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Abstract—Optimal capacity analysis in multi-radio multi-
channel wireless networks by nature incurs the formulationof a
mixed integer programming, which is NP-hard in general. The
current state of the art mainly resorts to heuristic algorithms to
obtain an approximate solution. In this paper, we propose a ovel
concept of multi-dimensional conflict graph (MDCG). Based
on MDCG, the capacity optimization issue can be accurately
modeled as a linear programming (LP) multi-commodity flow
(MCF) problem, augmented with maximal independent set (MIS
constraints. The MDCG-based solution will provide not onlythe
maximum throughput or utility, but also the optimal configur a-
tions on routing, channel assignment, and scheduling. Mowver,
the MDCG-based optimal capacity planning can exploit dynanic
channel swapping, which is difficult to achieve for those exsting
heuristic algorithms. A particular challenge associated \th the
MDCG-based capacity analysis is to search exponentially nmy
possible MISs. We theoretically show that in fact only a smalset
of critical MISs, termed as critical MIS set, will be scheduked in
the optimal resource allocation. We then develop a polynorai
computing method, based on a novel scheduling index orderin
(SIO) concept, to search the critical MIS set. Extensive nurical
results are presented to demonstrate the efficiency of the MOG-
based resource allocation compared to well-known heuristi
algorithm presented in [1], and the efficiency of SIO-based N5
computing compared to the widely adopted random algorithm
for searching MISs.
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inherent hardness, the state of the art of MR-MC networks has
been constrained to either adopting linear programming (or
convex optimization in general) relaxation to obtain anempp
bound of the network capacity [1]-[4], or developing hetitis
resource allocation methods [1], [2], [5]-[8] to obtain awér
bound.

In this paper, we aim to find an efficient computing method-
ology to optimize the capacity of MR-MC networks in the
multi-dimensional resource space. Our inspiration coma® f
that the single-radio single-channel (SR-SC) networkshan
optimized by formulating a linear programming (LP) multi-
commodity flow (MCF) problem, augmented with constraints
derived from thelink conflict graphor contention grapH9],

[10]. The conflict graph tool did not achieve the similar
popularity in MR-MC networks as in SR-SC networks. The
reason is that the link conflict graph is not sufficient to
describe the complex conflict relations in competing forhbot
the radio interfaces and channels. We show in this paper that
by generally interpreting each vertex in the conflict graph
as a basic resource point for scheduling, we could discover
a generic methodology to extend the conflict graph tool to
the MR-MC networks: representing each resource point in
the MR-MC multi-dimensional space (i.e., each vertex in the
conflict graph) as aadio-link-channel tupl§RLC-tuple). The

The multi-radio multi-channel (MR-MC) wireless networkconflict graph constructed in this manner is termedrasti-
remains hot in the past few years. With MR-MC communicalimensional conflict grapiMDCG).
tions, the network capacity can be significantly improved by The new insight of conflict-graph based computing in a
simultaneously exploiting multiple non-overlapping chafs multi-dimensional resource space brings a chance to reshap
through different radio interfaces and mitigating inteefeces the computing methodology in MR-MC networks. Based
through proper network configuration. on the MDCG, the optimal resource allocation in MR-MC

Compared to the traditional single-radio single-chan8&- networks can now be transformed from the integer program-
SC) networks, MR-MC networking takes place innaulti- ming regime to the linear programming regime, and has a
dimensional resource spacaith dimensions defined by radioclear direction towards the optimal resource allocatioa,, i
interfaces, links, and channels. The central issue of resal- MCF formulation augmented with the MIS constraints [9].
location in such a multi-dimensional space is to find sohgio The MDCG-based MCF solution will provide not only the
for a set of coupled problems includirpannel assignment, maximum throughput or utility, but also the optimal channel
scheduling, and routing1]-[8], with the objective to opti- assignment, scheduling and routing to achieve it. Moredker
mize network capacity; the resource allocation issue is alMIDCG-based optimal capacity planning can exploit dynamic
termed asoptimal capacity planningHowever, the optimal channel swapping, which is very hard to achieve for those
multi-dimensional resource allocation in MR-MC networks bexisting heuristic algorithms. Numerical results are présd
nature leads to a mixed integer programming problem (whith demonstrate the efficiency of the MDCG-based capacity
is NP-hard), involving binary variables to describe chdnnplanning, with comparison to the well-known heuristic algo
assignment and radio interface constraints [1], [2]. Dusutth rithm presented in [1].



A particular challenge associated with MDCG based capac- compute the critical MIS set.
ity analysis is that finding all maximal independent sets if4) Extensive numerical results are presented to demaestra
a conflict graph is NP-complete [12]. Thus it is impractical the efficiency of the MDCG-based capacity analysis and
(although theoretically possible) to include all the MISs a Sl0-based MIS computing.

augmented constraints in the MCF formulation. A random al- The reminder of this paper is organized as follows. Section
gorithm for MIS search is proposed in [9] and widely adoptedl reviews more related work. Section Il is the system model
in the Iiterature, which provides a framework while more M|SSecti0n 1V will h|gh||ght the most popu|ar methodok)gy in
can be obtained with more rounds of computation. Howeveis area. Section V presents how to construct the MDCG.
we find that random search algorithm is quite inefficient for gection VI formulates the MDCG-based MCF problem for
large size MDCG (which is normally incurred by a MR-MCoptimal capacity planning. Section VII presents the heiaris
network with a large number of nodes, multiple channels argyorithm. Section VIII shows numerical results for petfor

multiple radio interfaces), where the random search mayltresmance evaluation. Section IX gives the concluding remarks.
in redundant search (i.e., getting a MIS already found) &ith

high chance. In this paper, we theoretically show that it fac Il. RELATED WORK

only a small set of critical MISs, termed asitical MIS set The MCF formulation augmented with the maximal inde-
will be scheduled in the optimal resource allocation, altjio pendent set (MIS) constraints over a conflict graph can com-
exponentially many MISs are possible in a conflict graplpute the optimal capacity planning to maximize the throughp
The important finding motivates us to develop an efficiemr utility [9]. The optimal schedulingpolicy is that all the
algorithm to identify the critical MIS set, while the randonmaximal independent sets take turns in grabbing the channel
algorithm could be interpreted as an aimless approach tercofor data transmission, with the proportion of transmisgiore

the critical MIS set by throwing a huge number of MISs. for each set determined from the MCF solution. The links

Another main contribution in this paper is that we develop(ith posi.tive flow aIIoc_:ation constitute theptimal route set
a polynomial heuristic algorithm to intelligently compuge 'OF the given commodity flows. Note that the MIS-based op-
set of MISs to better cover the critical MIS set, comparemal scheduling over the MDCG also determines dpéimal
to the aimless random search algorithm. Our basic idea isd@annel assignment and radio interface assignmeith each
exploit the network topology and network flow informatiorflément in an MIS standing for a RLC-tuple. _
to infer those communication links that might be scheduled !t is due to the lack of a generic conflict graph in the
with high possibility, and define acheduling indexnetric to Multi-dimensional resource space that the elegant Mi&as
differentiate the scheduling priority of links. The tupléthv MCF formulation for optimal capacity planning could not
a larger value of SI indicates the chance of scheduling wilt¢ generalized to MR-MC networks. Taegal. [3] propose
higher priority. The scheduling index ordering (SIO) allow!0 establish a multi-channel contention graph (MCCG) by
us to develop a systemic way to approximately computir’f&present'ng Ilnk-channel_palrs as vert|ce_5|nthe corgliaph, _
the critical MIS set by covering higher priority links (andet Where only co-channel link-channel pairs may have conflict
associated tuples) with more MISs; the algorithm is termé@latmns. However, t_he_MCCG could not indicate confll_cts
asSlO-based MIS computinlumerical results show that thein competing for radio interfaces, so the MCF formulation
SI0-based MIS computing can well locate the critical MIS settill needs to incorporate integer variables to describe th
leading to higher network capacity with much less computif@dio interface constraint, even with MCCG applied. In [11]
complexity. In the Section of numerical results, we will sho @nd [13], a multi-radio conflict graph (MCG) and a multi-
that the SIO-based computing steadily performs with onerorc?Cint link conflict graph (MPLCG) are proposed, respeciivel
of reduced complexity fewer to achieve the same level & construct the conflict graph based on radio-link pairs.
capacity compared to the random algorithm. In summary, tH\evertheless, computing the channel assignment based on

paper has four-fold main contributions: such conflict graphs incurs thiést coloring problem[14],
which is NP-hard. The generic MDCG developed in this paper

(1) We propose a novel multi-dimensional conflict graph, big expected to significantly advance the state of the art of MR
which the optimal resource allocation in MR-MC netMC networking.
works can now be transformed from integer programming In a conflict graph, computing all MISs is NP-complete.
regime to the linear programming regime. Random search [9] is a popular approach to gradually compute

(2) Based on MDCG, we formulate a MCF problem augMISs by randomly index the vertices in the conflict graph
mented with MIS constraint to compute the optimaht each iteration. However, the random search may lead to a
capacity over a MR-MC network. The solution providetarge number of redundant search (giving the same MIS in
not only the maximum capacity, also the optimal routinglifferent rounds of search) in a conflict graph with a large
scheduling and channel assignment. Further, dynammamber of vertices and high connectivity, which is the case
channel assignment is achieved as well. for the MDCG. The inefficiency in MIS directly leads to the

(3) We for the first time (to the best of our knowledge) reveainnecessary computing complexity in solving the MCF prob-
an important concept of critical MIS set, and develop alem and lower capacity result. A systemic approach computin
efficient polynomial SIO-based method to approximateIS is introduced by [22] with polynomial delay between two



outputs. It sorts all vertices in a lexicographic order. ldger, equation must be satisfied for each lihk
the output is not suitable to construct MIS constraintsabise
with fixed number of iterations, the vertices with smaller Xzt D Xvr <clg). @
indexes may be included in most of the output MISs while rerq)
the vertices with larger indexes may be covered by justweherec(q) is a constant depending on the ratio of interference
small portion of the output MISs. Such unbalanced output magnge to transmission range. The condition denotes that the
significantly limit the solution region for searching optim number of active links within linkl’s interference range
scheduling. We call such an issue @ger-concentrated prob- can not exceed:(q). With some other basic flow balance
lem The MIS computing algorithm developed in this papetonstraints, the two conditions are able to give us the adtim
also needs to index and order the vertices in the MDCG, kdlution, however, we need to solve the optimal problem once
makes necessary designs to alleviate the impact of the ovfer-every time slotr, which is impractical.
concentrated problem. Since the mixed integer programming is NP-hard, a LP
relaxation of original problem is formulated to obtain arpap
bound solution. Although the LP relaxation solution may
The wireless network is viewed as a directed gr&ff\/, £)  generate infeasible channel assignment, it is "optimat&ims
with node set\” and link setZ, and || and|£] be number of minimizing the interference for each channel. In this grap
of nodes and links, correspondingly. We uge or (u,v) to  we also use the LP relaxation results as computed in [1] as an
denote a communication link from nodeto nodev. Consider upper bound of capacity analysis. To make the LP relaxation
that the whole spectrum available to the network can be dolution feasible, a 3-phase channel assignment algorighm
vided intoC' frequency channels, represented as’sélfe use then developed to adjust the flow allocation on the flow graph
wy,,, to denote the physical transmission capacity of linkv) to ensure a feasible channel assignment. The algorithm first
on channek. Moreover, letM, denote the number of radioallocates traffic to the different radio interfaces of a noole
interfaces available at nodg and X' = max M,,Yu € N. At ensure that the traffic assigned to any node is at most minimum
any given time, an interface can only tune to one channel, buimber of radios among all nodes; phase 2 assigns channels
it can switch channels dynamically at different time slots. to nodes to derive small intra-component interferencesgeha
The interference in the wireless network can be defingdcontinues to modify the channel assignment for all nodes
according to aprotocol interference modebr a physical and radios so that the intra-channel interference is mirgthi
interference modd[L5]. With the protocol interference model,in addition, post processing and flow scaling are performed
the conflict relationship between two links is determined by redistribute the flow allocation to minimize the maximum
the specifiedinterference range The protocol interference interference over all channels, and eliminate all intenfiee
model is adopted by most of the existing work, by which thfr all channelsNote that the final channel assignment scheme
interference over a network can be abstracted into a confliststatic, which significantly impact the resource utilipat in
graph. We also focus on the protocol interference modelig thhis paper, the MDCG based capacity analysis reveal that the
research. A very recent paper [16] discusses how to propeskytimal resource allocation by natures incurs dynamic areln
set the interference range so that a physical interferemciem swapping
can be accurately transformed to a protocol interferenaeino

Il. SYSTEM MODEL

V. MULTI-DIMENSIONAL CONFLICT GRAPH

IV. MIXED INTEGERPROGRAMMING MODEL In this section, we will introduce new multi-dimensional

In this section, we summarize the methodology taken by tieenflict graph. The central issue of resource allocation in a
well-known work [1] to compute the the scheduling, chann&R-MC network is to find solutions for a set of coupled prob-
assignment, and routing issues in MR-MC networks. THems including channel assignment, scheduling, and rgutin
work [1] resorts to a mixed integer programming model tfl]-[8], with the objective to optimize network capacity. this
formulate the optimal resource allocation problem, assgrmai  paper, the optimal capacity planning of a MR-MC network is
synchronous time-slotted system. The significant contiohs to be computed based on a multi-dimensional conflict graph.
in [1] are the construction of node radio constraint and iile | In the perspective of resource allocation, we interpretvifie
congestion constraint. To describe the node radio constimi MC networks as a multi-dimensional resource space, with
binary integer variableX . . is introduced, whereX; ., = 1  dimensions defined by radio interfaces, links, and channels
indicates linkl operates on channelin time slotr. Thus, the The MDCG is to described the conflict relationship among
node radio constraint for each nodec N can be expressedthe resource points, each represented as a radio-linkaehan
as: tuple. Specifically, a RLC tuple is defined in the format:

Z Z Xper + Z Z Xper < M,. (1) Radio-link-channel tuple: ((z,,z,), (u,v),c).  (3)

1SesCl=(uv)eL 1SesCl=(vu)eL The tuple indicates that the link:, v) operates on channe)

which indicates that the number of active links incident to which involves the radio interfaces, € M, =, € M, at the
node is constrained by the number of available radio intesending node: and receiving node, respectively. According
faces. To derive an interference-free scheduling, thevetlg to the RLC tuple definition, we can systematically list ak th



possible resource allocations to enable a communicatiin li
by considering all the possible combinations of activatetia
interfaces at source/destination nodes and the workingreia
Thus, a link(w, v) can be mapped td/,, x M,, x C RLC tuples

in the MDCG. LetP denote the tuple set containing all tuples
in a MDCG. Given the number of linki| in original graph,
the number of tuples in a MDCG is at mo&C|L], in this
case every node is equally equipped withradios.

The conflict relationship among the RLC tuples in a multi-
dimensional resource space is much more complex than that Fig. 1. Conflict relationship in MDCG.
among the links in a single-dimensional resource space. On
one side, the conflict relations within the interferencegen  v/|. MDCG BASED OPTIMAL CAPACITY PLANNING
can be mitigated by parallel transmissions over different

channels; on the other side, multi-channel simultane@rstr . SO
missions will be constrained by the available radio integfa compute the optimal resource allocation in MR-MC networks,
that is, formulating a MCF problem augmented with MIS

To _|dent|fy all the possible cgnfhct relations in a MDCG, W&onstraints over the MDCG. In particular, it is selecteds set
define three types of events:

of RLC tuples that constitute the MISs in MDCG; such
(E) Two different RLC tuples are associated with nodes bei,l}élS—based scheduling solved from the MCF formulation can

located within each other’s interference range, accordilh(%”“y indicate the optimal scheduling of link transmisss,
to the protocol interference model. channel assignment and radio interface assignment to the

(F) Two different RLC tuples are associated with the san@étive transmissions, and the optimal routing.

The MDCG enables a linear programming approach to

channel. Define that each commodity is associated with a source
(G) Two different RLC tuples share common radio interfacéiestination pair(v,7), and let A denote the set of all
at one or two nodes. source/destination pairgA| the number of flows. Each flow

has a rate requirement,, ). Let f. ,(u,v) denote the
Give two different RLC tuples, a conflict relationship exisflow associated with commodityv,n) traversing the link
between them if the conditioB FG UG is true. In particular, (u,v). The MCF problem can be formulated as a linear
the conditionEFG indicates that con-channel transmissionsptimization or convex optimization problem, depending on
within the interference range conflict with each other, ttm how the objective function is selected. A common formulatio
asinterference conflictelationship. The conditiof¥ indicates is to maximize the total throughput over all source desiomat
the interface conflictrelationship that a single radio interfacepairs, but such an objective function may lead to starvation
can not support multiple transmissions (which might be aef some commodity flows. Considering the fairness issue and
sociated with different channels) at a moment. Note that thige convenience for performance comparison with the regour
interface conflict is the special issue induced by the MR-M@llocation approach presented in [1], we seek to maximize
networking. There is no explicit interface conflict in a SRwhere at least\r(,,,,, amount of throughput can be ensured
SC network, because the constraint that a half-duplex radar each commodity flow. Such an objective function is also
interface can not transmit and receive simultaneously is emken in [1]. We term\ asnetwork capacitySpecifically, the
sured by the interference constraint. According to thedeci basic MCF formulation can be expressed as:
criteria, we could figure out all the interfering neighboos f

each tuple, and lef(p) denote these tuples. These tuples are _ max A )
called neighbors op, and the rest are non-neighborsof Subject to:

We use an example to illustrate the MDCG based on the Z o (W,v) = A, V(v,m) € A (5)
conflict relationship among RLC tuples, as shown in Fig. 1. l,€L
The left side of Fig. 1 shows a small network consisting of two Fopm (1, 0) = v.u
directional links, where nodé has two radio interfaces, and zgeja G () zwzea fom(®w)
nodesB andC' each have one interface. There are 2 available

. Y(v,n) € A andv € N'/{n,, 6
channels. Thus, both linksA, B) and (4, C) can be mapped (v:m) Y /) ©
to 2 x 1 x 2 = 4 RLC tuples, respectively. For instance, the > fwa,v) = 0,¥(v,m) € A )
tuple ((1,1), (A, B),1) indicates that the transmission from luv€Ll
node A to nodeB uses the radio interface 1 at nodeand Z fowm(mv) =0,¥(v,n) € A (8)
the one available radio interface at noffe and both radio Lol
interfaces tune to channel 1. Given the tuples, all possible
interferencelinterface conflict relations among them daant ( X):GA Fom) (4, 0) < Buw, Vil € £ ©)
v,n

be identified (according to the conditidiFG U G) to form
the MDCG, as shown in the right side of Fig. 1. fwm (u,v) 20,V € L and(v,n) € A (10)



The constraints (5) to (10) respectively states: 1) Theuhine Over the network, the links with positive flow allocation
put achieved between each source/destination pair is propmnstitute theoptimal route setfor the given commodity
tional to the commaodity rate requirement. 2) At every nodépws. 2) The MIS based scheduling could exploit dynamic
except the source and the destination, the amount of ingpmirthannel swapping for higher capacity [17]. A link is asstatia
flow associated with a certain ingress/egress pair equals with multiple RLC tuples on different channels, and these
amount of outgoing flow for that ingress/egress pair; 3) Faouples could be activated in different slots under the MIS-
each ingress/egress pair, the incoming flow to the source ndiised scheduling, generating the effect of dynamic channel
is 0; 4) The outgoing flow from the destination node is 0; wapping on the transmission link. The benefit of dynamic
The total amount of flow on a link can not exceed the linkhannel swapping is to be demonstrated by numerical results
throughput capacity; 6) The amount of flow allocation shoulidh Section VII. 3) The MIS based scheduling can conveniently
be non-negative. We would emphasize that the link capac#yploit the channel diversity to optimally utilize high-gjity
B, is the average throughput capacity of lii, v) under channels (with higher rate)S,) for the maximum network
the scheduling. In the MR-MC network, a transmission linkapacity, according to (12).
might operate on different channels at different time, drel t Since finding all MISs is NP-complete, this may lead to
physical link capacity might depend on the operating chinngnacceptable complexity for constructing the constralrit)
asw¢, . The relationship between the throughput capacity ari@2). Further, we observe that even if more thd? MISs
the physical capacity is to be shown in the below. are involved, the optimal solution only uses a few of them
In a wireless network, the basic MCF formulation needs< 50). Due to these two aspects, we are motivated to design
to be augmented with conflict graph constraints to take tlaeheuristic algorithm to smartly compute the MISs to improve
interferences among different links into account [9]. Givee the efficiency and the performance.
conflict graph, arindependent sef is a set of vertices, such
that there is no edge between any two of the vertices, which
equivalently indicate the links (the RLC tuples in a MDCG) In this section, we first theoretically demonstrate thayanl
that can transmit simultaneously in the network. If adding a relative small set of MISs needs to be involved in the optimal
one more vertex into an independent getesults in a non- MIS based scheduling, although exponentially many MISs are
independent set] is defined as anaximal independent set associated with a given conflict graph. The set of MISs being
LetZ,,Zs,- - ,Ix denote all thek maximal independent setsscheduled by the optimal solution is termed agiéical MIS
in the MDCG, ando,,,, 0 < «,, < 1 denote the fraction of set Then, we develop a polynomial heuristic algorithm to
time allocated to the independent sBf. Considering that intelligently compute a set of MISs with the objective to eov
only one maximal independent set can be active at a time, W critical MIS set as much as possible. Our basic idea is to
can add the two constraints given in (11) and (12) to the basigploit the network topology and network flow information
MCF formulation to solve the optimal capacity planning of # infer those communication links that might be scheduled

VII. SIO-BASED MIS COMPUTING

MR-MC wireless network, that is, with high possibility, and define acheduling indexmetric
% to differentiate the scheduling priority of links. Altholign
Z a, <1 (11) the following we develop a schedyling _index ordering (SI0)
— based algorithm for MIS computing with the focus on the

MDCG, the algorithm is generally applicable to any given

— C(luvazrn)
Buy Z mWuy Vil € L (12) conflict graph and of an interesting contribution itself.

Milyy €Lm

wherec(ly,, Z,,) denotes the operating channel of ligk v) A Critical MIS set

when it is activated in the MIZ,,,. The factorsa,, (m = We have the following theorem regarding the cardinality of

1,---,K) solved from the MCF problem represents tha critical MIS set.

optimal scheduling: assuming a large scheduling period ofTheorem 1: The number of maximal independent sets

T slots, all the MISs take turns in accessing the chanrsgheduled by optimal solution, i.e., the cardinality of gical

for transmission, with MISZ,,, (m = 1,---,K) allocated MIS set, is upbounded b{{\'| + 1)|A| + |£].

transmission time ofw,,, T slots. Based on the scheduling Proof: The LP MDCG-based MCF formulation, as indi-

factors, the average throughput capacity is determined By ( cated by expressions (4)-(12), can be reduced to a standard
The MDCG based capacity planning has significant advaform LP problem by transforming the inequality constraints

tages in three aspects. 1) The MIS based scheduling catyjoirihdicated in (9) and (11) into equality constraints with in-

indicate optimal transmission scheduling, channel assam, troducing necessary slack variables [24]. Let the veator

radio interface assignment, and routing. Note that an actiglenote the decision variables, which consists\pfall the

MIS at a slot consisting of RLC tuples that can operafow variablesf, ,(u,v), the scheduling factors,, for all the

simultaneously. The links associated with these RLC tupléfiSs, and the induced slack variables. The feasible region o

represent transmissions scheduling. According to (3)heaihe standard form LP can be written &8|Axz = b,z > 0},

active RLC also indicates the radio interfaces allocatethéo where the matrixA compactly representing all the equality

sender/receiver nodes of the link, and the operating chanrenstraints. In such a standard form LP problem, the nuntber o



decision variables is much larger than the number of equaltf scheduling with higher priority. The scheduling index
constraints. ordering allow us to develop a systemic way to approximately
The situation of relevance here is that the optimal soluti@mputing the critical MIS set: Since the tuples with higher
takes practical finite value. For such a case, the LP theor&hare more possible to be scheduled and thus more possible
tells that the optimal solutions should be a basic feasilie be included in a critical MIS; our strategy is therefore to
solution, where the number of variables taking positivaigal search those MISs covering the higher priority tuples firgtl u
(the basic variables) is upbounded by the number of lineadyl tuples are covered. Specifically, our algorithm cormssast
independent equality constraints [24]. Let's count the heam three phases:
of equality constraints in the standard form problem, which ~ Phase 1): Calculating all shortest path3he length of
exactly the same as the original LP problem. The conditioskortest path is fixed, however, there may be two or more
(5), (7), and (8) generatd | constraints respectively, thBg\| shortest paths; We can use the following algorithm to cakeul
in total. The condition (6) denotes the flow balance at eathe shortest paths from to v, which is a modified form of
node for each flow except the source and destination nodé® standard breadth-first search [23].

giving |V|[A| — 2|A| constraints. For the MIS constrains, (12)(1) Assign the destination node distance zero, to indicate

and (9) could be incorporated, produciy constraints. The it is zero hop away from itself, and sét« 0.

condition (11) then gives one more constraint. Altogethe(,z) For each vertex, which has been assigned distante
we have (N + 1)[A[ + [£] + 1 equality constraints in the =~ fo|low every attached edge to vertgxat the other end
transformed standard from problem, i.e., the matixhas of the link, if j has not been assigned, assign it distance

(N + 1)|A[ + |£] + 1 rows. For a conservative estimation of ;1 1. Mark i to be the predecessor ¢f

the _n.umber of MISs to be scheduled, that is, thqsﬁtaklng _(3) If j has already been assigned distadce, then there
positive values, we assume that all the equality consgaint * js no need to do anything but declaris the predecessor
are linearly independent. Thus, at m@af + 1)|A| + |£] + 1 of j.

decision variables can take positive values. Singeare just 4y Setd « d + 1

part of the decision variables, the positiug, values which (5) Repeat from step 2 until every vertex is assigned.
indicate the number of MISs scheduled are therefor upbaiin

by (NV + 1)|A| + |£] + 1.

It is noteworthy that the upper bound of the number
critical MISs is quite loose. Given somag,, > 0, there must be
a set of scheduled links witfy,, .,y (u, v) > 0 correspondingly.
In other words, it is impossible that all the basic varialdes
«;. The significance of theorem 1 lies on that it indicates th 2 o )

o . . : .” destination for each flow injected into the network.
the number of critical MISs involved in optimal .scheduling

is very limited, a smart method to search the critical MIS set Phase 2): Sort all tuples in the decreasing order of schedul-

has the great potential to improve both the computation and 9 index.By the end of phase 1, we get all shortest paths for

source allocation efficiency, compared to randomly conmayuiti all source-destination pairs. For gac_h tupl_e , We can dotie
.number of shortest paths traversing it. Initially we caredily

the MISs in an exppnentlally I_arge space. Thus, we are gOIEglculate this number for each link from phase 1, the number
to develop an intelligent algorithm to approximate theica f each tuple is set to the number of its corresponding litie T

MIS set, Whlch are used by_ opt|mal_ solution of MCF. Ouﬁ*ple having largest value is assigned with the highestipyio
target is to design a polynomial algorithm to compute a set ﬂ

MISs with acceptable complexity. Meanwhile, with the ligut two tuples have t_hg same _value,_we compare the summation
. . .of the value of their interfering neighbors. Létbe the total

number of MISs, we could constructing MIS constraints Iﬂumber of shortest paths resulting from phasé(b) denote

MDCG-based MCF problem to derive better network capacit P 9 P k

compared to that from [1] and the random search [9] tie number of shortest paths traversing typleum(p) denote
' the summation of: counting all neighbors of tuple (i.e.,

e could mark all shortest paths starting from to its
(ﬁredecessor, and to the predecessor of each successigr vert
until v is reached. Note that we apply the algorithm within
the original topology, the algorithm will complete in time
O(|£]) according to [23], wheréL| is the number of edges
ir{ the graph. Now, we get every shortest path from source to

B. Algorithm description sum(p) = Zp,el(p) h(p')). We quantify scheduling index for
We observe that the set of active tuples depends on ltHglep as follows:
network topology and the source destination nodes assdciat SI(p) = (JK2C|L|) x h(p) + sum(p). (13)

with the network flows. For example, if the link of a tuple

is a cut edge between source and destination, this tuple ithe Sl defined in (13) could guarantee the tuple with lafger
be scheduled with high probability (not definitely, becaasewill be always assigned with larger Sl, thus higher prigrity
link is associated with multiple tuples in a MR-MC network)since JK?2C|L| is the upper bound obum(p). It is still
Another example, the links on the shortest path betweernpassible (although with small probability) that two tuphes/e
source destination pair is more likely to be scheduled. the same Sl value based on (13). In such a case, we will
particular, we define @cheduling indeXSI) for tuple p to break the tie by arbitrarily setting one with higher prigrit
guantitatively indicate the possibility that the tuplewill be and adding its Sl a fractional value< 6 < 1. The output of
used. The tuple with a larger value of Sl indicates the chanear sorting algorithm is that all tuples are arranged adogrd



to Sl values in the decreasing ordein addition, we use the

Phase 3): lteratively compute maximal independent sets

expressiong; = ps andp; < po to denote the relations covering all tuples Algorithm 1 presents all details finding

if SI(p1) > SI(p2) andSI(p1) < SI(p2) for convenience,
respectively.

Input  : All MDCG tuples in the decreasing order of
scheduling index
Output : A set of maximal independent sets

Initialize : set the ordere@ € P as anchor tuples;
S[p] = @ for all anchor tuplew;
[* set of ISs associated with anchor tuples *
to-be-covered seT = P;
> while 1 do
pick a new anchor tuplg in decreasing order;
if I¢(p) = O (i.e.p has no non-neighbor tupléhen
add the MIS{p} into S[p];

if pe T then
| T=T/{p}
end

else

x for p’ € I°(p) & p’ < p in decreasing ordedo
for every I1Ss € S[p] do
if p’ can be added inte then
addyp’ into s;
break;
end
end
if p’ can not be insertedhen
create a new I19p,p'};
add{p,p'} into S[p];

end
if p’ € T then
| T=T/{p'}
end
end

end
repeat the “*"for-loop forp’ € I¢(p) & p’ = p in
decreasing order;

if 7 =0 (i.e., all tuples have been coverettien
| break;

end
end
for everylS found abovedo

if 1S is not maximalthen
| add some tuples to make it maximal;

end
end
Algorithm 1: Phase 3:Computing maximal independent
sets

1The sorting algorithm considered here is based on shorébtipforma-
tion computed in Phase 1. In a more general scenario, Phase thke longer
paths into account and assign different weights to paths different lengths,
based on which Phase 2 sorting may generate more accurasngrdrFor
illustration purpose, we consider only shortest path i fraper without loss
of generality.

MIS based on the Sl ordering generated in phase 2. The
algorithm starts by considering all the ordered tuples P

as anchor points. Each anchor tuple leads to a round of
independent set (IS) computing. Given an anchor tpplee

will compute a set of ISs that covgrand all its non-neighbor
nodes in the conflict graph denoted j@s= 7¢(p). The set of

ISs computed will be stored in the s&fp]. Note that each

IS in S[p] contains the tuple, showingp as an anchor point.
The algorithms will run recursively along the anchor points
decreasing Sl order until all the tuples are covered by erta
IS(s), which guarantees that the MCF formulation can geaera
a feasible solution. A to-be-covered sgtis defined as a set
containing the tuples yet to be covered by ISs. TheTsas
initialized as7 = P, and each time a new tuple is covered
by certain IS, the tuple is removed froffi. The operations

to search IS stop wheff becomes empty. After the MIS
searching stops, all the 1Ss obtained will be extended tosMIS
if they were not.

It is not difficult to see that in our algorithm, the tuples
with larger Sl tend to be covered by more MISs due to two
facts: 1) The tuples will small SI values may not get the
chance to be operated as anchor points if the to-be-covered
set7 reaches empty at a higher-priority anchor point. 2) In
each IS computing round, the anchor nodes are covered in all
ISs maintained inS[p|, but other tuples are not. Moreover,
a noteworthy implementation detail is that when we switch
to next anchor tuple, we start with the non-neighbor tuple
p € I¢(p) & p' < p instead of thep’ € I¢(p) with the
larger SI, and then come back to the half set with- p. The
benefit of this operation is to reduce the chance of repeating
an existing 1S and avoid over-concentrating the ISs to high
priority tuples.

C. Complexity analysis

In this subsection, we give an analyze to the complexity of
the proposed heuristic algorithm. As indicated earlierageh
1 of the algorithm labels all shortest path for one source-
destination pair in timeO(|£]). Given |A| flows, Phase 1
computations take the polynomial complexity Of|A||L]).
The sorting operations in Phase 2 is also polynomial; the
commonly used sorting algorithms have the running time
betweenO(n log, n) and O(n?), wheren is the number of
nodes. In the MDCG context, is the number of tuples, which
is upper bounded by<2C|L|, but the larger value of. does
not change the polynomial nature. Regarding the complexity
of computations in Phase 3, we have the following theorem:

Theorem 2: The Phase 3 computations in Algorithm 1 have
a polynomial complexity ofD(K8C*|L[*).

Proof: Note that the number of tuples is at mastC|L|
if there are|£| links in original topology. Here, the operation
comparing two tuples is define as one basic operation. Con-
sider thewhile-loop labeled by the symbat, which incurs
at most K2C|L| of iterations. In each iteration, given an
anchor tuplep, the number of non-neighbor tuples If(p) is



upbounded byx?C|L|. To determine the number of iterations St
incurred by thefor-loop, we consider the worst case that
all non-neighbor tuples op pair-wisely interfere with each
other; in such a case, each tuple fif(p) incurs a new IS. s»
Thus, the number of ISs i¥[p] is upbounded byK2C|L|

too. Obviously, the number of tuples contained in each IS is
upbound byK?C|L|. Based on such analysis, it can be seen
the number of basic operations incurred to determine whethe
ap’ € I°(p) can be added into an existing independent set or

not takes the orde® ((K2C|L[)?). Based on the number of ~ Fig- 2. Grid topology. Fig. 3. Random topology.
iterations included in the “*for-loop and ‘" while-loop, the

complexity to obtain the ISs contained in &llp] sets take the °

order ofO ((K2C|L|)*). After obtaining all the candidate ISs, _ o 03

we also need to check the maximality of each set and mal z” — Cmerbome 0z

28488 MISs

necessary extension to MISs. It can be seen that the numt ?6
of candidate ISs contained in afi[p] sets is upbounded by e
O ((K2C|L])?), and it takesO ((K2C|L])?) operations to ~ * O“{M/% — Copetvous
each set for the maximality checking/extion. In summarg, th
tOtallt'me complexity isO ((K20|£|)4) +0 ((K20|£|)4)’ (a) Grid topology with 4 radios, §b) Random topology with 3 radios, 9
that is, O(K8C*|L]*). B channels. channels.

Combining the complexity analysis of all the three phases,
the proposed heuristic algorithm is a polynomial with a
complexity of O(K8C*|£|*) (the complexity is dominated by
Phase 3 operations).

30756 MiSs 0.2

Network capacity A

1 2 3 4 0 1 2 3 4
Number of maximal independent sets, 14° Number of maximal independent sets, 1°

Fig. 4. Effectiveness of SIO-MDCG in computing MIS.

A. Effectiveness of the SIO-based MIS computing.

The effectiveness of the proposed SIO-based MIS comput-
ing is to be demonstrated through comparing the SIO-MDCG

In this section, we present some numerical results to demdasults with the RS-MDCG results for both grid and random
strate the efficiency of the MDCG-based resource allocatié@pologies. In Fig. 4, the network capacikyersus the number
compared to the resource allocation algorithm developed ¢hMISs constrains is computed under the RS-MDCG method,
[1], and demonstrate the efficiency of SIO-based MIS corthe upper bound is obtained according to the LP relaxation in
puting compared to the random MIS searching algorithfi]; the SIO-MDCG result is obtained with the number of MIS
proposed in [9]. We consider two network topologies: 1)a griconstraints determined by the SIO algorithm, and the number
topology as shown in Fig 2, where 25 nodes are distributedl constraints is indicated over the corresponding curves i
within a 1000m x 1000m area and the area is dividedFig. 4.
into 200m x 200m square cells; 2) a random topology as We can have the following observations from Fig. 4. 1)
shown in Fig 3, where 25 nodes are randomly placed inTdhe RS-MDCG curves shows that network capacity com-
1000m x 1000m area to form a connected network. Therputed by the MCF formulation increases with the number
are 3 commodity flows in each topology. The source araf MIS constraints used. 2) Our SIO-based MIS computing
destination nodes for flow (i = 1,2, 3) are denoted aS; and algorithm outputs 28488 and 30756 MISs for the random
D; respectively. The transmission range and interferenagerarand grid topologies, respectively. 3) In the grid topology,
of each node is set to 250m and 500m, respectively. For thee SIO-MDCG results (with 30756 MIS constrains) steadily
convenience of performance comparison with [1], we assuroatperform the RS-MDCG result even when the RS-MDCG
the physical link capacity over each channel is the same, amgks up ta3 x 10° MIS constraints (around one order more
we set all values ofvé, to a normalized link capacity of onethan that used in SIO-MDCG). Looking at the case under the
rate unit. Each flow has a rate demand of 3 rate units. \Wame number of MIS constraints (i.e., 30756), the capacity
develop C codes to implement our heuristic algorithm and thader SIO-MDCG is two times that under the RS-MDCG.
algorithms presented in [1], and use CPLEX [25] to solve tHgimilar observations can be obtained in random topology,
optimization problems involved in our MCF formulation andvhere the RS-MDCG needs to use as mang.@as< 105 MIS
the algorithms in [1]. For the ease of presentation, we denatonstraints to catch the performance of SIO-MDCG which
the MCF solutions under our SIO-based MIS computing ascurs only 28488 constraints. 4) In the grid topology, the
SIO-MDCG, and those under the random MIS computing []RS-MDCG performance uniformly increases with the number
as RS-MDCG. We denote the capacity computed based @h MISs as shown in Fig. 4(a), but the curve shows a
the heuristic algorithms in [1] as static approximation (Sstep-increasing behavior in random topology as illustrate
App), and the upper bound indicates the capacity under thig. 4(b). Such performance difference can be explained as
LP relaxation in [1] (denoted as* there). follows. Note that the grid topology is a symmetric struetur

VIIl. N UMERICAL RESULTS
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o RLC-TUPLE BASED SCHEDULING DYNAMIC CHANNEL SWAPPING FOR
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where every link carries basically the same topologicabrinf g
mation (ignoring the borderline effect). In such a unifodne ;
structure, the uniformed performance of random algorithr 2 e
could be expected. However, in an arbitrary topology rariggom |

configured, different links may be of different structuesé| ? Number of channels *
importance. For example, there might be some critical linkg rs-MDCG results3 x 105 MIS (b) SIO-MDCG results.
(such as cut edge) between a given source-destination pgarching rounds.

In such a non-uniformed structure, if the random research
misses some critical links, increasing the number of MISk wi
not provide much help in increasing the network capacity.

An obvious capacity increase can only be achieved (ShoWR gne channel through a given radio interface. Instead, the

as a jumping step in Fig. 4(b)) when those critical links IR gorithms in [1] statically assign a channel to a link opieg
covered. The results in Fig. 4 clearly demonstrate that 60f S ) or 5 given radio interface.

MDCG algorithms derives satisfied performance in identifyi
those critical MISs, which further leads to efficient resmur C. Capacity versus the Number of Radios and Channels.

allocation. We also compute the optimal capacity under different num-
. ber of radio interfaces and channels with both RS-MDCG
B, I\/.ID.CGTbased resource allocation compared to the stallfhy s10-MDCG. Here, we present the results for the grid
heuristics in [1]. topology with an illustration purpose. We will have similar
In this part, we are to demonstrate the efficiency of MDC@bservations in a random topology. For RS-MDCG, we let
based resource utilization compared to the static hewristhe random MIS search algorithm rdnx< 10° rounds. Such a
algorithm developed in [1]. Based on the efficiency disaumber of searching rounds is large enough for the cases with
cussion in the above, the SIO-MDCG results are used s¢mall numbers of radio interfaces and channels, but ingerffic
represent MDCG-based capacity. In this experiment, eafdr the large-scale cases. Thus, on one hand, the RS-MDCG
node is equipped with 3 radio interfaces, and we investigatesults in the small-scale cases (which generates clese-to
the performance by varying the number of channels. Fig.dptimal results with enough MIS constraints) can be used to
presents the curves ok versus the number of channeldenchmark the SIO-MDCG results. On the other hand, the
under the algorithms SIO-MDCG and S-App, respectivelRS-MDCG results in the large-scale cases can further reflect
It can be seen that the achieved network capacity under ehie advantage of SIO-MDCG methods.
algorithm steadily outperform that under the S-App aldonit The results are shown in Fig. 6, where we can have the
The more channels are available, the higher capacity iserefollowing observations. 1) In the small-scale cases less th
can be achieved by our SIO-MDCG method, which clearly channels, the RS-MDCG results in Fig. 6(a) show that
demonstrate the efficiency of SIO-MDCG in exploiting the¢he same capacity is achieved when the number of radio
available resources. interface changes from 1 to 4. In other words, one radio is
One fundamental reason for the capacity improvement wigmough to utilize all the four channels. We see that in the gri
MDCG-based analysis is the scheduling wdynamic channel topology, a node at most has 4 neighbors. By proper radio
swappingas illustrated in Table I. The table presents thimterface assignment and dynamic channel swapping, the fou
scheduling factorsy,, computed by SIO-MDCG for tuples channels can successfully resolve the interference antang t
associated with link§12, 13) in grid topology, for the instance four neighbors even under the 1-radio configuration. Such an
of 2-interface nodes and 10 channels. The scheduling edfect is theoretically explained in [17]. 2) In Fig. 6(a)hd
sults clearly demonstrate that lirffk2, 13) dynamically swaps increment of capacity\ basically stops when the number of
among different channels. For example, the [{hk, 13) when channels exceeds 6 in 1-radio case. The reason is that full
operating over radio paifl,1) can switch over channels 2,exploitation of a give number of channels requires a redsena
4, 6, and 9, although at a moment a link can only operatember of available radio interfaces. Thus is practice, a
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Fig. 6. Impact of number of radios and channels, grid topplog
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