Quantifying and Querying Network Reachability

Amir R. Khakpour

Alex X. Liu

Department of Computer Science and Engineering
Michigan State University
East Lansing, MI 48824
{khakpour, alexliu} @cse.msu.edu

Abstract—Quantifying and querying network reachability is
important for security monitoring and auditing as well as
many aspects of network management such as troubleshooting,
maintenance, and design. Although attempts to model network
reachability have been made, feasible solutions to computing
network reachability have remained unknown. In this paper, we
propose a suite of algorithms for quantifying reachability based
on network configurations (mainly ACLs) as well as solutions
for querying network reachability. We present a comprehensive
network reachability model that considers connectionless and
connection-oriented transport protocols, stateless and stateful
routers/firewalls, static and dynamic NAT, PAT, etc. We im-
plemented the algorithms in our network reachability analysis
tool called Quarnet and conducted experiments on a university
network. Experimental results show that the offline computation
of reachability matrices takes a few hours and the online
processing of a reachability query takes 0.075 seconds on average.

o I. INTRODUCTION
A. Motivation

Although computer networks are created to provide reacha-
bility between end hosts, various sophisticated mechanisms,
such as router Access Control Lists (ACLs) and firewalls,
have been deployed to limit such reachability for security
or privacy purposes, and various factors, such as routing
dynamics and network address translation, may affect such
reachability, in unexpected ways. As a critical infrastructure of
national importance, the Internet faces unprecedent challenges
for reliable reachability. Correctly implementing the exact
reachability that is needed for a large interconnected network
is crucial. While more reachability than necessary may open
doors to unwanted and even malicious traffic causing some-
times irreparable damages, less reachability than necessary
may disrupt normal businesses causing huge revenue losses.

Unfortunately, in reality, network reachability management
is often a mess for most networks due to its high complexity
and the lack of advanced reachability debugging tools. First,
network configurations have become far more complex than
even a skilled operator can correctly manage. The complexity
of modern networks has been rapidly increasing due to the
explosive growth of Internet connectivity expanding from end-
hosts to pervasive devices and network supported applica-
tions of various scales. Second, due to the lack of advanced
reachability debugging tools, the current common practice for
reachability management is still “trial and error”, which of
course results in a plethora of reachability errors. Configura-
tion errors have been observed to be the largest cause of failure
for Internet services [14]. A recent Yankee Group report has
shown that more than 62% of network downtime is due to
human configuration errors and more than 80% of IT budgets
are allocated towards maintaining just the status quo [7].
Network operators face tremendous pressure to fix problems
quickly because operational networks often support critical
business applications and important communications and the

loss caused by network outrages becomes increasingly acute.
For example, the estimated revenue losses per hour of down-
time for the industry of media, banking, and brokerage are
1.2, 2.6, and 4.5 million dollars, respectively [7]. Quantitative
studies have shown that most firewalls are misconfigured [18].
The reality could be worse than these published staggering
numbers as the errors of more reachability than needed are
often go undetected, while less reachability than needed is
a common source of complaints to operators. Therefore, a
scientific approach, instead of “trial and error”, is needed to
manage network reachability, which will continue to grow
more complex as networking technologies evolve.

As organizations continually transform their network infras-
tructure to maintain their competitive edge by deploying new
servers, installing new software and services, expanding con-
nectivity, etc, operators constantly need to manually modify
their network configurations. Ideally, such manual modifica-
tions should exactly implement the desired changes; however,
practically, they often come with undesirable, yet unnoticed,
side effects on reachability. Therefore, an automated tool that
monitors the all-to-all reachability of a large interconnected
network in realtime is crucial to its successful management.
Furthermore, querying and verifying reachability is a routine,
yet error-prone, task for operators. An automated reachability
query and verification tool is needed.

To enforce the right amount of network reachability, no
more and no less, for a large interconnected enterprise network
to achieve access control, security, and privacy, in this paper,
we investigate two aspects of network reachability: quantifica-
tion and querying, and present a reachability management tool,
which we call Quarnet. Quantifying the reachability between
any two subnets means to compute the set of packets that
can traverse from one subnet to another based on network
configurations. Querying reachability means to ask questions
like “what can access what”. They are useful in many aspects
of network management:

(1) Network Security Monitoring and Auditing: Verifying
that the deployed ACLs satisfy certain security specifications
is an integral part of network security monitoring and auditing.
The current practice is to send probing packets. However, this
approach has drawbacks. First, it is infeasible to generate all
possible probing packets. Second, as routing tables change
over time, the auditing result is valid only for a specific time.
Combining the current active probing approach with quantita-
tive network reachability analysis, we can have comprehensive
security auditing for large enterprise networks.

(2) Network Troubleshooting: An important task for network
administrators is to troubleshoot reachability problems when
two hosts fail to communicate or there is unauthorized traffic
passing through a series of ACLs. For large complex networks,
troubleshooting reachability problems is extremely difficult. To

check the reachability of a path, the current practice is to check
the reachability of every hop in the path by actively sending
probing packets. This approach is disruptive, time consum-
ing, and sometimes infeasible when isolating some hops is
impossible. In contrast, when the reachability of every path
has been pre-computed, troubleshooting reachability problems
and identifying faulty ACLs is easy.

(3) Network Security Design, Maintenance, and Reachabil-
ity Monitoring: Designing ACLs based on certain security poli-
cies is an important part of network design. Before deploying a
network, it is important to first verify reachability. This helps
to avoid security breaches and service outbreaks caused by
misconfigured ACLs. Furthermore, networks change over time
with the evolving of topology and connected servers/hosts.
Often network changes require corresponding changes on ACL
rules. Due to the interconnected nature of networks, a modifi-
cation on one ACL may have unnoticed side effects on network
reachability such as causing two servers to fail to communicate
or opening security holes by enabling unauthorized accesses.
Thus, network reachability analysis helps to detect and resolve
potential problems before committing any change to ACLs.

B. Technical Challenges

Computing network reachability is hard. First, from the
reachability perspective, the interaction among the rules in
one ACL is already complex due to the multi-dimensionality
of ACL rules, but the interaction of multiple ACLs in inter-
connected networks is even more complex. Second, routing
and network topology have complex impact on reachability.
There is typically more than one path between a source and a
destination, and a packet may only be able to traverse from the
source to the destination via some, but not all, available paths.
Third, middleboxes often have complex impact on reachability.
For example, packet transforming (such as NAT and PAT)
middleboxes complicate reachability calculation because they
modify packets headers when they are traveling in a network.
Fourth, transport layer protocols also complicate reachabil-
ity calculation because for connection-oriented protocols the
reachability of both data path and signalling path should be
taken into account. It is even more challenging while there are
some stateful middleboxes in the path. Last but not least, the
problem space is huge as the ACL rules are typically specified
over the standard 5-tuple, which have 104 bits in total.

C. Our Approach

In this paper, we present Quarnet, a tool that comprises a
suite of concrete algorithms for quantifying and querying net-
work reachability. For quantification, Quarnet takes a network
topology and the ACLs deployed on middleboxes as its input,
and outputs reachability matrices that represent the lower-
bound reachability (i.e., the minimal set of packets that can tra-
verse from a source to a destination at any time), instantaneous
reachability (i.e., the set of packets that can traverse from a
source to a destination at a particular time), and upper-bound
reachability (i.e., the maximal set of packets that can traverse
from a source to a destination at some time) for every pair of
source and destination subnets. For querying, Quarnet allows
network operators to ask questions about the reachability of
the subnets in their network, e.g., “which hosts in a subnet
can access the mail server in another subnet?”. We proposed
a language for formally specifying reachability queries. To

efficiently process queries, we use decision diagrams as the
data structure for representing reachability matrices.

Quarnet can be deployed on a server as shown in Figure 1.
Initially, this server first collects the configuration file from
each middlebox (via SNMP for example) and the network
topology from the administrator and then computes reach-
ability matrices offline. Afterwards, network operators can
perform reachability queries through a GUI interface, where
each query is then formulated by an SQL-like query language
and processed by the Quarnet query module. Fine-grained
access control to reachability matrices can be enforced so that
different operators can perform different reachability queries.
Each time the configuration of a middlebox or the topology of
the network is changed, the Quarnet server needs to be notified
and reachablhty matrlces need to be updated accordingly.

) Quarnet Server/ AN
‘Sle I
@ !-i/fﬂ
= /’

New York

/
\

/ Paris

Quarnet architecture

Network Operator

Flg 1.
D. Key Contributions
We make four key contributions in this paper. (1) We pro-
pose a comprehensive reachability modeling and formulation
that encompasses elements that have not been addressed in
prior work such as dynamic NAT, PAT, connection orientation
of transport protocols, and statefulness of middleboxes. (2)
We propose efficient algorithms for computing network reach-
ability. (3) We propose a language and solutions for querying
network reachability. (4) We implemented Quarnet in C++ and
experimented on a university network. Experimental results
show that the offline computation of reachability matrices
takes 11 hours and the online processing of a reachability
query takes an average of 0.075 seconds.

II. REACHABILITY MODELING AND FORMULATION

In this section, we first introduce a network model, based on
which we formulate three network reachability metrics: lower-
bound reachability, instantaneous reachability, and upper-
bound reachability. We also differentiate network reachability
formulations based on transport protocol types and the pres-
ence of network address translation.

A. Network Modeling

In this paper, we model a network as a non-simple directed
bipartite graph G = (V, &, F), where V is a set of vertices,
€ is a set of arcs over V, and F is a set of ACLs. Each
vertex in V represents a subnet or a middlebox. We use the
term “subnet” to represent a set of adjacent subnetworks (i.e.,
local area networks (LANs) or VLANSs, where either they have
the same reachability (i.e., there is no ACL deployed between
any two subnetworks in the set) or the reachability among the
subnetworks is not a concern. For example, given an enterprise
network, we represent the outside Internet as a subnet. The
term “middlebox” refers to any networking device that can

forward packets from one subnet to another, such as a network
router, a firewall, a traffic shaper, or a L3 switch. Let A/ be
the set of subnets in ¥V and R be the set of middleboxes in V.
Each arc in £ represents a unidirectional physical link between
a subset in N and a middlebox in R. Each ACL in F filters
the packets traveling on an arc in &.

We model network links as unidirectional arcs because
every ACL is associated with a unidirectional physical link and
each bidirectional link can be modeled as two unidirectional
arcs. Note that some physical links, such as satellite links, are
physically unidirectional. We model a network as a bipartite
graph because between two adjacent subnets there is at least
one middlebox and between any two middleboxes there exists
at least one subnet. We model a network as a non-simple graph
because between a subnet and a middlebox there may exist
multiple physical links for backup.

Given a network with m middleboxes, where the maximum
number of unidirectional interfaces on a middlebox is denoted
h, we represent the network by an m x h matrix Z called
the Network Incident Matrix. Here Z[i, j] = N if and only
if subnet N connects to middlebox ¢ on its interface j, and
Z[i,j] = 0 if and only if no subnet connects to middlebox
1 on its interface j. For simplicity, incoming interfaces are
represented by even numbers and outgoing interfaces are
represented by odd numbers. Similarly, we represent the ACLs
deployed on the network by an m x h matrix 4 called the ACL
Matrix. We use Ali, j] to denote the ACL deployed on the j-th
interface of middlebox 1.

Figure 2(a) shows a network with three middleboxes and
four subnetworks. Two VLANSs (S1 and S2) are connected to
an L3 switch (SW). One subnetwork (S3) and a DMZ (S4) are
connected to firewall (FW). SW and FW are connected to the
Internet through a gateway router (GW). Figure 2(b) shows
graph representing the topology. Note that we assume there
is an ACL on each interface of the middleboxes. The graph
consists of 11 vertices representing the 8 subnets S1, ..., S8
and the 3 middleboxes SW, FW, and GW. Note that S1,

S4 denote the four subnetworks LAN1, LAN2, LAN3, and
DMZ, S5 denotes the outside Internet, and S6, ..., S8 denote
the subnetworks that connects two adjacent middleboxes. The
network incident matrix for this network with m = 3 and
h=281is:

S3 S3 S4 S4 ST ST S8 S8

S1 S1 S2 S2 S6 S6 ST ST
(55 S5 S6 S6 S8 S8 0 0)

(LAN1) V sw

(LAN2 l GW
—>
(Internet)

(LANS

@ subnet

(DMZ) O middlebox

(@) (b)

Fig. 2. Example network topology
Between any two directly connected middleboxes, our
model assumes there is a subnetwork because the middlebox
interfaces may have a distinct IP address and an ACL guard-
ing that interface. The reachability of such a subnetwork is
important because of several reasons. First, there are often
some management services on a middlebox (such as SNMP,
Telnet, and SSH) that are accessible through each interface.
Such services are intended to be used only by administrators.

Therefore, there are often some rules in the ACL deployed on
each interface to restrict the access to this subnetwork. Second,
if a middlebox is compromised, the source of the subsequent
attacks is the IP address of an interface of the middle box; thus,
the reachability from that subnetwork to other subnetworks is
critical. Indeed, if the interfaces are not assigned IP addresses,
the subnet is modeled with an empty address set; henceforth,
reachability to and from the subnetwork is empty.

An ACL consists of a list of rules, where each rule has a
predicate over some packet header fields and a decision (i.e.,
action) to be taken for the packets that match the predicate. The
decision of a rule is typically accept (i.e., permit) or discard
(i.e., deny). As a packet may match two rules in an ACL and
the two rules may have different decisions, the decision for a
packet is the decision of the first (i.e., highest priority) rule
that the packet matches. Table I shows an example ACL.

Rule Src IP Dst IP Src Port Dst Port Proto. Action
1 35.9.1.4/24 192.168.0.1 * 80 TCP accept
T2 * * * * * discard

TABLE 1

AN EXAMPLE ACL
Table II lists important notations used in this paper.

B. Reachability Formulation

Network reachability depends on not only some static
factors, i.e., topology and ACL configurations, but also some
dynamic factors, i.e., routing states, where each is defined as
a snapshot of all the routing tables of the middleboxes in the
network, and the one-to-one mapping tables of dynamic NATS
and PATs. We formulate three types of network reachabil-
ity: lower-bound reachability, instantaneous reachability, and
upper-bound reachability for a given network topology and the
ACL configurations. We define the lower-bound reachability
from subnet N; to IV; as the set of packets that can go from
N; to N; at any time. We define the instantaneous reachability
from subnet N; to IV; as the set of packets that can go from
N; to N; at a particular time. We define the upper-bound
reachability from subnet N; to N; as the maximal set of
packets that can go from N; to N; at some time.

Below we formulate 1nstantane0us upper-bound, and lower-
bound reachability. In our notations, we use “I”, “U”, and
“L” to denote instantaneous, upper-bound, and lower-bound
reachability, respectively; we further use “CL” and “CO” to
denote connectionless and connection-oriented protocols.

1) Instantaneous Reachability: Given a network routing
state s, which is a snapshot of all the routing tables of the mid-
dleboxes in the network, let P; ;(s) denote the path from N; to
Nj at state s, and M denote the number of hops/middleboxes
on path P; ;(s). For the k-th middlebox, we use Co,_1 to
denote the ACL on the incoming middlebox interface and Coy
to denote the ACL on the outgoing middlebox interface.

Notation Table
N set of subnets n # of subnets
R set of middleboxes m # of middleboxes
h max # of unidirectional s network incident matrix
interfaces on a middlebox A ACL matrix
p number of the paths in a network s routing state
P; j(s) | path from N; to N; M # of hops on a path
at routing state s Cy, k-th classifier in a path
A(Ck) packets accepted by classifier Cy, from N; to N
max # of paths between any R reachability set
two subnets 4 ACL
F; i-th field in FDD F FDD matrix
f Firewall Decision Diagram (FDD) P path matrix
g max # of rules in an ACL N; subnet ¢
d # of fields in each rule

TABLE 11
NOTATION TABLE

For connectionless protocols (mainly the UDP protocol), the
instantaneous reachability from N; to N; is the intersection
of the set of UDP packets accepted by every ACL on the path
from IV; to N;. Thus, we calculated instantaneous reachability
as follows: o

RGp(i,4,8) = ﬂ Aypp(Ck) 1)

k=1
where Aypp(Cy) is the set of UDP packets accepted by Cj.

For connection-oriented protocols (mainly the TCP pro-
tocol), the instantaneous reachability from N; to NN; also
depends on the reachability of the acknowledgment (ACK)
messages from N; to NNV;. To incorporate the signaling path
reachability of data path P; ;(s), we distinguish the state-
fulness of the intermediate middleboxes according to the
following three cases: all middleboxes in P; ;(s) are stateful,
all middleboxes in P; ;(s) are stateless, and P; ;(s) contains
both stateful middleboxes and stateless middleboxes.

All middleboxes in P;;(s) are stateful: In any stateful
middlebox on path P; ;(s), the state of every TCP session
is stored in a state table to ensure that the corresponding
signaling messages can traverse back from N; to N;. Such
messages are not checked against any ACL of the middleboxes
on path P; ;(s). When a signaling message does not match any
entry in the state table of a stateful middlebox, the message is
dropped and the connection will fail. Here we assume that the
network is designed such that we have path-coupled signaling
on stateful firewalls and NAT, which means that the forward
data path and the backward signaling path contain the same
set of middleboxes. The path-coupled property holds for most
existing networks [9], [16]. Thus, when all middleboxes in
Piyj(s) are stateful, the instantaneous reachability from N;
to INV; is the intersection of the set of TCP packets accepted
by every ACL on the path from N; to N;. Therefore, we
calculated instantaneous reachability for this case as follows,
where Arcp(Cy) represents the set of TCP packets accepted
by ACL Ck 2M

Rgoliygys) = () Arcr(Ch) @
k=1

All middleboxes in P;;(s) are stateless: If all the in-
termediate middleboxes are stateless, we not only need to
consider the data path from N; to IV;, but also the signaling
path from N; to N;. Let A represent the set of accepted
packets where in each packet the values of source and des-
tination IP address fields are swapped, and the values of
source and destination port number fields are also swapped.
Field swapping is needed because in one TCP session each
data packet and its corresponding signaling packet have their
IP addresses and port numbers in the opposite order. Note
that when all middleboxes in P; ;(s) are stateless, we do
not need path-coupled assumption. Thus, the instantaneous
reachability for the connection-oriented and reliable protocols
is the intersection of the set of accepted TCP packets in the
data path and the set of accepted TCP packets in the signaling
path. Therefore, we calculated instantaneous reachability for
this case as follows, where the classifiers on path P;; consists
of C1,C4, ..

2M 2M’

RLo(i,4,8) = ﬂ Arcp(Ch) ﬂ Arcp(Cy) (3)
k=1 k=1

!
.y CQIL{"

(Here ﬂifl Arcp(Cy) if{ Arcp(C},) denotes Arep(Ch)
N---N ATCP(CQM) N ATCP(Ci)l N---N ATCP(CéM/)-)

P; ;(s) contains both stateful middleboxes and stateless
middleboxes: For stateful middleboxes, we again need as-
sumption of path-coupled signaling. For stateless middleboxes,
we do not need this assumption. Thus, the instantaneous
reachability on P; ;(s) is the intersection of the set of accepted
packets of stateful middleboxes calculated by formula (2) and
the set of accepted packets of stateless routers calculated by
formula (3).

2) The Reachability Bounds: The Reachability Lower-
bound from N; to Nj, RE (i,7), denotes the set of packets
that can traverse from N; to N; in all routing states. The
Reachability Upper-bound from N; to N;, RY(i,), denotes
the maximal set of packets that can traverse from IV; to N; in
some routing states. Let S denote the set of all routing states
of a network. The reachability lower-bound and upper-bound
from N; to N; are calculated below:

R¢,G,5) = |J RELGhdss) @)
sES

RE, (i, 5) = () Rep(ivd.s) ®)
sES

Similar to the reachability bounds for connectionless pro-
tocols, the reachability bounds of the connection-oriented
protocols using formulas (2) and (3) are calculated below:

REo (i) = | Réo(irdss) ©)
sES
Réo(i,3) = [Réo(idss) 0

sES
Computing reachability lower-bound and upper-bound is

very useful. For example, lower-bound reachability can be
used to ensure that the available services on a subnet are
reachable regardless of routing states, and upper-bound reach-
ability can be used to ensure that the access to some services
is restricted. Furthermore, the reachability upper-bound and
lower-bound are useful in verifying the correctness of ACLs.
Ideally, the reachability upper-bound and lower-bound from N;
to N; should be the same (i.e., AR(i, j) = RY (i,) — RE(i, j)
should be (). Otherwise, the ACLs have inconsistent decisions
for the packets in AR(i,j): sometimes they are allowed to
traverse from N; to N;, and sometimes they are not. For a
packet m € AR(i,j), if = should be constantly allowed to
traverse from NV; to N;, then blocking 7 at some routing states
may disrupt legitimate services; if 7 should be constantly
disallowed to traverse from N; to IV;, then accepting 7 at
some states may cause security breaches.

C. Reachability Formulation with NAT

Thus far, network reachability calculations are based on the
assumption that packet header fields are not changed in the
traversal from a source subnet to a destination subnet. Actually,
there may be some packet transformers, such as Network Ad-
dress Translation (NAT) and Port Address Translation (PAT),
on the intermediate middleboxes that modify packet headers.
A NAT transformer on a middlebox may change the source
address field of a packet from z to z’ and keep a record of
this transformation in a table, which is used to change the
destination field of the corresponding signaling packet from
2’ to x. A PAT transformer works similarly for port fields.
Here, the path-coupled signaling assumption is necessary for
paths that contain packet transforming filters.

Typically, a middlebox (such as a Cisco router [2] and
[Ptables [4]) applies NAT to a packet after it passes the ACL
on the incoming interface and before it is sent to the ACL on
the outgoing interface. Let middlebox «y be the one on path

P; ;(s) that uses a packet transformation (for source address
or port number fields) function Tg : N; — N,’, where N;’
is the virtual subnet to which N; is mapped. We use T'q Lto
denote the reverse function. The instantaneous reachability for
connectionless protocols is calculated using formula (1) as:

2v-1 2M
R&p (64,5, Ts) = N AUDP(Ck)mT;l(() Avpr(Cr)) ®)
k=1

k=2~
Note that applying function Tg' to ﬂzi{%AUDp(Ok)
means changing the source fields of every packet in
ﬂii@v AUDP(Ck) from Ni/ to IV;.
The reachability bounds for connectionless protocols are
calculated using formulas (4) and (5) as follows:

REp(i.4,Ts) = |J Ropi, s, Ts) ©
sES

Ré (6,3, Ts) = () RGy, (i, 5, Ts) (10)
sES

For connection-oriented protocols, the middlebox ~ in the
data path is the middlebox + in the signaling path (based on
the path-coupled assumption). The instantaneous reachability
formulation for data paths R-, (i, 7, s,Ts) is as follows:

2y-1 2M
RZo(isd, s, Ts) = (| Arer(C)(Ts(() Arer(Cr)) (D)
k=1 k=2~

Similarly, the instantaneous reachability formulation for
signaling path R& (4,4, s,Tp) is as follows:

oM’
(M Arce(Cr) (2

k=2~'

24/ —1
R&6 (0,8, Tp) =Tp ' ([Arcr(Ch))
k=1

where Tp transforms the destination addresses of signaling
packets from N; to N/.

Using formulas (11), (12), and (3), we formulate instanta-
neous reachability for connection-oriented protocols as:

RLo (i, 4,5 Ts, Tn) = Rao (iy 4,5, Ts) N REo(jois s, Tp) (13)

Note that formula (13) can be easily generalized to handle
the paths that have multiple packet transformers.

The reachability bounds for connection-oriented protocols
are formulated based on equations (6) and (7) as follows:

R (i3, Ts, Tp) = |J RGo (i, 5, Ts, Tp)
SES

= U Rcolii,5,Ts) () | RE0 (i, Tn) (14)
sES SES

R&o (1,4, Ts, Tp) = ()| Réolis s, Ts, Tn)
sES

= () Rdolisirs,Ts) () R&o (s irs, To) (15)
sES sES

ITII. ALGORITHMS FOR COMPUTING REACHABILITY
MATRICES

In this section, we present algorithms for computing
reachability for networks with no packet transformation fil-
ters. Reachability quantification algorithms for networks with
packet transformation filters are described in the technical
report version of this paper [8].

A. Reachability Matrices

We represent network reachability as the six matrices shown
below. We use n to denote the number of subnets, and z to
denote the maximum number of paths between any pair of
subnets.

1) AL, [1..n,1..n,1..2] where each element AL, [, 7, k] is
the set of packets representing the instantaneous reacha-
bility from IN; to IN; on the k-th path for connectionless
protocols.

2) AL,[1.n,1.m,1..2,1..2] where each element
Atoli, gk, E'] is the set of packets representing
the instantaneous reachability from N; to N; on
the k-th data path and the k’-th signaling path for
connection-oriented protocols.

3) AL [1..m,1..n] where each element A%, [, 7] is the
set of packets representing the lower-bound reachability
from N; to N; for connectionless protocols.

4) AL,[1..m,1..n] where each element AL, [i, 7] is the
set of packets representing the lower-bound reachability
from N; to N; for connection-oriented protocols.

5) AY;[1..n,1..n] where each element AY, [i,7] is the
set of packets representing the upper-bound reachability
from N; to N; for connectionless protocols.

6) AY%,[1..n,1..n] where each element AY,[i,j] is the
set of packets representing the upper-bound reachability
from N; to N; for connection-oriented protocols.

B. Basic Data Structures and Algorithms

For any ACL /¢, we define the accept set of ¢, denoted
accept(£), to be the set of packets that can be accepted by
£. In this section, we first consider the following core problem
in computing network reachability matrices: given two ACLs
¢4 and {9, how can we compute accept(£;) N accept(Ls) and
accept(€y) U accept(£2)? Our algorithm for this computation
consists of three steps: FDD construction, FDD shaping, and
FDD logical operations.

1) Step I - FDD Construction: In this step, we convert each
ACL to an equivalent Firewall Decision Diagram (FDD). FDD
was introduced by Gouda and Liu in [5] as a data structure for
representing access control lists. As network reachability only
concerns whether a packet is accepted or discarded, in this
paper, it is sufficient to use only the FDDs whose decisions
are {1,0} where 1 represents accept and 0 represents discard.
We call such FDDs “Binary FDDs”. In converting an ACL to
an equivalent binary FDD, we replace all flavors of accept,
such as accept and accept with logging, by 1, and replace all
flavors of discard, such as discard, reject, and discard/reject
with logging, by 0. We further define a full-length ordered
FDD as an FDD where in each decision path, all fields appear
exactly once and in the same order. For ease of presentation,
in the rest of this paper, we use the term “FDD” to mean
“binary full-length ordered FDD” if not otherwise specified.
Figure 3(b) shows the two FDDs constructed from the two
ACLs in 3(a).

An FDD construction algorithm, which converts a sequence
of range rules to an equivalent full-length ordered FDD, is
described in [11]. For computing reachability matrices, we
choose the protocol type field as the label of the root node.

We call the decision paths whose terminal nodes are labeled
1 accept paths. Similarly, we call the decision paths whose
terminal nodes are labeled O discard paths. Given an ACL /,

Shows the accept paths

Fi€[1, 50] AF,€[l, 60] > a

F,€[1, 100] A F>€[1, 100]— d
ACLA

FDD Construction

Fi€[l, 30]AFE
Fi€[l, 30]AFe
Fi€[1, 100] A e
Fi€[1, 100] A Fe
ACL2

(@)

1,20]—>a
1,100]— d
1, 40] >a
1,100]— d

Fig. 3.

after we convert it to an equivalent FDD f, the accept paths
of f represent the set accept(£).

2) STEP II - FDD Shaping: In the previous step, we convert
the two given ACLs ¢; and {5 to two FDDs f; and f5 such that
¢4 is equivalent to f; and /5 is equivalent to fo. In this step, we
further convert the two FDDs f; and f5 to another two FDDs
f1" and f5' such that the following three conditions hold: (1) f;
is equivalent to f1’, (2) fo is equivalent to fo’, and (3) f;" and
fo' are semi-isomorphic. Two FDDs are semi-isomorphic if
and only if they are exactly the same except the labels of their
terminal nodes [11]. The algorithm for equivalently converting
two FDDs to two semi-isomorphic FDDs is described in [11].
Fig. 3(c) shows the two semi-isomorphic FDDs converted from
the two FDDs in Fig. 3(b).

3) STEP IIl - FDD Logical AND/OR Operations: In pre-
vious steps, we equivalently convert two given ACLs ¢; and
{5 to two semi-isomorphic FDDs f;" and f,'. In this step, we
compute accept(£;)Naccept(Lz) and accept (€5)Uaccept(Ly)
using f1" and f5'.

For any two semi-isomorphic FDDs f;" and f>’, we define
fi' A f2' as a new FDD f such that f is semi-isomorphic to
fi' (and f5") and a terminal node in f is labeled 1 if and only
if the two corresponding nodes in f;’ and f»’ are both labeled
1 (otherwise is labeled 0). This implies that the accept paths
of fi" A fo' are the intersection of the set of accept paths in
f1’ and that in f,'. Therefore, we can calculate accept(£;) N
accept(£2) by calculating the accept paths in f;’ A fo'.

Similarly, for any two semi-isomorphic FDDs f;" and f5',
we define f1’ V f»' as a new FDD f such that f is semi-
isomorphic to f;’ (and f»') and a terminal node in f is labeled
0 if and only if the two corresponding nodes in f;" and f>" are
both labeled 0 (otherwise is labeled 1). This implies that the
accept paths of f,’V fo" are the union of the set of accept paths
in f,’ and that in f5". Therefore, we can calculate accept(£;)U
accept(£2) by calculating the accept paths in f1’ V fo'.

C. Computing Path and FDD Matrices

We next discuss the computing of two matrices, called path
matrix and FDD matrix, which will be used in computing
reachability matrices. The path matrix P is an n X n matrix
where each element PJi, j] is the set of one-way paths from
N; to Nj. For each path, letting £y, - - - , ¢, be the ACLs along
the path, we compute the FDD that represents accept(£;) N

-+ N accept(Ly,). The resulting FDDs are stored in the FDD
matrix I, which is also an n X n matrix.

(b) (c) (d)
(a) Two ACLs (b) Two FDDs before shaping (c) Two FDDs after shaping (d) FDD logical AND/OR

First, we initialize matrices P and F' as follows. For any
1 <4,5 < n, if there is path from N; to N; via a middlebox,
then PJé, j] consists of this path (which is composed of two
links: the link from N; to the middlebox and the link from
the middlebox to N;) and F'[i, j] consists of the FDD that
represent the intersection of the accept sets of the two ACLs
associated with the two links; otherwise, P[i,j] and Fi, j]
are both empty.

Second, we complete matrices P and F' based on for-
mulas (16) and (17) using dynamic programming. We use
Pli, k] o P[k,j] to denote the set of paths where each path
is a concatenation of a path in P[i, k] and a path in P[k, j].
Similarly, we use F[i, k] A F'[k, j] to denote the set of FDDs
where each FDD is the logical AND of an FDD in F[i, k| and
an FDD in F[k, j]. Note that we remove all paths with cycles
because cycles are typically prevented by routing protocols.

Pli,jl = |J Pl k] o Pk,] (16)
keEN

Fli,j1 = |J Fli, k] A Flk, 5] a7
kEN

Third, for each FDD in F'[i, j], we reduce the domain of the
source IP address field to the set of IP addresses used in subnet
N; and the domain of the destination IP address field to the
set of IP addresses used in N;. We use src(N) to denote the
set of packets whose source IP address is in N; and dst(N,)
to denote the set of packets whose destination IP address is in
N;. We use fdd(src(N;)) to denote the FDD that represents
src(N) and f dd(src(;) to denote the FDD that represents
dst(N;). Therefore, in thlS step, we replace each FDD f in
Fi,]] by fdd(src(N;)) A f A fdd(dst(Ny).

D. Computing Reachability Matrices

We are now ready to compute the 6 reachability matrices.

1) Reachability for Connectionless Protocols: For any 1 <
k < |F[i,j]|, we use Fi,j]i to denote the k-th FDD in
F[i,j] and P[i, j]i to denote the k-th path in P[i, j]. We use
Suber(Fi, j]k) to denote the UDP subtree of FDD Fi, j]y.
Recall that in computing reachability we choose protocol type
to be the label of the root node. Therefore, the instantaneous
reachability of the path P[i, j]x is

AL, [, 4, k] = Subor(F[i, i) (18)

Accordingly, based on formulas (4) and (5), the reachability
upper-bound and lower-bound from N; to N; are calculated
as follows: |l

ACL[’L 7] = Subcr(\/ Fli, jlk) (19)

[F[4,5]]

AG Ll 5) = Subor(N
k=1

2) Reachability for Connection-oriented Protocols: We first
consider the case that all middleboxes on paths from NV; to N;
are stateful. We use Subco (Fi, j]x) to denote the TCP/ICMP
subtree. The instantaneous, upper-bound, and lower-bound
reachability matrices are calculated using formulas (2), (6) and
(7), as follows:

Fli, j]x) (20)

Aboli 3, k] = Subco(Fli, j]x) @
I F[i,5]]

Agoli, 3] = Suboo(\/ Fli, jlk) (22
\F i J]\

Agoli, 5] = Suboo(/\ Fli, jlk) (23)

Second, we consider the case that all middleboxes on paths
from N; to N; are stateless. As discussed in Section II-B1,
for the instantaneous reachability, we need to look at the
reachability of each data path P[i, j| and the corresponding
signaling path P[j,i|x. The swapping operator is imple-
mented by function Swapgp. For an FDD f, the function
Swapgp(f) basically swaps the labels of source fields and
destination fields. The instantaneous, upper-bound, and lower-
bound reachability matrices are calculated using formulas (3),
(6), and (7) as follows:

AGolis j, k, k'] = Subco (Fli, jli A Swap g p (Flj, i) 24
[F[i,5]| | F[5,4]]
AZoliy 4] = ALoliy gk, K] ©5)
k=1 k'=1
[F[i,5]| | F[4,4]
Aboli g) = Aboli g, kK] (26)
k=1 k/=1

For the case that the paths from N; to N; contain both
stateful and stateless middleboxes, we use the formulas (21),
(22), and (23) to handle the stateful middleboxes and formulas
(24), (25), and (26) to handle stateless middleboxes.

E. Complexity Analysis

For a given network, let n be the number of subnets, m
be the number of middleboxes, h be the maximum number
of interfaces on a middlebox, p be the number of the paths
in the network, g be the maximum of number of rules in an
ACL, and d be the number of fields in each rule. Note that d
is typically a constant, which is 4 or 5 for IP networks.

The complexity of constructing the equivalent FDD from an
ACL with g d-dimensional rules is O(g?) [11]. The complexity
of constructing FDDs from all ACLs is O(g¢ - h - m). The
complexity of shaping the two FDDs constructed from two
ACLs is O((29)%) = O(g?). Therefore, the complexity of
computing reachability matrices is O(p - g¢

In theory, the total number of paths p is exponential in terms
of the number of subnets and middleboxes in the network.
However, in practice, p is much smaller than its theoretical
upper-bound because networks are typically designed follow-
ing the hierarchical network design model [1]. Using this
model, a network is designed in three layers, namely a core
layer, a distribution layer, and an access layer. Security policies
are mostly applied on the distribution layer, and the core
layer is mainly used to facilitate routing between subnets. For
networks designed by this model, the number of paths between
two subnets is typically small (often one), and the length of a
path is typically small.

IV. ONLINE REACHABILITY QUERIES

After reachability matrices are calculated, we can use them
as the engine for efficiently processing network reachability
queries. In this section, we discuss languages for specifying
reachability queries, ways of using such queries for network
and security management, and algorithms for processing these
queries. Based on the nature of queries, Quarnet supports
three types of queries: upper-bound, lower-bound, and instan-
taneous. Upper-bound/lower-bound reachability queries are
useful in verifying whether the ACLs on middleboxes satisfy
certain security policies. Instantaneous reachability queries are
useful for real-time security monitoring as the administrator
identifies which paths are used at the time of querying.
Such queries are also useful to verify whether the changes
on the ACLs on some middleboxes have undesired impact
on reachability. Based on the answer of queries, Quarnet
supports two types of queries: closed and open. A closed query
demands an answer of yes/no. For instance, considering the
network in Figure 2, can all hosts in S1 communicate with
Mail Server in S4 on TCP port 25 via any path? An open
query demands an answer in terms of a set. For example,
which hosts in S1 can access the Mail Server in S4 on TCP
port 25 via any path from S1 to S4? As another example, what
set of paths may let all hosts in S1 access the Mail Server in
S4 on TCP port 25?

A. Reachability Query Language

SRQL Syntax: We define an SQL-like language called
Structured Reachability Query Language (SRQL) for speci-
fying reachability queries. SRQL has the following format:

reachability_type T

connection_type O

select F

where (Fi € S1) A AN (Fq € Sq) AN (P € Sp)

The reachability type 7 denotes the type of reachability,
namely instantaneous (I), upper-bound (U), or lower-bound
(L). The connection type O denotes the connection orientation
of transport protocols, namely connection-oriented (CO) or
connectionless (C'L). When the reachability type 7T is upper-
bound or lower-bound, the select clause F is a subset of
packet fields {Fy, Fs,---, Fy}; when T is instantaneous, F
is a subset of fields {F, Fy, -, Fy, P} where P denotes
the attribute of “path”. In the where clause, the predicate
(F1 € S1) A--- N (Fyq € Sq) specifies the set of packets that
this query is concerned with and (P € Sp) specifies the set
of paths that this query concerns. For example, SRQL query
for the question “Through what paths the mail server in S4 on

TCP port 25 is accessible from S1?” is the following:
type [
protocol CO
select P
where (S € S1) A (D € MailServer) A (DP € 25) A (PT € TCP)

Note that we do not expect administrators to specify queries
using SRQL directly. Instead, we expect a full-fledged imple-
mentation of Quarnet to provide a GUI interface for inputting
queries and specifying paths. The SRQL will be used to
formally represent a query under the hood.

SRQL Semantics: The result of an upper-bound reachabil-
ity query, where F = {Fy,--- , Fp} and F; € {F1, Fo, -,
F,} for every 1 < i < h, is defined as follows:

{(mry, - y7rm,)|(m1 € S1) A+ A (g € Sq) and packet
(w1, -+ ,mq) can traverse from its source
to its destination at some time}

The result of a lower-bound query is defined similarly except
that “at some time” is replaced by “at any time”.

The result of an instantaneous reachability query, where
F=A{F, -, Fn, P} and F; € {Fy, F»,---,F;} for every
1 <4 < h, is defined as follows:

{(mry, - mm,,p)|(m1 € S1) A -+ A (mq € Sq) and packet
(w1, ,mq) can traverse from its source to
its destination through path p where p € Sp.}

SRQL Example 1: We next give some query examples,
where we use the shorthand S for source IP, D for destination
IP, SP for source port, DP for destination port, and PT for
protocol type. The question “Can all hosts in S1 communicate
with the mail server in S4 on TCP port 25?” can be formulated

as the following query:
type L
protocol CO
select S
where (S € S1) A (D € MailServer) A (DP € 25) A (PT € TCP)

If the query result is all the IP addresses in S1, then the answer
is “yes”; otherwise the answer is “no”.

SRQL Example 2: SRQL query for the question “Through
what paths the mail server in S4 on TCP port 25 is accessible

from S1?” is the following:
type [
protocol CO
select P
where (S € S1) A (D € MailServer) A (DP € 25) A (PT € TCP)

B. Reachability Query Engine Construction

Our reachability query engine consists of six FDDs rep-
resenting the six reachability matrices. We compute the six
FDDs as follows. For each of the four upper-bound/lower-
bound reachability matrices, we apply the logical OR oper-
ation to all matrix elements, where each element is an FDD
representing the reachability between two specific subnets. The
resultant FDD over d fields represents the upper-bound/lower-
bound reachability between any two subnets. For each of the
two instantaneous reachability matrices, we compute the two
corresponding FDDs as follows. First, we reduce the two
instantaneous reachability matrices to 2-dimensional matrices
by combining the FDDs for the various paths from a source
to a destination into one FDD. To achieve this, we first add
a new node labeled with a new attribute “path” to each FDD
as the root whose outgoing edge is labeled with path IDs, and
then apply the logical OR operation to all FDDs regarding
the reachability from one subnet to another. It is trivial to
label every path with a unique ID. Second, for each of the
two resultant 2-dimensional matrices, we apply the logical OR
operation to all elements and get an FDD over d+1 fields. The
six FDDs will be used to process SRQL queries.

C. Online Reachability Query Processing

Reachability queries can be quickly processed by traversing
one of the six FDDs computed above. The algorithm is
essentially the same as the one described in [10] for querying
one firewall policy.

V. EXPERIMENTAL RESULTS

A. Reachability Computation

We implemented Quarnet in C++ and evaluated it on a
university campus network. We focused the measurement
on the execution time and memory usage of Quarnet. We

concluded that Quarnet is sufficiently efficient to be used in
practice as off-line computation, although computing network
reachability is a resource consuming task in nature.

This campus network consists of 48 subnets interconnected
in a hierarchical topology. We model the core campus net-
work as one subnet as most ACLs are deployed on edge
routers/firewalls. We disregard the ACLs deployed on the core
routers in the network because we have no access to them.
Furthermore, their potential impact on the reachability calcu-
lation is expected to be small because the ACLs on core routers
are typically very small and they mostly specify a few rules
allowing only administrators to access the middleboxes for
management purposes [1]. One subnet may contain multiple
Virtual Local Area Networks (VLANS) and there are no ACLs
among VLANSs. For example, a VLAN could be the network
that consists of all the printers in the subnet of a department.
Note that we model the outside Internet as one subnet. This
network does not have NATs/PATs. Further, all ACLs that we
obtained are in use on stateful firewalls. In this network model,
there are 49 subnets that are connected by 192 links through
2401 paths. Also, the total number of VLANS is 399 that are
protected by 98 ACLs, where each ACL contains 573 rules in
average (total number of rules: 56189). Among the 98 ACLs,
14 of them are original and the rest are generated based on the
statistical features of the original ones and the subnet addresses
because we do not have access to all the ACLs in deployment.

We conducted experiments on a desktop computer with a
Dual Core AMD64 CPU 2.4GHz and 16GB of RAM. This is
a public machine running processes from other users as well.
Our experimental results are shown in Table III. Note that the
total amount of memory used by Quarnet is 4.7GB, not the
sum of the memory used in each step because some memory
is released after each intermediate step.

of | Time RAM
FDDs (mins) (MB)
FDD construction 192 2.1 1276
One-hop path calculation 96 0.3 106
FDD matrix calculation 2352 11 1505
Reachability matrices calculation | 2352 661 2400
for connection-less protocols
Reachability matrices calculation | 2352 1 800
for connection-oriented protocols
Total execution 7344 675 4700
TABLE III

RESULTS ON COMPUTING REACHABILITY MATRICES

We gained two insights from our experiments. First, the
running time of our algorithm goes up as the number of
VLANSs increases. This is because more number of VLANs
means more intervals on the outgoing edges of nodes labeled
with source or destination fields, which further means more
edge splitting and subtree copying in performing FDD shaping.
Second, the time for computing reachability matrices for
connection-oriented protocols goes down dramatically as the
number of stateful firewalls increases. This is because based on
formulas (21), (23), and (22), we can use the FDDs calculated
in the connectionless matrices and simply change the subtree
functions from Subcy, to Subco.

B. Experimental Results Validation

To validate the reachability matrices computed by Quarnet,
we designed an ACL simulator that makes the decision for

each packet by sequentially comparing the packet with every
rule in an ACL. We generated a large number of packets for
every path including all corner case packets based on the
bounding values in the ACLs. We compared the decisions
made by the ACL simulator and those made by the reachability
matrices computed by Quarnet. The results are all positive.
C. Performance of Core Operations

The core operations in reachability computation are FDD
logical AND and OR operations, the performance of which
is the same as they all come down to FDD shaping. We are
interested in evaluating their performance because it helps us
to estimate the running time and memory usage of reachability
matrix calculation. To evaluate the performance of the core
operations, we created synthetic rules generated based on the
statistical features of the real rules that we have obtained, such
as the probability of unique IP addresses and port numbers,
the decision bias of the rules, and the probability of fields
being any. We focused on measuring the time and memory
for calculating the reachability of paths with different lengths.

Figure 4 (a) and (b) show the running time and memory
usage of the core operations over different path lengths for a
network with 100 subnets. The average number of rules per
ACL ranges from 100 to 400 with 10% STD based on normal
distribution. Note that based on the dynamic programming in
Section III-C, the FDD for each path is calculated using a
single logical operation. For instance, the FDD for a path of
length 8 is calculated by an AND operation of either two
FDDs where each is for a path of length 4 or two FDDs, one
for a path of length 6 and one for a path of length 2. For
any path length, we calculate the average cost of all possible
permutations by which the FDD of the path may be calculated.

The interesting observation on Figure 4 is that in general the
running time and memory usage decrease as the path length
increases. This makes sense because the rules in different
ACLs from one network often share common fields. The
source and destination IP address fields of many rules in the
ACLs from one network are drawn from the IP prefixes of the
subnets in the network. Similarly, many of the port number and
protocol fields are drawn from the set of services provided by
the network. When we shape two FDDs each corresponds to
a long path, because each of the two FDDs has gone through
many edge splitting, the amount of new edge splitting tends
to be small, which leads to reduced cost.

Knowing the performance of Quarnet core operations allows
us to estimate the time and memory that it used to compute
the reachability matrices for a given network. Let C(z) be the
cost function for calculating the FDD for a path with length x
as shown in figure 4. Let L(P[i, j]x) be the length of the path

L I I B B :
Pli, jlk. We use (CCL., CQO, C¢& L, and C&,, to denote the esti-
mated cost (i.e., running time or memory usage) for computing

400 % — % —100 o] Ta — % -100

asof ! ~©-200 40} W - ©-200

| - 5 -300 . - 5300
g | aa0o|| T . 400
o 250 ! §1oo ‘w ES
@ 200 E 80 “‘// W |
® Aa 5] I)
Etsora u = 6o vR e,

0 10 20 30 40 0 10 20 30 40

Path Length Path Length
(a) Running Time (b) Memory Usage

Fig. 4. Performance of Quarnet core operations

the matrices of instantaneous reachability for connectionless
protocols, instantaneous reachability for connection-oriented
protocols, reachability bounds for connectionless protocols,
and reachability bounds for connection-oriented protocols,
respectively. They can be calculated as follows:

N N |P[i,j]]

Cor=>_>" Z c(e

i=1j=1 k=1

P[i, j]x))

, N N _|P[i,j]| | P[4,i]]
cLo=3%" > CL(Pliyle) + £(PL, i)
i=1j=1 k=1 k/=1
5 N | P[i,4]]
cE, =3)
i=1 k=1

N

Z 2 ey eer
J 1 k=2

!

(Z L(Pli, fler) + D L(PL, i)

N N_|P[igll P
Coo =2 Z 2
j=1 k=1 k/=1 =1
D. Performance of Online Querying
As our reachability query engine uses FDDs as its core
data structures, we evaluated the performance of online query
processing by performing randomly generated queries over
large FDDs with millions of nodes. Our experimental results
in Table IV show that our online reachability query engine
is very efficient. For example, over an FDD with 2 million
nodes, which is similar to the size of the FDDs uses in the
online query engine built for the university campus network
that we experimented, the average processing time for a query
is 0.075 seconds, although some queries (less than 1%) take
2-3 seconds. The existence of some outliers is because some
randomly generated queries may cause the engine to search
through a large portion of the FDD.

FDD Size | Average Query | Outliers

(# nodes) Processing Time

0.5 million | 0.032s 1% of queries: 0.5s ~ 1s

1 million 0.049s 0.8% of queries: 0.8s ~ 1.5s
2 million 0.075s 1% of queries: 2s ~ 3s

TABLE IV
PERFORMANCE OF ONLINE QUERY PROCESSING

VI. RELATED WORK

Active probing tools, which actively test network reacha-
bility by sending probing packets and analyzing the response
packets, are commonly used by network administrators. Such
tools include ping and t raceroute, which use ICMP echo
request/reply or ICMP time-exceed packets to test whether a
host on target network is reachable. The use of such tools is
limited because they cannot verify the reachability of UDP
or TCP packets. There are tools such as NMAP and NESSUS
that can test the reachability of UDP or TCP packets; however,
such tools have significant limitations. First, they cannot
perform comprehensive testing due to the amount of packets
that have to be generated. Second, the test results of such tools
are valid only for the routing state at the time that the testing
is performed and may not hold afterwards due to the change of
routing states over time. Third, such tools only show the open
ports on which a server daemon is listening and does not reveal
the open ports with no server listening on them at the time
of testing. In comparison, our Quarnet is non-intrusive and
comprehensive. But of course, active probing tools have some
benefits that Quarnet does not offer. For example, they may
identify reachability faults, such as errors in routing software,
which are not caused by ACL misconfigurations. Nevertheless,
our tool is complementary to such tools.

Little work has been done on network reachability analysis.
Xie et al. presented a model of network reachability in
their seminal work [19]; however, they give no algorithms
for computing reachability (and of course no experimental
results). Xie et al.’s network reachability model does not
address dynamic NAT (Network Address Translation) and
PAT (Port Address Translation), and does not take into ac-
count whether transport layer protocols are connectionless or
connection-oriented. Furthermore, Xie et al.’s model is limited
to describing the networks where each subnet connects to
only one router because they model a network as a graph
over only routers. We significantly go beyond Xie et al.’s
work along three dimensions: (1) reachability modeling and
formulation, (2) algorithms for computing reachability, (3)
solutions for reachability queries. Our model differs from Xie
et al’s work in the following aspects. First, we model a
network as a graph over both routers and subnets, while Xie
et al. model a network as a graph over only routers. Thus,
Xie et al.’s model is limited to describing the networks where
each subnet connects to only one router, while our model does
not have this limitation. Furthermore, we calculate reachability
between two subnets and they calculate reachability between
two middleboxes. Second, we distinguish network reachability
formulations based on both the properties of transport layer
protocols (namely connectionless and connection-oriented pro-
tocols) and the statefulness of routers/firewalls on every path,
while Xie et al. did not. Third, our model addresses three types
of packet transformations: static NAT, dynamic NAT, and PAT,
while Xie ef al.’s model addresses only static NAT. Xie et al.
gave no implementable algorithms for computing reachability
and no solutions for reachability queries. Recently, in a poster
paper [20], Zhang et al. proposed monitoring and verifying
reachability in real-time by computing instantaneous reacha-
bility. However, they provided no algorithm for computing the
reachability from a source to a destination along a given path
and no experimental results. Furthermore, they have the other
limitations of Xie et al.’s work mentioned above.

Some effort has been made to use Binary Decision Dia-
grams (BDDs) for reachability analysis [3], [17]; however,
such work can only answer host-to-host queries and cannot
answer subnet-to-subnet queries as we do in this paper. We
choose FDDs instead of BDDs, as the basic data structure in
this paper for several reasons. First, it is extremely difficult,
if not infeasible, to swap the values of packet fields or
rearrange packet fields in a BDD calculated over multiple
ACLs. These operations are critical for computing reachability
for connection-oriented protocols and networks with NAT/PAT.
Note that our methods for performing these operations on
FDDs, which requires generating rules from FDDs and recon-
structing FDDs, cannot be applied to BDDs because generating
rules from a BDD could easily lead to millions of rules as
reported in [11]. Second, a reachability query engine built with
BDDs can only process closed queries that demand a yes/no
answer. In contrast, our reachability query engine built with
FDDs can process both closed queries and open queries. Third,
the reachability calculated by BDDs is not human readable. In
contrast, every element in our reachability matrix is an FDD,
which can be visualized for examination.

In [13], Mayer et al. proposed Fang, a firewall analysis
engine. Fang supports limited queries (over 3-tuples) and each

query is compared with every rule in every ACL along every
path from a source to a destination, which is very inefficient.

There is some work, which is orthogonal to ours, on
detecting reachability problems caused by routing faults (e.g.,
the faults identified in [15]), instead of ACL misconfiguration
(e.g., [12]). In [6], Ingols et al. proposed algorithms for
creating attack graphs for a network; however, their focus
is not on reachability computation. Our proposed work is
complementary to [6].

VII. CONCLUSIONS

We make four major contributions in this paper. First, we
model and formulate network reachability considering the dif-
ferences in connectionless and connection-oriented transport
protocols, stateless and stateful middleboxes, as well as the
presence and absence of various packet transformers. Second,
we present algorithms for computing network reachability ma-
trices. Third, we give solutions for expressing and processing
reachability queries. Fourth, we implemented our algorithms
and conducted experiments on a campus network. Results
show that our offline reachability computation is practical and
online query processing is very efficient.

REFERENCES

[1] Internetworking design basics. http://www.cisco.com/en/US/docs/internet
working/design/guide/nd2002. html.

[2] NAT order of operation. http://www.cisco.com/warp/public/556/5.html,
2005.

[3] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi. Network
configuration in a box: Towards end-to-end verification of network
reachability and security. In /EEE ICNP, 2009.

[4] O. Andreasson. IPtables tutorial 1.2.2.
tutorial frozentux.net/iptables-tutorial. html, 2006.

[5] M. G. Gouda and A. X. Liu. Structured firewall design.
Networks Journal (Elsevier), 51(4):1106-1120, March 2007.

[6] K. Ingols, R. Lippmann, and K. Piwowarski. Practical attack graph
generation for network defense. In Proc. 22nd IEEE Annual Computer
Security Applications Conference (ACSAC), pages 121-130, 2006.

[71 Z. Kerravala. As the value of enterprise networks escalates, so does
the need for configuration management. Enterprise Computing &
Networking, The Yankee Group Report, January 2004.

[8] A. Khakpour and A. X. Liu. Quarnet: A tool for quantifying static
network reachability. Technical Report MSU-CSE-09-2, Michigan State
Univesity, Dept. of Computer Science and Engineering, January 2009.

[9] A. Klenk, P. Schlicker, R. Kuhne, A. Fessi, C. Fan, F. Dressler, and

G. Carle. Path coupled accounting mechanisms for all IP networks. In

6th IEE Int.Conf. on 3G & Beyond (3G 2005), 2005.

A. X. Liu and M. G.Gouda. Firewall policy queries. IEEE Transactions

on Parallel and Distributed Systems (TPDS), 20(6):766-777, 2009.

A. X. Liu and M. G. Gouda. Diverse firewall design. IEEE Transactions

on Parallel and Distributed Systems (TPDS), 19(8), 2008.

R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP

misconfiguration. In Proc. SIGCOMM, 2002.

A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine. In

Proc. IEEE Symposium on Security and Privacy, pages 177-187, 2000.

D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do internet

services fail, and what can be done about it? In Proc. 4th USENIX

Symposium on Internet Technologies and Systems (USITS), March 2003.

V. Paxson. End-to-end routing behavior in the internet. IEEE/ACM

Transactions on Networking, 5:601-615, 1997.

M. Stiemerling, H. Tschofenig, and C. Aoun. Nat/firewall nsis signaling

layer protocol (nslp). draft-ietf-nsis-nslp-natfw-05, 2005.

Y.-W. E. Sung, C. Lund, M. Lyn, S. G. Rao, and S. Sen. Modeling

and understanding end-to-end class of service policies in operational

networks. In ACM SIGCOMM, 2009.

A. Wool. A quantitative study of firewall configuration errors. [EEE

Computer, 37(6):62-67, 2004.

G. Xie, J. Zhan, D. Maltz, H. Zhang, A. Greenberg, G. Hjalmtysson,

and J. Rexford. On static reachability analysis of IP networks. Proc.

IEEE INFOCOM, 3:2170-2183, March 2005.

B. Zhang, T. S. E. Ng, and G. Wang. Reachability monitoring and

verification in enterprise networks. In Proc. SIGCOMM, 2008.

http:/fiptables-

Computer

[10]
[11]
[12]
[13]
[14]

[15]
[16]
(171

(18]
[19]

[20]

