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Abstract—Understanding and modelling resources of Internet
end hosts is essential for the design of desktop software and
Internet-distributed applications. In this paper we develop a
correlated resource model of Internet end hosts based on real
trace data taken from the SETI@home project. This data covers
a 5-year period with statistics for 2.7 million hosts. The resource
model is based on statistical analysis of host computational power,
memory, and storage as well as how these resources change over
time and the correlations between them. We find that resources
with few discrete values (core count, memory) are well modeled
by exponential laws governing the change of relative resource
quantities over time. Resources with a continuous range of values
are well modeled with either correlated normal distributions
(processor speed for integer operations and floating point op-
erations) or log-normal distributions (available disk space). We
validate and show the utility of the models by applying them to a
resource allocation problem for Internet-distributed applications,
and demonstrate their value over other models. We also make
our trace data and tool for automatically generating realistic
Internet end hosts publicly available.

I. I NTRODUCTION

While the Internet plays a vital role in society, relatively
little is known about Internet end hosts and in particular their
hardware resources. Obtaining detailed data about hardware
resources of Internet hosts at a large-scale is difficult. The
diversity of host ownership and privacy concerns often pre-
clude the collection of hardware measurements across a large
number of hosts. Internet safeguards such as firewalls make
remote access to end hosts almost impossible. Also, ISPs are
reluctant to collect or release data about their end hosts.

Nevertheless, the characteristics and models of Internet
end hosts are essential for the design and implementation
of any desktop software or Internet-distributed application.
Such software or applications include but are not limited to
operating systems, web browsers, peer-to-peer (P2P), gaming,
multi-media and word-processing applications.

Models are also needed for Internet-computing research. For
instance, in works such as [1], [2], [3], researchers developed
algorithms for scheduling or resource discovery for distributed
applications run across Internet hosts. Assumptions had tobe
made about the distribution of hardware resources of these
Internet hosts, and the performance of such algorithms are
arguably tied to the assumed distributions. Realistic models
of Internet resources derived systematically from real-world
data are needed to quantify and understand the performance
of these algorithms under a range of scenarios.

Our goal in this study is to characterize and model re-
sources of Internet end hosts. Our approach for data collec-
tion is to use hardware statistics and measurements retrieved
by SETI@home. SETI@home is one of the largest volun-
teer computing projects in the world, aggregating millions
of volunteered hosts for distributed computation. Using the
SETI@home framework, we retrieved hardware data over a 5
year period with statistics for 2.7 million hosts.

Our approach for modelling is to investigate statisticallythe
distribution, correlation, and evolution of resources. Our main
contributions are as follows:

1) We characterize and statistically model hardware re-
sources of Internet hosts, including the number of
cores, host memory, floating point/integer speed and
disk space. Our model captures the resource mixture
across hosts and how it evolves over time. Our model
also captures the correlation of resources (for instance
memory and number of cores) within individual hosts.

2) We evaluate the utility of our model and show its
accuracy in the context of a resource allocation problem
involving Internet distributed computing applications.

3) We make our data and tool for automated model gen-
eration publicly available. Our model can be used to
generate realistic sets of Internet hosts of today or to-
morrow. Our model can also be used to predict hardware
trends.

The paper is structured as follows. In Section II we discuss
related work and how our contribution fits in. We then discuss
the application context for our model in Section III and
go over the data collection methodology in Section IV. We
introduce details of the model and describe how the resources
are modeled over time in Section V. We validate the model
using statistical techniques in Section VI and show how it can
be used to generate realistic sets of hosts for simulations.To
demonstrate the effectiveness of our model compared to other
methods we perform simulations in Section VII. Finally, we
offer discussion and future areas of work in Section VIII.

II. RELATED WORK

The branches of work related to this paper include Internet
network modelling, peer-to-peer (P2P) network modelling,
desktop benchmarking, and Grid resource modelling.

With respect to Internet network measurement and mod-
elling [4], [5], [6], previous studies tend to focus exclusively
on the network of end hosts, and not their hardware resources.
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Several works such as [7], [8], [9] model specifically resi-
dential networks, but omit hardware measurements or models.
Also, the scale of those measurements are relatively small on
the order of thousands of hosts monitored on the order of
months (versus millions of hosts on the order of years). P2P
research [10], [11] has focused primarily on application-level
network traffic, topology, and its dynamics. Again, hardware
measurements and models are missing.

For desktop benchmarking there are a handful of programs
such as XBench [12], PassMark [13] and LMBench [14]. How-
ever, these benchmarks are generally designed for a particular
operating system and set of tests - often oriented towards game
graphics performance - making it difficult to compare across
platforms. These benchmarks are also generally run only once
on a system, limiting their usefulness in predicting how total
resource composition changes over time.

Some previous works investigated modelling clusters or
computational Grids [15], [16], [17]. These works differ from
ours in terms of the resource focus of the model, the host
heterogeneity and the evolution and correlation of resources
over time. Also, most Grid resource models are based on data
from many years ago and may no longer be valid for present
configurations.

The closest work described in [18] gives a general character-
ization of Internet host resources. However, statistical models
are not provided, and the evolution and dynamics of Internet
resources are not investigated. Also, certain hardware attributes
(such as cores) are not characterized or modeled due to the
technology available at that time.

III. A PPLICATION CONTEXT

While there are an infinite range of host resources to
monitor and model, we select only those host properties that
are the most relevant for Internet distributed computing. One
class of Internet distributed computing is distributed peer-to-
peer (P2P) file sharing [10], [11], [19]. Another important
class is volunteer distributed computing. As of November
2010, volunteer computing provides over 7 PetaFLOPS of
computing power [20], [21] for over 68 applications from a
wide range of scientific domains (including climate prediction,
protein folding, and gravitational physics). These projects have
produced hundreds of scientific result [22] published in the
world’s most prestigious conferences and journals, such as
Science and Nature. We use these types of application to drive
what we model.

IV. DATA COLLECTION METHOD

The hosts in this study were measured using the BOINC
(Berkeley Open Infrastructure for Network Computing) [23]
client software, and participated in the SETI@home project
[20] between January 1, 2006 and September 1, 2010. We
feel this data set provides a reasonable approximation to the
types of hosts likely to be available for large scale Internet
computing applications. The host model developed in this
paper uses the host data from January 1, 2006 to January

1, 2010. We then validate this model by predicting the host
composition until September 1, 2010.

In BOINC projects, hosts perform work in a master-worker
style computing environment where the host is the worker and
the project server is the master. Host resource measurements
occur every time the host contacts the server, this allows the
server to allocate the appropriate work for the available host
resources. The host resource measurements are recorded on
the server and periodically written to publicly available files.

V. M ODELLING

In this section we discuss the model of host resources
- how it is defined and how we model the host resources
and their change over time. In Section V-B we provide a
general statistical overview of the hosts and how the resources
change over time. Since two resources may be correlated
due to technological advancement or user requirements, we
begin the model building process by examining correlation
between resources in Section V-C. In Sections V-D through
V-G we perform detailed analysis of each resource and build a
predictive correlated model of host cores, memory, computing
speed and disk storage. Finally, we briefly examine the
characteristics of GPUs on hosts in Section V-H.

A. Host Model

First we describe the model of hosts, including the different
resources in the model and how they were measured.

Given the application context described in Section III, we
consider hosts to have 5 key resources:

• Processing Cores: the number of primary processing
cores. This does not include GPU cores or other spe-
cial purpose secondary processors. For Windows ma-
chines this was measured by theGetSystemInfo func-
tion, for Apple/Linux/Unix machines by thesysconf,
sysctl or similar functions.

• Integer computing speed: the speed of a processing core
as measured by the Dhrystone [24] 2.1 benchmark in C.

• Floating point computing speed: the speed of a core as
measured by the 1997 Whetstone benchmark in C [25].

• Volatile Memory : Random access memory used by the
processors during computation. For Windows machines
this was measured by theGlobalMemoryStatusEx
function, for Apple/Linux/Unix machines by the
Gestalt, sysconf andgetsysinfo functions.

• Non-volatile storage: unused space in long term storage
including hard disk drives. This does not necessarily
include all storage devices attached to a host, only those
accessible to the BOINC client. For Windows machines
this was measured by theGetDiskFreeSpaceEx
function, for Apple/Linux/Unix machines by thestatfs
or statvfs functions.

Although Whetstone and Dhrystone have various short-
comings, we feel their use is acceptable as an approximate
measure of host computational ability. In the official BOINC
distribution these benchmarks were compiled using the -O2
flag for the UNIX version, the -Os flag for the Mac version
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Fig. 1. Distribution of host lifetimes.

using XCode and the /O2 /Ob1 flags for Windows version
using Visual Studio. Users can compile their own version of
the benchmark code, however, very few choose to do so and
therefore the executed measurement code can be viewed as
being mostly homogeneous. The benchmarks are executed on
all available cores simultaneously and the average speed is
taken. Therefore, shared resources on multicore machines may
adversely affect processor performance results.

Hosts may also have GPU coprocessors which can be used
for GPGPU computing. BOINC did not start recording GPU
statistics until September 2009 when 12.7% of active hosts
reported having GPUs. By September 2010, 23.8% of active
hosts reported having GPUs. We feel one year of sampling
provides insufficient data to include GPU characteristics in our
model, however, we include a brief analysis of host GPUs in
Section V-H.

For the purposes of measuring host characteristics, a host
is considered to be active at a timeT if the host first
connected to the server before timeT and the most recent
connection to the server is after timeT . Because we care
about the aggregate statistics of hosts, we did not considerhost
availability at a detailed level. For more fine-grained analysis
of host availability see [26], [27].

B. Host Overview

First we present an overview of the active hosts and their
resources. Figure 1 shows a probability density function (PDF)
and cumulative distribution function (CDF) of host lifetimes,
where the lifetime is defined as the time between the first and
last connection of the host to the server. To avoid biasing
the distribution towards short host lifetimes, this does not
include hosts which connected after July 1, 2010. Using a
maximum likelihood of fit estimation we find the host lifetime
distribution fits well to a Weibull distribution with parameters
k = 0.58, λ = 135, which indicates that hosts have a
decreasing dropout rate.

Some host data values may be questionable due to stor-
age/transmission errors or modification of the client resource
checking function. In this paper, we discard hosts which report
more than 128 cores,105 Whetstone MIPs,105 Dhrystone
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MIPs,102 GB memory or104 GB available disk space. Based
on these criteria we discard 3361 hosts (0.12% of total).

Figure 2 shows the number of active hosts, and the mean and
standard deviation of resources (cores, memory, computing
speed and storage) over a 4 year period. The mean of resource
values is indicated by a black line, the standard deviation by
red error bars. The number of active hosts fluctuates between
roughly 300,000 and 350,000.

This figure shows the changes in average host resources over
4 years. From 2006 to 2010, the average number of cores in
a host rose from 1.28 to 2.17 (70% increase), the average
memory rose from 846 MB to 2376 MB (181% increase),
the floating point performance rose from 1200 MIPS to 1861
MIPS (55% increase), the integer performance rose from 2168
MIPS to 4120 MIPS (90% increase) and the average available
disk space rose from 32.9 GB to 98.0 GB (198% increase).
The standard deviation of all resources increased over time.
However, the increases in mean resource value are somewhat
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TABLE I
HOST PROCESSORS OVER TIME(% OF TOTAL).

2006 2007 2008 2009 2010
PowerPC G3/G4/G5 5.1 6.5 4.7 3.5 2.7

Athlon XP 12.3 9.0 6.2 4.0 2.5
Athlon 64 6.5 9.5 11.4 11.6 10.2

Other AMD 8.3 8.2 7.8 7.9 9.5

Pentium 4 36.8 33.0 27.2 20.7 15.5
Pentium M 5.4 5.5 4.3 3.1 2.1
Pentium D 0.7 3.0 4.2 3.9 3.1

Other Pentium 4.1 2.6 2.1 3.3 5.2

Intel Core 2 0.9 3.3 13.2 24.8 32.0
Intel Celeron 5.6 6.4 6.3 5.9 4.9
Intel Xeon 2.1 2.8 3.3 3.9 4.3

Other x86 9.9 7.7 7.6 6.1 5.1
Other 2.3 2.6 1.6 1.3 2.9

less than would be expected from Moore’s law.
After closer investigation, we discovered this to be related

to host lifetime. As shown in Figure 3, there is a negative
correlation between recently created hosts and host lifetime.
This means that more up to date hosts will tend to be
underrepresented in the model. We found similar patterns in
speed and memory where hosts with better resources tended to
have a shorter lifetime, though the reasons for this are unclear.

We also examine the composition of processors among the
hosts and how it has changed over time. Because availability
and performance of new processor models cannot be predicted
far in the future, we do not include processor information in
our model. There is also a significant range of speeds and
capabilities even within a single processor family, makingit
difficult to predict the effect on a particular application.

Table I shows the change in processor composition as a
percent of total over the data sample period. Several things
are apparent from this table. First, the Pentium 4 and similar
Pentium processors processor were dominant in 2006 compris-
ing over a third of processors, but by 2010 fell significantly
to comprise only 15% of processors. Pentium 4 processors
stopped shipping in 2008, so we expect the numbers to fall
further as the processors fail over time. In place of the
Pentium, the Intel Core 2 (started shipping in 2006) went from
zero to nearly a third of available processors. The Intel Core
2 will likely stop shipping by 2011 so we expect the share to

TABLE II
HOST OSOVER TIME (% OF TOTAL).

2006 2007 2008 2009 2010
Windows XP 69.8 71.5 68.6 62.5 52.9

Windows Vista 0 0 6.7 14.0 15.9
Windows 7 0 0 0 0 9.2

Windows 2000 12.9 8.5 5.5 3.4 2.0
Other Windows 6.3 6.1 4.8 4.8 3.4

Mac OS X 5.4 7.8 7.9 8.5 9.0
Linux 5.1 5.7 6.0 6.4 7.3
Other 0.4 0.4 0.4 0.3 0.3

TABLE III
CORRELATION COEFFICIENTS BETWEEN HOST MEASUREMENTS.

Cores Memory Mem/Core Whet Dhry Disk
Cores 1.00 0.606 -0.010 0.161 0.130 0.089

Memory 0.606 1.00 0.627 0.230 0.271 0.114
Mem/Core -0.010 0.627 1.00 0.250 0.306 0.065

Whet 0.161 0.230 0.250 1.00 0.639 -0.016
Dhry 0.130 0.271 0.306 0.639 1.00 -0.004
Disk 0.089 0.114 0.065 -0.016 -0.004 1.00

fall in the near future.
Table II shows the change in host operating system over

the sample period. During this period, hosts using Windows
XP drop from roughly 70% to 50%, while Windows Vista and
Windows 7 increase from 0% to roughly 25%. The remainder
of hosts use a mix of other Windows systems (5-20%) or Mac
OS X or Linux (10-15%). These results indicate that although
Windows is still the most common operating system, the share
of Mac and Linux is steadily growing.

C. Resource Correlations

To guide us in creating the model of host resources, we
first examine the correlations between different resources. All
resources will tend to improve together as technology advances
over time. Also, users will tend to purchase systems with
correlated resource characteristics, for example, a system with
many cutting edge cores will also tend to have a greater
amount of memory. Therefore our model should include these
correlations to realistically capture the characteristics of hosts.

Visual inspection of the data showed a linear correlation
between certain resources. Table III shows the normalized
coefficient of correlation (often called the Pearson correlation
coefficient) for host resources, with table entry X, Y showing
the r-value for the correlation between resources X and Y.
This table includes the resource “per-core-memory” (defined
as amount of memory divided by number of cores) since this
will be useful in generating a model of memory.

Several things are immediately apparent from this analysis.
First, the number of cores and memory of the host is well
correlated (r > 0.6), though the amount of memory per core
is not well correlated to the number of cores. Also, the number
of cores is poorly correlated with the integer and floating point
performance of each core. This may be related to the shared
use of memory and bus during the benchmark routines.

Performance of integer and floating point benchmarks are
also well correlated with each other (r > 0.6). This is due to
advances in processor technology which tend to improve both
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floating point and integer performance. The best correlation
between benchmark performance and other resources is that
with memory (r ≈ 0.3) rather than cores.

One somewhat surprising finding is that available disk space
is not well correlated with any other metric, indicating that disk
space may be modeled by an independent random distribution.
This is likely because disk usage is heavily dependent on
the individual behavior of each user. We also found that the
fraction of total disk which is available is well represented by
a uniform random distribution.

This analysis indicates that hosts in the generative model
should have similar correlations between resources. For exam-
ple, a host with more cores should tend to have more memory,
which will have some correlation with both the integer and
floating point performance of the cores.

TABLE IV
CORE RATIO MODEL VALUES.

a b r

1:2 Core Ratio 3.369 -0.5004 -0.9984
2:4 Core Ratio 17.49 -0.3217 -0.9730
4:8 Core Ratio 12.8 -0.2377 -0.9557

D. Modelling Multicore

In recent years, due to power and heat dissipation concerns,
processor manufacturers have started increasing the number
of cores on a processor rather than exclusively increasing the
speed of the individual cores. This trend is seen in Figure 4,
which shows the fraction of hosts with different numbers of
cores over time. In 2006, the ratio of 1 core machines to 2 core
machines was 3.3 to 1, however, by 2010 the ratio inverted to
1 to 2.5 and 18% of hosts had more than 4 cores. There were
not enough hosts in the data set with 16 or more cores for us
to make a reasonable model of these machines.

Since the number of cores on a host is a discrete value,
we are limited in the types of probability distributions we can
use. For the model of multicore on a host, we use a discrete
probability distribution where the number of cores must be a
power of 2. Although there are systems available with non-
power-of-two core counts, we ignore them since they comprise
less than 0.3% of hosts in our data set. As processors with
more cores are introduced to the marketplace, their number
will increase relative to processors with fewer cores then
decrease relative to processors with even more cores. To model
this, we examine the history of the ratio of 1, 2, 4 and 8 core
hosts to each other since 2006.

Figure 5 shows a logarithmic plot of the core ratios from
2006-2010. The black lines show the actual ratios from the
data set and the red dashed lines show the best fit. For example,
in 2006 there were roughly 14.4 2-core hosts for every 4-core
host, but by 2010 this ratio had dropped to 4.7 2-core hosts
for every 4-core host. We found that the relative fractions of
each of these is well modeled using an exponential function
aeb(year−2006). The values ofa and b which best fit the data
are shown in Table IV along with the correlation coefficient
r. In all cases the fitted curve has a very good match with the
data. Therefore, we can model the number of cores in a host
as a ratio governed by an exponential function.

E. Modelling Memory

The available memory per host is also increasing over time
as shown in Figure 2. However, the analysis in Table III
indicates a strong correlation (r > 0.6) between the number
of cores and amount of memory. Rather than trying to model
host memory as a function of the cores, we instead model
per-core-memory and multiply the results by the number of
cores. This makes intuitive sense - a host with 512 MB
of RAM is more likely to have 1 core rather than 8 cores
(which would be only 64 MB of RAM per core). This is also
supported by the correlation analysis in Section V-C, which
showed that although the total memory is correlated with the
number of cores, the amount of per-core-memory has nearly
zero correlation and can therefore be generated independently
of the number of cores.

First we examine the per-core-memory and how it changes
over time. Figure 6 shows distributions of per-core-memoryat
three points in time. This figure shows a clear trend of per-
core-memory increasing over time. The fraction of hosts with
256MB or less per core drops from 19% to 4% of the total
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from 2006 to 2010, while the fraction of hosts with 1024MB
per core rises from 21% to 32% and hosts with 2048MB per
core rise from 2% to 10%. Over 80% of the per-core-memory
values are in the set of (256, 512, 768, 1024, 1536, 2048) MB.
To simplify the model, we use these values to calculate the
amount of memory on a host.

Figure 7 shows the fraction of hosts with different amounts
of memory per core and how this changes over time. Similar
to multicore counts, we find that the ratios of host per-core-
memory are best modeled by the exponential growth law
aeb(year−2006). The values for these ratios and their change
over time is given in Table V. The correlation coefficientr

indicates the values match the data very well. It is worth
noting that we discard some intermediate per-core-memory
values (e.g. 1280MB, 1792MB, etc). The accuracy of the
model could therefore be improved by including these values,
though at a cost of increased complexity.

F. Modelling Processor Speed

Next we develop a model for host computational speed in
terms of Dhrystone and Whetstone benchmark performance.
Figure 8 shows histograms of the Dhrystone and Whetstone
MIPS performance at three times in the data set. First, we
notice that the mean and standard deviation of both mea-
surements are increasing over time, following the results we
showed in Figure 2. To predict the mean and variance of each

TABLE V
PER-CORE-MEMORY RATIO MODEL VALUES.

a b r

256MB:512MB Ratio 0.5829 -0.2517 -0.9984
512MB:768MB Ratio 4.89 -0.1292 -0.9748

768MB:1GB Ratio 0.3821 -0.1709 -0.9801
1GB:1.5GB Ratio 3.98 -0.1367 -0.9833
1.5GB:2GB Ratio 1.51 -0.0925 -0.9897
2GB:4GB Ratio 4.951 -0.1008 -0.9880
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Median: 1943

Stddev: 1046
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benchmark we use a simple fitting on our data set. We found
these values to be best fit by an exponential function of the
form aeb(year−2006) with a andb values given in Table VI.

To test the best fitting distribution for processor speeds
we used the Kolmogorov-Smirnov test. This test is sensitive
to slight discrepancies in large data sets, so to calculate p-
values we took the average p-value of 100 KS tests each using
a randomly selected subset of 50 values. This subsamping
method is a standard method also used in [26], [27]. We
compared our data to 7 distributions - normal, log-normal, ex-
ponential, Weibull, Pareto, gamma and log-gamma. The results
of this show that the normal distribution fits the Whetstone and
Dhrystone data best with average p-values ranging from 0.19
to 0.43 at different times in the data. Due to the spike around
the middle of the distribution this is not a perfect match, but
we feel it is a reasonable model for processor speed.

However, we cannot simply choose the speeds from two
normal distributions since there is a strong correlation (r >

0.6) between the benchmarks and a slight correlation (r ≈



TABLE VI
BENCHMARK AND DISK SPACE PREDICTION LAW VALUES.

a b r

Dhrystone Mean (MIPS) 2064 0.1709 0.9946
Dhrystone Variance 1.379e6 0.3313 0.9937

Whetstone Mean (MIPS) 1179 0.1157 0.9981
Whetstone Variance 3.237e5 0.1057 0.8795

Disk Space Mean (GB) 31.59 0.2691 0.9955
Disk Space Variance 2890 0.5224 0.9954

0.3) with memory. To properly capture these correlations, we
create correlated statistics using a common method involving
the Cholesky decomposition. We first take a matrixR of the
correlation coefficients between per-core-memory, Dhrystone
and Whetstone performance from Table III.

R =





1 0.250 0.306
0.250 1 0.639
0.306 0.639 1





We apply the Cholesky decomposition to get matrixU .

U =





1 0 0
0.250 0.968 0
0.306 0.581 0.754





We take a vectorV of three values randomly selected from
a normal distribution with mean 0 and standard deviation 1.
VC = V U gives a vector of three values correlated by the
values inR. VC [1] is converted from a normal distribution to
a uniform distribution and used to select the per-core-memory,
VC [2] and VC [3] are renormalized to the predicted mean
and variance for the Whetstone and Dhrystone benchmarks,
respectively. Using this method we are able to generate hosts
with similar resource correlations as in the actual data.

G. Modelling Available Disk Space

Finally we develop the model for available disk space
on a host. As shown in Section V-C, there is almost no
correlation between available disk space and other resource
metrics. Because of this, we can safely generate a model of
available disk space independent of the other resources.

Also, it is worth noting why we chose to model available
disk space rather than total disk space. The main reasons are:
1) total disk space is also uncorrelated with any other resource
metric so we don’t lose model accuracy, 2) the distribution of
total disk space is highly irregular and difficult to model, 3)
applications using Internet computing resources will generally
be restricted by available disk space rather than total space.

Figures 9(a), 9(b) and 9(c) show the probability density and
cumulative distribution functions of the logarithm of available
disk space on active hosts at three times. The left sides of these
distributions are smooth and fit well to a normal distribution.
The right side is somewhat less smooth with several spikes but
still appears to fit reasonably well with a normal distribution.
To test the best fitting distribution for disk space we again
use the Kolmogorov-Smirnov test with the 7 distributions
and average p-value. The results show that the log-normal
distribution best fits the data at different times with p-values
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(a) Available disk space in 2006.
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(b) Available disk space in 2008.

Mean: 98.13 GB

Median: 43.74 GB

Stddev: 157.8 GB
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(c) Available disk space in 2010.

Fig. 9. Histograms of available disk space over time.

ranging from 0.43 to 0.51. Therefore we model available disk
space as an independent log-normal distribution with mean
and variance calculated using the exponential law with values
from Table VI.

H. GPU Analysis

In recent years, GPU (graphics processing unit) based
computing has become popular and many computers include
one or more GPUs. BOINC did not start recording GPU
resource information until September 2009, so we feel there
is insufficient data to include GPU resources in our model.
However, for completeness, we include a brief analysis of GPU
resources in this section.

Table VII shows a breakdown of the active hosts reporting
GPUs based on the type of GPU they reported. This break-
down is only among the 12.7% (Sep. 2009) and 23.8% (Sep.
2010) of hosts which reported having a GPU.

Figure 10 shows the distribution of memory in GPUs from
September 2009 and September 2010. Between these dates,



TABLE VII
PERCENT OFGPUTYPES AMONGGPUEQUIPPED HOSTS.

Sep. 2009 Sep. 2010
GeForce 82.5% 63.6%
Radeon 12.2% 31.5%
Quadro 4.7% 4.0%
Other 0.6% 0.8%

Mean: 592.7 MB

Median: 512 MB

Stddev: 329.7 MB

Mean: 659.4 MB

Median: 512 MB

Stddev: 362.7 MB
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Fig. 10. GPU memory distribution at two times.
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Fig. 11. Flowchart of host creation.

the average amount of GPU memory increased by 11% from
592.7 MB to 659.4 MB. There was a jump of GPUs with 1GB
or more of memory from 19% to 31% of total. However, these
rises are significantly slower than the rate of increase in total
host memory. In addition, hosts with more than 1GB of GPU
memory still comprise less than 2% of GPU equipped hosts
(0.5% of all hosts), indicating memory bound applications may
not be suitable for Internet end host GPUs in the near future.

VI. M ODEL VALIDATION AND PREDICTION

Next we use the model developed in the last section to
generate hosts at a specified point in time. We use standard
statistical methods to validate the generated hosts and compare
them to actual data. Finally we use our model to offer
predictions of how host composition will change up to the
year 2014.

A. Model Based Host Generation

Figure 11 shows the flowchart of host creation using our
model. First the user selects the date for the generated host.

TABLE VIII
CORRELATION COEFFICIENTS BETWEEN GENERATED HOSTS.

Cores Memory Mem/Core Whet Dhry Disk
Cores 1.00 0.727 0.014 0.004 0.011 -0.003

Memory 0.727 1.00 0.544 0.162 0.139 -0.002
Mem/Core 0.014 0.544 1.00 0.307 0.251 -0.002

Whet 0.004 0.162 0.307 1.00 0.505 -0.002
Dhry 0.011 0.139 0.251 0.505 1.00 -0.003
Disk -0.003 -0.002 -0.002 -0.002 -0.003 1.00

Using the date, a core count is generated by using the ratios of
cores to create a discrete probability distribution and selecting
the number of cores with a uniform random number.

Using the method described in Section V-F, correlated
values are generated to create per-core-memory and processor
benchmark speeds. Similar to core count, the per-core-memory
is selected using the ratio equations from Section V-E to gen-
erate a discrete probability distribution which is then sampled.
Total memory is calculated by multiplying per-core-memory
by the number of cores. The benchmark values are generated
by using the correlated normal values and re-normalizing them
to the mean and variance predicted using values from Table
VI. Available disk space is independent of other benchmarks,
so it is generated by sampling a lognormal distribution with
mean and variance predicted using values from Table VI.

B. Model Validation

Using our model in combination with this technique, we
generate a set of sample hosts for September 1, 2010. Figure
12 shows CDFs of the generated and actual data for September
1, 2010. The generated values are close to the actual data,
with means ranging from a difference of 0.5% for cores up to
13.0% for host memory and standard deviations ranging from a
difference of 3.5% for Whetstone up to 32.7% for memory. We
also generated QQ-plots for the data and visually confirmed
the fit of the generated hosts. These plots are not included in
this paper for space reasons.

Table VIII shows the correlation coefficients between hosts
in the generated data for September 2010 calculated in the
same way as Table III. The correlation between cores and
memory for generated hosts isr ≈ 0.7 which matches the
actual datar ≈ 0.6. This is promising for our model, since
we do not explicitly correlate the random number generation
for these resources. Dhrystone and Whetstone benchmarks
have a correlation ofr ≈ 0.5, also very close to the actual
data correlation ofr ≈ 0.6. The benchmarks also well match
the per-core-memory correlation ofr ≈ 0.3. Like the actual
data, generated host disk space has almost no correlation. The
generated host memory is not as well correlated with the
benchmarks (r ≈ 0.1) as in the actual data (r ≈ 0.3), but
this correlation is not large so it should not greatly affectthe
generated model.

C. Model Based Prediction

Given the equations of resource ratios from Section V we
can make predictions about how the host resource composition
will change in the future. Figure 13 shows the predicted
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Fig. 13. Predicted fractions of host multicore CPUs.

distribution of multicore processors over the next three years.
Based on the other equations, we estimate values ofa = 12,
b = −0.2 to calculate the ratio of 8:16 cores.

There are several notable aspects of this prediction. First, the
number of single core hosts decreases to a negligible fraction
within three years, as one would expect due to part failure
and decreasing usefulness of the older single core machines.
Second, there are still a large number of 2 core hosts which
comprise roughly 40% of the total by 2014. The average
number of cores per host in 2014 is predicted to be 4.6 which
is significantly higher than the number of 3.7 obtained by
extrapolating the values of Figure 2.

Figure 14 shows the predicted distributions of total host
memory over the next three years. This prediction indicates
an average of 6.8 GB per host by 2014 - very close to the
value of 6.6 GB found by extrapolating values in Figure 2.
Using the values from Table VI we predict the (mean, standard
deviation) of Dhrystone as (8100, 4419), Whetstone as (2975,
868) and disk space as (272.0, 434.5) in 2014.

(**TODO) Best and worst hosts. Given the developed
model we can also make predictions about the best and worst
hosts that will be available at a given time.
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VII. S IMULATION BASED MODEL VALIDATION

Finally, we perform simulations to demonstrate the value of
our model compared to other host resource representations.
Currently, most Internet-based computing applications have
focused on exclusively utilizing the CPU and most scheduling
algorithms aim to optimize the application makespan. How-
ever, recent work has investigated using other resources, such
as disk space, to perform a wider range of services. Certain
applications may benefit disproportionally from hosts with
increased memory, greater processor speed or more disk space.

Because of this, in these simulations we attempt to max-
imize total application utility of host resources rather than
minimizing execution time. Host utility can be thought of
as how much benefit an application gets from running on
a certain host. We feel this is a better fit for analyzing our
model since it includes all resource types and represents a
generalized application that may desire a mix of resources or
prefer certain resources over others. To represent the utility of
resources for a given application we use a variation on the well
known Cobb-Douglas [28] utility function from economics.

Rather than the normal inputs of labor and capital, we use
the resources for a hostH : core count (CH ), memory (MH ),
integer/floating point speed (IH andFH ) and disk space (DH ).
Then the utilityY of running an applicationA on hostH can



TABLE IX
SIMULATION PARAMETERS FOR SAMPLE APPLICATIONS.

Application
Cores Memory Dhrystone Whetstone Disk
(α) (β) (γ) (δ) (ǫ)

SETI@home 0.05 0.1 0.2 0.4 0.05
Folding@home 0.4 0.05 0.2 0.3 0.05

Climate Prediction 0.2 0.2 0.1 0.35 0.15
P2P 0.05 0.1 0.1 0.05 0.7

be written as:

YA(H) = Cα
HM

β
HI

γ
HF δ

HDǫ
H (1)

whereα, β, γ, δ, ǫ represent the utility returns to scale on
each resource to the application.

Table IX shows the parameters we use for some sample
applications in our simulation. We chose these applications as
a representative set of possible applications requiring Internet
end hosts. SETI@home represents an application doing radio
signal analysis, which benefits from fast processing but does
not require significant memory or disk space and does not
utilize multiple cores. Folding@home represents a parallel
molecular dynamics simulation, which can use multiple cores
and requires a medium amount of memory, but little disk.
Climate prediction requires a mix of all resources, with some
emphasis on floating point speed. P2P uses Internet end ma-
chines to perform distributed file sharing and benefits greatly
from large disks, but has little use for processors or memory.

The simulation calculates the utility of each application run-
ning on each resource, then assigns resources to applications in
a greedy round-robin fashion. In the simulations we compare
our correlated host synthesis model with two others. The first
is a simple model which uses extrapolation of the values
in Figure 2 and samples resource values from uncorrelated
normal distributions (log-normal for disk space). The second
is based on the Grid resource model by Kee et. al. [15]. This
model uses a log-normal distribution for processors, a time
and processor dependent model of memory and an exponential
growth model for disk space. We assign processor speed using
the same method as the normal distribution model, and we
use the same estimated mean/variance as our correlated model
for the Grid resource model parameters where appropriate. To
make the comparison fair, we also update this model with
more recent values from our analysis and generate a mix of
older/newer hosts based on average host lifetime.

The simulation calculates the total utility for each appli-
cation with the resources created by each model. Figure 15
shows the results for the simulation, comparing the normal dis-
tribution model, Grid resource model and correlated resource
model described in this paper. The simulations were run with
data from January to September 2010. The figure shows the
percent difference between the total utility calculated using
the specified model and the utility using the actual host data.
Multiple simulation runs showed little variance in resultsdue
to the large numbers of hosts involved.

The figure shows that the correlated model generally has a
smaller difference with the actual data than the other models.
For the SETI@home application, the correlated model ranges

between 3-10% difference from the actual data, the Grid model
between 3-9% and the normal distribution model between 9-
17% difference. The Folding@home application has a greater
gap between the models, with the correlated model between 0-
7% difference, the Grid model between 5-15% and the normal
model around 20-31% difference. This is likely since the
correlated model accurately captures the correlations between
benchmark, memory and core count, which are all key com-
ponents to the application.

The Climate Prediction application has similar results, with
0-7% difference for the correlated model, 3-14% difference
for the Grid model and 14-28% difference for the normal
distribution model. Again, the Climate Prediction application
uses a mix of resources and will therefore be sensitive to the
correlations between them. The P2P application shows a major
difference between the models, with a 0-5% difference for the
correlated model, 46-57% difference for the Grid model and
0-11% difference for the normal distribution model. This is
because the Grid model uses an exponential growth rule for
disk space, which overestimates the available space.

Based on these results, we have shown that our model more
closely reflects actual host resources, resource correlations
and time dependent behavior. Our model is significantly more
accurate than simpler distribution models or other Grid models
using uncorrelated distributions to model host resources.

VIII. C ONCLUSION

Models of resources of Internet end hosts are critical
for the design and implementation of desktop software and
Internet-distributed applications. We derive a model using
hardware traces of 2.7 million hosts on the Internet from the
SETI@home project.

The following are our main contributions:

1) We determine a statistical model of the hardware re-
sources of Internet hosts, namely, the number of cores,
host memory, floating/integer speeds, and disk space (see
Table X). This model captures:

a) the correlations among resources (in particular,
between total memory and number of cores, or
integer and floating point speeds)

b) the evolution in time of resources (in particular,
trends in the fraction of hosts with a certain number
of cores or memory)

Table X shows a condensed version of the model
developed and evaluated in this paper. This includes
the resources described by the model, how they are
derived and thea and b values used in the equa-
tion aeb(year−2006) describing either relative ratios or
changes in the mean and variance of distributions.

2) We evaluate the accuracy in the context of a resource
allocation problem for Internet-distributed applications.
Compared with naive models and Grid resource models,
our model is up to 57% more accurate.

3) Our resource trace data, and tools for automated model
generation are available publicly at:
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TABLE X
SUMMARY OF MODEL PARAMETERS.

Resource Value Method a b

Cores 1:2 Core Relative Ratio 3.369 -0.5004
2:4 Core Relative Ratio 17.49 -0.3217
4:8 Core Relative Ratio 12.8 -0.2377

Mem/Core 256MB:512MB Relative Ratio 0.5829 -0.2517
512MB:768MB Relative Ratio 4.89 -0.1292

768MB:1GB Relative Ratio 0.3821 -0.1709
1GB:1.5GB Relative Ratio 3.98 -0.1367
1.5GB:2GB Relative Ratio 1.51 -0.0925
2GB:4GB Relative Ratio 4.951 -0.1008

Dhrystone Mean (MIPS) Normal Dist. 2064 0.1709
Variance Normal Dist. 1.379e6 0.3313

Whetstone Mean (MIPS) Normal Dist. 1179 0.1157
Variance Normal Dist. 3.237e5 0.1057

Disk Space Mean (GB) Lognorm Dist. 31.59 0.2691
Variance Lognorm Dist. 2890 0.5224

http://abenaki.imag.fr/resmodel/

There are several possible ways our model could be ex-
panded. First, the model of resources could be tied to models
of network topology and traffic, or models of host availability,
which would be useful for Internet-distributed applications.
Second, the ideal distributions or resource correlations may
change over time, particularly for multiple cores, which could
affect the model. Finally, the use of GPUs for high perfor-
mance computing is becoming common, so with more data a
GPU model could be developed as well.
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