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Abstract—Optimal capacity analysis in multi-radio multi-
channel wireless networks by nature incurs the formulationof a
mixed integer programming, which is NP-hard in general. The
current state of the art mainly resorts to heuristic algorithms to
obtain an approximate solution. In this paper, we propose a novel
concept of multi-dimensional conflict graph (MDCG). Based
on MDCG, the capacity optimization issue can be accurately
modeled as a linear programming (LP) multi-commodity flow
(MCF) problem, augmented with maximal independent set (MIS)
constraints. The MDCG-based solution will provide not onlythe
maximum throughput or utility, but also the optimal configur a-
tions on routing, channel assignment, and scheduling. Moreover,
the MDCG-based optimal capacity planning can exploit dynamic
channel swapping, which is difficult to achieve for those existing
heuristic algorithms. A particular challenge associated with the
MDCG-based capacity analysis is to search exponentially many
possible MISs. We theoretically show that in fact only a small set
of critical MISs, termed as critical MIS set, will be scheduled in
the optimal resource allocation. We then develop a polynomial
computing method, based on a novel scheduling index ordering
(SIO) concept, to search the critical MIS set. Extensive numerical
results are presented to demonstrate the efficiency of the MDCG-
based resource allocation compared to well-known heuristic
algorithm presented in [1], and the efficiency of SIO-based MIS
computing compared to the widely adopted random algorithm
for searching MISs.

I. I NTRODUCTION

The multi-radio multi-channel (MR-MC) wireless network
remains hot in the past few years. With MR-MC communica-
tions, the network capacity can be significantly improved by
simultaneously exploiting multiple non-overlapping channels
through different radio interfaces and mitigating interferences
through proper network configuration.

Compared to the traditional single-radio single-channel (SR-
SC) networks, MR-MC networking takes place in amulti-
dimensional resource space, with dimensions defined by radio
interfaces, links, and channels. The central issue of resource al-
location in such a multi-dimensional space is to find solutions
for a set of coupled problems includingchannel assignment,
scheduling, and routing[1]–[8], with the objective to opti-
mize network capacity; the resource allocation issue is also
termed asoptimal capacity planning. However, the optimal
multi-dimensional resource allocation in MR-MC networks by
nature leads to a mixed integer programming problem (which
is NP-hard), involving binary variables to describe channel
assignment and radio interface constraints [1], [2]. Due tosuch

inherent hardness, the state of the art of MR-MC networks has
been constrained to either adopting linear programming (or
convex optimization in general) relaxation to obtain an upper
bound of the network capacity [1]–[4], or developing heuristic
resource allocation methods [1], [2], [5]–[8] to obtain an lower
bound.

In this paper, we aim to find an efficient computing method-
ology to optimize the capacity of MR-MC networks in the
multi-dimensional resource space. Our inspiration comes from
that the single-radio single-channel (SR-SC) networks canbe
optimized by formulating a linear programming (LP) multi-
commodity flow (MCF) problem, augmented with constraints
derived from thelink conflict graphor contention graph[9],
[10]. The conflict graph tool did not achieve the similar
popularity in MR-MC networks as in SR-SC networks. The
reason is that the link conflict graph is not sufficient to
describe the complex conflict relations in competing for both
the radio interfaces and channels. We show in this paper that
by generally interpreting each vertex in the conflict graph
as a basic resource point for scheduling, we could discover
a generic methodology to extend the conflict graph tool to
the MR-MC networks: representing each resource point in
the MR-MC multi-dimensional space (i.e., each vertex in the
conflict graph) as aradio-link-channel tuple(RLC-tuple). The
conflict graph constructed in this manner is termed asmulti-
dimensional conflict graph(MDCG).

The new insight of conflict-graph based computing in a
multi-dimensional resource space brings a chance to reshape
the computing methodology in MR-MC networks. Based
on the MDCG, the optimal resource allocation in MR-MC
networks can now be transformed from the integer program-
ming regime to the linear programming regime, and has a
clear direction towards the optimal resource allocation, i.e.,
MCF formulation augmented with the MIS constraints [9].
The MDCG-based MCF solution will provide not only the
maximum throughput or utility, but also the optimal channel
assignment, scheduling and routing to achieve it. Moreover, the
MDCG-based optimal capacity planning can exploit dynamic
channel swapping, which is very hard to achieve for those
existing heuristic algorithms. Numerical results are presented
to demonstrate the efficiency of the MDCG-based capacity
planning, with comparison to the well-known heuristic algo-
rithm presented in [1].



A particular challenge associated with MDCG based capac-
ity analysis is that finding all maximal independent sets in
a conflict graph is NP-complete [12]. Thus it is impractical
(although theoretically possible) to include all the MISs as
augmented constraints in the MCF formulation. A random al-
gorithm for MIS search is proposed in [9] and widely adopted
in the literature, which provides a framework while more MISs
can be obtained with more rounds of computation. However,
we find that random search algorithm is quite inefficient for a
large size MDCG (which is normally incurred by a MR-MC
network with a large number of nodes, multiple channels and
multiple radio interfaces), where the random search may result
in redundant search (i.e., getting a MIS already found) witha
high chance. In this paper, we theoretically show that in fact
only a small set of critical MISs, termed ascritical MIS set,
will be scheduled in the optimal resource allocation, although
exponentially many MISs are possible in a conflict graph.
The important finding motivates us to develop an efficient
algorithm to identify the critical MIS set, while the random
algorithm could be interpreted as an aimless approach to cover
the critical MIS set by throwing a huge number of MISs.

Another main contribution in this paper is that we develop
a polynomial heuristic algorithm to intelligently computea
set of MISs to better cover the critical MIS set, compared
to the aimless random search algorithm. Our basic idea is to
exploit the network topology and network flow information
to infer those communication links that might be scheduled
with high possibility, and define ascheduling indexmetric to
differentiate the scheduling priority of links. The tuple with
a larger value of SI indicates the chance of scheduling with
higher priority. The scheduling index ordering (SIO) allows
us to develop a systemic way to approximately computing
the critical MIS set by covering higher priority links (and the
associated tuples) with more MISs; the algorithm is termed
asSIO-based MIS computing. Numerical results show that the
SIO-based MIS computing can well locate the critical MIS set,
leading to higher network capacity with much less computing
complexity. In the Section of numerical results, we will show
that the SIO-based computing steadily performs with one order
of reduced complexity fewer to achieve the same level of
capacity compared to the random algorithm. In summary, this
paper has four-fold main contributions:

(1) We propose a novel multi-dimensional conflict graph, by
which the optimal resource allocation in MR-MC net-
works can now be transformed from integer programming
regime to the linear programming regime.

(2) Based on MDCG, we formulate a MCF problem aug-
mented with MIS constraint to compute the optimal
capacity over a MR-MC network. The solution provides
not only the maximum capacity, also the optimal routing,
scheduling and channel assignment. Further, dynamic
channel assignment is achieved as well.

(3) We for the first time (to the best of our knowledge) reveal
an important concept of critical MIS set, and develop an
efficient polynomial SIO-based method to approximately

compute the critical MIS set.
(4) Extensive numerical results are presented to demonstrate

the efficiency of the MDCG-based capacity analysis and
SIO-based MIS computing.

The reminder of this paper is organized as follows. Section
II reviews more related work. Section III is the system model;
Section IV will highlight the most popular methodology in
this area. Section V presents how to construct the MDCG.
Section VI formulates the MDCG-based MCF problem for
optimal capacity planning. Section VII presents the heuristic
algorithm. Section VIII shows numerical results for perfor-
mance evaluation. Section IX gives the concluding remarks.

II. RELATED WORK

The MCF formulation augmented with the maximal inde-
pendent set (MIS) constraints over a conflict graph can com-
pute the optimal capacity planning to maximize the throughput
or utility [9]. The optimal schedulingpolicy is that all the
maximal independent sets take turns in grabbing the channel
for data transmission, with the proportion of transmissiontime
for each set determined from the MCF solution. The links
with positive flow allocation constitute theoptimal route set
for the given commodity flows. Note that the MIS-based op-
timal scheduling over the MDCG also determines theoptimal
channel assignment and radio interface assignment, with each
element in an MIS standing for a RLC-tuple.

It is due to the lack of a generic conflict graph in the
multi-dimensional resource space that the elegant MIS-based
MCF formulation for optimal capacity planning could not
be generalized to MR-MC networks. Tanget.al. [3] propose
to establish a multi-channel contention graph (MCCG) by
representing link-channel pairs as vertices in the conflictgraph,
where only co-channel link-channel pairs may have conflict
relations. However, the MCCG could not indicate conflicts
in competing for radio interfaces, so the MCF formulation
still needs to incorporate integer variables to describe the
radio interface constraint, even with MCCG applied. In [11]
and [13], a multi-radio conflict graph (MCG) and a multi-
point link conflict graph (MPLCG) are proposed, respectively,
to construct the conflict graph based on radio-link pairs.
Nevertheless, computing the channel assignment based on
such conflict graphs incurs thelist coloring problem [14],
which is NP-hard. The generic MDCG developed in this paper
is expected to significantly advance the state of the art of MR-
MC networking.

In a conflict graph, computing all MISs is NP-complete.
Random search [9] is a popular approach to gradually compute
MISs by randomly index the vertices in the conflict graph
at each iteration. However, the random search may lead to a
large number of redundant search (giving the same MIS in
different rounds of search) in a conflict graph with a large
number of vertices and high connectivity, which is the case
for the MDCG. The inefficiency in MIS directly leads to the
unnecessary computing complexity in solving the MCF prob-
lem and lower capacity result. A systemic approach computing
MIS is introduced by [22] with polynomial delay between two



outputs. It sorts all vertices in a lexicographic order. However,
the output is not suitable to construct MIS constraints, because
with fixed number of iterations, the vertices with smaller
indexes may be included in most of the output MISs while
the vertices with larger indexes may be covered by just a
small portion of the output MISs. Such unbalanced output may
significantly limit the solution region for searching optimal
scheduling. We call such an issue asover-concentrated prob-
lem. The MIS computing algorithm developed in this paper
also needs to index and order the vertices in the MDCG, but
makes necessary designs to alleviate the impact of the over-
concentrated problem.

III. SYSTEM MODEL

The wireless network is viewed as a directed graphG(N ,ℒ)
with node setN and link setℒ, and ∣N ∣ and ∣ℒ∣ be number
of nodes and links, correspondingly. We useluv or (u, v) to
denote a communication link from nodeu to nodev. Consider
that the whole spectrum available to the network can be di-
vided intoC frequency channels, represented as setC. We use
wc

uv to denote the physical transmission capacity of link(u, v)
on channelc. Moreover, letMu denote the number of radio
interfaces available at nodeu, andK = maxMu, ∀u ∈ N . At
any given time, an interface can only tune to one channel, but
it can switch channels dynamically at different time slots.

The interference in the wireless network can be defined
according to aprotocol interference modelor a physical
interference model[15]. With the protocol interference model,
the conflict relationship between two links is determined by
the specifiedinterference range. The protocol interference
model is adopted by most of the existing work, by which the
interference over a network can be abstracted into a conflict
graph. We also focus on the protocol interference model in this
research. A very recent paper [16] discusses how to properly
set the interference range so that a physical interference model
can be accurately transformed to a protocol interference model.

IV. M IXED INTEGERPROGRAMMING MODEL

In this section, we summarize the methodology taken by the
well-known work [1] to compute the the scheduling, channel
assignment, and routing issues in MR-MC networks. The
work [1] resorts to a mixed integer programming model to
formulate the optimal resource allocation problem, assuming a
synchronous time-slotted system. The significant contributions
in [1] are the construction of node radio constraint and the link
congestion constraint. To describe the node radio constraint, a
binary integer variablesXl,c,� is introduced, whereXl,c,� = 1
indicates linkl operates on channelc in time slot� . Thus, the
node radio constraint for each nodev ∈ N can be expressed
as:

∑

1≤c≤C

∑

l=(u,v)∈ℒ

Xl,c,� +
∑

1≤c≤C

∑

l=(v,u)∈ℒ

Xl,c,� ≤Mv. (1)

which indicates that the number of active links incident to a
node is constrained by the number of available radio inter-
faces. To derive an interference-free scheduling, the following

equation must be satisfied for each linkl:

Xl,� +
∑

l′∈I(l)

Xl′,� ≤ c(q). (2)

wherec(q) is a constant depending on the ratio of interference
range to transmission range. The condition denotes that the
number of active links within linkl′s interference range
can not exceedc(q). With some other basic flow balance
constraints, the two conditions are able to give us the optimal
solution, however, we need to solve the optimal problem once
for every time slot� , which is impractical.

Since the mixed integer programming is NP-hard, a LP
relaxation of original problem is formulated to obtain an upper
bound solution. Although the LP relaxation solution may
generate infeasible channel assignment, it is ”optimal” interms
of minimizing the interference for each channel. In this paper,
we also use the LP relaxation results as computed in [1] as an
upper bound of capacity analysis. To make the LP relaxation
solution feasible, a 3-phase channel assignment algorithmis
then developed to adjust the flow allocation on the flow graph
to ensure a feasible channel assignment. The algorithm first
allocates traffic to the different radio interfaces of a nodeto
ensure that the traffic assigned to any node is at most minimum
number of radios among all nodes; phase 2 assigns channels
to nodes to derive small intra-component interference; phase
3 continues to modify the channel assignment for all nodes
and radios so that the intra-channel interference is minimized.
In addition, post processing and flow scaling are performed
to redistribute the flow allocation to minimize the maximum
interference over all channels, and eliminate all interference
for all channels.Note that the final channel assignment scheme
is static, which significantly impact the resource utilization; in
this paper, the MDCG based capacity analysis reveal that the
optimal resource allocation by natures incurs dynamic channel
swapping.

V. M ULTI -DIMENSIONAL CONFLICT GRAPH

In this section, we will introduce new multi-dimensional
conflict graph. The central issue of resource allocation in a
MR-MC network is to find solutions for a set of coupled prob-
lems including channel assignment, scheduling, and routing
[1]–[8], with the objective to optimize network capacity. In this
paper, the optimal capacity planning of a MR-MC network is
to be computed based on a multi-dimensional conflict graph.
In the perspective of resource allocation, we interpret theMR-
MC networks as a multi-dimensional resource space, with
dimensions defined by radio interfaces, links, and channels.
The MDCG is to described the conflict relationship among
the resource points, each represented as a radio-link-channel
tuple. Specifically, a RLC tuplep is defined in the format:

Radio-link-channel tuple: ((xu, xv), (u, v), c). (3)

The tuple indicates that the link(u, v) operates on channelc,
which involves the radio interfacesxu ∈Mu, xv ∈Mv at the
sending nodeu and receiving nodev, respectively. According
to the RLC tuple definition, we can systematically list all the



possible resource allocations to enable a communication link
by considering all the possible combinations of activated radio
interfaces at source/destination nodes and the working channel.
Thus, a link(u, v) can be mapped toMu×Mv×C RLC tuples
in the MDCG. LetP denote the tuple set containing all tuples
in a MDCG. Given the number of links∣ℒ∣ in original graph,
the number of tuples in a MDCG is at mostK2C∣ℒ∣, in this
case every node is equally equipped withK radios.

The conflict relationship among the RLC tuples in a multi-
dimensional resource space is much more complex than that
among the links in a single-dimensional resource space. On
one side, the conflict relations within the interference range
can be mitigated by parallel transmissions over different
channels; on the other side, multi-channel simultaneous trans-
missions will be constrained by the available radio interfaces.
To identify all the possible conflict relations in a MDCG, we
define three types of events:

(E) Two different RLC tuples are associated with nodes being
located within each other’s interference range, according
to the protocol interference model.

(F) Two different RLC tuples are associated with the same
channel.

(G) Two different RLC tuples share common radio interfaces
at one or two nodes.

Give two different RLC tuples, a conflict relationship exist
between them if the conditionEFḠ∪G is true. In particular,
the conditionEFḠ indicates that con-channel transmissions
within the interference range conflict with each other, termed
asinterference conflictrelationship. The conditionG indicates
the interface conflictrelationship that a single radio interface
can not support multiple transmissions (which might be as-
sociated with different channels) at a moment. Note that the
interface conflict is the special issue induced by the MR-MC
networking. There is no explicit interface conflict in a SR-
SC network, because the constraint that a half-duplex radio
interface can not transmit and receive simultaneously is en-
sured by the interference constraint. According to the decision
criteria, we could figure out all the interfering neighbors for
each tuple, and letI(p) denote these tuples. These tuples are
called neighbors ofp, and the rest are non-neighbors ofp.

We use an example to illustrate the MDCG based on the
conflict relationship among RLC tuples, as shown in Fig. 1.
The left side of Fig. 1 shows a small network consisting of two
directional links, where nodeA has two radio interfaces, and
nodesB andC each have one interface. There are 2 available
channels. Thus, both links(A,B) and(A,C) can be mapped
to 2 × 1 × 2 = 4 RLC tuples, respectively. For instance, the
tuple ((1, 1), (A,B), 1) indicates that the transmission from
nodeA to nodeB uses the radio interface 1 at nodeA and
the one available radio interface at nodeB, and both radio
interfaces tune to channel 1. Given the tuples, all possible
interference/interface conflict relations among them can then
be identified (according to the conditionEFḠ ∪ G) to form
the MDCG, as shown in the right side of Fig. 1.

⇒

A

B C

(1,1)
(A,B)

1

(1,1)
(A,C)

1

(1,1)
(A,B)
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(1,1)
(A,C)

2

(2,1)
(A,B)

1

(2,1)
(A,C)
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(A,B)
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Fig. 1. Conflict relationship in MDCG.

VI. MDCG BASED OPTIMAL CAPACITY PLANNING

The MDCG enables a linear programming approach to
compute the optimal resource allocation in MR-MC networks,
that is, formulating a MCF problem augmented with MIS
constraints over the MDCG. In particular, it is selected sets
of RLC tuples that constitute the MISs in MDCG; such
MIS-based scheduling solved from the MCF formulation can
jointly indicate the optimal scheduling of link transmissions,
channel assignment and radio interface assignment to the
active transmissions, and the optimal routing.

Define that each commodity is associated with a source
destination pair (�, �), and let Λ denote the set of all
source/destination pairs,∣Λ∣ the number of flows. Each flow
has a rate requirementr(�,�). Let f(�,�)(u, v) denote the
flow associated with commodity(�, �) traversing the link
(u, v). The MCF problem can be formulated as a linear
optimization or convex optimization problem, depending on
how the objective function is selected. A common formulation
is to maximize the total throughput over all source destination
pairs, but such an objective function may lead to starvation
of some commodity flows. Considering the fairness issue and
the convenience for performance comparison with the resource
allocation approach presented in [1], we seek to maximize�
where at least�r(�,�) amount of throughput can be ensured
for each commodity flow. Such an objective function is also
taken in [1]. We term� asnetwork capacity. Specifically, the
basic MCF formulation can be expressed as:

max � (4)

Subject to:
∑

l�v∈ℒ

f(�,�)(�, v) = �r(�,�), ∀(�, �) ∈ Λ (5)

∑

luv∈ℒ

f(�,�)(u, v) =
∑

lvu∈ℒ

f(�,�)(v, u),

∀(�, �) ∈ Λ andv ∈ N/{n�, n�} (6)
∑

lu�∈ℒ

f(�,�)(u, �) = 0, ∀(�, �) ∈ Λ (7)

∑

l�v∈ℒ

f(�,�)(�, v) = 0, ∀(�, �) ∈ Λ (8)

∑

(�,�)∈Λ

f(�,�)(u, v) ≤ Buv, ∀luv ∈ ℒ (9)

f(�,�)(u, v) ≥ 0, ∀luv ∈ ℒ and(�, �) ∈ Λ (10)



The constraints (5) to (10) respectively states: 1) The through-
put achieved between each source/destination pair is propor-
tional to the commodity rate requirement. 2) At every node,
except the source and the destination, the amount of incoming
flow associated with a certain ingress/egress pair equals the
amount of outgoing flow for that ingress/egress pair; 3) For
each ingress/egress pair, the incoming flow to the source node
is 0; 4) The outgoing flow from the destination node is 0; 5)
The total amount of flow on a link can not exceed the link
throughput capacity; 6) The amount of flow allocation should
be non-negative. We would emphasize that the link capacity
Buv is the average throughput capacity of link(u, v) under
the scheduling. In the MR-MC network, a transmission link
might operate on different channels at different time, and the
physical link capacity might depend on the operating channel
aswc

uv. The relationship between the throughput capacity and
the physical capacity is to be shown in the below.

In a wireless network, the basic MCF formulation needs
to be augmented with conflict graph constraints to take the
interferences among different links into account [9]. Given a
conflict graph, anindependent setℐ is a set of vertices, such
that there is no edge between any two of the vertices, which
equivalently indicate the links (the RLC tuples in a MDCG)
that can transmit simultaneously in the network. If adding any
one more vertex into an independent setℐ results in a non-
independent set,ℐ is defined as amaximal independent set.
Let ℐ1, ℐ2, ⋅ ⋅ ⋅ , ℐK denote all theK maximal independent sets
in the MDCG, and�m, 0 ≤ �m ≤ 1 denote the fraction of
time allocated to the independent setℐm. Considering that
only one maximal independent set can be active at a time, we
can add the two constraints given in (11) and (12) to the basic
MCF formulation to solve the optimal capacity planning of a
MR-MC wireless network, that is,

K
∑

m=1

�m ≤ 1 (11)

Buv =
∑

m:luv∈ℐm

�mwc(luv ,ℐm)
uv , ∀luv ∈ ℒ (12)

wherec(luv, ℐm) denotes the operating channel of link(u, v)
when it is activated in the MISℐm. The factors�m (m =
1, ⋅ ⋅ ⋅ ,K) solved from the MCF problem represents the
optimal scheduling: assuming a large scheduling period of
T slots, all the MISs take turns in accessing the channel
for transmission, with MISℐm (m = 1, ⋅ ⋅ ⋅ ,K) allocated
transmission time of�mT slots. Based on the scheduling
factors, the average throughput capacity is determined by (12).

The MDCG based capacity planning has significant advan-
tages in three aspects. 1) The MIS based scheduling can jointly
indicate optimal transmission scheduling, channel assignment,
radio interface assignment, and routing. Note that an active
MIS at a slot consisting of RLC tuples that can operate
simultaneously. The links associated with these RLC tuples
represent transmissions scheduling. According to (3), each
active RLC also indicates the radio interfaces allocated tothe
sender/receiver nodes of the link, and the operating channel.

Over the network, the links with positive flow allocation
constitute theoptimal route setfor the given commodity
flows. 2) The MIS based scheduling could exploit dynamic
channel swapping for higher capacity [17]. A link is associated
with multiple RLC tuples on different channels, and these
tuples could be activated in different slots under the MIS-
based scheduling, generating the effect of dynamic channel
swapping on the transmission link. The benefit of dynamic
channel swapping is to be demonstrated by numerical results
in Section VII. 3) The MIS based scheduling can conveniently
exploit the channel diversity to optimally utilize high-quality
channels (with higher ratewc

uv) for the maximum network
capacity, according to (12).

Since finding all MISs is NP-complete, this may lead to
unacceptable complexity for constructing the constraint (11)
(12). Further, we observe that even if more than105 MISs
are involved, the optimal solution only uses a few of them
(< 50). Due to these two aspects, we are motivated to design
a heuristic algorithm to smartly compute the MISs to improve
the efficiency and the performance.

VII. SIO-BASED MIS COMPUTING

In this section, we first theoretically demonstrate that only a
relative small set of MISs needs to be involved in the optimal
MIS based scheduling, although exponentially many MISs are
associated with a given conflict graph. The set of MISs being
scheduled by the optimal solution is termed as acritical MIS
set. Then, we develop a polynomial heuristic algorithm to
intelligently compute a set of MISs with the objective to cover
the critical MIS set as much as possible. Our basic idea is to
exploit the network topology and network flow information
to infer those communication links that might be scheduled
with high possibility, and define ascheduling indexmetric
to differentiate the scheduling priority of links. Although in
the following we develop a scheduling index ordering (SIO)
based algorithm for MIS computing with the focus on the
MDCG, the algorithm is generally applicable to any given
conflict graph and of an interesting contribution itself.

A. Critical MIS set

We have the following theorem regarding the cardinality of
a critical MIS set.

Theorem 1: The number of maximal independent sets
scheduled by optimal solution, i.e., the cardinality of a critical
MIS set, is upbounded by(∣N ∣+ 1)∣Λ∣+ ∣ℒ∣.

Proof: The LP MDCG-based MCF formulation, as indi-
cated by expressions (4)–(12), can be reduced to a standard
form LP problem by transforming the inequality constraints
indicated in (9) and (11) into equality constraints with in-
troducing necessary slack variables [24]. Let the vectorx

denote the decision variables, which consists of�, all the
flow variablesf�,�(u, v), the scheduling factors�m for all the
MISs, and the induced slack variables. The feasible region of
the standard form LP can be written as{x∣Ax = b,x ≥ 0},
where the matrixA compactly representing all the equality
constraints. In such a standard form LP problem, the number of



decision variables is much larger than the number of equality
constraints.

The situation of relevance here is that the optimal solution
takes practical finite value. For such a case, the LP theorem
tells that the optimal solutions should be a basic feasible
solution, where the number of variables taking positive values
(the basic variables) is upbounded by the number of linearly
independent equality constraints [24]. Let’s count the number
of equality constraints in the standard form problem, whichis
exactly the same as the original LP problem. The conditions
(5), (7), and (8) generate∣Λ∣ constraints respectively, thus3∣Λ∣
in total. The condition (6) denotes the flow balance at each
node for each flow except the source and destination nodes,
giving ∣N ∣∣Λ∣− 2∣Λ∣ constraints. For the MIS constrains, (12)
and (9) could be incorporated, producing∣ℒ∣ constraints. The
condition (11) then gives one more constraint. Altogether,
we have(N + 1)∣Λ∣ + ∣ℒ∣ + 1 equality constraints in the
transformed standard from problem, i.e., the matrixA has
(N + 1)∣Λ∣+ ∣ℒ∣ + 1 rows. For a conservative estimation of
the number of MISs to be scheduled, that is, those�m taking
positive values, we assume that all the equality constraints
are linearly independent. Thus, at most(N + 1)∣Λ∣+ ∣ℒ∣+ 1
decision variables can take positive values. Since�m are just
part of the decision variables, the positive�m values which
indicate the number of MISs scheduled are therefor upbounded
by (N + 1)∣Λ∣+ ∣ℒ∣+ 1. ■

It is noteworthy that the upper bound of the number of
critical MISs is quite loose. Given some�m > 0, there must be
a set of scheduled links withf(�,�)(u, v) > 0 correspondingly.
In other words, it is impossible that all the basic variablesare
�i. The significance of theorem 1 lies on that it indicates that
the number of critical MISs involved in optimal .scheduling
is very limited, a smart method to search the critical MIS set
has the great potential to improve both the computation and re-
source allocation efficiency, compared to randomly computing
the MISs in an exponentially large space. Thus, we are going
to develop an intelligent algorithm to approximate the critical
MIS set, which are used by optimal solution of MCF. Our
target is to design a polynomial algorithm to compute a set of
MISs with acceptable complexity. Meanwhile, with the limited
number of MISs, we could constructing MIS constraints in
MDCG-based MCF problem to derive better network capacity,
compared to that from [1] and the random search [9].

B. Algorithm description

We observe that the set of active tuples depends on the
network topology and the source destination nodes associated
with the network flows. For example, if the link of a tuple
is a cut edge between source and destination, this tuple will
be scheduled with high probability (not definitely, becausea
link is associated with multiple tuples in a MR-MC network).
Another example, the links on the shortest path between a
source destination pair is more likely to be scheduled. In
particular, we define ascheduling index(SI) for tuple p to
quantitatively indicate the possibility that the tuplep will be
used. The tuple with a larger value of SI indicates the chance

of scheduling with higher priority. The scheduling index
ordering allow us to develop a systemic way to approximately
computing the critical MIS set: Since the tuples with higher
SI are more possible to be scheduled and thus more possible
to be included in a critical MIS; our strategy is therefore to
search those MISs covering the higher priority tuples first until
all tuples are covered. Specifically, our algorithm consists of
three phases:

Phase 1): Calculating all shortest paths.The length of
shortest path is fixed, however, there may be two or more
shortest paths; We can use the following algorithm to calculate
the shortest paths fromu to v, which is a modified form of
the standard breadth-first search [23].

(1) Assign the destination nodev distance zero, to indicate
it is zero hop away from itself, and setd← 0.

(2) For each vertexi, which has been assigned distanced,
follow every attached edge to vertexj at the other end
of the link, if j has not been assigned, assign it distance
d+ 1. Mark i to be the predecessor ofj.

(3) If j has already been assigned distanced+ 1, then there
is no need to do anything but declarei is the predecessor
of j.

(4) Setd← d+ 1
(5) Repeat from step 2 until every vertex is assigned.

We could mark all shortest paths starting fromu to its
predecessor, and to the predecessor of each successive vertex
until v is reached. Note that we apply the algorithm within
the original topology, the algorithm will complete in time
O(∣ℒ∣) according to [23], where∣ℒ∣ is the number of edges
in the graph. Now, we get every shortest path from source to
destination for each flow injected into the network.

Phase 2): Sort all tuples in the decreasing order of schedul-
ing index.By the end of phase 1, we get all shortest paths for
all source-destination pairs. For each tuple, we can collect the
number of shortest paths traversing it. Initially we can directly
calculate this number for each link from phase 1, the number
of each tuple is set to the number of its corresponding link. The
tuple having largest value is assigned with the highest priority.
If two tuples have the same value, we compare the summation
of the value of their interfering neighbors. LetJ be the total
number of shortest paths resulting from phase 1,ℎ(p) denote
the number of shortest paths traversing tuplep, sum(p) denote
the summation ofℎ counting all neighbors of tuplep (i.e.,
sum(p) =

∑

p′∈I(p) ℎ(p
′)). We quantify scheduling index for

tuple p as follows:

SI(p) = (JK2C∣ℒ∣) × ℎ(p) + sum(p). (13)

The SI defined in (13) could guarantee the tuple with largerℎ
will be always assigned with larger SI, thus higher priority,
since JK2C∣ℒ∣ is the upper bound ofsum(p). It is still
possible (although with small probability) that two tupleshave
the same SI value based on (13). In such a case, we will
break the tie by arbitrarily setting one with higher priority
and adding its SI a fractional value0 < � < 1. The output of
our sorting algorithm is that all tuples are arranged according



to SI values in the decreasing order.1 In addition, we use the
expressionsp1 ≻ p2 and p1 ≺ p2 to denote the relations
if SI(p1) > SI(p2) andSI(p1) < SI(p2) for convenience,
respectively.

Input : All MDCG tuples in the decreasing order of
scheduling index

Output : A set of maximal independent sets

Initialize : set the orderedp ∈ P as anchor tuples;
S[p] = Ø for all anchor tuplesp;
/* set of ISs associated with anchor tuples */
to-be-covered setT = P ;

⊳ while 1 do
pick a new anchor tuplep in decreasing order;
if Ic(p) = Ø (i.e.,p has no non-neighbor tuple)then

add the MIS{p} into S[p];
if p ∈ T then
T = T / {p}

end
else
∗ for p′ ∈ Ic(p) & p′ ≺ p in decreasing orderdo

for every ISs ∈ S[p] do
if p′ can be added intos then

addp′ into s;
break;

end
end
if p′ can not be insertedthen

create a new IS{p, p′};
add{p, p′} into S[p];

end
if p′ ∈ T then
T = T / {p′}

end
end

end
repeat the “*” for -loop for p′ ∈ Ic(p) & p′ ≻ p in
decreasing order;
if T = Ø (i.e., all tuples have been covered)then

break;
end

end
for everyIS found abovedo

if IS is not maximalthen
add some tuples to make it maximal;

end
end

Algorithm 1 : Phase 3:Computing maximal independent
sets

1The sorting algorithm considered here is based on shortest path informa-
tion computed in Phase 1. In a more general scenario, Phase 1 can take longer
paths into account and assign different weights to paths with different lengths,
based on which Phase 2 sorting may generate more accurate ordering. For
illustration purpose, we consider only shortest path in this paper without loss
of generality.

Phase 3): Iteratively compute maximal independent sets
covering all tuples.Algorithm 1 presents all details finding
MIS based on the SI ordering generated in phase 2. The
algorithm starts by considering all the ordered tuplesp ∈ P
as anchor points. Each anchor tuple leads to a round of
independent set (IS) computing. Given an anchor tuplep, we
will compute a set of ISs that coverp and all its non-neighbor
nodes in the conflict graph denoted asp′ ∈ Ic(p). The set of
ISs computed will be stored in the setS[p]. Note that each
IS in S[p] contains the tuplep, showingp as an anchor point.
The algorithms will run recursively along the anchor pointsin
decreasing SI order until all the tuples are covered by certain
IS(s), which guarantees that the MCF formulation can generate
a feasible solution. A to-be-covered setT is defined as a set
containing the tuples yet to be covered by ISs. The setT is
initialized asT = P , and each time a new tuple is covered
by certain IS, the tuple is removed fromT . The operations
to search IS stop whenT becomes empty. After the MIS
searching stops, all the ISs obtained will be extended to MISs
if they were not.

It is not difficult to see that in our algorithm, the tuples
with larger SI tend to be covered by more MISs due to two
facts: 1) The tuples will small SI values may not get the
chance to be operated as anchor points if the to-be-covered
set T reaches empty at a higher-priority anchor point. 2) In
each IS computing round, the anchor nodes are covered in all
ISs maintained inS[p], but other tuples are not. Moreover,
a noteworthy implementation detail is that when we switch
to next anchor tuplep, we start with the non-neighbor tuple
p′ ∈ Ic(p) & p′ ≺ p instead of thep′ ∈ Ic(p) with the
larger SI, and then come back to the half set withp′ ≻ p. The
benefit of this operation is to reduce the chance of repeating
an existing IS and avoid over-concentrating the ISs to high
priority tuples.

C. Complexity analysis

In this subsection, we give an analyze to the complexity of
the proposed heuristic algorithm. As indicated earlier, Phase
1 of the algorithm labels all shortest path for one source-
destination pair in timeO(∣ℒ∣). Given ∣Λ∣ flows, Phase 1
computations take the polynomial complexity ofO(∣Λ∣∣ℒ∣).
The sorting operations in Phase 2 is also polynomial; the
commonly used sorting algorithms have the running time
betweenO(n log2 n) and O(n2), wheren is the number of
nodes. In the MDCG context,n is the number of tuples, which
is upper bounded byK2C∣ℒ∣, but the larger value ofn does
not change the polynomial nature. Regarding the complexity
of computations in Phase 3, we have the following theorem:

Theorem 2: The Phase 3 computations in Algorithm 1 have
a polynomial complexity ofO(K8C4∣ℒ∣4).

Proof: Note that the number of tuples is at mostK2C∣ℒ∣
if there are∣ℒ∣ links in original topology. Here, the operation
comparing two tuples is define as one basic operation. Con-
sider thewhile-loop labeled by the symbol⊳, which incurs
at most K2C∣ℒ∣ of iterations. In each iteration, given an
anchor tuplep, the number of non-neighbor tuples inIc(p) is



upbounded byK2C∣ℒ∣. To determine the number of iterations
incurred by thefor -loop, we consider the worst case that
all non-neighbor tuples ofp pair-wisely interfere with each
other; in such a case, each tuple inIc(p) incurs a new IS.
Thus, the number of ISs inS[p] is upbounded byK2C∣ℒ∣
too. Obviously, the number of tuples contained in each IS is
upbound byK2C∣ℒ∣. Based on such analysis, it can be seen
the number of basic operations incurred to determine whether
a p′ ∈ Ic(p) can be added into an existing independent set or
not takes the orderO

(

(K2C∣ℒ∣)2
)

. Based on the number of
iterations included in the “*”for -loop and “⊳” while-loop, the
complexity to obtain the ISs contained in allS[p] sets take the
order ofO

(

(K2C∣ℒ∣)4
)

. After obtaining all the candidate ISs,
we also need to check the maximality of each set and make
necessary extension to MISs. It can be seen that the number
of candidate ISs contained in allS[p] sets is upbounded by
O
(

(K2C∣ℒ∣)2
)

, and it takesO
(

(K2C∣ℒ∣)2
)

operations to
each set for the maximality checking/extion. In summary, the
total time complexity isO

(

(K2C∣ℒ∣)4
)

+ O
(

(K2C∣ℒ∣)4
)

,
that is,O(K8C4∣ℒ∣4). ■

Combining the complexity analysis of all the three phases,
the proposed heuristic algorithm is a polynomial with a
complexity ofO(K8C4∣ℒ∣4) (the complexity is dominated by
Phase 3 operations).

VIII. N UMERICAL RESULTS

In this section, we present some numerical results to demon-
strate the efficiency of the MDCG-based resource allocation
compared to the resource allocation algorithm developed in
[1], and demonstrate the efficiency of SIO-based MIS com-
puting compared to the random MIS searching algorithm
proposed in [9]. We consider two network topologies: 1)a grid
topology as shown in Fig 2, where 25 nodes are distributed
within a 1000m × 1000m area and the area is divided
into 200m × 200m square cells; 2) a random topology as
shown in Fig 3, where 25 nodes are randomly placed in a
1000m × 1000m area to form a connected network. There
are 3 commodity flows in each topology. The source and
destination nodes for flowi (i = 1, 2, 3) are denoted asSi and
Di respectively. The transmission range and interference range
of each node is set to 250m and 500m, respectively. For the
convenience of performance comparison with [1], we assume
the physical link capacity over each channel is the same, and
we set all values ofwc

uv to a normalized link capacity of one
rate unit. Each flow has a rate demand of 3 rate units. We
develop C codes to implement our heuristic algorithm and the
algorithms presented in [1], and use CPLEX [25] to solve the
optimization problems involved in our MCF formulation and
the algorithms in [1]. For the ease of presentation, we denote
the MCF solutions under our SIO-based MIS computing as
SIO-MDCG, and those under the random MIS computing [9]
as RS-MDCG. We denote the capacity computed based on
the heuristic algorithms in [1] as static approximation (S-
App), and the upper bound indicates the capacity under the
LP relaxation in [1] (denoted as�∗ there).
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Fig. 2. Grid topology.
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channels.
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Fig. 4. Effectiveness of SIO-MDCG in computing MIS.

A. Effectiveness of the SIO-based MIS computing.

The effectiveness of the proposed SIO-based MIS comput-
ing is to be demonstrated through comparing the SIO-MDCG
results with the RS-MDCG results for both grid and random
topologies. In Fig. 4, the network capacity� versus the number
of MISs constrains is computed under the RS-MDCG method;
the upper bound is obtained according to the LP relaxation in
[1]; the SIO-MDCG result is obtained with the number of MIS
constraints determined by the SIO algorithm, and the number
of constraints is indicated over the corresponding curves in
Fig. 4.

We can have the following observations from Fig. 4. 1)
The RS-MDCG curves shows that network capacity com-
puted by the MCF formulation increases with the number
of MIS constraints used. 2) Our SIO-based MIS computing
algorithm outputs 28488 and 30756 MISs for the random
and grid topologies, respectively. 3) In the grid topology,
the SIO-MDCG results (with 30756 MIS constrains) steadily
outperform the RS-MDCG result even when the RS-MDCG
uses up to3 × 105 MIS constraints (around one order more
than that used in SIO-MDCG). Looking at the case under the
same number of MIS constraints (i.e., 30756), the capacity
under SIO-MDCG is two times that under the RS-MDCG.
Similar observations can be obtained in random topology,
where the RS-MDCG needs to use as many as2.7× 105 MIS
constraints to catch the performance of SIO-MDCG which
incurs only 28488 constraints. 4) In the grid topology, the
RS-MDCG performance uniformly increases with the number
of MISs as shown in Fig. 4(a), but the curve shows a
step-increasing behavior in random topology as illustrated in
Fig. 4(b). Such performance difference can be explained as
follows. Note that the grid topology is a symmetric structure,
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Fig. 5. The performance of SIO-MDCG.

where every link carries basically the same topological infor-
mation (ignoring the borderline effect). In such a uniformed
structure, the uniformed performance of random algorithm
could be expected. However, in an arbitrary topology randomly
configured, different links may be of different structure-level
importance. For example, there might be some critical links
(such as cut edge) between a given source-destination pair.
In such a non-uniformed structure, if the random research
misses some critical links, increasing the number of MISs will
not provide much help in increasing the network capacity.
An obvious capacity increase can only be achieved (shown
as a jumping step in Fig. 4(b)) when those critical links are
covered. The results in Fig. 4 clearly demonstrate that our SIO-
MDCG algorithms derives satisfied performance in identifying
those critical MISs, which further leads to efficient resource
allocation.

B. MDCG-based resource allocation compared to the static
heuristics in [1].

In this part, we are to demonstrate the efficiency of MDCG
based resource utilization compared to the static heuristic
algorithm developed in [1]. Based on the efficiency dis-
cussion in the above, the SIO-MDCG results are used to
represent MDCG-based capacity. In this experiment, each
node is equipped with 3 radio interfaces, and we investigate
the performance by varying the number of channels. Fig. 5
presents the curves of� versus the number of channels
under the algorithms SIO-MDCG and S-App, respectively.
It can be seen that the achieved network capacity under our
algorithm steadily outperform that under the S-App algorithm.
The more channels are available, the higher capacity increase
can be achieved by our SIO-MDCG method, which clearly
demonstrate the efficiency of SIO-MDCG in exploiting the
available resources.

One fundamental reason for the capacity improvement with
MDCG-based analysis is the scheduling withdynamic channel
swapping as illustrated in Table I. The table presents the
scheduling factors�m computed by SIO-MDCG for tuples
associated with links(12, 13) in grid topology, for the instance
of 2-interface nodes and 10 channels. The scheduling re-
sults clearly demonstrate that link(12, 13) dynamically swaps
among different channels. For example, the link(12, 13) when
operating over radio pair(1, 1) can switch over channels 2,
4, 6, and 9, although at a moment a link can only operate

TABLE I
RLC-TUPLE BASED SCHEDULING: DYNAMIC CHANNEL SWAPPING FOR

LINK (12,13)IN GRID TOPOLOGY

Channel/ Radio-pair (1,1) (1,2) (2,1) (2,2)
Channel 2 0.04529 0.007246 0 0.006341
Channel 4 0.120471 0 0 0
Channel 6 0.067935 0 0 0
Channel 7 0 0.008152 0 0
Channel 8 0 0 0.203804 0
Channel 9 0.092391 0 0 0.038043
Channel 10 0 0.076993 0.088768 0
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Fig. 6. Impact of number of radios and channels, grid topology.

on one channel through a given radio interface. Instead, the
algorithms in [1] statically assign a channel to a link operating
over a given radio interface.

C. Capacity versus the Number of Radios and Channels.

We also compute the optimal capacity under different num-
ber of radio interfaces and channels with both RS-MDCG
and SIO-MDCG. Here, we present the results for the grid
topology with an illustration purpose. We will have similar
observations in a random topology. For RS-MDCG, we let
the random MIS search algorithm run3× 105 rounds. Such a
number of searching rounds is large enough for the cases with
small numbers of radio interfaces and channels, but insufficient
for the large-scale cases. Thus, on one hand, the RS-MDCG
results in the small-scale cases (which generates close-to-
optimal results with enough MIS constraints) can be used to
benchmark the SIO-MDCG results. On the other hand, the
RS-MDCG results in the large-scale cases can further reflect
the advantage of SIO-MDCG methods.

The results are shown in Fig. 6, where we can have the
following observations. 1) In the small-scale cases less than
4 channels, the RS-MDCG results in Fig. 6(a) show that
the same capacity� is achieved when the number of radio
interface changes from 1 to 4. In other words, one radio is
enough to utilize all the four channels. We see that in the grid
topology, a node at most has 4 neighbors. By proper radio
interface assignment and dynamic channel swapping, the four
channels can successfully resolve the interference among the
four neighbors even under the 1-radio configuration. Such an
effect is theoretically explained in [17]. 2) In Fig. 6(a), The
increment of capacity� basically stops when the number of
channels exceeds 6 in 1-radio case. The reason is that full
exploitation of a give number of channels requires a reasonable
number of available radio interfaces. Thus is practice, a
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good design should equip nodes with a proper number of
radio interfaces to efficiently utilize the available channels.
3) Compared the results in Fig. 6(a) and Fig. 6(b), we can
see that the SIO-MDCG results are very close to the RS-
MDCG results in small-scale cases, showing again the good
performance of SIO based computing in identifying critical
MISs. Also, the comparison shows that the RS-MDCG results
could not give accurate results in those large-scale cases
with more number of radio interfaces and channels. First,
the SIO-MDCG can give higher network capacity. Second,
given 10 channels, the SIO-MDCG results show that 3 radio
interfaces at each node are necessary to efficiently exploitall
the channels (the 3-radio curve and 4-radio curve are very
close), but the RS-MDCG results will suggest a number of
2 radios. This example again demonstrates that an efficient
computing method is critical for properly planning the network
capacity. 4) With the increase of number of radio interfaces
and channels, the SIO-based computing will generate a larger
number of MISs, which are shown in Fig. 7. We can observe
from Fig. 7 that the complexity of SIO-based MIS computing
in fact increases linearly, although the worst-case complexity
analysis in Theorem 2 gives a very conservative bound.

IX. CONCLUSION

In this paper, we develop a novel concept of multi-
dimensional conflict graph to facilitate optimal capacity plan-
ning in MR-MC wireless networks through a LP MCF for-
mulation. The MDCG-based MCF solution generates not only
the maximum network capacity, but also the joint optimal so-
lutions of link scheduling, radio interface and channel assign-
ment, and routing. Moreover, the MDCG-based planning can
conveniently exploit dynamic channel swapping and channel
diversity for the maximum capacity. Further, we propose a
heuristic algorithm to intelligently compute a small number
of critical MISs to significantly reduce the computation com-
plexity. To the best of our knowledge, this is the first work
to solve the optimal capacity planning of MR-MC network in
the LP regime with efficient computing methods.
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