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Abstract—This paper presents the CONTRACT framework
to address a fundamental deficiency of the IP network control
plane, namely the lack of coordination between an IGP and other
control functions involved in achieving a high level objective.
For example, an IGP’s default automatic reaction to a network
failure may result in an SLA violation, even if the IGP link
weights have been carefully chosen. This is because an IGP
blindly routes traffic along the shortest paths based on link
weights, and it is completely oblivious to the interactions between
SLA compliance, load balancing and traffic policing objectives
in a network. The CONTRACT framework makes it possible
to coordinate these objectives. Under this framework, routers
continue to operate autonomously, but they also coordinate their
actions with a centralized network controller, which evaluates
the impact of routing changes, decides whether the changes are
SLA compliant, and performs load rebalancing and/or packet
filter reconfiguration as necessary. The key contribution of
CONTRACT is a set of coordination algorithms. We show that
CONTRACT can effectively coordinate the actions of routing,
load balancing and traffic policing to improve a network’s SLA
compliance.

Keywords-network coordination; traffic control; coordination
algorithms; SLA compliance

I. INTRODUCTION

Today, a network operator must carefully handle numerous

control tasks to ensure that service level agreements (SLAs)

are met. First, the operator must perform careful network

capacity planning to ensure that the network has enough

bandwidth to meet the traffic demand [1]. Second, load-

balanced routing is necessary to mitigate network hot spots and

to enhance the network’s ability to absorb temporary spikes in

traffic [2]. Furthermore, in today’s hostile Internet environment

where a single DDoS attack could generate more than 40 Gbps

of sustained unwanted traffic [3], it is crucial to use traffic

filters to stop such unwanted traffic from overwhelming the

network.

The possibility of network failures further complicates the

network operator’s task. This is because when a failure occurs,

an Interior Gateway Protocol (IGP) such as IS-IS [4] and

OSPF [5] will immediately re-route traffic around the failure.

Although automatic failure recovery is generally desirable, the

re-routed traffic may congest the network even if the IGP

link weights have already been carefully chosen by a load

balancing mechanism. Furthermore, changing routing without

regard to DDoS traffic filtering could mistakenly re-route

DDoS flows around the filters that aim to block them. The

resulting service level agreement violations can be serious and

can persist for over 10 minutes [6], even in a tier-1 backbone

network.

The fundamental problem is the lack of coordination in the

control plane. Specifically, the IGP is allowed to operate in

isolation from the SLA compliance, load balancing and traffic

policing functions. In reality, however, these functions are

intertwined and need to coordinate their actions. To address

this problem, we propose the COordiNated TRAffic ConTrol

(CONTRACT) framework. In CONTRACT, routers continue

to recover from failures in a distributed autonomous fashion.

However, the key difference is that routers coordinate their

actions with a centralized network controller who is respon-

sible for network-wide control tasks. Numerous studies have

experimentally demonstrated the feasibility of using a central-

ized controller for a variety of network-wide control tasks even

for large networks (e.g. BGP routing decision making [7][8],

network-wide access control [9], intra-domain routing and

packet filter configuration [10], data center network layer-2

routing [11]). In contrast, the novel focus of CONTRACT is to

provide a set of algorithms for achieving coordination, thereby

improving SLA compliance in the network.

There are three key mechanisms underlying the CON-

TRACT framework. First, under CONTRACT, routers partic-

ipate in a distributed coordination protocol with the network

controller. The controller programmatically evaluates the im-

pact of the routing changes, decides whether the changes are

SLA compliant, and performs load rebalancing and/or packet

filter reconfiguration as necessary. Second, because the overall

impact of re-routed traffic cannot be locally determined by

a router, under CONTRACT, routers temporarily lower the

priority of the re-routed traffic, thus protecting other traffic.

The priority will return to normal once the changes are deemed

SLA compliant by the controller. Finally, CONTRACT enables

routers to autonomously adapt their packet filter configuration

as routing changes to retain (when feasible) the packet filtering

behavior.

The CONTRACT mechanisms work transparently beneath

the IGP. Therefore, they can be deployed without changes

to the IGP. The CONTRACT coordination protocol guaran-

tees that all routers in the network partition containing the

controller reach a consistent coordinated routing state despite

arbitrary network failures. Furthermore, if the controller itself

has failed or the network has been partitioned, and coordi-

nation is no longer possible, the IGP continues to function

autonomously; network survivability is thus not compromised.
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CONTRACT therefore seamlessly combines the benefits of a

distributed IGP with the benefits of sophisticated centralized

network-wide control mechanisms.

While our focus for this paper is ensuring coordination

between intra-domain routing, traffic policing and load balanc-

ing, the basic ideas underlying the CONTRACT framework

are applicable to coordinating additional control tasks. For

example, BGP routing decisions can congest parts of the

network by changing the paths traversed by inter-domain

traffic. To prevent SLA violations, these BGP decisions need

to be coordinated with the load-balancing and traffic policing

functions. Also, coordination is needed for implementing

VPN provisioning and quality of service differentiation in

the network. The challenges in these scenarios bear similarity

to ensuring SLA compliance in that predictable performance

needs to be offered to the client. However, it would be

impossible to properly address all these topics in a single

paper, thus we save them for a follow-up paper.

To evaluate CONTRACT, we conduct experiments across a

wide range of network conditions. We are able to show that

CONTRACT can enforce the coordination objectives among

the IGP, traffic load balancing, and traffic policing functions

even under rapid network changes, while consuming reason-

able router resources even for large networks. Furthermore,

we show that CONTRACT provides substantial improvements

to network performance and SLA compliance during network

failures.

The rest of this paper is organized as follows. In the next

section, we provide further motivation and discuss the related

work. In Section III, we present the proposed CONTRACT

mechanisms and analyze their properties. We experimentally

evaluate the benefits of CONTRACT in Section IV and

conclude in Section V.

II. MOTIVATION AND RELATED WORK

A. Need for IGP and Load Balancing Coordination

The load on each individual link is determined by two

factors: the traffic demand matrix and routing. Previous studies

have demonstrated how the traffic demand matrix can be

efficiently measured [12][13]. Routing is determined by an

IGP (e.g. OSPF, IS-IS). Each individual network link is

assigned a link cost and each router runs the IGP. The IGP

exchanges link-state announcements among routers to learn

the complete topology and link costs of the network. The IGP

then distributedly selects a minimum cost routing path.

Therefore, whether a network has well balanced load de-

pends very much on the link cost assignments. Fortz and Tho-

rup [2] were the first to formalize the problem of optimizing

link cost assignment for load balancing and proved that the

problem is NP-hard. Fortunately, they also showed that a local

search heuristic for finding good link costs can perform very

well in practice. Follow-on work includes computing link costs

that work well across different traffic demand matrices [14].

The main question is, even if a network’s load is well

balanced initially, will it continue to behave well when the

IGP unilaterally recomputes routes after detecting a failure? In

an experiment based on the Sprint North American backbone

network, Nucci et al. [15] pointed out that when a single

link failure occurs, even an initially well-balanced network

with maximum link load of 68% can become overloaded with

maximum link load of 135%. Interestingly, this overload is

not inevitable. If the IGP were coordinated with the link

cost selection mechanism, then the maximum link load after

this failure can be kept below 90% [15]. Therefore, the

coordination between the IGP and load balancing is crucial

for maintaining SLA compliance.

B. Need for IGP and Traffic Policing Coordination

According to a recent survey of network operators [3], from

Aug 2007 to Jul 2008, the largest DDoS attacks reached 40

Gbps, with 27% of the attacks reaching 4 Gbps or more. There-

fore, without the proper policing of such unwanted traffic, even

a tier-1 backbone network could become congested.

The filtering or rate limiting of unwanted traffic is imple-

mented by access control rules in routers (or equivalently in

specialized middleboxes). What complicates matters is that a

router is limited in the number of access control rules it can

handle at wireline speed. Network operators have cited the

impact of access control lists on network performance as the

most serious infrastructure shortcoming [16]. To get around the

performance problem, access control rules often get distributed

to internal network links as opposed to being implemented

entirely at traffic ingress links. Maltz et al. [17] reported that

more than 70% of the operational networks they analyzed have

access control rules implemented at internal links.

In this environment, unilateral uncoordinated actions by an

IGP could lead to severe network congestion because any

change to routing could let a large DoS traffic flow bypass the

link where the access control rule is implemented. To quantify

the problem caused by this poor coordination, we conduct

experiments on the 79-node Rocketfuel topology [18]. The

goal is to quantify the likelihood of a flow bypassing its access

control rule as a result of the unilateral IGP reconvergence

after a single link failure. In these experiments, we only

consider flows that have at least 5 hops. The network diameter

is 10 hops and the average path length for all these flows is

5.8 hops. We subject 2645 flows to access control rules placed

N hops from the ingress link, where N varies from 1 to 3.

For 10% of the link failure scenarios, there are more than

90, 156 and 173 flows bypassing access control rules when the

rules are placed at the 1st, 2nd, and 3rd hop respectively. In

the worst scenario, there are 373, 666 and 739 flows bypassing

access control rules. If an IGP were able to coordinate its ac-

tions with the configuration of access control rules, permitting

new rules to be configured when routing changes, then a DoS

flow need not bypass its access control rule.

C. Related Work

There are a number of routing approaches for improving

a network’s SLA compliance under failures if coordination

is not available. Nucci et al. [15] developed techniques to

compute a single set of link costs that achieve good load
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balance both during normal operation and after any single

link failure. Although this work represents a breakthrough, its

scope is restricted to single link failures. The jury is still out

on whether a single set of link costs can achieve good load

balance for other common types of failures, such as linecard

failures and router failures.

If routing is not restricted to link-state IGP, that is, if MPLS

routing is employed, then nearly optimal routing that is oblivi-

ous to traffic demand can be computed [19][20][21]. Moreover,

with MPLS routing, Applegate et al. [22] showed that by

carefully choosing the failure restoration paths, nearly optimal

performance after a network failure can be achieved even

with little knowledge of traffic demand. However, computing

restoration paths in advance for all possible failure scenarios

is computationally expensive. Furthermore, MPLS routing is

not as widely used in practice as IGP routing.

In contrast, the CONTRACT framework is aimed at im-

proving SLA compliance regardless of the type of network

failure experienced. Furthermore, the CONTRACT framework

takes SLA compliance, routing, load balancing, and traffic

policing into account holistically, which is not possible with

the previous routing only approaches.

The dependency between traffic policing and an IGP as a po-

tential security problem has been known for a long time [23].

The two can be decoupled if traffic policing is pushed to the

very edge of the network where there are natural traffic choke

points [24]. However, as discussed, routers have limited ability

to support access control rules and these rules in practice are

often distributed to internal network links [17]. Implementing

redundant access control rules along the potential fail-over

paths of traffic may help guard against some problems but will

require precious router computation resources that may not

be available. Our coordination mechanisms prevent unwanted

traffic from bypassing access control rules even when the rules

are distributed to internal network links.

It is theoretically possible to avoid the need for coordination

by throwing away traditional IGPs and re-engineering routing,

load balancing, and traffic policing into one system as advo-

cated by the 4D proposal [25] – in effect re-engineering the

entire IP network control plane. However, we believe it is

equally important to solve the coordination problems without

requiring drastic changes to the control plane. Our motivation

is both fundamental and practical. Fundamentally, no solution

exists for the coordination problem within today’s control

plane and therefore it represents an unexplored point in the

design space. Furthermore, solving this problem within today’s

control plane sheds light on how an IGP and other distributed

protocols could better co-exist with other functions in the

control plane. Practically, throwing away traditional IGPs may

not be a viable choice for network operators because of

subtle dependencies that may already exist. For example, when

businesses are merged, integrating their existing infrastructure

requires a significant amount of “glue logic” such as the use

of route redistribution [26]. The dependencies entailed by this

delicate glue logic make it even more impractical to drastically

change the control plane.

III. CONTRACT: THE FRAMEWORK

CONTRACT works with link-state IGPs, including

OSPF [5] and IS-IS [4]. It does not modify the IGPs. For

simplicity, we will describe CONTRACT in terms of OSPF.

We assume the reader is already familiar with OSPF. The

purpose of CONTRACT is to ensure that both the load

balancing and traffic policing objectives are taken into account

during IGP reconvergence. The basic idea of CONTRACT is

that, new routing entries generated by the IGP are installed

immediately, but put in the unapproved mode. Traffic routed

using these unapproved entries is put in low-priority queues,

and tends to be dropped first when there is congestion. At the

same time, routers send approval requests to the CONTRACT

controller for evaluation. Furthermore, routers locally adjust

their filter configuration to cope with the routing changes.

The controller participates in the link state routing, so it also

receives all LSAs (link state advertisement) flooded in the net-

work. Only routing entries which do not violate coordination

objectives are approved by the controller, and be brought back

to the approved mode (where traffic is routed with a normal

priority). In addition, the controller also recomputes the filter

configurations for routers accordingly and try to balance the

load in the network by optimizing the link cost assignment.

A. IGP and Load Balancing Coordination

CONTRACT assumes that the controller knows the traffic

matrix in the network. The traffic matrix is needed to evaluate

routing changes and to optimize the link cost assignment. Next

we give detailed explanations about the notations we use.

Notations and Explanations:

• seqn(ti) denotes the sequence number each router n

maintains at time ti. It increases by 1 when a router’s

local link state changes. This number is contained in the

LSA flooded by each router. For another router m, once

it receives such a LSA, it will remember that sequence

number in its link state database as seqm
n (ti). This is the

sequence number of router n from router m’s perspective.

seqn
n(ti) is equivalent to seqn(ti). The sequence number

serves to uniquely identify each instance of the local link

state of each router in the network.

• xn(ti) denotes the network-wide link state from router

n’s perspective at time ti. xn(ti) is the link state database

of router n which also contains the seqn
m(ti) it has

observed from any other router m. If at time tj , all

the routers and the controller reach a consistent state,

where ∀a, b, xa(tj) = xb(tj), we use X(tj) to denote

this consistent network link state.

• (HASH = SecureHash(xn(ti)), SEQSUM =∑
m seqn

m(ti)) denotes the fingerprint of state xn(ti) in

router n. Letting routers send actual routing tables to the

controller for evaluation is an unnecessary overhead. In

CONTRACT it is more efficient for the central controller

to evaluate the network link state xn(ti) instead. The

fingerprint further compresses and identifies each unique

network link state, and presents an ordering of network
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For Each Router

On local link state changes or receiving new LSAs at time ti:
Update the local link-state database;
Compute rt(xn(ti−1), xn(ti));
Locally adjust filter configuration(...);
//This function will be expanded in next subsection
Update the router’s routing table by rt(xn(ti−1), xn(ti));
For each e in rtinsert(xn(ti−1), xn(ti))

fp(e) = (SecureHash(xn(ti)),
∑

m
seqn

m(ti));

Flag these entries as Unapproved (traffic will have low priority);
Send AprReq(xn(ti)) to the controller;

Fig. 1. Local autonomous adaptation algorithm

link states. The first element is generated by a secure

hash function (e.g. MD5, SHA-1, SHA-2, etc.) which

computes on an array buffer that contains all seqn
m(ti).

This value uniquely identifies the network link state in

router n at time ti. The value
∑

m seqn
m(ti) provides a

local ordering of network link states. In any particular

node in the network (either a router or the controller), a

state with a smaller
∑

m seqn
m(ti) is older than a state

with a bigger one. This value does not ensure a global

ordering. For a fingerprint fn, we use fn.HASH to

specify the secure hash value in that fingerprint, and

fn.SEQSUM to specify its sum of sequence numbers.

fingerprint() denotes the function we use to generate

the fingerprint of a network state.

• rt(xn(ti)) stands for the routing table of router n, gener-

ated by OSPF based on state xn(ti). RT (X(ti)) denotes

all routing tables of all routers in the network, corre-

sponding to a consistent state X(ti). rt(xn(ti−1), xn(ti))
stands for the changes in the routing tables in router n

from state xn(ti−1) to xn(ti).
• For efficiency, the routing table is modified gradually by

insertions and deletions. rtdelete(xn(ti−1), xn(ti))
denotes the entries bound for deletion, and

rtinsert(xn(ti−1), xn(ti)) denotes new entries that

are going to be installed. Updates can be realized by

deletions followed by insertions. For each entry in

the routing table, we remember the fingerprint of the

network link state for which it is inserted. fp(e) denotes

such a fingerprint, where e is one entry.

• AprReq(xn(ti)) denotes the approval request sent to the

controller by router n via unicast, for the routing table

associated with the new link state xn(ti). For brevity,

we will loosely refer to this as an approval request for

the link state xn(ti). It contains the router’s ID, and the

fingerprint (SecureHash(xn(ti)),
∑

m seqn
m(ti)).

• When the controller approves a routing table associated

with some link state, the approval Apr(X(ti)) is reliably

flooded hop-by-hop into the network. For brevity, we will

loosely refer to Apr(X(ti)) as an approval for the link

state X(ti). The controller only approves consistent state.

The approval message contains the fingerprint of that

state. For brevity we use approving link state to refer

to the approval of the routing table associated with that

particular link state.

For Each Router

On receiving Apr(X(ti))
For each entry e in its current routing table

if (fp(e).SEQSUM <= Apr(X(ti)).fingerprint.SEQSUM )
Approve this entry(traffic will be normal priority);

else
Keep it Unapproved;

For The Central Controller

On receiving AprReq(xn(ti))
FingerprintTable[n] = AprReq(xn(ti)).fingerprint;
Check all fingerprints in FingerprintTable to see whether

they are consistent with the controller’s own fingerprint;
if (consistent)

Evaluate(X(ti);
if (approved)

Send out Apr(X(ti));

On receiving new LSAs
Update the link-state database;
Generate and send out new optimized link weights if necessary;

Fig. 2. Distributed coordination protocol for IGP routing

The Algorithms:

The CONTRACT framework is composed of two algo-

rithms. The first algorithm works locally at a router and allows

it to autonomously adapt to network changes. The second

algorithm coordinates the routers and the controller.

Figure 1 shows the specifications of the autonomous adap-

tation algorithm in routers. When one LSA is received, OSPF

on each router will compute necessary routing entry changes,

update their fingerprint, and put them in the unapproved mode.

Figure 2 shows the specifications of the distributed co-

ordination protocol. When a router receives an approval, it

searches through its routing entries, and approves all entries

with a fingerprint older than or exactly the same as the one

in the approval message. This effectively approves all routing

entry changes that have accumulated up to the state specified

in the approval message. When the controller receives one

approval request, it first checks whether all nodes in the

network have reported the same fingerprint (which means they

have reached a consistent network link state), and if so it goes

ahead and evaluates that network link state to see whether the

changes can be approved. In this case, the controller sends out

approval messages. When the controller receives new LSAs, it

runs an optimization algorithm to generate better link weights

if possible. The optimization algorithm can have different

objective functions. As an example, in this paper it minimizes

the total number of flows that are affected by packet loss.

When routers receive the new link weights, they will generate

the corresponding routing changes, and the changes will be

evaluated and approved by the controller.

Router State Invariant:

Because of the time that the controller takes to evaluate

a network link state and the delays in the network, the

approval message might take an arbitrary amount of time

to reach every router in the network. However, we show

that any router’s state does not become arbitrarily complex

but rather it satisfies a simple invariant at all time. Let us

assume that we start with the network state X(t0) in which
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every routing entry is approved. Then, before Apr(X(ti))
arrives, a router could already reach state X(ti+k). Based on

the coordination protocol, Apr(X(ti)) will only approve the

routing entries resulting from states ranging from X(t0) to

X(ti). The routing entries that are generated corresponding

to network state from X(ti+1) to X(ti+k) will all remain

unapproved. Therefore, a router’s state satisfies at all time

the invariant that it always consists of an approved state

followed by zero or more unapproved state changes, no matter

how long the approval messages are delayed. In this case,

after Apr(X(ti)) has been applied, the router’s state is X(ti)
followed by X(ti+1)...X(ti+k).

In addition, approval messages may arrive out of order.

At time ti+k , Apr(X(ti+a)), a ≤ k may arrive before

Apr(X(ti)). Apr(X(ti+a)) will approve all the entries that

are the results of network state from X(t0) to X(ti+a).
When later on Apr(X(ti)) arrives, it becomes a no-op. As

a result, such out-of-order approval message processing is

equivalent to advancing the router’s state to X(ti+a) followed

by X(ti+a+1)...X(ti+k). The invariant is still preserved.

Discussion:

In order to evaluate a consistent network link state, CON-

TRACT requires all routers to report that state. If the network

link state changes very fast, such a consistency may not

be reached. In this case the controller cannot evaluate and

approve any of these states, so eventually all routing entries

will become unapproved and all traffic will receive the same

low priority. This is one limitation of CONTRACT. We will

evaluate this effect in Section IV.

CONTRACT can also be applied to networks where equal-

cost multipath routing is used, as long as the ratio with which

the traffic is distributed on the equal-cost paths is known by

the controller. In this situation, the controller can still predict

the traffic distribution in the network.

OSPF creates separate routing entries for each unique desti-

nation prefix. Then, the router performs CIDR aggregation on

these routing entries and configures the hardware forwarding

table entries. Because unapproved routing entries are treated

with low priority, when doing the CIDR aggregation, only

approved entries can be merged with approved entries, and

only unapproved entries can be merged with unapproved

entries.

B. IGP and Traffic Policing Coordination

Filter rules are not only used to block malicious traffic, but

also configured for traffic shaping. In general, filter rules for

specific traffic flows are configured in the network along the

path where the flows are routed.

When the network link state changes, traffic flows could

be rerouted and thus bypass some filter rules. The controller

always tries to adjust filter configurations according to network

link state changes. However, since it takes time for the

controller to generate and send out new filter configurations,

there could be transient periods where the filter rule semantics

are not preserved. Therefore, we propose that in addition to

coordinating with the controller, on link state changes, routers

should locally adjust their filter rule configurations based on

the locally observed behavior of traffic policing

At each router, for all the traffic flows that go through the

router, the router can observe what filter rules are applied

on which traffic flows. This observed traffic flow and filter

rule relation defines the local filter semantics at the router.

A router seeks to preserve these semantics when the network

state changes. The global filter semantics of the whole network

is the traffic flow and filter rule relation that the controller

wants to enforce.

Requirements:

First, because filters can be installed on inbound links, to

know which inbound link some traffic is going to take, a router

needs to know the routing state of the entire network. As a

result, a router not only needs to compute the local routing

table rt(xn(ti)), but also needs to compute all-pair shortest

path routing state of the entire network, based on its current

link state database. This computation can be efficiently per-

formed using a dynamic incremental shortest path algorithm.

A router only needs to manage the approval state for its local

routing table rt(xn(ti)), hence the algorithms in the previous

section can be readily used. The global routing table is kept

separated.

Second, the algorithm requires that the controller always

generates exact traffic filters for an approved network link

state. By “exact” we mean that the source and destination

address ranges of the filter generated by the controller should

be equal to or smaller than the address ranges of the traffic that

actually travels through the link where the filter is going to

be installed. Exact filters precisely define the filter semantics

for one router for one routing state. If a filter is exact, and the

traffic it matches is rerouted to another link (either inbound or

outbound link), when the filter is moved to that new link, it will

still match the same traffic. Therefore, the local filter semantics

can be preserved by locally adjusting filter configurations.

Notations and Explanations:

• filtercurrent(xn(ti)) denotes the filter configuration on

router n for a network link state xn(ti). It can contain

filters both generated by the controller and by the router

locally.

• filtercentral(n, X(ti)) denotes the filter configuration

generated by the controller for router n for an approved

network link state X(ti). filtercentral(X(ti)) denotes

the collection of filter configurations generated for all the

routers. Notice that the controller will only generate filter

configuration for an approved state.

• For each filter f in a router, we also associate it with a

fingerprint, to remember for which network link state this

filter is generated. We use f.fingerprint to denote this

fingerprint.

• f.link stands for the link where filter f is installed.

f.toremove is a flag used to mark the filters that will

be removed. By default it is set to false.

The Algorithms:

Figure 3 expands the function for locally adjusting the filter

configuration that was mentioned in figure 1 in the previous
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Locally adjust filter configuration(new state xn(tk))
For each filter f in filtercurrent(xn(ti))

fls = all potential traffic matched by f given xn(ti);
fls changed = all potential traffic in fls that do not go through f.link

given xn(tk);
fls unchanged = fls - fls changed;
if ( fls changed != Empty )

Split f into f changed for fls changed and f unchanged
for fls unchanged;

Install f unchanged on link f.link;
if (f.link is an inbound link)

Install f changed to the new inbound link(s) of fls changed;
else

Install f changed to the new outbound link(s) of fls changed;
f changed.fingerprint = fingerprint(xn(tk));
f unchanged.fingerprint = fingerprint(xn(tk));

Fig. 3. Specification of Locally adjust filter configuration(...)

For Each Router

On receiving filter configuration filtercentral(n, X(ti))
For each filter f in filtercurrent(xn(tk))
//k ≥ i, tk is the current time

if (fp(f).SEQSUM < fingerprint(X(ti)).SEQSUM )
f.toremove = true;

For each filter f in filtercentral(n, X(ti))
Install f on link f.link;
f.fingerprint = fingerprint(X(ti));

Remove all filters with f.toremove == true;
Locally adjust filter configuration(xn(tk));

Fig. 4. Actions to be taken when receiving filter configuration

subsection. In this function, on receiving new link state, each

router checks each of the filter entries to see whether the flows

that they match have been rerouted based on the IGP routing

changes. If so the router puts a new filter on the new path

(either inbound or outbound). The old entries will be split or

removed if necessary, and the new entries will be marked with

the fingerprint of the new link state.

Figure 4 specifies the actions to be taken when a router

receives filter configuration from the controller. The router

removes any filter entries with a fingerprint older than the

fingerprint of the new filter configuration from the controller,

installs the new filters and locally adjusts them if necessary,

using the function shown in figure 3.

Router State Invariant:

At the beginning, in the network state X(t0), ev-

ery routing entry is approved, and every filter entry in

filtercurrent(X(t0)) is configured by the controller. Be-

fore filtercentral(X(ti)) and Apr(X(ti)) arrive, the net-

work could already reach state X(ti+k). Then, after

filtercentral(X(ti)) and Apr(X(ti)) arrive, all filter entries

generated for network state X(ta), a < i will be removed,

and filtercentral(X(ti)) will be installed. Filter entries locally

generated for state X(ti+j), j = 1, 2, ...k are locally adjusted

based on filtercentral(X(ti)). These update rules preserve the

invariant that a router’s state always consists of an approved

state followed by zero or more unapproved state changes.

Discussion:

Whether local filter configuration adjustments preserve the

global filter semantics depends on where the filter is installed

with respect to the location of the routing change. If the

routing change happens at a router downstream of the filter

rule, then the filter need not be adjusted, and the global filter

semantics are preserved. If the routing change happens at

the router where the filter rule is installed, then by locally

adjusting the filter configuration, the global filter semantics

can be preserved. However, if the routing change happens

at a router upstream of the filter rule, then even if the filter

configuration is locally adjusted, the global filter semantics

may not be preserved.

As a result, the local action at a router is only a best

effort solution, and it does not always ensure that the global

filter semantics are preserved. Nonetheless, new filters are

computed by the controller and sent to routers, so the global

filter semantics can be re-established. However, it takes time

for the controller to reach every router, so the local action at

a router helps to reduce the convergence time because it has

an immediate effect.

C. CONTRACT Properties

Consistency Property:

CONTRACT ensures that an approval message conveys

an endorsement of the routing actions corresponding to a

consistent network link state which is known to have been

experienced by the controller and all routers in the network.

Thus, the resulting approved routing tables in the network are

guaranteed to be consistent with the approved link state.

If routers experience different intermediate connectivity

states because they experience different connectivity update

orderings, the inconsistent intermediate approval requests will

never be evaluated by the coordination protocol. Only an even-

tual set of consistent approval requests would be evaluated.

Furthermore, since the approval message is reliably flooded,

routers in any network partition must either all get the approval

message or none of them gets the message. Thus, in the

event of a network partition during the approval process, every

network partition is still internally consistent.

Survivability Property:

Even if the controller fails, or is partitioned from the

rest of the network, all the routers will continue to function

autonomously, and thus the survivability of the network is not

affected. Routers continue to adjust autonomously, such as

putting new routing configurations in low-priority mode and

trying to preserve local filter semantics while the controller is

unavailable. When the controller becomes available again, the

CONTRACT coordination mechanisms resume.

IV. EVALUATION

In this section, we evaluate the performance and overhead

of CONTRACT.

A. Methodology

We use a Java implementation of the CONTRACT frame-

work and an extended version of the ns-2 simulator to conduct

packet level simulations. The ns-2 simulator was augmented to

operate under the CONTRACT framework. The ns-2 routers
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support communication with the controller, and are config-

urable. Specifically, the controller can install link costs and

configure filters. Support for CONTRACT control messages

was also added. Since the controller needs to take part in

OSPF, it is represented by a router in the ns-2 simulation.

We use different Rocketfuel topologies [18] in our evaluation

as they provide us with a wide range of scenarios to test our

framework.

For the optimization algorithm we use an approach based on

a simplex downhill search [27]. Although the results obtained

from this algorithm are hardly optimal, we can already see

noticeable benefits in fulfilling the objective of the controller.

With more sophisticated methods, the performance (both in

terms of optimality and computation time) can be further

improved. The link cost optimization is a separate process

running in parallel to the approval evaluation process.

We put 0.05×n×(n−1) randomly chosen best effort traffic

flows in the network, where n is the number of nodes in the

network. CONTRACT will try to protect these best effort flows

from network congestion. At the same time, five malicious

flows are set in the network, with a high flow rate (200% of

link capacity), to simulate DoS attacks. We introduce different

failures in the network, and we compare the performance of

CONTRACT to an uncoordinated IGP (OSPF), which we call

“No Coordination”. For fair comparison, before the failures,

we let the controller to generate the same link cost weights and

packet filters for both CONTRACT and No Coordination, so at

the beginning the network load is balanced, and no malicious

flow is leaking.

We use two metrics for evaluating performance. The first

metric, “Loss-Num”, is the coordination objective of the

controller: the number of best effort flows which have packet

loss. For the second metric, we assume there is one SLA which

covers all best effort flows. This SLA guarantees that the end-

to-end delay experienced by packets of these flows is below a

threshold. We vary this threshold by multiplying the minimum

propagation delay by a variable factor. As the second metric,

“SLA-V”, we measure the fraction of best effort flows which

have SLA violations during the experiments.

In addition to evaluating the performance of CONTRACT,

we also evaluate its overhead by varying the size of the

network and the frequency of changes to the network.

B. Environment Variables

Here we list all network environment variables that we vary.

• Failure scenario: we try single link and single node

failures in the network.

• Average flow rate: source/destination pairs are randomly

chosen in the network, and best effort flows with different

average rates are created between them. This average flow

rate is represented as a percentage of link capacity, and

it determines the load level of the network.

• Variance of flow rates: We generate different distributions

of the best effort flow rates based on the Pareto distribu-

tion. We choose the K value to be 1.1, 2, 4, and 10, where

K=10 is closer to a uniform distribution, while K=1.1 is

more uneven.

• Noise level of traffic matrix: in a perfect situation, the

controller can know exactly the traffic matrix of the flows

in the network. However this is not always true, so we

introduce Gaussian noise in every non-zero point of the

traffic matrix. The standard deviation (as a percentage of

the average flow rate) of the Gaussian noise is called the

“noise level”.

• Optimization time budget: if we allow the optimization

algorithm to spend more time balancing the load, it might

generate a better link cost assignment that helps reduce

congestion, but it also increases the response time. So we

give the optimization algorithm a bounded time budget

and vary it.

• Link state (LS) routing hold down timer: it is common

that a link state routing protocol has a hold down timer to

reduce computation overhead and decrease the number of

updates to the routing table. Such a timer in our simulated

LS routing protocol can also increase the simulation

speed. This timer decides the OSPF convergence time.

C. Performance Evaluation

For the performance evaluation we use the 79 node Rock-

etfuel topology. Since different failure scenarios can cause

totally different behavior, in this subsection we analyze all

possible failure scenarios we described. We limit the link

capacity to 1Mb in order to keep the simulation time tractable.

We choose a set of default parameters for the environment

variables, and vary one variable at a time in each of experi-

ments to show the effect that variable has on the performance

of CONTRACT.

By default we choose 4% of link capacity as the average

flow rate, because failures could cause congestion in the

network, while the network is not heavily congested; we

choose K=10 as the variance of flow rate, which is close to a

uniform distribution, but with some variance; we choose a 5%

noise level in the traffic matrix, which represents a relatively

small noise level; we choose a 2 second optimization time

budget because for most cases it can generate good if not

optimal link costs; we choose a 1 second hold down timer,

which is typical in OSPF.

Varying Average Flow Rate:

In this set of experiments we evaluate the effect of different

average flow rates on the performance. We use 1%, 2%, 4%,

and 10% of link capacity in four groups of experiments.

Table I shows the results for the Loss-Num metric. In

all these experiments, CONTRACT shows obvious benefits.

Specifically, in CONTRACT there is no malicious flow that

ever bypasses the filters and gets leaked into the network,

while for the No Coordination case, for some failure scenarios

there are leaked malicious flows which cause congestion in

the network. When the average flow rate is very high (10% of

link capacity), the network is so congested that CONTRACT

cannot do too much to make the situation better, thus the

benefit is reduced.
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Scenario Overall With leaking malicious flows

Avg Min Max Avg Min Max

CONTRACT 1% 5.6 0 59 - - -

No Coordination 1% 10.9 0 143 67.2 24 143

CONTRACT 2% 6.1 0 63 - - -

No Coordination 2% 12.8 0 167 80.9 30 167

CONTRACT 4% 7.2 0 77 - - -

No Coordination 4% 15.4 0 176 92.6 34 176

CONTRACT 10% 197.8 178 229 - - -

No Coordination 10% 207.9 182 236 219.0 190 236

TABLE I
NUMBER OF FLOWS WITH PACKET LOSS FOR VARYING AVERAGE FLOW

RATE
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(b) 10% average flow rate

Fig. 5. Number of SLA violations vs. SLA delay guarantee in terms of
multiples of minimum propagation delay

Figure 5 plots the results for the SLA-V metric, for average

flow rates of 2% and 10% of link capacity. The line is

the average value, while the upper and lower bar are the

max and min values. In the 2% case, CONTRACT not only

reduces the average fraction of violations, but also sharply

reduces the maximum fraction of violations, compared to No

Coordination. In the 10% case, even though the benefit of

CONTRACT is smaller, it is still better than No Coordination,

especially in reducing the minimum fraction of violations.

Varying Variance of Flow Rate:

In this set of experiments, we vary the variance of the flow

rate distribution with K=1.1, 2, 4 and 10.

Scenario Overall With leaking malicious flows

Avg Min Max Avg Min Max

CONTRACT K=1.1 5.0 0 63 - - -

No Coordination K=1.1 8.5 0 110 64.1 13 110

CONTRACT K=2 12.1 0 84 - - -

No Coordination K=2 20.3 0 174 88.8 33 174

CONTRACT K=4 7.2 0 89 - - -

No Coordination K=4 16.7 0 159 96.8 34 159

CONTRACT K=10 7.2 0 77 - - -

No Coordination K=10 15.4 0 176 92.6 34 176

TABLE II
NUMBER OF FLOWS WITH PACKET LOSS FOR VARYING VARIANCE OF

FLOW RATE

Table II shows the results for the Loss-Num metric. For

different variance in the rates of the traffic flows, CONTRACT

always performs better than No Coordination in reducing the

number of flows with packet loss.

Figure 6 plots the SLA-V, for K=2 and K=10. Again,

CONTRACT shows obvious benefits over No Coordination.

Varying Noise Level of Traffic Matrix:

In this set of experiments, we vary the noise level with 5%,

10%, 50%, and 100% of average flow rate. The initial link
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Fig. 6. Number of SLA violations vs. SLA delay guarantee in terms of
multiples of minimum propagation delay

costs generated for both CONTRACT and No Coordination

are based on the traffic matrix with no noise.

Scenario Loss-Num SLA-V, ×3

Avg Min Max Avg Min Max

CONTRACT 5% 7.2 0 77 0.123 0.099 0.394

CONTRACT 10% 7.4 0 77 0.111 0.081 0.304

CONTRACT 50% 10.4 0 89 0.112 0.084 0.379

CONTRACT 100% 11.1 0 95 0.108 0.075 0.304

No Coordination 15.4 0 176 0.151 0.099 0.558

TABLE III
NUMBER OF FLOWS WITH PACKET LOSS FOR VARYING NOISE LEVEL IN

THE TRAFFIC MATRIX

Table III shows the results. Since No Coordination does not

optimize link costs for network failures, it is not affected by

different noise levels. Also because of limited space, we cannot

present the full graphs of the SLA-V results, so we only show

the number when the threshold is 3× minimum propagation

delay. With a higher noise level in the traffic matrix, the

optimization in CONTRACT becomes less effective, and the

performance as measured by Loss-Num is worse. But even

with the highest level of noise (100% standard deviation), the

performance of CONTRACT is still better than No Coordina-

tion. Examining the results in terms of SLA-V, it is interesting

to see that, although CONTRACT is always better than No

Coordination, there is no obvious correlation between SLA-

V and the noise level. This is because the controller in our

experiments optimizes for the Loss-Num metric, and Loss-

Num is not necessarily correlated with SLA-V. A higher Loss-

Num could correspond to a lower SLA-V because SLA-V is

computed solely based on the delays experienced by those

packets that are not lost.

Varying Optimization Time Budget:

In this set of experiments, we vary the optimization time

budget for CONTRACT. We use 1, 2, 3, 4, 5, 6, 7, 8 and 16

seconds as the budget values and also present a case where

no optimization is performed.

The optimization time budget variation presents a trade-

off. If the value is too small, the algorithm cannot generate a

good configuration. If the value is too large, then the network

stays longer in an unoptimized state thus also leading to bad

performance. As the results in Table IV show, a time budget of

5 or 6 seconds leads to good performance in both Loss-Num

and SLA-V.
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Scenario Loss-Num SLA-V, ×3

Avg Min Max Avg Min Max

CONTRACT no optimization 8.3 0 80 0.119 0.093 0.299

CONTRACT 1 second 8.3 0 80 0.125 0.096 0.346

CONTRACT 2 seconds 7.2 0 77 0.123 0.099 0.394

CONTRACT 3 seconds 7.2 0 73 0.124 0.096 0.394

CONTRACT 4 seconds 7.1 0 72 0.113 0.081 0.304

CONTRACT 5 seconds 7.2 0 71 0.108 0.081 0.281

CONTRACT 6 seconds 7.1 0 72 0.109 0.081 0.290

CONTRACT 7 seconds 7.1 0 72 0.116 0.081 0.296

CONTRACT 8 seconds 7.1 0 69 0.133 0.096 0.331

CONTRACT 16 seconds 7.1 0 69 0.143 0.101 0.328

No Coordination 15.4 0 176 0.151 0.099 0.558

TABLE IV
NUMBER OF FLOWS WITH PACKET LOSS FOR VARYING OPTIMIZATION

TIME BUDGET

Varying LS Routing Hold Down Timer:

In this set of experiments, we vary the hold down timer as

0, 0.25, 0.5, 1 and 2 seconds.

Scenario Loss-Num SLA-V, ×3

Avg Min Max Avg Min Max

CONTRACT 0 second 3.5 0 42 0.123 0.096 0.316

No Coordination 0 second 8.6 0 156 0.155 0.096 0.549

CONTRACT 0.25 second 3.8 0 44 0.118 0.096 0.313

No Coordination 0.25 second 10.2 0 162 0.138 0.096 0.591

CONTRACT 0.5 second 5.4 0 59 0.121 0.096 0.394

No Coordination 0.5 second 12.9 0 169 0.146 0.096 0.546

CONTRACT 1 second 7.2 0 77 0.123 0.099 0.394

No Coordination 1 second 15.4 0 176 0.151 0.099 0.558

CONTRACT 2 seconds 8.5 0 82 0.123 0.099 0.316

No Coordination 2 seconds 18.9 0 176 0.155 0.096 0.549

TABLE V
NUMBER OF FLOWS WITH PACKET LOSS FOR VARYING HOLD DOWN TIMER

Table V shows the results. With a smaller LS routing hold

down timer, the convergence periods for both OSPF routing,

and for CONTRACT to finish approving a state, are shorter so

there will be less packet loss in the network, but the routers

are more stressed in computing routing tables. With larger

LS routing hold down timer, the situation is the opposite.

CONTRACT is better than No Coordination in all cases.

D. Overhead Evaluation

Larger Network Topology Size:

In this set of experiments, we evaluate the overhead of

CONTRACT by using larger topologies of 161 and 315 nodes.

Because these simulations require more time, we only explore

a subset of the possible failure cases. We use the default

parameters, except for the optimization budget. We use an

unlimited optimization budget to see how long it takes to do

a full optimization.

In all of these failure cases CONTRACT is better than

No Coordination under our two metrics. For the 161 node

topology, on average CONTRACT spends 40 milliseconds in

evaluating one consistent network link state. The convergence

time for CONTRACT to approve one state is on average 1.25

seconds. It is composed of the 1 second LS hold down timer,

the OSPF convergence time, the maximum round trip delay

between the control station and the farthest node, and the 40

milliseconds.

During one experiment the CONTRACT Java code uses

on average 320MB of memory. If we let the optimization

algorithm run for an unlimited time, it finishes in 19.8 seconds,

but with a budget of 8 seconds it comes up with a reasonably

good solution (the average number of flows with packet loss

is 4 for a 4 second budget, 2 for 8 seconds, and 2 for an

unlimited time budget).

For the 315 node topology, on average CONTRACT spent

173 milliseconds in evaluating one network link state. The

convergence for CONTRACT is on average 1.46 seconds. The

CONTRACT Java code uses on average 620MB of memory.

If we let the optimization algorithm run for an unlimited time,

it finishes in 68.4 seconds, but with a budget of 32 seconds, it

comes up with a reasonably good solution (the average number

of flows with packet loss is 12 for a 16 second budget, 8 for

32 seconds, and 7 for an unlimited budget).

In addition, for the 79 node topology, on average CON-

TRACT uses 180MB of memory. Therefore the memory

consumption of CONTRACT approximately grows linearly

with the size of the network (number of nodes and edges).

Higher Network Change Frequency:

We stress CONTRACT by increasing the frequency of

changes in the network. We toggle the status of one link

between up and down 10 times and choose different frequency

values for these toggles.

Toggles frequency Number of Loss-Num SLA-V, ×3

(toggles/second) approvals CON No CON No

50 1 11 7 0.146 0.131

10 1 8 5 0.110 0.107

6.6 4 4 4 0.113 0.116

5 10 2 4 0.113 0.116

2.5 10 2 4 0.113 0.119

TABLE VI
PERFORMANCE FOR VARYING CHANGE FREQUENCY

Table VI shows the results (“CON” means CONTRACT,

“No” means No Coordination in this table). In the first two

extreme cases where the network link state changes very

quickly, CONTRACT cannot catch up with all the transient

network link states, so there is only one approval at the end

of the sequence of toggles. In these two cases the performance

of CONTRACT is worse than No Coordination. The reason is

as follows. We run simulations with a 1Mbps link bandwidth

which is relatively low. When routers are sending approval

requests to the central controller frequently in these two

extreme cases, the approval requests consume a major fraction

of the network bandwidth, thus congesting the network and

causing extra packet losses. When we run simulations with a

more realistic 10Mbps link bandwidth, the approval requests

no longer congest any network link. When the frequency is

lower, CONTRACT can approve all the transient states, and

the performance is better than No Coordination.

Discussion:

CONTRACT introduces a modest amount of additional

overhead on routers which includes running the all-pair short-

est path routing algorithm, computing fingerprints, sending

approval requests, processing approvals, locally adjusting filter

configurations, and processing new filter configurations. The

computation required by CONTRACT will be performed by
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commercial routers in the control plane. Therefore, this will

not cause extra delay in the packet forwarding performed by

the separated data plane. Commercial routers also commonly

support priority queuing. This functionality can be used by

CONTRACT when traffic needs to be placed in a low priority

queue.

The link weight optimization algorithm we use is admittedly

simple. More sophisticated algorithms can be applied that

perform better optimization or improve the computation time.

However, the delay introduced by our simple link weight opti-

mization algorithm is not critical in the coordination protocol.

The computation is performed in parallel with the process

to evaluate network link state, and the network continues to

function even if the current state is not approved.

Transient failures could cause temporary link weight and

routing changes. Any solution that deals with failure faces

an inherent trade-off. If a transient failure is reacted upon

then computation might be unnecessarily performed. On the

other hand, prompt action is required to limit the effect of any

failure. CONTRACT also faces the same trade-off. However,

in CONTRACT, the effects caused by a transient failure can

be reduced by putting the temporarily rerouted traffic into a

low priority queue.

V. CONCLUSION

We have proposed the CONTRACT framework to in-

corporate coordination into the IP network control plane.

CONTRACT can efficiently and programmatically enforce

coordination objectives among distributed IGP, traffic load

balancing, and traffic policing functions. Furthermore, CON-

TRACT provides substantial improvements to network per-

formance and SLA compliance during network failures, with

reasonable overhead. While we acknowledge the debate on

whether more complexity should be added into the network

core, we believe that as more and more critical tasks are

performed over the Internet, ensuring predictable performance

for some applications needs to be considered as a basic service

requirement. The CONTRACT framework trades the addition

of some complexity into the IP control plane with improving

the SLA compliance of the network. As future work, we plan

to extend the CONTRACT controller prototype into a fully

programmable, modular network control platform.
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