-to-peak measurements and that is
how the listener captures TL.

The listener starts the look-up process only when (a) it
has detected the sound pulse with certainty, that is when the
16-point average value is above THRESH-B for a certain
period of time, which we experimentally determine to be 50
peak-to-peak measurements, and (b) the period of the sound
pulse agrees with the buzzer’s frequency.

After obtaining the emitter’s and the listener’s timestamps
we estimate sensor node distance. To account for sound
speed variations due to humidity and temperature, we cali-
brate once sound ToF vs. distance for the surrounding (ex-
perimental) environment: ToF increases linearly to distance
and given any sound ToF measurement TF , the distance can
be obtained making use of Equation 2, where distance DIST
is expressed in cm and TF = TL−TS in units of 52µs, which
is the duration of an ADC conversion and thus, the maximum
achievable granularity. Based on this equation sound speed
is calculated to 374.0 m/s.

DIST = 1.948 ∗ TF − 61.068 (2)

Slight temperature or humidity changes like the ones
expected to happen in a specific indoor-environment do
not seem to have a noticeable effect. Larger variations will
require re-calibration of the system.

3. Experimental Evaluation

3.1. Clock Synchronization

To evaluate our clock synchronization scheme, we per-
form a series of experiments on the synchronized motes.
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Figure 6. Sound measurements at 100cm (top), 300cm (middle), and 500cm (bottom).

We use an experimental setup that allows us to verify
synchronization error. One mote (A) broadcasts its local time
periodically (with period T) and another mote (B) uses these
values to synchronize its clock. Both motes are connected
via their INT0 pin to a common switch. Periodically (at pe-
riod t) we generate interrupts to both motes simultaneously
and receive their synchronized timestamps for the specific
(global) interrupt event. The absolute value that results by
subtracting the motes’ timestamps is the synchronization
error. We perform the experiment twice, for T=31s and
t=19s, and for T=100s and t=35s. Both experiments have
duration of 90 minutes. Figures 8(a) and 8(b) depict our
results. In the first case the average error is 5µs and the
maximum error is 20µs, whilst in the second case the
average error is 16µs and the maximum error is 75µs,
resulting in an average error of less than 11µs for both
experiments.

3.2. Sound Localization

3.2.1. Effective Ranging Distance. First, we use a 1-
D setup to examine the maximum distance at which our
approach is effective, using a pair of sensors. We use a third
mote as a gateway for forwarding distance measurements
to a PC as well as a clock synchronization master. Each
distance estimation uses 20 sound ToF measurements. We
increase the distance between the sensors from 20cm to
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Figure 8. Clock synchronization results.

1000cm with increments of 20cm. Figure 9(a) shows the
median and 95th percentile of the distance measurements
compared to the actual distance, while Figure 9(b) shows the
error in distance calculation using the median of the distance
measurements. The motes were within line of sight, as is the
case in all experiments presented.

We see that the error in distance estimation is overall at
most 26cm and on average about 3cm. It is worth noticing
that in most cases error falls within the margin of mea-
surement error, given that mote size is 2.5cm and motes are
manually placed. Also, error is smaller for distances between
0.5m and 9m and increases for smaller or larger distances.
This is because of the calculation of THRESH-A. In small
distances threshold THRESH-A cannot be properly calcu-
lated as sound measurements tend to reach the maximum and
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Figure 9. Localization in one dimension.
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Figure 10. Localization in two dimensions.

minimum values the ADC can detect, thus INCMAX gets
a maximum value which is not representative of the sound
amplitude. For this reason, for small distances, mapping
sound ToF to distance should not be done with a linear
mapping function. In our experiments a binomial function
for small values of sound ToF was more effective for small
distances. However, we do not include these results here.

3.2.2. 2-D Localization. We use 2-D setup to easily ex-
amine the accuracy of the localization scheme in a multi-
sensor setup. We place twelve motes in arbitrary positions
on the floor of a 5 × 5m2 square room. Nodes 0 and 1
are denoted as reference sensors and are equipped with a
buzzer. Figure 10 shows the actual distances between sensors
in this setup, as well as estimated distances. Nodes 0 and
1 produce a sound pulse in turn once every 20s for a total
period of 10min. Every time an emitter produces a sound
all other motes estimate their distance from it and forward
their timestamps to a gateway mote (not shown). Our results
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Figure 12. Tracking motion.

show that the median localization error is 8cm whilst the
maximum localization error is 36cm and corresponds to the
location of node 5. This is mostly due to error in distance
estimation from node 1.

3.2.3. Multiple Reference Points. Next, we examine how
localization can occur over longer distances by using mul-
tiple reference points. We use a 1-D setup, with eleven
sensors. Three sensors, 0, 1, and 2, are denoted as reference
points and are placed 5m apart. In between, before, and after,
we place eight sensors, covering in total 14.6m. Localization
runs every 5min. Figure 11 shows our results. Horizontal line
1 shows the actual position of motes, while line 2 shows
the estimated locations, using the closest reference point for
each sensor. We see that error in localization reaches up to
1.5m. This is a direct consequence from the fact that in this
experiment all motes (emitters and listeners) were powered
by batteries, which entails that soon enough emitters could
not draw enough current for sound pulse emission, thus
producing sound pulses with distorted features.

3.2.4. Tracking Motion. Finally, we examine how our
scheme can be used to track motion in indoor environments.
We denote sensors 0 and 1 as reference points and place



them at the corners of a 5× 5m2 square room. We then tie
a mote to a thread and move it at a speed of 1cm/s on a
straight track parallel to the line defined by the two emitters
and 3.05m away from it. Figure 12 shows how the reference
sensors perceive this motion using the localization scheme.
It can be seen that the estimated track diverges on average
8cm and at most 11cm from the real track.

4. Related work

4.1. Clock Synchronization

Previous work has proposed various protocols for clock
synchronization in wireless sensor networks.

Our work is similar to the flooding time synchronization
protocol (FTSP) [14]. FTSP achieves high accuracy by
operating at MAC-Layer and eliminating non-deterministic
delays by means of calibration through multiple times-
tamps. In contrast to our protocol, which requires a single
master broadcasting synchronized timestamps, in FTSP all
synchronized nodes broadcast synchronized timestamps for
multi-hop synchronization. FTSP achieves average synchro-
nization error on Mica2dot platform 4µs and maximum
synchronization error 12µs. Similar to FLASH, it uses
linear regression to compensate for the drift in between
resynchronization periods. The main shortcoming of FTSP
is that it is hardware dependent, since the transmission delay
time is predefined, thus requiring calibration for each type
of antenna chipset used. Moreover, they measure error in
clock synchronization using RF messages that may introduce
inaccuracy in error estimation, whereas we use an external
mechanism that relies on a common (global) clock.

Delay measurement time synchronization (DMTS) [16]
is similar to RBS on the sender side and FTSP on the
receiver side, with the difference that the 32kHz crystal
is used as the timing source, providing a lower precision
yet a simpler synchronization scheme that can be used in
applications with lower synchronization accuracy. DMTS
achieves synchronization accuracy of 32µs.

In reference broadcasting synchronization (RBS) [17] a
node transmits a signal and the rest of the nodes use
that signal as a time reference to record their local time
at the moment of reception, estimating their time offset
with each other. The main advantage of this approach is
that it eliminates all non-deterministic procedures at the
transmitter, even though it does not manage to do the same
with receivers. Its main disadvantage is that the reference
sender does not get synchronized along with the rest of the
motes and therefore resynchronization needs to take place
with another reference mote, increasing network load. RBS
achieves average synchronization accuracy of 30µs.

In time synchronization protocol for sensor networks
(TPSN) [13] a sensor node acting as root synchronizes
the rest of the network nodes that are organized into a

spanning tree. In TPSN each synchronization act between
nodes comprises of a round-trip message exchange during
which both the propagation delay and the relative offset
of the two clocks are estimated. The main advantage of
TPSN, similar to our approach, is that timestamping takes
place at the MAC-Layer, thus eliminating some of the larger
non-deterministic delays in message transmission. Its main
disadvantage is the 2·N messages required for synchronizing
N sensor nodes. Moreover, it does not provide a mechanism
to compensate for the clock drift of nodes. TPSN achieves
average synchronization accuracy of less than 18µs.

4.2. Sound-based Localization

Previous work on localization focuses on GPS, TDoA
measurement between RF and ultrasound signals [5], [6]
or received RF signal properties to infer distance [9], [10].
None of these however, is appropriate for sensor networks.

The authors in [1] use acoustic sounds and ToA measure-
ments for localization. However, they assume that Mica2dot
motes are not adequate for efficient sound detection in
software and use PDAs attached to the sensors to achieve
localization. PDAs and motes are all synchronized in a
global time-scale using RBS with each node broadcasting
a synchronization packet every 10s. The motes act as sound
emitters and the PDAs that detect the sound send the
corresponding time series over 802.11 to the PDA that is
connected to the emitter. Sound time series are correlated
using a sliding correlator in search of the point of maximum
correlation. Experimental results in a lab environment of
8m×10m show that average error in localization is 11.5cm.
We achieve a similar error, however, without the use of
PDAs.

Azimi-Sadjadi et al. [2] connect wireless sensor nodes to
an FPGA and form an enhanced sensor unit. The FPGA
is equipped with five acoustic channels and an analog to
digital converter. Wireless sensors are incorporated into the
new sensor solely to provide RF communication and time
synchronization over FTSP. Whenever a sound is detected
in the environment, the hardware requires a synchronized
timestamp from the connected mote and then sends this
timestamp along with the acoustic time series concerning
the sound to a base station, where time series are cross-
correlated and distance from the sound source is calculated
using TDoA. Experimental results show that the error in
localization is up to 50cm for distances up to 20m.

Lopes et al. in [4] develop a system using PDAs and
acoustic sensors. PDAs produce sound pulses that are sensed
by sensors connected to desktops that maintain synchro-
nized clocks. Synchronization with the PDAs is temporarily
achieved by sending an RF signal that notifies each PDA
to produce a sound and each sensor to listen for the sound.
Then TDoA is measured and translated into distance. In their
setup they use six sensors in a 23m×9m space and examine



measurements of the three sensors that are closest to the
sound source. They show a median error of localization from
5cm to 74cm, depending on the position in room.

Finally, in Calamari [3] TDoA between RF and audible
sound are used to infer distance in range up to 130cm.
However, in that case sound is sensed with the use of special
hardware tone detectors and calibration of every sensor
against all other sensors is required before deployment,
otherwise localization error can be up to 30cm.

Overall, our method is the first to achieve high accu-
racy, fine-grained localization without the use of specialized
support, excessive resources, or frequent calibration and
demonstrate results in a real setup.

5. Conclusions and Future Work

In this work, we present a scheme for sensor localization
that achieves fine-grained localization, at the level of tens
of centimeters, primarily for indoor applications, and does
not require any support from the environment, additional
infrastructure, sensor hardware support, or excessive sensor
resources. Our approach relies on consistent acoustic sound
pulse detection over high-precision clock synchronization
via RF communication. We discuss our method in detail
and present an implementation on a real sensor network
that consists of Mica2dot motes. We present measurements
on various setups and show that our approach manages to
synchronize clocks with an accuracy of 5µs and estimate
relative sensor positions within 11 cm for distances up to
7m. Moreover, range estimation is consistent for distances
more than 10m and it allows for multi-hop reference points
for longer ranges. Future work should explore how our
localization approach can be adapted to more demanding
environments, such as in the presence of obstacles between
nodes, high noise-levels, temperature and humidity varia-
tions, and outdoor environments. Overall, our work shows
that accurate, fine-grained localization can be achieved with
low-cost, off-the-shelf sensor nodes. We believe that this is
an important step towards using sensor networks in real-life
applications.
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