
ASAP: Scalable Identification and Counting for Contactless RFID Systems

Chen Qian†, Yunhuai Liu‡, Hoilun Ngan‡, Lionel M. Ni‡
‡Department of Computer Science and Engineering
Hong Kong University of Science and Technology,

Email: {yunhuai, cpeglun, ni}@cse.ust.hk
†Department of Computer Science
The University of Texas at Austin

Email: cqian@cs.utexas.edu

Abstract—The growing importance of operations such as
identification, location sensing and object tracking has led to
increasing interests in contactless Radio Frequency Identifi-
cation (RFID) systems. Enjoying the low cost of RFID tags,
modern RFID systems tend to be deployed for large-scale
mobile objects. Both the theoretical and experimental results
suggest that when tags are mobile and with large numbers,
two classical MAC layer collision-arbitration protocols, slotted
ALOHA and Tree-traversal, do not satisfy the scalability and
time-efficiency requirements of many applications. To address
this problem, we propose Adaptively Splitting-based Arbitration
Protocol (ASAP), a scheme that provides low-latency RFID
identification and has stable performance for massive RFID
networks. Theoretical analysis and experimental evaluation
show that ASAP outperforms most existing collision-arbitration
solutions. ASAP is efficient for both small and large deployment
of RFID tags, in terms of time and energy cost. Hence it can
benefit dynamic and large-scale RFID systems.

Keywords-RFID; ALOHA protocol; Collision arbitration;

I. INTRODUCTION

The Radio Frequency Identification (RFID) is a short-
range radio communication technology that has been widely
used in many applications such as identity recognition,
localization/tracking [1] [2] [3] [4], and population (car-
dinality) counting [5] [6] [7]. A standard RFID system is
mainly composed of two types of devices: RFID tags and
readers. RFID tags, labeled with a unique serial number
(ID), are used to identify objects such as human beings and
items. RFID readers that carry antennas are used to collect
the information of RFID tags nearby. The simple structure
and low-cost of RFID systems offer promising advantages
to applications of large volumes of objects in a mobile
environment [8]. Contactless RFID systems are also called
RFID Networks.

Restricted by the simple structure, however, RFID tags
cannot run CSMA-like protocols to avoid link layer col-
lisions. Two classical collision arbitration protocols are
commonly used for RFID networks, namely slotted ALOHA
[9] and Tree Traversal [10]. If every tag can report the reader
without collision, their identities can be recognized. Hence
in the context of RFID networks, collision arbitration pro-
tocols are also called identification protocols [11] [12]. The

desired identification protocol for RFID networks should be
time-efficient and scalable.

Consider such an application of RFID systems: Hong
Kong International Airport (HKIA), one of the largest
airports with the second largest volume of annual cargo
transportations in the world, is one of the earliest RFID
system consumers. Every year, HKIA loses more than $20
million to rectify misplaced and mis-transported bags as
every mis-location costs $100 in average to relocate the
object. As early as August 2005, HKIA began to adopt
the RFID technology in its logistic management system,
which handles more than 3.6 million tons of cargo annually,
and thousands of objects at a snapshot. One important
application is thus to identify all bags in the system for
package verification purpose.

Time efficiency is a great concern because applications
are usually in mobile environments. If the identification
process lasts too long, mobile objects may have left the
reader’s range before being recognized. Moreover, the pro-
tocol should be scalable to support large number of tags as
in the HKIA cargo transportation system. Privacy-preserving
is also a problem [13] [14], which is beyond the scope of
this paper.

Slotted ALOHA is an intuitive solution, but it does not
appear to be scalable. On the other hand, Tree-traversal
(Query Tree) has stable performance, but too many reader
queries lower the system efficiency. Protocols that combine
estimation and identification together are also designed to
make identification more efficient [5] [6] [15] [16]. However,
these protocols work efficiently only in a limited range of tag
cardinalities. Out of this range, the time efficiency decreases
sharply according to theoretical and empirical results. A
scalable arbitration protocol with stable and high efficiency
is desirable for dynamic RFID systems.

In this paper, we propose a novel Adaptive Splitting-based
Arbitration Protocol (ASAP). ASAP is efficient, cardinality-
insensitive and scalable. ASAP adaptively groups the tags
into multiple subsets and estimates the cardinality of each
subset during this process. Subsets form a hierarchy. The
number of subsets in each hierarchy is always around log n,
where n is the tag cardinality. The ALOHA frame with 32

2010 International Conference on Distributed Computing Systems

1063-6927/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDCS.2010.84

52

2010 International Conference on Distributed Computing Systems

1063-6927/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDCS.2010.84

52

slots is enough for up to estimate 232 tags. The estimation
and identification are well combined. Compared with Tree-
traversal which is also cardinality-insensitive, ASAP is able
to improve the time efficiency to almost the twice (the
detailed value depends on particular system parameters).
Elaborated analysis shows that ASAP has a remarkably
shorter processing time and lower energy cost, compared
with the existing identification protocols for a wide range of
tag cardinality. ASAP works efficiently for large-scale RFID
systems, and it also performs no worse than other protocols
in small-scale applications. Unlike some other approaches,
ASAP does not require knowing the approximate tag number
of the system in advance. Hence we believe ASAP can be a
possible solution for dynamic RFID systems. The efficiency
of ASAP does not depend on any performance models.

RFID arbitration protocols are also used for counting tag
numbers precisely. The only difference from identification is
that, the tag reply message can be a very short notification
instead of its ID to tell the reader increasing the counter.
For counting tasks that do not require the completely precise
result, estimation schemes can be applied [5] [6] [7].

The rest of this paper is organized as follows. In Section
II, we discuss the system model and some existing works
for RFID identification. Section III presents our basic ideas
and the detailed protocol design. We show the theoretical
analysis in Section IV, and present the experimental perfor-
mance evaluation in Section V. We conclude our work in
Section VI, and indicate possible future work directions.

II. SYSTEM MODEL AND PRELIMINARY

A contactless RFID system mainly consists of two types
of components: RFID readers and tags. They communicate
via radio signals. The reader broadcasts the interrogation
messages (also called queries) and tags give back the re-
sponse, carrying the desired information such as tag IDs.
Since simultaneous responses by two or more tags will lead
to response collisions, the reader cannot successfully receive
all information in one round of communications. Therefore,
the core problem for successful identification is arbitrating
tag collisions in RFID networks.

A. System Model

The RFID reader can switch between two modes, i.e.,
sending mode and listening mode. The basic unit of the
sending mode is a query, and the basic unit of the listening
mode is a listening slot. We denote the time cost for a query
and a listening slot by tq and ts respectively. The time cost
for switching from one mode to another is tswitch. During
a period, let n, Q, S, Nt and W be the number of tags,
queries, listening slots, tag replies and switches, respectively.
We define the system time-efficiency Rt for every time unit
tu, as follows,

Rt =
n

Q · tq + S · ts + W · tswitch
tu (1)

We define an energy-efficiency metric with the notations
named similarly to the time metric.

Re =
n

Q · eq + S · es + W · eswitch + Nt · eresp
eu (2)

The only difference is that active tags need energy Nt ·eresp

to reply.
Usually the time or energy cost of a query is larger than

that of a listening slot. A reply only includes the ID of
the tag, while a query includes more than that, such as the
ID of the reader, the sequence number of this query, the
type of targeted tags, the ALOHA frame length, and the
information of tag groups for polling. Also the switching
time is considered, because both the reader and tags should
do some processing before the next round of reading or
listening.

We try to include more factors in our efficiency model
to make it more generalized. Different parameters can be
applied for different RFID systems. Other models for RFID
efficiency have been proposed in the literature [17] [18] [15].
For example, in [15] the query cost is not counted. This
model may be suitable for those systems with low query
latency. The efficiency of our proposed protocol, ASAP,
does not depend on any particular performance models and
parameters. Under other models, ASAP is still (or even
more) efficient by our experimental results.

B. Existing Protocols

Two main kinds of protocols are used in arbitrating colli-
sions in ALOHA networks. In the context of RFID networks,
collision arbitration protocols are also called identification
protocols.

The first type of identification is slotted ALOHA [9]. The
reader creates an ALOHA frame with a fixed number of time
slots. Each tag randomly picks up a slot to transmit back. If
a tag responds to a slot without collision, it is successfully
identified by the reader. At the end of the frame, the reader
acknowledges the successfully identified tags to keep silent
in the next round. In the next round, a new frame will be
created for those un-identified tags until all the tags are
identified.

Suppose the frame length is l and the number of tags
is n, and k queries are sent for synchronization. For each
particular slot, the probability of success is

Pr(sucess) = n · 1
l
· (1 − 1

l
)n−1 (3)

The efficiency is

R =
l · Pr(sucess)tu

k · tq + l · ts + 2k · tswitch
=

n(1 − 1
l)

n−1tu

k(tq + 2tswitch) + l · ts
(4)

Assume n and l are so large that we can omit the constant
k. Also assume ts = tu. We can prove

5353

Theorem 1: The highest system efficiency happens when
l = n.

Also, when l = n,

Rmax = (1 − 1/n)n−1 ≈ 1/e = 36.8%

The value 36.8% is a theoretical upper-bound, since we
have not included the query and synchronization cost.

In real applications, n is dynamic and could become very
large. If n = 500 and l = 100, R decreases to 3.3%. If n =
1000 and l = 100, R is only 0.4%, which means in average
the reader cannot hear one successful transmission during
100 slots. The efficiency of Slotted ALOHA is cardinality-
sensitive, so that makes the system difficult to scale to large
tag cardinalities.

The second type, Tree-traversal [10] [17] [18] [19] works
as follows: The reader sends out a query to ask the tags with
IDs prefixed by 0 and 1 to respond to two slots respectively.
If there are collisions, the reader increases the prefix length
further to 00, 01, 10 and 11, and sends queries asking tags
with these prefixes to reply. This process works like a depth-
first (or breadth-first) traversal on a binary tree.

We analyze the performance of Tree-traversal under our
model. According to [20], the slot cost of tree algorithm is
S = 2.885n. The number of query can be approximated by
Q = S −n in ideal cases, since a query is needed by every
non-leaf node in the tree. Thus,

R =
n

1.89n(tq + 2tswitch) + 2.89nts
tu (5)

Supposing in an RFID system, ts = tswitch = tu and
tq = 2ts, we have R ≈ 10%. Though the efficiency of Tree-
traversal is lower than the maximum rate of slotted ALOHA,
it is cardinality-insensitive. The performance is stable and
independent from the tag cardinality.

We formally define the concept of cardinality-insensitive
as follows:

Definition: An RFID arbitration protocol is cardinality-
insensitive if for any cardinality the time (energy) efficiency
falls in the range [a− δ, a+ δ], where δ is a relatively small
value compared with a.

In our model, we use δ = 2%.
Some other models only consider the number of the

listening slots, and use its inverse to represent the efficiency.
If the query cost is ignored, then the efficiency of Tree-
traversal is 35%, which is similar to the maximum rate
of slotted ALOHA. Therefore we should use Tree-traversal
in any cases because it is much more stable. This conclu-
sion contradicts the experiences of ALOHA networks [9]
[10]. Our model provides a reasonable explanation: slotted
ALOHA enjoys a high efficiency in ideal cases, but loses the
stability; Tree-traversal wins the stability but the efficiency
is lower.

A desired identification protocol for large-scale RFID
networks should have a stable system efficiency close to
the maximum rate of slotted ALOHA.

Based on Theorem 1, an estimation of tag cardinality
can help to improve the efficiency of collision arbitration.
Recently several tag estimation schemes are proposed [5]
[6]. Bonuccelli et al. designed a protocol Tree Slotted
ALOHA (TSA) [15] that combines estimation and identifica-
tion together, so that it processes faster than Tree algorithm.
TSA has a good performance when the cardinality is close
to 128 so that the Chebyshev’s inequality-based estimation
works. However, if the tag cardinality is dynamic and could
be relatively large, Estimation results of TSA will eventually
be the same for most large cardinalities, and converge
very slowly. DTSA [16] enhances the stability of TSA by
dynamically apply the previous estimated value to adjust the
next estimation. It, however, still requires there are several
identifiable slots. In cases like n equal to several thousand,
the estimation converges very slowly too. Therefore TSA
and DTSA are both cardinality-sensitive.

MSS, designed by Namboodiri and Gao [18], reduces the
queries of Tree-traversal by opening a multi-slotted response
window for each query. It provide significant energy savings
compared with classical Tree protocol. ABS [17] is an
enhanced tree-based protocol which reduce the number of
collisions by exploiting information obtained from the last
process of identification. ABS is an inter-process optimiza-
tion. In this paper, we mainly focus on a single process.
STT [19] is proposed to improve the efficiency for RFID
tags with different ID distributions.

III. ADAPTIVELY SPLITTING-BASED ARBITRATION

PROTOCOL (ASAP)

In this section, we describe our identification proto-
col ASAP. ASAP is a combined estimation-identification
protocol. We first introduce the Geometric Splitting-based
Estimation (GSE), followed by the detailed design of ASAP.

We denote the number of tags and frame size by n
and l, respectively. We do not consider other sources of
identification errors such as poor read rates, ghost tags and
occlusions. We also assume every tag can be probed by
the single reader. The identification problem in multi-reader
scenarios is left for future research.

A. Geometric Splitting-based Estimation

The Geometric Splitting-based Estimation (GSE) has first
been proposed in [6]. Instead of randomly picking a slot
to respond, the tag applies a geometric distributed hash
function H to its ID. Here geometric distribution means
that 1/2t of the IDs have the hash value t. Then each tag
responds in the time slot that matches its hash value, and
tags in one time slot form a tag subset.

In a hash function, let the tags represent the keys and
the slots represent the hash values. As illustrated in Fig. 1,

5454

X

slot 7

X X 0 1 0 0

slot 6slot 5slot 3 slot 4slot 2slot 1

HASHING

Suffix of ZerosFringePrefix of Ones

0

slot 8

Figure 1. An example of GSE

0

slot 1

slot 2

slot 3

slot 4

slot 5

slot 6

slot 7 0

0

1

0

C

C

C

slot 8

1st-d frame 2nd-d frame

if 2login N

if 2login N

0 0 0 0 1 C C C

k-d frame

call identification()

call KdSplitting()

Figure 2. An example of ASAP

we have n tags that are placed into l slots with geometric
distribution, i.e., 1/2t of the tags are in the t-th slot.
Therefore, approximately n/2 responses are in the time slot
1, n/4 are in the time slot 2...and n/2t are in the time slot t.
Thus, the k-th bit in the merged bitmap BM [k] will almost
certainly be zero if k � log2 n, and be one if k � log2 n.
The fringe consists zeros and ones for the k whose value is
near log2 n.

We can estimate the tag number by:
Estimator 1.

ñ = λ × 2P0 = 1.2897× 2P0 (6)

is an estimator of the tag number n, where P0 is the position
of the first idle slot heard by the reader.

This estimator is suggested by [21] and [6].

B. General Architecture of ASAP

The design principle of ASAP is based on the simple
observation that slotted ALOHA is very inefficient when the
tag cardinality increases, while Tree-traversal introduces too
much control overhead. ASAP adaptively splits the entire
tag set into multiple subsets, and estimates the cardinalities
during the splitting. With 32-slot frames, ASAP is stable for
up to 232 = 4, 294, 967, 296 tags.

Essentially, ASAP uses a combined estimation-
identification algorithm. Initially, the reader creates an

ALOHA frame, named 1st-d frame, and asks all tags to
reply in the slots. If collisions happen (it is almost for
sure), ASAP splits the whole tag set into multiple subsets.
Each subset contains tags that reply to the same collision
slot. We push the collision slots follow a particular pattern,
i.e., geometric distribution. The first slot contains about
half of the n tags. The second slot contains about 1/4 of
the n tags. The k-th slot contains about 1/2k tags. Thus if
the reader hears an idle or identifiable slot at position t.
The collision slot prior to it (the (t − 1)-th slot) probably
contains 1 or 2 tags. The (t−2)-th slot has about 3 or 4 tag
replies (the previous value multiply by 2). The cardinalities
of all collision slots as well as the entire tag number can
be estimated by the help of GSE. In GSE the number
of collision slots only increases logarithmically with the
cardinality. Hence as long as the cardinality is not close to
2l (l is the frame length), the estimation in ASAP is always
cardinality-insensitive. Estimations used in TSA and DTSA
[15] [16] split the entire tag set into 128 slots evenly, and
estimate each subset by the number of collision slots. When
tag cardinality increases, almost all slots become collisions,
which affects the stability.

Fig. 2 gives an example of the ASAP operation. Slot 4,
6, 7 and 8 are idle slots. Slot 5 only has one response and
therefore the tag in slot 5 is successfully identified. Slot 1,
2 and 3 are collisions slots. Each of them corresponds to
one tag subset. These subsets should be further identified.
Suppose the estimated cardinality of subset Si is ñi. If ñi

is smaller than a threshold T like slot 2 and 3, the reader
employ a random ALOHA scheme framed by ñi slots to
identify the subset Si. According to Theorem 1, it can
achieve a high efficiency. If ñi > T like slot 1, the subset
should be splitted further by the scheme described in the
last paragraph. Numbered by the recursion levels, the frames
are named 1st-d frame, 2nd-d frame, ..., kth-d frame. The
recursive process is called k-dimensional Splitting.

C. Enhanced Estimation in ASAP

Note that the GSE proposed in [6] cannot directly applied
to ASAP. For example it is only able to estimate the entire
tag cardinality. Also different hashes are required for k-
dimensional Splitting. We present an enhanced version of
GSE in this section.

We first extend GSE to estimate the numbers of tags for
subsets s1, s2, ..., where the set si contains tags that respond
to slot i. If slot i is idle or with a single reply, the cardinality
of si will be 0 and 1. To estimate the number of tags in a
collision slot si, we have,

Estimator 2. If the ith slot is a collision slot, the estimated
cardinality of tags that reply in this slot, i.e., the cardinality
of si, is

ñi = 1.2897× 2P0−i (7)

where P0 is the position of the first idle slot heard by the
reader.

5555

reader

interrogation range

collision slot

readable slot

idle slot

unvisited slot

ALOHA frame

Slot 1 Slot 2 Slot 3 Slot 4

Figure 3. An example of identification in ASAP

Estimator 2 can be derived by the property of geometric
distribution.

We can expect that 32 slots are sufficient for the esti-
mation algorithm because few applications could have a
cardinality of 232. Therefore, in ASAP, we fix the frame
length as 32.

Unlike the protocol in [6], the GSE phase in ASAP
does not always finish the entire time-slotted frame. In the
other words, for most frames, 32 slots is sufficient but not
necessary, because obviously in most cases tag numbers are
much lower than 232. According to Estimator 2, we know
that the useful information in GSE is the first idle slot (left-
most zero). Therefore as soon as the reader hears an idle,
it immediately probes a “STOP” message and opens one
listening slot. On receiving a “STOP”’, all tags that have
not replied yet should report to the listening slot. In the
example of Fig. 2, all tags after slot 5 (if any) should reply
to slot 5. We can expect that the number of these tags will
not be very large. This technique compresses the listening
slots from 32 to about log n+1. It benefits the identifications
for which log n � 32.

D. k-dimensional Splitting

The simple version of ASAP protocol immediately ap-
plies slotted ALOHA using the estimated values as frame
lengths to identify each tag subsets. However, it is suggested
that ALOHA should not use long frames due to the time
synchronization problem [22]. Therefore, for some si with
relatively large size, the protocol splits it further by the kth-
d frames using different geometric hash functions which is
called k-dimensional splitting.

In ASAP, we set the threshold as 32. More specifically,
the reader performs a splitting by calling the function
KdSplitting() when ñi > 32. The algorithm KdSplitting()
recursively applies GSE to split the tag sets like Fig. 2. When
otherwise, i.e., a subset has an estimated cardinality smaller
than 32, the identification scheme is called. KdSplitting()
can either be depth-first or breadth-first. Here we use the
depth-first one.

When an un-identified subsets si whose estimated cardi-
nality is smaller than 32, we call the algorithm Identifica-

64 256 1024 4096 16384 65536
0

0.2

0.4

0.6

0.8

1

Number of Tags

E
rr

or
 o

f D
is

tr
ib

ut
io

n

ASAP
LoF

Figure 4. The Error of Geometric Distribution in Real Applications

tion(). It first apply random slotted ALOHA. If collisions
still exist, the reader uses Tree-traversal to deal with the
collisions. An example is depicted in Fig. 3. In Fig. 3, as
we know in advance that there are approximately four tags
in the subset (but the exact number is five), an ALOHA
frame with four slots will likely be sufficient to give each
tag a dedicated slot when each tag randomly picks one to
transmit. If collisions still happen, each collision slot can
be considered as a tree root to continue a Tree-traversal. It
stops when every tag is identified.

In KdSplitting(), the protocol may require a tag to apply
several different hash functions for different K=1, 2, ... It is
not specified how to obtain multiple different geometric hash
functions in [6]. Here we provide a solution. The position
of least-significant bit of zero in binary representation of
tag ID is geometric distributed. Let us denote this hash as
H ′. Then we also employ a group of uniform distributed
hash functions, e.g., Message-Digest algorithm 5 (MD5) or
Secure Hash Algorithm (SHA-1), denoted by H1, ..., Hk.
It is obvious that H ′(H1(ID)), ..., H ′(Hk(ID)) are all
geometric distributed hash functions, because Hi(ID)’s
rightmost zero also has a probability of 1/2t to be in bit
t − 1. The hash values of MD5 are 128-bit, but it is not
difficult converting them to the length we want. Note that
ASAP does not require the hash computation on each tag.
To avoid computing hashes on tags, we just pre-compute the
hash values for all tags during the manufacture and write
the hash values onto them as hard state. Each tag will select
one of the values under the request of the reader. During
the splitting process, tags just need to compare its last-used
hash value and the hash value in the current query. They do
not require extra memory to identify their groups.

In LoF, the version of GSE proposed in [6], the estimation
accuracy highly depends on tag ID distribution. Non-uniform
distributed tags will affect the performance of LoF. Our Kd-
Splitting() scheme alleviates the influence of ID distribution
to the accuracy of GSE, because all IDs are re-distributed
by each MD5 hash function. Figure 4 shows the (empirical)
error of geometric distribution for LoF and ASAP.

Another method to generate geometric distribution is to
do sequential coin-flipping. It is known that the first head (or
tail) appearing in sequential coin-flipping follows geometric

5656

distribution. Recent progress in RFID hardware show that
coin-flipping can be done in RFID tags on some bits which
predictably power up randomly [23].

IV. ANALYSIS AND DISCUSSION

The most significant performance metrics of identification
protocols include the processing time (latency) and the
energy consumed. Here we analyze them respectively by
developing several analytical models. The time and energy
cost models are both based on the sequential (SEQ) oper-
ation. The sequential operation is a half-duplex operation
where the reader sends out the query message for a specific
period, and then changes its mode to listen to the responses
until the end of the ALOHA frame. We consider both reader
queries and tag responses in the analysis model. Our analysis
only focuses on average cases.

A. Time Cost Analysis

Consider the model described in Section II.A. We present
the total number of queries, slots, switches and responses
as functions of n. The total time cost can be expressed as
T (n) = Q(n)tq + S(n)ts + W (n)tswitch, where Q(n) is
the number of queries and S(n) is the number of total time
slots required for identifying n tags.

We first determine the value of the number of queries
Q(n). We can express Q(n) as Qs(n)+Qi(n), where Qs(n)
is the number of queries sent in KdSplitting() and Qi(n) is
that of Identification(). Qs(n) can further be consider to
equal to the times of calling KdSplitting() plus the times of
calling Identification() in KdSplitting(). As described in our
protocol, after LoF estimation, tag sets whose cardinality is
less than or equal to M = 32 are have to call KdSplitting()
and others call Identification(). Let T represent the average
threshold position of these two kinds of sets. We have n

2T ≈
M because the splitting stops when the set’s cardinality is
less than or equal to M . We derive,

T ≈ log2

(n

M

)
< log2 n (8)

The number of sets that need to call Identification() is less
than log2 n − T = log2 M . Thus, the value Q(n) can be
expressed as,

Qs(n) = log2 M + T +
T∑

i=1

Qs

(
n/2i

)
(9)

Similarly,
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Qs(n/2) = log2 M + T − 1 +
T−1∑
i=1

Qs

(
n

2i+1

)
......
2j−1Qs(n/2j) = 2j−1 log2 M + 2j−1T

−j2j−1 + 2j−1
T−j∑
i=1

Qs

(
n/2i+j

)

Layer 0

Layer 1

Layer 2

Layer L

approximately n slots for all identification frames

Figure 5. Identification Tree

where j < T . Adding the left and right sides of all these
inequalities, we obtain,

Qs(n) =
T∑

j=1

2j−1 log2 M +
T∑

j=1

2j−1 (T − j).

Since
T∑

j=1

j2j = (T − 1)2T+1 − 1,

Qs(n) =
n log2 log2 n

M
+

n

M
(10)

Since log2 n < M = 32, the complexity of Qs(n) is much
less than O(n). The value of Qi(n) will be determined later.

We then compute the number of total time slots required,
S(n). We can express S(n) as Ss(n)+Si(n), where Ss(n) is
the number of time slots required in KdSplitting() and Si(n)
is that of Identification(). The total number of queries for
KdSplitting() is the second term of (11). Four additional time
units to send the “Stop” messages should also be included.
It is easy to get,

Ss(n) <
n(log2 n + 4)

M
< n (11)

The complexity of Si(n) needs more consideration. In
Identification() the length of the frame is the estimation
value ñ. If collisions still occur, each collision slot can be
considered as a tree root to continue tree-based splitting.
As illustrated in Fig. 5, for each tag, the identificaion can
be considered as a tree-based searching, and the search tree
now has n roots. All n tags are uniformly distributed in the
interval [0,1) at every layer of the search tree. Therefore,
for one tag searching, we have the following equations
to express the probabilities that the slot in layer l of this
searching is an idle slot, a successful slot or a collision slot
respectively,

Pridle(l) =
(
1 − 2−l/n

)n

Prreadable(l) = n×2−l

n

(
1 − 2−l/n

)n−1
= 2−l

(
1 − 2−l/n

)n−1

Prcollision(l) = 1 − Prreadable − Pridle

= 1 − 2−l
(
1 − 2−l/n

)n−1 − (
1 − 2−l/n

)n

5757

If a node at layer l is visited by at least one tree-based
searching, the parent of this node must be a collision slot.
Since the tags are uniformly distributed, the probability that
a node at layer l is visited by at least one searching is,

Prvisited(l) = Prcollision(l − 1)

= 1 − 2−l+1
(
1 − 2−l+1/n

)n−1

− (
1 − 2−l+1/n

)n

The number of time slots required on average for iden-
tification is equal to the number of nodes that are visited
by the tag searching. Let L denote the deepest layer in the
n-root search tree. Then we are able to compute Si(n) by
summing the visiting probabilities of all nodes in all layers,

Si(n) = n +
L∑

l=1

2l−1∑
i=0

Prvisited(l)

= n +
L∑

l=1

2l−1∑
i=0

[
1 − 21−l

(
1 − 21−l/n

)n−1 − (
1 − 21−l/n

)n
]

= n +
L∑

l=1

[
2l − 2

(
1 − 21−l/n

)n−1 − 2l
(
1 − 21−l/n

)n
]

For any expression (1 − h/n)n where h < 1 and n is a
large number, using the binomial expansion approximation,
we have1

(1 − h/n)n = 1 − h +
h2 (n − 1)

2n
− h3 (n − 1) (n − 2)

6n2
+ ...

> 1 − h.

Thus we derive,

Si(n)

< n +
L∑

l=1

{
2l − 2

[
1 − 2−l+1(n−1)

n

]
− 2l

(
1 − 2−l+1

)}

= n +
L∑

l=1

[
2−l+2(n−1)

n

]

< n +
L∑

l=0

1 = n + L

Since 2L � n,

Si(n) = n + o(log2 n) (12)

Considering that the estimation will introduce errors
which affect the value of Si(n), we use Si(n) < 2n.

Also Qi(n) < L + 1 < log2 n.
In summary,

Q(n) = Qs(n)+Qi(n) <
n log2 log2 n + n

M
+log2 n (13)

S(n) = Ss(n) + Si(n) < 2n +
n(log2 n + 4)

M
(14)

It is obvious that we have W (n) = 2Q(n).

1Actually we may directly get the inequality from Bernoulli’s inequality
in real analysis.

By (14) and (15), assuming tu = ts = tswitch = tq/2, 2

we have

TASAP (n) = Q(n)tq + S(n)ts + W (n)tswitch

=
(

n log2 log2 n + n

M
+ log2 n

)
(tq + 2tswitch)

+
(

2n +
n(log2 n + 4)

M

)
ts (15)

Since n < 232, TASAP (n) is upper-bounded by 4.125n.
Thus the efficiency Rt = n/T > 24.2%. Since this value
of R is only a lower-bound, the actual efficiency is higher
(26.8% based on the experimental evaluation). This bound
is valid for up to billions (232) of tags.

The efficiency of Tree algorithms is about 10% by Section
II.C. ASAP has a remarkably higher efficiency, which is
also cardinality-insensitive as we will show in Section V.
Based on the analysis in [15], for TSA working in ideal
cases (n is close to 128), the time cost T (n) ≈ 3

4n(tq +
2tswitch) + 2.3nts = 5.3ntu. Hence the efficiency for
ideal cases is around 18.8%. When n becomes larger, TSA
will degenerate to a Tree-traversal-like algorithm with a
efficiency value about 14%. Note if we use other models
ASAP still outperforms Tree-traversal and TSA.

B. Energy Cost Analysis

Energy efficiency is another important metric [18]. For
passive-tag RFID systems, the energy is only consumed on
the readers. Thus the analysis of energy cost is similar to
that of time cost. For active-tag RFID systems, we have to
consider the energy cost on both the reader side and tag side.
Due to the space constraint, we skip the detailed derivation.
Similar to the time cost, ASAP has stable and low energy
cost.

C. The Trade-off in ASAP

The design of ASAP requires tags either storing several
hash values in advance, or having the random power up bits.
Since the binary string of H(ID) is much shorter than that
of ID, the extra memory cost in each tag is not very much.
As analyzed in Section IV.A, after T times of splitting, the
cardinality of a set must be less than M . Plus a uniform
hashing needed for the identification frame, the total number
of hash values a tag has to store is T + 1 < log2 n < M .
Since the string length of H(ID) is a constant number and
the length of ID is M , the extra memory cost is close to
the memory used to store tag ID. Besides, our protocol only
requires tags to spend little extra memory to store its state
and identify the group it belongs to. ASAP trades the storage
for time and energy efficiency and performance stability.

2Please note that this assumption is just presenting an example RFID
system to get direct-viewing values. Different systems may have different
relationships of tu , ts, tswitch and tq . ASAP will have qualitatively same
performance for them. It can be seen by substituting other settings into (14)
and (15). Also we will validate this fact in the evaluation section.

5858

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5x 10
4

Number of Tags

T
im

e

ASAP
TSA
DTSA
Tree

Figure 6. Comparison in time
units, T (n)

0 1000 2000 3000 4000 5000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Tags

T
im

e
E

ffi
ci

en
cy

ASAP
TSA
DTSA
Tree
Limit

Figure 7. Comparison in time
efficiency

64 256 1024 4096 16384 65536
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Tags

T
im

e
E

ffi
ci

en
cy

ASAP
TSA
DTSA
Tree
 Limit

Figure 8. Time efficiency with
larger range of cardinalities

1000 2000 3000 4000 5000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Tags

T
im

e
E

ffi
ci

en
cy

ASAP
ALOHA(10% Esti Err)
ALOHA(80% Esti Err)

Figure 9. ASAP vs. slotted
ALOHA and tag no. known with
error

0 1000 2000 3000 4000 5000
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of Tags

E
ne

rg
y

E
ffi

ci
en

cy

ASAP
TSA
DTSA
Tree

Figure 10. Comparison in energy
efficiency

64 256 1024 4096 16384 65536

0.05

0.1

0.15

0.2

Number of Tags

E
ne

rg
y

E
ffi

ci
en

cy

ASAP
TSA
DTSA
Tree

Figure 11. Energy efficiency with
larger range of cardinalities

64 256 1024 4096 16384 65536
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Tags

T
im

e
E

ffi
ci

en
cy

ASAP
TSA
DTSA
Tree
 Limit

Figure 12. Time efficiency under
Model B

64 256 1024 4096 16384 65536
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Tags

T
im

e
E

ffi
ci

en
cy

ASAP
TSA
DTSA
Tree
 Limit

Figure 13. Time efficiency under
Model C

V. EXPERIMENTAL EVALUATION

We have conducted extensive experiments to verify the
performance of ASAP. In order to precisely evaluate RFID
arbitration protocols, we build a packet-level simulator
including tag mobility. We choose simulation instead of
real implementation because of the two reasons: 1. ASAP
(and some other protocols for comparison) requires some
change of the hardware, which can only be done by the
manufacturer. 2. Simulation enables us to study large-scale
systems and explore the potential of the protocols.

ASAP is compared with the general Tree-traversal algo-
rithm, TSA [15] and DTSA [16], with varies number of
tags. Time Efficiency, Rt(n), energy efficiency, Re(n), and
accuracy are essential performance metrics. The Time and
energy efficiencies metrics follow Section II and IV. We also
tried different performance models in Section V. C. Accuracy
is defined as the fraction of tags to be recognized by the
reader.

A. Simulation Setup

Different amounts (32 to 65536) of tags will be deployed
in a rectangular region with dimension 10m×10m. Due to
the limited computation ability, we are not able to simulate
billions of tags. Note that the arbitration itself is very
efficient, but to simulate billions of mobile tags is resource-
consuming. The readers are located at the top-left hand
corner of the region with a communication radius of 14.4m.
The tag IDs are 32-bits wide. The simulation is repeated
for 100 times and the average results are presented below.

In each figure, the unit of time or energy cost is unified as
Section II.

B. Performance of ASAP

In this section, we show the performance gain of ASAP
over other approaches.

Figures 6 and 7 plot the time cost and time efficiency for
identifying different amounts of tags (from 64 to 4992). In
Fig. 7 we also add the upper bound efficiency of slotted
ALOHA as the limit of Rt(n), which is impossible to
achieve unless one can know the precise cardinality in
advance and discard all query cost. The figures indicate that
the performance of ASAP is always better than those of
existing approaches. To better characterize these protocols,
we also plot the time efficiency in a larger cardinality range
in Fig. 8. From Fig. 7 and 8, the efficiency of ASAP is
always within the range [26% − 2%, 26% + 2%], which
means ASAP is cardinality-insensitive. It shows that when
tag cardinality is close to the frame length (128) of TSA
and DTSA, their performances are good too 3. However
their efficiencies drop sharply when the cardinality goes
away from the frame length. We also compare ASAP with
slotted ALOHA under the assumption that the tag number is
known with a certain error. We include the synchronization
problem in the simulator. As shown in Fig. 9, ASAP is more
efficiency than simple ALOHA.

3The values of TSA and DTSA shown here are different from those in
the original papers [15] [16], because the query cost was not considered
there.

5959

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tags

A
cc

ur
ac

y

ASAP (No Mobility)
ASAP (0.32 m/s)
ASAP (0.64 m/s)
DTSA (No Mobility)
DTSA (0.32 m/s)
DTSA (0.64 m/s)
Tree (No Mobility)
Tree (0.32 m/s)
Tree (0.64 m/s)

Figure 14. Accuracy comparison
with tag mobility

128 512 2048 8192 32768
0

0.2

0.4

0.6

0.8

1

Number of Tags

A
cc

ur
ac

y

ASAP (No mobility)
ASAP (0.32 m/s)
ASAP (0.64 m/s)
DTSA (No Mobility)
DTSA (0.32 m/s)
DTSA (0.64 m/s)
Tree (No Mobility)
Tree (0.32 m/s)
Tree (0.64 m/s)

Figure 15. Accuracy comparison
with tag mobility and exponentially
increasing cardinalities

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7x 10
4

Number of Tags

T
im

e

ASAP (Uniform)
ASAP (Manufacturer Continuous)
Tree (Uniform)
Tree (Manufacturer Continuous)
Tree (Manufacturer Random)

Figure 16. The Impact of ID
Distribution

64 256 1024 4096 16384 65536
0.05

0.1

0.15

0.2

0.25

0.3

Number of Tags

T
im

e
E

ffi
ci

en
cy ASAP

TSA
DTSA
Tree

Figure 17. Time efficiency for
lossy links

The comparison of energy efficiency is plotted in Fig. 10
and 11. ASAP is the most efficient except for the ideal cases
of TSA and DTSA. Note that ASAP is the only cardinality-
insensitive scheme in terms of energy efficiency. Even the
performance of Tree algorithm decreases as the cardinality
grows.

C. Impact of Model Selection

The advantages of ASAP do not depend on our model.
We also evaluate the protocols in two other models. Model
B uses tq = ts, where tq is the time for a query and ts
is that for a slot. Model C does not consider the switching
time. Figure 12 and 13 show the results of model B and C
respectively. ASAP still performs stably and more efficiently
than other approaches. Due to the space constraints we do
not show the results for energy cost, which is similar to
those in Fig. 10 and 11.

D. Impact of Tag Mobility

It is not uncommon to have mobile tags. We simulate tag
mobility by allowing the tags to move in a random direction
at different speed. The result is shown in Fig. 14 and 15.

The accuracy is less than 1 because some of the tags
are moved to a location outside the reading range of the
readers before they have been recognized. Initially, all the
tags are within the reading range of the readers. The higher
the speed of the tag movement, the faster the tags are beyond
the reading range of the reader. For all algorithms, the
accuracy drops with increasing number or moving speed of
tags. However, a more severe dropping rate is observed in
the Tree-traversal approach. ASAP is capable to maintain
an accuracy of around 95% with 10000 tags and high tag
mobility.

E. Impact of Tag ID Distribution

In this section, we will consider possible scenarios that
tag IDs are not uniformly distributed. We simulate these
scenarios by proposing two tag ID distributions, namely
manufacturer-random and manufacturer-continuous. Tag IDs
with the former distribution have a common prefix and their

suffixes are uniformly distributed among the tags. Tag IDs
with the later distribution will also have a common prefix but
their suffixes are continuous assigned. In this distribution,
the actual length of the common prefix could be much
longer depending on the tag size. Figure 16 show the total
operating time. Manufacture-continuous distribution affect
the performance of Tree algorithm as queries are issued
based on tag IDs. ASAP and DTSA, however, are stable
for any ID distributions.

F. Impact of Lossy Links

Practical RFID networks might contain lossy communi-
cation links, i.e., the transmission from the reader to tags
(or in the other direction) only succeed in a probability. We
also test ASAP under lossy links. Figure 17 shows the result
where the average link quality is 0.8. The efficiency of ASAP
is still close to 0.25.

G. Suggestion of Protocol Selection

RFID network administrators choose protocols which
fit best to their particular application requirements. If the
system has the precise knowledge of tag cardinality, slotted
ALOHA is always the best choice. However it is rare in
reality because there is no scheme that can count the tag
number precisely without arbitrating collisions. Also mobile
tags dynamically change the cardinality. By Fig. 6 to 15,
ASAP is preferred in general cases no matter the cardinality
is unknown or know approximately. For a passive-tag sys-
tem, if the approximate tag number is known and the system
is energy-aware, DTSA is also a good choice because it has
the least energy cost in such case. Though the simple Tree-
traversal is not as efficient as ASAP and DTSA, it is still
necessary because all of ASAP, TSA and DTSA use Tree
algorithm as a function block.

VI. CONCLUSION AND FUTURE WORK

Efficient and scalable RFID identification protocol is on
demand of many real-world applications. Slotted ALOHA
scheme loses the stability, and Tree-traversal does not pro-
cess efficiently. Motivated by these limitations, we design

6060

a new identification protocol called Adaptive Splitting-
based Arbitration Protocol (ASAP). Analysis and experi-
ments show that ASAP dramatically outperforms existing
approaches considering both efficiency and scalability. Our
work can also benefit other ALOHA-based networks such
as Satellite communications networks.

Our future work will be carried on along following di-
rections. First, we only consider a single reader. In practice,
there could be multiple readers functioning in overlapped
regions. New problems will arise and further improvement
spaces are available as well. How to benefit from such
multiple readers and tackle the new problem is still unclear.
Second, we assume a single, omni-direction antenna for
each reader. This assumption is not always true as the
practical readers may have multiple antennas. In the last,
we consider a low mobility environment where the target
objects have limited mobility. Concerning the practice, we
believe there could be much more applications when high
mobility scenarios are supported.

ACKNOWLEDGMENT

This research was supported in part by Hong Kong
RGC Grant HKUST617908, China NSFC Grant 60933011,
the National Basic Research Program of China (973 Pro-
gram) under Grant No. 2006CB303000, the National Sci-
ence and Technology Major Project of China under Grant
No. 2009ZX03006-001, and the Science and Technology
Planning Project of Guangdong Province, China under Grant
No. 2009A080207002. Chen Qian is currently supported by
National Science Foundation grant CNS-0830939.

We thank Simon Lam for the valuable comments and
discussion. We also thank the anonymous reviewers for
helping us to improve this paper.

REFERENCES

[1] L. M. Ni, Y. Liu, Y. C. Lau, and A. Patil, ”LANDMARC:
Indoor Location Sensing Using Active RFID,” in Proc. of
IEEE PerCom, 2003.

[2] D. Zhang, J. Ma, Q. Chen, and L. M. Ni, ”An RF-based
System for Tracking Transceiver-free Objects,” in Proc. of
IEEE PerCom, 2007.

[3] Y. Liu, L. Chen, J. Pei, Q. Chen, and Y. Zhao, “Mining
Frequent Trajectory Patterns for Activity Monitoring Using
Radio Frequency Tag Arrays,” in Proc. of IEEE PerCom,
2007.

[4] M. Zuniga and M. Hauswirth, “Hansel: Distributed Localiza-
tion in Passive RFID Environments,” in Proc. of IEEE SECON
2009.

[5] M. Kodialam and T. Nandagopal, “Fast and Reliable Estima-
tion Schemes in RFID Systems,” in Proc. of ACM Mobicom,
2006.

[6] C. Qian, H.-L. Ngan, and Y. Liu, “Cardinality Estimation for
Large-scale RFID Systems,” in Proc. of IEEE PerCom, 2008.

[7] H. Han, B. Sheng, C. C. Tan, Q. Li, W. Mao, and S. Lu,
“Counting RFID Tags Efficiently and Anonymously,” in Proc.
of IEEE Infocom, 2010

[8] S.-J. Tang, J. Yuan, X.-Y. Li, G. Chen, Y. Liu, and J. Zhao
“RASPberry: A Stable Reader Activation Scheduling Protocol
in Multi-Reader RFID Systems.” in Proc. of IEEE ICNP 2009.

[9] L. G. Roberts, “Aloha Packet System with and without Slots
and Capture,” ACM SIGCOMM Computer Communication
Review, vol. 5, pp. 28-42, 1975.

[10] J. I. Capetanakis, “Tree algorithms for packet broadcast
channels,” IEEE Trans. on Information Theory, vol. IT-25,
pp. 505-515, 1979.

[11] D. Simplot-Ryl, I. Stojmenovic, A. Micic and A. Nayak, “A
Hybrid Randomized Protocol for RFID Tag Identification”,
Sensor Review 2006.

[12] L. Xie, B. Sheng, C. C. Tan, Q. Li, and D. Chen, “Efficient
Tag Identification in Mobile RFID Systems,” in Proc. of IEEE
Infocom, 2010

[13] G. Tsudik, M. Burmester, A. Juels, A. Kobsa, D. Molnar, R.
Di Pietro, M. R. Rieback, “RFID security and privacy: long-
term research or short-term tinkering?”, in Proc. of WISEC
2008.

[14] Q. Yao, Y. Qi, J. Han, J. Zhao, X. Li, and Y. Liu, “Randomiz-
ing RFID Private Authentication”, in Proc. of IEEE PerCom
2009.

[15] M. A. Bonuccelli, F. Lonetti, F. Martelli, “Tree Slotted Aloha:
a New Protocol for Tag Identification in RFID Networks,”
Elsevier Ad Hoc Networks 2007.

[16] G. Maselli, C. Petrioli, C. Vicari, “Dynamic Tag Estimation
for Optimizing Tree Slotted Aloha in RFID Networks,”, in
Proc. of ACM MSWIM 2008.

[17] J. Myung and W. Lee, “Adaptive Splitting Protocols for RFID
Tag Collision Arbitration,” in Proc. of ACM MobiHoc, 2006.

[18] V. Namboodiri and L. Gao, “Energy-Aware Tag Anti-
Collision Protocols for RFID Systems,” in Proc. of IEEE
PerCom, 2007.

[19] L. Pan and H. Wu, “Smart Trend-Traversal: A Low Delay
and Energy Tag Arbitration Protocol for RFID Systems,” in
Proc. of IEEE Infocom 2009.

[20] D. R. Hush and C. Wood, “Analysis of Tree Algorithms for
RFID Arbitration,” in Proc. of IEEE ISIT, 1998.

[21] P. Flajolet, G. N. Martin, “Probabilistic Counting Algorithms
for Data Base Applications,” Journal of Computer and System
Science, 1985.

[22] Information Technology Automatic Identification and Data
Capture Techniques: Radio Frequency Identification for
Item Management Air Interface, International Standard ISO
18000-6, Nov. 2003.

[23] D. Holcomb, W. Burleson, K. Fu, “Power-up SRAM State
as an Identifying Fingerprint and Source of True Random
Numbers,” to appear at IEEE Transactions on Computers.

6161

