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Abstract—Understanding and modelling resources of Internet ~ Our goal in this study is to characterize and model re-
end hosts is essential for the design of desktop software andsources of Internet end hosts. Our approach for data collec-
Internet-distributed applications. In this paper we devebp a i ig to use hardware statistics and measurements redriev

correlated resource model of Internet end hosts based on réa )
trace data taken from the SETI@home project. This data coves by SETI@home. SETI@home is one of the largest volun-

a 5-year period with statistics for 2.7 million hosts. The rsource t€€r computing projects in the world, aggregating millions
model is based on statistical analysis of host computatiohpower, of volunteered hosts for distributed computation. Using th

memory, and storage as well as how these resources changeroveSETI@home framework, we retrieved hardware data over a 5
time and the correlations between them. We find that resource year period with statistics for 2.7 million hosts.

with few discrete values (core count, memory) are well modet o hf delling is to i tioate statisticaf
by exponential laws governing the change of relative resoae urapproach for modelling Is to investigate statisticaiig

guantities over time. Resources with a continuous range ofalues distriputic_)n, correlation, and evolution of resourcesr @ain
are well modeled with either correlated normal distributions contributions are as follows:
(processor speed for integer operations and floating point 1) We characterize and statistically model hardware re-

erations) or log-normal distributions (available disk space). We . .
validate and show the utility of the models by applying them b a sources of Internet hosts, including the number of

resource allocation problem for Internet-distributed applications, cores, host memory, floating point/integer speed and
and demonstrate their value over other models. We also make disk space. Our model captures the resource mixture
our trace data and tool for automatically generating realigic across hosts and how it evolves over time. Our model
Internet end hosts publicly available. also captures the correlation of resources (for instance
memory and number of cores) within individual hosts.
. INTRODUCTION 2) We evaluate the utility of our model and show its
_ _ ) ) ) accuracy in the context of a resource allocation problem
While the Internet plays a vital role in society, relatively involving Internet distributed computing applications.

little is known about Internet end hosts and in particul&ith 3y \we make our data and tool for automated model gen-
hardware resources. Obtaining detailed data about haedwar * gration publicly available. Our model can be used to

resources of Internet hosts at a large-scale is difficulie Th generate realistic sets of Internet hosts of today or to-

diversity of host ownership and privacy concerns often pre-  morrow, Our model can also be used to predict hardware
clude the collection of hardware measurements across @ larg  {ends.

number of hosts. Internet safeguards such. as firewalls mak%_he paper is structured as follows. In Sectidn Il we discuss
relmotte ?icess”to tend h?StS a:jm?st |£np(:stﬁ|ple. A(;Sﬁ' I?Ps @Gted work and how our contribution fits in. We then discuss
reluctant fo coflect or release .aga outtheir end NOsIS.  ,q application context for our model in Sectién] Il and
Nevertheless, the characteristics and models of Interef juer the data collection methodology in Section IV. We
end hosts are essential for the design and implementatiaf,qyce details of the model and describe how the ressurce
of any desktop software or Intemnet-distributed appl@ati 51 modeled over time in Sectiéd V. We validate the model
Such goftware or applications include but are not limited ‘i‘j’sing statistical techniques in Sectlor VI and show how it ca
operating systems, web browsers, peer-to-peer (P2P)n@amjye sed to generate realistic sets of hosts for simulatitms.
multi-media and word-processing appllca'uonsf. demonstrate the effectiveness of our model compared to othe
Models are also needed for Internet-computing researeh. F9athods we perform simulations in Sect@alVIl. Finally, we

instance, in works such as| [1L.I[2L.1[3], researchers deado yffer discussion and future areas of work in SecfiomVIIl.
algorithms for scheduling or resource discovery for disttéd

applications run across Internet hosts. Assumptions hdub to Il. RELATED WORK

made about the distribution of hardware resources of thesérhe branches of work related to this paper include Internet
Internet hosts, and the performance of such algorithms aretwork modelling, peer-to-peer (P2P) network modelling,

arguably tied to the assumed distributions. Realistic nsodelesktop benchmarking, and Grid resource modelling.

of Internet resources derived systematically from reafldvo  With respect to Internet network measurement and mod-
data are needed to quantify and understand the performaaltieg [4], [5], [€], previous studies tend to focus exchady

of these algorithms under a range of scenarios. on the network of end hosts, and not their hardware resources
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Several works such a§l1[7].1[8].1[9] model specifically resit, 2010. We then validate this model by predicting the host
dential networks, but omit hardware measurements or modalsmposition until September 1, 2010.
Also, the scale of those measurements are relatively small o In BOINC projects, hosts perform work in a master-worker
the order of thousands of hosts monitored on the order sti/le computing environment where the host is the worker and
months (versus millions of hosts on the order of years). P2 project server is the master. Host resource measursment
research[[10],[T11] has focused primarily on applicatiemel occur every time the host contacts the server, this allows th
network traffic, topology, and its dynamics. Again, hardevarserver to allocate the appropriate work for the availablst ho
measurements and models are missing. resources. The host resource measurements are recorded on
For desktop benchmarking there are a handful of prograthe server and periodically written to publicly availabliegi
such as XBench[12], PassMafk[13] and LMBerich [14]. How-
ever, these benchmarks are generally designed for a darticu
Operating System and set of tests - often oriented towarmj@ga In th|S SectiOI’l we diSCUSS the mOde| Of hOSt resources
graphics performance - making it difficult to compare acrosshow it is defined and how we model the host resources
platforms. These benchmarks are also generally run onlg or@nd their change over time. In Sectibn V-B we provide a
on a system, limiting their usefulness in predicting hovalot general statistical overview of the hosts and how the ressur
resource composition changes over time. change over time. Since two resources may be correlated
Some previous works investigated modelling clusters §H€ to technological advancement or user requirements, we
computational Grids [15][[16][[17]. These works diffeofn begin the model building process by examining correlation
ours in terms of the resource focus of the model, the hdigtween resources in Sectibn V-C. In SectibnsIV-D through
heterogeneity and the evolution and correlation of resemird/-Glwe perform detailed analysis of each resource and build a
over time. Also, most Grid resource models are based on dBfgdictive correlated model of host cores, memory, compguti

configurations. characteristics of GPUs on hosts in Secfion V-H.

The closest work described in 18] gives a general charactar Host Model
ization of Internet host resources. However, statisticatiets . . . : .
are not provided, and the evolution and dynamics of InternetFIrSt we _descrlbe the model of hosts, including the differen

. . . : resources in the model and how they were measured.
resources are not investigated. Also, certain hardwanibutits : o . .
Given the application context described in Secfioh Ill, we

(such as cores) are not characterized or modeled due to the . )
technology available at that time. consider hosts to have 5 key resources:

o Processing Coresthe number of primary processing
I1l. APPLICATION CONTEXT cores. This does not include GPU cores or other spe-
_ o cial purpose secondary processors. For Windows ma-
Wh|le there are an infinite range of host resources 0 chines this was measured by thet SystemInfo func-
monitor and model, we select only those host properties that tion, for Apple/Linux/Unix machines by theysconf,
are the most relevant for Internet distributed computinge O sysctl or similar functions.
class of Internet distributed computing is distributedrgee , |nteger computing speed the speed of a processing core
peer (P2P) file sharind [10]_[L1][ [L9]. Another important a5 measured by the Dhrystofel[24] 2.1 benchmark in C.
class is volunteer dlstr|_buted co_mputmg. As of November , Floating point computing speed the speed of a core as
2010, volunteer computing provides over 7 PetaFLOPS of 1 easured by the 1997 Whetstone benchmark ia C [25].
computing power[[20],[[21] for over 68 applications from a , \platile Memory: Random access memory used by the
wide range of scientific domains (including climate preidict processors during computation. For Windows machines
protein folding, and gravitational physics). These prtgémve this was measured by thelobalMemoryStatusEx
produced hundreds of scientific result[22] published in the function, for Apple/Linux/Unix machines by the
world’s most prestigious conferences and journals, such as Gestalt, sysconf andgetsysinfo functions.
Science and Nature. We use these types of application te driv, Non-volatile storage unused space in long term storage
what we model. including hard disk drives. This does not necessarily
include all storage devices attached to a host, only those
accessible to the BOINC client. For Windows machines
The hosts in this study were measured using the BOINC this was measured by theetDiskFreeSpaceEx
(Berkeley Open Infrastructure for Network Computing)][23]  function, for Apple/Linux/Unix machines by thecat fs
client software, and participated in the SETI@home project Of statvfs functions.
[20] between January 1, 2006 and September 1, 2010. WeAlthough Whetstone and Dhrystone have various short-
feel this data set provides a reasonable approximationgo ttomings, we feel their use is acceptable as an approximate
types of hosts likely to be available for large scale Interneneasure of host computational ability. In the official BOINC
computing applications. The host model developed in thiistribution these benchmarks were compiled using the -O2
paper uses the host data from January 1, 2006 to Janulag for the UNIX version, the -Os flag for the Mac version

V. MODELLING

IV. DATA COLLECTION METHOD
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Fig. 1. Distribution of host lifetimes.
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using XCode and the /O2 /Obl flags for Windows versiong
using Visual Studio. Users can compile their own version ofE E
the benchmark code, however, very few choose to do so ana i
therefore the executed measurement code can be viewed gs 2000
being mostly homogeneous. The benchmarks are executed 6h
all available cores simultaneously and the average speed s i
taken. Therefore, shared resources on multicore machiags m= 2000
adversely affect processor performance results.
Hosts may also have GPU coprocessors which can be uséd 1000
for GPGPU computing. BOINC did not start recording GPU =
statistics until September 2009 when 12.7% of active hostg
reported having GPUs. By September 2010, 23.8% of activ€ 297 ]' ]’
hosts reported having GPUs. We feel one year of sampliné’ ] T T
provides insufficient data to include GPU characteristicsur S 0 l_f l
model, however, we include a brief analysis of host GPUs in T ‘ ‘ ‘ — ]
SeCtIOF‘EEL 2006/1 2007/1 2?;2 20091 20101
For the purposes of measuring host characteristics, a host
is considered to be active at a tiniE if the host first rig 2. overview of host statistics, including number ofiathosts and
connected to the server before tirfie and the most recent averages/standard deviations of number of cores, memerycqre integer
connection to the server is after tin. Because we care 2"d floating point speed and available disk space.
about the aggregate statistics of hosts, we did not conlsimir
availability at a detailed level. For more fine-grained sl
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of host availability see [26]/[27]. MIPs, 102> GB memory orl0* GB available disk space. Based
on these criteria we discard 3361 hosts (0.12% of total).
B. Host Overview Figurel2 shows the number of active hosts, and the mean and

First we present an overview of the active hosts and th&iandard deviation of resources (cores, memory, computing
resources. Figufg 1 shows a probability density functidRP speed and storage) over a 4 year period. The mean of resource
and cumulative distribution function (CDF) of host lifetas, Vvalues is indicated by a black line, the standard deviatipn b
where the lifetime is defined as the time between the first ar@fl error bars. The number of active hosts fluctuates between
last connection of the host to the server. To avoid biasifigughly 300,000 and 350,000.
the distribution towards short host lifetimes, this doed no This figure shows the changes in average host resources over
include hosts which connected after July 1, 2010. Using4ayears. From 2006 to 2010, the average number of cores in
maximum likelihood of fit estimation we find the host lifetimea host rose from 1.28 to 2.17 (70% increase), the average
distribution fits well to a Weibull distribution with pararmees memory rose from 846 MB to 2376 MB (181% increase),

k = 0.58,A = 135, which indicates that hosts have ahe floating point performance rose from 1200 MIPS to 1861
decreasing dropout rate. MIPS (55% increase), the integer performance rose from 2168

Some host data values may be questionable due to stdtPS to 4120 MIPS (90% increase) and the average available
age/transmission errors or modification of the client reseu disk space rose from 32.9 GB to 98.0 GB (198% increase).
checking function. In this paper, we discard hosts whiclorep The standard deviation of all resources increased over. time
more than 128 cores,0° Whetstone MIPs,10° Dhrystone However, the increases in mean resource value are somewhat



TABLE 1l
HOSTOSOVER TIME (% OF TOTAL).

Host Creation Date vs. Lifetime

z 350{

> 4

8 ] 2006 | 2007 | 2008 | 2009 | 2010
o 300 Windows XP | 69.8 | 715 | 68.6 | 625 | 52.0
£ ] Windows Vista | 0 0 67 | 140 | 159
= 250 Windows 7 0 0 0 0 9.2
b ] Windows 2000 | 12.9 | 85 55 34 2.0
£ 200 Other Windows [ 6.3 6.1 4.8 4.8 3.4
o ] Mac 0S X 5.4 7.8 7.9 85 9.0
£ 150 Linux 51 5.7 6.0 6.4 73
z 1 Other 0.4 0.4 0.4 03 0.3

100 ——— —— —— —— — ‘
2005 2006 2007 2008 2009 2010 TABLE Il

CORRELATION COEFFICIENTS BETWEEN HOST MEASUREMENTS
Host Creation Date

Cores | Memory | Mem/Core | Whet Dhry Disk
. . o Cores 1.00 0.606 -0.010 0.161 | 0.130 | 0.089
Fig. 3. Host creation date vs. average lifetime. Memory 0.606 1.00 0.607 0.230 0271 | 0112
Mem/Core | -0.010 0.627 1.00 0.250 0.306 | 0.065
TABLE | Whet 0.161 0.230 0.250 1.00 0.639 | -0.016
HOST PROCESSORS OVER TIME% OF TOTAL). Dhry 0130 | IO 0306 QISR 100 | -0.004
Disk 0089 | 0.114 0.065 -0.016 | -0.004 | 1.00
| [ 2006 | 2007 | 2008 | 2009 | 2010 |
[ PowerPC G3/G4/G5[ 5.1 | 65 | 47 | 35 | 2.7 |
Athlon XP 12.3 9.0 6.2 4.0 25 fall in the near future
Athlon 64 6.5 9.5 11.4 11.6 10.2 ’ . .
Other AMD 83 | 82 | 78 | 79 | 95 Table[l shows the change in host operating system over
Pentium 4 36.8 | 330 | 27.2 | 20.7 | 1565 the sample period. During this period, hosts using Windows
Pentium M 54 | 55 | 43 | 31 | 21 0 0 i : :
— e e XI_3 drop from roughly 70% to 50%, while Windows Vista _and
Other Pentium 21 | 26 | 21 | 33 | 52 Windows 7 increase from 0% to roughly 25%. The remainder
intel Core 2 09 | 3.3 | 132 | 248 | 32.0 of hosts use a mix of other Windows systems (5-20%) or Mac
fntel Ceteron SR T R 2 OS X or Linux (10-15%). These results indicate that although
| Omerxes | 90 [ 77 [ 76 | 64 | 51 | Windows is st!ll the_ most common _operatmg system, the share
| Other [ 23 | 26 | 16 | 13 | 29 | of Mac and Linux is steadily growing.

C. Resource Correlations

less than would be expected from Moore’s law. To guide us in creating the model of host resources, we

After closer investigation, we discovered this to be relateirst examine the correlations between different resourks
to host lifetime. As shown in Figurg] 3, there is a negativesources will tend to improve together as technology acksn
correlation between recently created hosts and hostriigeti over time. Also, users will tend to purchase systems with
This means that more up to date hosts will tend to hlmrrelated resource characteristics, for example, a sysatieh
underrepresented in the model. We found similar patternsrimany cutting edge cores will also tend to have a greater
speed and memory where hosts with better resources tendedrtmunt of memory. Therefore our model should include these
have a shorter lifetime, though the reasons for this areeamcl correlations to realistically capture the characteristithosts.

We also examine the composition of processors among thévisual inspection of the data showed a linear correlation
hosts and how it has changed over time. Because availabiligtween certain resources. Tallg Il shows the normalized
and performance of new processor models cannot be prediatedfficient of correlation (often called the Pearson catieh
far in the future, we do not include processor information inoefficient) for host resources, with table entry X, Y shayvin
our model. There is also a significant range of speeds atheé r-value for the correlation between resources X and Y.
capabilities even within a single processor family, makihg This table includes the resource “per-core-memory” (deffine
difficult to predict the effect on a particular application. as amount of memory divided by number of cores) since this

Table shows the change in processor composition aswil be useful in generating a model of memory.
percent of total over the data sample period. Several thingsSeveral things are immediately apparent from this analysis
are apparent from this table. First, the Pentium 4 and similgirst, the number of cores and memory of the host is well
Pentium processors processor were dominant in 2006 compeisrrelated ¢ > 0.6), though the amount of memory per core
ing over a third of processors, but by 2010 fell significantlis not well correlated to the number of cores. Also, the numbe
to comprise only 15% of processors. Pentium 4 process@fscores is poorly correlated with the integer and floatingpo
stopped shipping in 2008, so we expect the numbers to fakrformance of each core. This may be related to the shared
further as the processors fail over time. In place of these of memory and bus during the benchmark routines.
Pentium, the Intel Core 2 (started shipping in 2006) wenfro Performance of integer and floating point benchmarks are
zero to nearly a third of available processors. The InteleCoalso well correlated with each other £ 0.6). This is due to
2 will likely stop shipping by 2011 so we expect the share tadvances in processor technology which tend to improve both



Host Multicore Distribution

D. Modelling Multicore

In recent years, due to power and heat dissipation concerns,
processor manufacturers have started increasing the mumbe
of cores on a processor rather than exclusively increasiag t
speed of the individual cores. This trend is seen in Figlire 4,
which shows the fraction of hosts with different numbers of
cores over time. In 2006, the ratio of 1 core machines to 2 core
machines was 3.3 to 1, however, by 2010 the ratio inverted to
| & 1 Core 4-7 Cores 1 to 2.5 and 18% of hosts had more than 4 cores. There were

@ 2-3Cores (@ 8-15 Cores . .
— — ; ; not enough hosts in the data set with 16 or more cores for us
to make a reasonable model of these machines.

Since the number of cores on a host is a discrete value,
we are limited in the types of probability distributions wenc
use. For the model of multicore on a host, we use a discrete
probability distribution where the number of cores must be a
Multicore Ratios over Time power of 2. Although there are systems available with non-
— 4:8Cores eee 2:4 Cores emm 1:2 Cores power-of-two core counts, we ignore them since they corapris
less than 0.3% of hosts in our data set. As processors with
more cores are introduced to the marketplace, their number
will increase relative to processors with fewer cores then
decrease relative to processors with even more cores. Telmod
this, we examine the history of the ratio of 1, 2, 4 and 8 core
hosts to each other since 2006.

Figure[® shows a logarithmic plot of the core ratios from
2006-2010. The black lines show the actual ratios from the
2008 2009 o010  data set and the red dashed lines show the best fit. For example
Date in 2006 there were roughly 14.4 2-core hosts for every 4-core

host, but by 2010 this ratio had dropped to 4.7 2-core hosts
Fig. 5. Ratios of hosts with varying core numbers. These @k fiwby the for every 4-core host. We found that the relative fractiohs o
function ae®(v<e7=209%) (shown in red). TablgTV has the andb values.  e4ch of these is well modeled using an exponential function
aeblvear—2006) The values of: andb which best fit the data
are shown in Table“Iv along with the correlation coefficient

floating point and integer performance. The best corretatié- In all cases the fitted curve has a very good match with the
between benchmark performance and other resources is figif. Therefore, we can model the number of cores in a host
with memory ¢ ~ 0.3) rather than cores. as a ratio governed by an exponential function.

One somewhat surprising finding is that available disk spaEe Modelling Memory

is not well correlated with any other metric, indicatingttdask The available memory per host is also increasing over time
space may be modeled by an independent random distributigg. shown in Figuré]2. However, the analysis in Tdble Il
This is likely because disk usage is heavily dependent Qyicates a strong correlatiom ¢ 0.6) between the number
the individual behavior of each user. We also found that thg ~ores and amount of memory. Rather than trying to model
fraction of total disk which is available is well represehtey o5t memory as a function of the cores, we instead model
a uniform random distribution. per-core-memory and multiply the results by the number of
This analysis indicates that hosts in the generative modares. This makes intuitive sense - a host with 512 MB
should have similar correlations between resources. Fiomex of RAM is more likely to have 1 core rather than 8 cores
ple, a host with more cores should tend to have more memofyhich would be only 64 MB of RAM per core). This is also
which will have some correlation with both the integer andupported by the correlation analysis in Secfion]V-C, which
floating point performance of the cores. showed that although the total memory is correlated with the
number of cores, the amount of per-core-memory has nearly
zero correlation and can therefore be generated indepnden

Fraction of Hosts

f " f
2006 2007 2008
Date

Fig. 4. Number of hosts and cores per host.
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Ratio

TABLE IV of the number of cores.
CORE RATIO MODEL VALUES. First we examine the per-core-memory and how it changes
- 5 - over time. Figuré€16 shows distributions of per-core-menadry
17 Core Ratio| 3.369 | -0.5004 | -0.9984 three points in time. This figure shows a clear trend of per-
2:4 Core Ratio| 17.49 | -0.3217 | -0.9730 core-memory increasing over time. The fraction of hosté wit
4:8 Core Ratio] 12.8 | -0.2377 [ -0.9557 256MB or less per core drops from 19% to 4% of the total




Distribution of Host Memory (% of total) TABLE V

40 PER-CORE-MEMORY RATIO MODEL VALUES.

© J

§ ZOJL_L—\—,I 5 ; 5
0 256MB:512MB Ratio | 0.5829 | -0.2517 | -0.9984
40— 512MB:768MB Ratio | 4.89 | -0.1292 | -0.9748

768MB:1GB Ratio | 0.3821 ] -0.1709 | -0.9801
1GB:1.5GB Ratio 3.98 -0.1367 | -0.9833
1.5GB:2GB Ratio 1.51 -0.0925 | -0.9897
2GB:4GB Ratio 4.951 | -0.1008 | -0.9880

2008
N
7.7

Dhrystone/Whetstone Benchmark Histograms

2010
N
.7

I \ I \ \ \ I \ ] . .
0 256 512 768 1024 1280 1536 1792 2048 ] Mean: 2056 Mean: 1136
B Median: 1943 Median: 1168
Memory per Core (MB) 1010 ) )
] Stddev: 1046 Stddev: 472.1
© ]
Fig. 6. Percent of hosts with varying per-core-memory itfiedént years. § ]
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Fig. 7. Fractions of hosts with different per core memory. Q 47
27
from 2006 to 2010, while the fraction of hosts with 1024MB 0, — — ‘ ‘ S
3000

[ f f
per core rises from 21% to 32% and hosts with 2048MB per 0 5000 10000 0 1000 2000
core rise from 2% to 10%. Over 80% of the per-core-memory Dhrystone (Integer) MIPS  Whetstone (Floating Point) MIPS
values are in the set of (256, 512, 768, 1024, 1536, 2048) MB.
To simplify the model, we use these values to calculate the
amount of memory on a host.

Figure[T shows the fraction of hosts with different amounts hmark imple fitti d found
of memory per core and how this changes over time. Simil3f"cMark we use a simpie itting on our data set. We foun

to multicore counts, we find that the ratios of host per—cor%'—a‘ese values to be best fit by an exponential function of the

| b(year—2006) i ; :
memory are best modeled by the exponential growth la@m @™’ W'_th_a an.db_valtljes given in Tablg V1.
aeb(vear—2006) The values for these ratios and their change To test the best fitting distribution for processor speeds

over time is given in TablENV. The correlation coefficient We used the Kolmogorov-Smirnov test. This test is sensitive

indicates the values match the data very well. It is wori Slight discrepancies in large data sets, so to calculate p
noting that we discard some intermediate per-core-memd{§lues we took the average p-value of 100 KS tests each using

values (e.g. 1280MB, 1792MB, etc). The accuracy of thd randomly selected subset of 50 values. This subsamping
model could therefore be improved by including these valudgethod is a standard method also used![in [26]] [27]. We
though at a cost of increased complexity. compared our data to 7 distributions - normal, log-normel, e

ponential, Weibull, Pareto, gamma and log-gamma. Thetsesul

F. Modelling Processor Speed of this show that the normal distribution fits the Whetstond a

Next we develop a model for host computational speed Phrystone data best with average p-values ranging from 0.19
terms of Dhrystone and Whetstone benchmark performantz0.43 at different times in the data. Due to the spike around
Figure[8 shows histograms of the Dhrystone and Whetstotte middle of the distribution this is not a perfect matcht bu
MIPS performance at three times in the data set. First, wee feel it is a reasonable model for processor speed.
notice that the mean and standard deviation of both meaHowever, we cannot simply choose the speeds from two
surements are increasing over time, following the resukls wormal distributions since there is a strong correlation>(
showed in Figur&l2. To predict the mean and variance of edtls) between the benchmarks and a slight correlation(

Fig. 8. Histograms of benchmark performance over time.



TABLE VI

BENCHMARK AND DISK SPACE PREDICTION LAW VALUES 0.8+ Mean: 32.89 GB L
o +{Median: 15.61 GB log c
= i o
a b T 3 06 Stddev: 60.25 GB | g
Dhrystone Mean (MIPS)| 2064 | 0.1709 | 0.9946 g i 06 &
Dhrystone Variance | 1.379e6| 0.3313 | 0.9937 Z g4l - 2
Whetstone Mean (MIPS) 1179 0.1157 | 0.9981 s ] 0.4 %
Whetstone Variance | 3.237e5| 0.1057 | 0.8795 8 02 - E
Disk Space Mean (GB)| 31.59 | 0.2691 | 0.9955 e = ~02 O
Disk Space Variance 2890 0.5224 | 0.9954 1 r
0 —0
- 0 1 2
Logw(AvaiIabIe Disk) (GB)
0.3) with memory. To properly capture these correlations, we (a) Available disk space in 2006
create correlated statistics using a common method invglvi P '
the Cholesky decomposition. We first take a matfiof the 08 T \ean: 52.01 GB 1o
correlation coefficients between per-core-memory, Dioryst | Median: 24.45 GB L 08 ¢
% 0.6 Stddev: 87.13 GB 2
and Whetstone performance from Tablé IIl. g - g
_ a 1 06 =
1 0.250 0.306 Z 04— . °
— S J 04 ©
R=1{ 0.250 1 0.639 E 2
3 |
| 0.306 0.639 1] o 024 02 3
We apply the Cholesky decomposition to get matrix 0 Lo
— - - 0 1 2
1 0 0 Logw(AvaiIabIe Disk) (GB)
U= 0250 0.968 0 _ , _
0.306 0.581 0.754 (b) Available disk space in 2008.
3 - 0.8 1.0
We take a vectol/ of three values randomly selected from | Mean: 98.13 GB L
a normal distribution with mean 0 and standard deviation 1.z ,¢_| “S"tf;:::_'fs;; SBB 08 g
. 2 :157. I S
Ve = VU gives a vector of three values correlated by theé , o6 §
values inR. V(1] is converted from a normal distribution to 2 0.4 2
a uniform distribution and used to select the per-core-mgmo 3 : 04 8
Ve[2] and V(3] are renormalized to the predicted mean g o2- ~ o2 §
and variance for the Whetstone and Dhrystone benchmarks, 1

respectively. Using this method we are able to generateshost 0~ ) ! ]

with similar resource correlations as in the actual data. ) Log. (Available Disk) (GB)
10
G. Modelling Available Disk Space (c) Available disk space in 2010.
Finally we develop the model for available disk space Fig. 9. Histograms of available disk space over time.

on a host. As shown in Sectidn_V-C, there is almost no

correlation between available disk space and other resourc

metrics. Because of this, we can safely generate a modelr@hging from 0.43 to 0.51. Therefore we model available disk

available disk space independent of the other resources. space as an independent log-normal distribution with mean
Also, it is worth noting why we chose to model availableind variance calculated using the exponential law witheglu

disk space rather than total disk space. The main reasons @&gm Table[V].

1) total disk space is also uncorrelated with any other nesou .

metric so we don't lose model accuracy, 2) the distribution &1 GPU Analysis

total disk space is highly irregular and difficult to mode), 3 In recent years, GPU (graphics processing unit) based

applications using Internet computing resources will galie computing has become popular and many computers include

be restricted by available disk space rather than totalespacone or more GPUs. BOINC did not start recording GPU
Figured9(d), 9(b) ar[d 9{c) show the probability density amdsource information until September 2009, so we feel there

cumulative distribution functions of the logarithm of aedile is insufficient data to include GPU resources in our model.

disk space on active hosts at three times. The left sideeséthHowever, for completeness, we include a brief analysis dJGP

distributions are smooth and fit well to a normal distribatio resources in this section.

The right side is somewhat less smooth with several spikes buTable[VI] shows a breakdown of the active hosts reporting

still appears to fit reasonably well with a normal distribati GPUs based on the type of GPU they reported. This break-

To test the best fitting distribution for disk space we agaithown is only among the 12.7% (Sep. 2009) and 23.8% (Sep.

use the Kolmogorov-Smirnov test with the 7 distribution2010) of hosts which reported having a GPU.

and average p-value. The results show that the log-normaFigure[I0 shows the distribution of memory in GPUs from

distribution best fits the data at different times with pued September 2009 and September 2010. Between these dates,




TABLE VI TABLE VI

PERCENT OFGPUTYPES AMONGGPUEQUIPPED HOSTS CORRELATION COEFFICIENTS BETWEEN GENERATED HOSTS

Sep. 2009] Sep. 2010 Cores | Memory | Mem/Core | Whet Dhry Disk
GeForce 82.5% 63.6% Cores 1.00 0.727 0.014 0.004 0.011 -0.003
Memory [ 0.727 1.00 0.544 0.162 | 0.139 | -0.002

0, 0,

gﬁi‘é‘r’g 142'720 /A’ 3;11(')50 /A’ Mem/Core | 0.014 0.544 1.00 0.307 | 0.251 | -0.002
: 0° : 0° Whet 0.004 | 0.162 0.307 1.00 | 0505 | -0.002
Other 0.6% 0.8% Dhry 0.011 | 0.139 0.251 0.505 | 1.00 | 0.003

Disk ©0.003 | -0.002 -0.002 -0.002 | -0.003 | 1.00

GPU Memory Distribution (% of total)

40 ] Mean: 592.7 MB
] Median: 512 MB Using the date, a core count is generated by using the rdtios o
20| ﬂ Stddev: 329.7 MB cores to create a discrete probability distribution andctirg

07 N

2009

the number of cores with a uniform random number.
Using the method described in Sectibn V-F, correlated
Mean: 659.4 MB values are generated to create per-core-memory and poocess

JI Median: 512 MB benchmark speeds. Similar to core count, the per-core-memo

2010
N
T

Stddev: S627MB is selected using the ratio equations from Sedfiod V-E te gen

erate a discrete probability distribution which is then p&ed.

0 256 512 768 1024 1280 1536 1792 2048 Total memory is calculated by multiplying per-core-memory
Memory (MB) by the number of cores. The benchmark values are generated

by using the correlated normal values and re-normaliziegith

to the mean and variance predicted using values from Table

VTl Available disk space is independent of other benchmarks

so it is generated by sampling a lognormal distribution with

mean and variance predicted using values from Table VI.

Fig. 10. GPU memory distribution at two times.

Generated
Select Date for Model
- Correlated Values
Generate Generate Memory Generate Whetstone
Core Count Per Core Performance
Generate Calculate Generate Dhrystone
Disk Space Host Memory Performance

Complete Host
Characteristics

B. Model Validation

Using our model in combination with this technique, we
generate a set of sample hosts for September 1, 2010. Figure
[I2 shows CDFs of the generated and actual data for September
1, 2010. The generated values are close to the actual data,
with means ranging from a difference of 0.5% for cores up to
13.0% for host memory and standard deviations ranging from a
difference of 3.5% for Whetstone up to 32.7% for memory. We
also generated QQ-plots for the data and visually confirmed
the fit of the generated hosts. These plots are not included in
this paper for space reasons.
the average amount of GPU memory increased by 11% ermTabIe shows the correlation coefficients between hosts

592.7 MB to 659.4 MB. There was a jump of GPUs with 1GH the generated data for September 2010 calculated in the
or more of memory from 19% to 31% of total. However, thesg?'€ Way as TableJll. The .correlat|0n _between cores and
rises are significantly slower than the rate of increase tial to ™Moy for generated. h,OStS 15~ _0'7 which matches .the
host memory. In addition, hosts with more than 1GB of gp@ctual datar ~ 0.6. This is promising for our model, since
memory still comprise less than 2% of GPU equipped host€ do not explicitly correlate the random number generation
(0.5% of all hosts), indicating memory bound applicatioraym for these resources. Dhrystone and Whetstone benchmarks

not be suitable for Internet end host GPUs in the near futurg.ave a corrglatlon of ~ 0.5, also very close to the actual
data correlation of- ~ 0.6. The benchmarks also well match

VI. M ODEL VALIDATION AND PREDICTION the per-core-memory correlation of~ 0.3. Like the actual
Next we use the model developed in the last section @&ta, generated host disk space has almost no correlatien. T
generate hosts at a specified point in time. We use standéfderated host memory is not as well correlated with the
statistical methods to validate the generated hosts angaamn Penchmarks:( ~ 0.1) as in the actual datar(~ 0.3), but
them to actual data. Finally we use our model to offdhis correlation is not large so it should not greatly afftiw
predictions of how host composition will change up to thgenerated model.

year 2014. C. Model Based Prediction

Given the equations of resource ratios from Sedfidn V we
Figure[I1 shows the flowchart of host creation using ogan make predictions about how the host resource compwsitio
model. First the user selects the date for the generated hesl change in the future. Figur€ 13 shows the predicted

Fig. 11. Flowchart of host creation.

A. Model Based Host Generation



Generated and Actual Resource Comparisons for September 2010
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Fig. 12. Comparison of generated and actual data.
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Fig. 13. Predicted fractions of host multicore CPUs. Fig. 14. Predicted fractions of hosts with specified totahmogy.

VII. SIMULATION BASED MODEL VALIDATION

distribution of multicore processors over the next threarye  ginally, we perform simulations to demonstrate the value of
Based on the other equations, We.estlmate valuesofl2,  oyr model compared to other host resource representations.
b= —0.2 to calculate the ratio of 8:16 cores. Currently, most Internet-based computing applicationgeha

There are several notable aspects of this prediction, Fiest focused on exclusively utilizing the CPU and most schedulin
number of single core hosts decreases to a negligible dractelgorithms aim to optimize the application makespan. How-
within three years, as one would expect due to part failugver, recent work has investigated using other resouroes, s
and decreasing usefulness of the older single core machirs disk space, to perform a wider range of services. Certain
Second, there are still a large number of 2 core hosts whigaplications may benefit disproportionally from hosts with
comprise roughly 40% of the total by 2014. The averagacreased memory, greater processor speed or more dis&.spac
number of cores per host in 2014 is predicted to be 4.6 whichBecause of this, in these simulations we attempt to max-
is significantly higher than the number of 3.7 obtained bynize total application utility of host resources rathearth
extrapolating the values of Figulé 2. minimizing execution time. Host utility can be thought of

. . L as how much benefit an application gets from running on
Figure[13 shows the predicted distributions of total ho! certain host. We feel this is a better fit for analyzing our

memory over the next three years. This prediction 'nd'cat?r'?odel since it includes all resource types and represents a

an average of 6.8 GB per host by 2014 - very close to t Rneralized application that may desire a mix of resources o
value of 6.6 GB found by extrapolating values in Figlie 2 ppricat 4 ! x .

. ; refer certain resources over others. To represent thy wtfl
Using the values from Tab[e VI we predict the (mean, standzg1 P Y

2 sources for a given application we use a variation on the we
deviation) of Dhrystone as (8100, 4419), Whetstone as (29 own Cobb-Douglag [28] utility function from economics.

868) and disk space as (272.0, 434.5) in 2014. Rather than the normal inputs of labor and capital, we use
(**TODO) Best and worst hosts. Given the developethe resources for a hogf: core count ('rr), memory (M),

model we can also make predictions about the best and wargeger/floating point speed{ andFy) and disk spacely).

hosts that will be available at a given time. Then the utilityY” of running an applicatioml on hostH can



TABLE IX

SIMULATION PARAMETERS EOR SAMPLE APPLICATIONS between 3-10% difference from the actual data, the Grid thode
. between 3-9% and the normal distribution model between 9-
- Cores | Memory | Dhrystone | Whetstone | Disk 17% difference. The Folding@home application has a greater
Application (@) B) (@) %) (€) ;
SETI@home 0.05 0.1 0.2 0.4 0.05 gap between the models, with the correlated model between 0-
Cmgggggggn g-‘z‘ %025 g-i (;3-335 8'(1)2 7% difference, the Grid model between 5-15% and the normal
PoP 0.05 0T 01 005 0.7 model around 20-31% difference. This is likely since the

correlated model accurately captures the correlationsdeat
benchmark, memory and core count, which are all key com-
be written as: ponents to the application.
v B 1Y 8 e The Climate Prediction application has similar resultghwi
Ya(H) = My Ljy Fig Dy (1) 0-7% difference for the correlated model, 3-14% difference
whereq, 3, v, d, € represent the utility returns to scale orfor the Grid model and 14-28% difference for the normal
each resource to the application. distribution model. Again, the Climate Prediction apptioa
Table[TX shows the parameters we use for some sampiges a mix of resources and will therefore be sensitive to the
applications in our simulation. We chose these applicatas correlations between them. The P2P application shows armajo
a representative set of possible applications requiringrihet difference between the models, with a 0-5% difference fer th
end hosts. SETI@home represents an application doing radirelated model, 46-57% difference for the Grid model and
signal analysis, which benefits from fast processing busdo@-11% difference for the normal distribution model. This is
not require significant memory or disk space and does rfmécause the Grid model uses an exponential growth rule for
utilize multiple cores. Folding@home represents a pdrallgisk space, which overestimates the available space.
molecular dynamics simulation, which can use multiple sore Based on these results, we have shown that our model more
and requires a medium amount of memory, but little disklosely reflects actual host resources, resource cooefati
Climate prediction requires a mix of all resources, with sormand time dependent behavior. Our model is significantly more
emphasis on floating point speed. P2P uses Internet end mecurate than simpler distribution models or other Grid aied
chines to perform distributed file sharing and benefits §reausing uncorrelated distributions to model host resources.
from large disks, but has little use for processors or memory
The simulation calculates the utility of each applicatian+ VIIl. CONCLUSION

ning on each resource, then assigns resources to applis@tio  \1odels of resources of Internet end hosts are critical

a greedy round-robin fashion. In the simulations we compg§ the design and implementation of desktop software and
our correlated host synthesis model with two others. The fif$,iornet-distributed applications. We derive a model gsin

is a simple model which uses extrapolation of the valugs,qware traces of 2.7 million hosts on the Internet from the
in Figure[2 and samples resource values from uncorrela@é-”@home project.

normal distributions (log-normal for disk space). The seto

is based on the Grid resource model by Kee et.[al. [15]. This
model uses a log-normal distribution for processors, a time
and processor dependent model of memory and an exponential h foating/i q d disk
growth model for disk space. We assign processor speed using ost memory, oating/integer speeds, and disk space (see
the same method as the normal distribution model, and we Table[¥). This model captures:

use the same estimated mean/variance as our correlated mode @) the correlations among resources (in particular,

The following are our main contributions:

1) We determine a statistical model of the hardware re-
sources of Internet hosts, namely, the number of cores,

for the Grid resource model parameters where appropriate. T between total memory and number of cores, or
make the comparison fair, we also update this model with integer and floating point speeds)

more recent values from our analysis and generate a mix of D) the evolution in time of resources (in particular,
older/newer hosts based on average host lifetime. trends in the fraction of hosts with a certain number

The simulation calculates the total utility for each appli- of cores or memory)

cation with the resources created by each model. Figure 15 Table [X shows a condensed version of the model
shows the results for the simulation, comparing the nornsal d developed and evaluated in this paper. This includes
tribution model, Grid resource model and correlated resmur the resources described by the model, how they are

model described in this paper. The simulations were run with  derived and thea and b values used in the equa-
data from January to September 2010. The figure shows the tion aeb(vear—2006) describing either relative ratios or

percent difference between the total utility calculateihgs changes in the mean and variance of distributions.

the specified model and the utility using the actual host.data2) We evaluate the accuracy in the context of a resource
Multiple simulation runs showed little variance in resufise allocation problem for Internet-distributed applicaton

to the large numbers of hosts involved. Compared with naive models and Grid resource models,

The figure shows that the correlated model generally has a our model is up to 57% more accurate.
smaller difference with the actual data than the other n®del 3) Our resource trace data, and tools for automated model
For the SETI@home application, the correlated model ranges generation are available publicly at:
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