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Abstract—As an essential requirement for surveillance systems,
target tracking has been studied extensively. Most of the tracking
schemes are based on trilateration, which requires each point
in the monitoring area to be covered by at least three anchors.
However, due to the inadequate deployment of costly anchors and
environment constraints, the target might not always be detected
by three or more anchors simultaneously, resulting in intermittent
localization failures and performance degradation. To address
this issue, this paper proposes a tracking method called Bubble
Trace (BT) for insufficient anchor coverage and asynchronous
networks. By fully extracting the location information embedded
in dual, single and zero anchor coverage, we develop a bi-
directional bounding algorithm to offer the bubble-shaped re-
gions that indicate the possible locations of the target. Moreover,
instead of separately estimating each position point of the target,
we construct the trace by finding a maximum-likelihood path in a
graph. The design is evaluated through extensive simulation and
a test-bed experiment with 20 MicaZ nodes. Results show that the
proposed scheme improves the tracking accuracy without using
additional hardware under insufficient anchor coverage.

I. INTRODUCTION

Target tracking, which can provide a spatio-temporal de-

scription of mobile objects, is one of the most important appli-

cations of wireless network. Nowadays lots of services benefit

greatly from the availability of accurate tracking, in particular

emergency rescue, hospital healthcare, aerospace systems and

so on. However, due to costly hardware equipments and

environment constraints, how to track the mobile target more

accurately and reliably using finite system resources still

remains to be one of the challenging issues.

Many excellent methods have been proposed for target

tracking, which mainly involve the lower-layer signal process-

ing and the upper-layer network protocol design. While these

schemes are effective, they suffer from one or more constraints

in the following. First, at least three anchors are required

to cover any point in the service area for the trilateration-

based schemes [1][2][3], which results in heavy infrastructure

cost. If insufficient anchors are deployed, the tracking accuracy

will be degraded seriously. Second, the model based tracking

methods [4][5][6] like Kalman filter and Bayesian networks

often bring a complex system design. And some movement or

noise assumptions on the mobile target might be unrealistic in

real applications. Third, additional hardware is required on the
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target for ranging purpose [7][8][9], which obviously increases

the system cost.

Considering the limitations of existing work, instead of

focusing on improving the tracking accuracy in dense anchor

network, we are interested in performing target tracking in a

more general environment where the anchor coverage is inade-

quate, the target can move arbitrarily, and no special hardware

on the target is available. And we apply an asymmetrical

network architecture in this paper, where the mobile target with

limited resources (i.e., CPU, battery, etc) simply emits signals

periodically and anchor nodes that are comparatively powerful

and randomly deployed in the map are in charge of detecting

signals from the target with high time resolution. In this

context, existing trilateration-based approaches would suffer

from severe performance degradation with the decreasing

number of anchors. To deal with this problem, we propose

a novel target tracking framework to make full use of the

detection information for localization under insufficient anchor

coverage. Specifically, our major contributions are as follows:

• To the best of our knowledge, we are the first to in-

vestigate the target tracking problem under insufficient

anchor coverage, which is based on the arrival time

measurements of the target signal.

• We introduce a generic tracking framework that elim-

inates additional ranging hardware at the target and

accurate time synchronization among anchors. In this

framework, a possible target area that looks like a bubble

is firstly generated by a bi-directional bounding algorithm

and then the tracking task is formulated as an optimal

path searching problem in a graph.

• The performance of the proposed design is evaluated by

extensive simulation studies. And a prototype system is

implemented for verification with 20 MicaZ nodes.

The rest of the paper is organized as follows. Section II

describes the motivation behind the work. In Section III, we

introduce the system overview. The detailed tracking algorithm

is described in Section IV and V. Section VI presents an im-

provement which removes the limitation of time synchroniza-

tion among anchors and discusses the tracking performance.

The performance evaluation and a prototype system are given

in Section VII. Finally, Section VIII surveys the related work

and Section IX concludes the paper.
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II. MOTIVATION

The nature of tracking determines that it is often not

practical to add extra components such as accelerometers and

magnetometers on the target for localization and movement

determination. An alternative and more common approach is

to utilize the time-difference-of-arrival (TDOA) of the targets’

signal between pairs of anchors [10][11]. The main idea of

traditional TDOA tracking method is as follows: a target

emits a signal periodically and a number of anchors record

the arriving time of the signal. Thus, one hyperbola can be

computed by the arrival time measurement for each pair of

anchors. With more than three anchors, more hyperbolas can

be obtained. Then the target location is the intersection of

multiple hyperbolas. Due to its simplicity and efficiency, the

TDOA approach has widely been adopted for the wireless

communication networks and wireless sensor networks.
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Fig. 1. Anchor coverage.

A key requirement for the above method is 3-coverage

of the monitoring field, which means each location point is

covered by at least 3 anchors. Clearly the tracking quality is

determined by the number of anchors covering each location in

the field. Different coverage models and solutions are surveyed

in [12][13]. In order to intuitively understand the needed

number of anchors, we conduct the area coverage simulation in

a 10r×10r rectangular region, in which anchors with detection

radius r are randomly distributed. As shown in Fig. 1(a), the

area coverage with 80 anchors is shown as an example, which

displays the corresponding area covered by zero, one, two and

more than three anchors, respectively. And Fig. 1(b) illustrates

the coverage ratio under different numbers of anchors. We can

see that 100 anchors can only achieve about 50% 3-coverage

and 200 anchors are required in order to provide 96% 3-

coverage of the whole field.

Obviously, a large number of anchors are needed to sat-

isfy 3-coverage of a whole monitoring area, incurring high

infrastructure cost. Besides, the deployment cost and the

environmental limitations justify a partial 3-coverage of the

monitoring filed. In this context, traditional trilateration meth-

ods suffer from severe performance degradation with the de-

creasing number of anchors. Hence the need for a new tracking

design under insufficient anchor coverage arises, which can use

the limited infrastructure resources to provide fairly location

information. This forms the motivation for our work, that is

to explore the position information embedded in dual, single

or zero anchor coverage for improving tracking accuracy.

In addition, another requirement for the TDOA approach is

that anchors must be precisely synchronized. Although many

excellent ideas have been proposed for effective time syn-

chronization in wireless networks (e.g., RBS [14], TPSN [15],

FTSP[16], GTSP [17], etc), the synchronization performance

is still not perfect due to the factors of delay, clock skew

and drifting. The time synchronization errors will degrade the

accuracy of the location estimation. Besides, synchronization

among anchors is often not a disposable task and needed to

be performed frequently during the whole tracking process,

which introduces additional costs in many aspects. Hence it is

necessary to design a method for releasing the synchronization

requirement among anchors.

III. SYSTEM OVERVIEW

A network model composed of mobile targets with unknown

locations and static anchors is considered. The target emits

signal each T seconds with a known and constant propagation

speed c. We are unaware of the target’s speed and direction,

other than knowing the maximum speed vmax. The anchors

which can accurately measure the signal arrival time are ran-

domly deployed. And the number of anchors is not sufficient

to achieve the 3-coverage of the whole monitoring area.
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Fig. 2. A whole tracking framework.

Due to the sparse anchor support, the target can’t always

be localized during its movement. As shown in Fig. 2, the

estimated trace by directly connecting localized positions

under 3-coverage (i.e., Pa, Pb and Pc) fails to provide a sound

tracking accuracy. Aiming at enhancing the tracking accuracy

under the situation, we design a tracking framework which

mainly includes two parts:

• Hyperbola-based Tracking with Sufficient Anchor Cov-

erage. When the target is detected by three or more

anchors during its movement, its locations (e.g., Pa, Pb

and Pc in Fig. 2) are uniquely determined by the existing

algorithms.

• Hyperbola-based Tracking with Insufficient Anchor Cov-

erage. For the unlocated locations (pentagram points in

Fig. 2) between two points Pa and Pb, a bi-directional

bounding algorithm is developed to estimate a bubble

region (grey area in Fig. 2) which bounds possible

locations. Then the trajectory is constructed by finding

a maximum-likelihood path (dotted line in Fig. 2) in

the bubble region, instead of estimating each position

separately.
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Note that many existing works [18][19][20][21] for the

target detection range assume a perfect disk model. However,

this assumption does not hold well in practice due to ambient

noise and heterogeneous signal attenuation patterns in realistic

environments. To ensure that our design is as true to reality

as possible, we assume a model with the upper and lower

bounds on detection range, which is also adopted in [22].

Beyond the upper bound rmax, the anchor can’t receive the

signal from the target; and within the lower bound rmin, the

target is guaranteed to be detected. Between two boundaries,

the target is detected stochastically. When rmax equals rmin,

our generic model degrades to the commonly used one.

In the following we first present the main design based on

traditional TDOA measurements from synchronized anchors.

The improvement of transforming arrival time measurements

to distance differences without time synchronization among

anchors is described later in Section VI. In addition, since

the focus of the paper is to provide a tracking solution under

insufficient anchor coverage, we only consider a single target

for simplicity. Multiple targets can be tracked if anchors can

separate the signals transmitted by each target.

IV. TRACKING WITH SUFFICIENT ANCHOR COVERAGE

In this section, we introduce the hyperbola-based tracking

design when the target is detected by more than three anchors.

A hyperbola can be defined as the locus of points where the

difference of the distances to the two foci is a constant. One

of the hyperbola’s applications is the location determination,

using the time differences from two synchronized anchors. If

the target is detected by n (n ≥ 4) anchors, we have
(

n
2

)

distance differences and obtain
(

n

2

)

hyperbolas:

∆di,j = (tj − ti) · c, 1 ≤ i < j ≤ n (1)

where ti, tj are the signal arrival time measured from anchors

i and j, respectively. Then the target location is the intersection

of these hyperbolas.

Fig. 3. Non-uniqueness of hyperbola intersections.

As shown in Fig. 3, three hyperbolic curves from four

anchors often can’t ideally intersect in one unique point, due

to the TDOA measurement uncertainty. A simple solution for

the target location determination is to calculate the weighted

average of these points. However, it is a bit complicated to

find the correct weight. Furthermore, each pair of hyperbola

curves can have no, one or two intersections, the logic to find

the correct one is non-trivial. In our tracking framework, given

the anchor location (Xi, Yi), we determine the target position

(X, Y ) by solving the following non-linear squares estimate.

(X̂, Ŷ ) = arg min
X,Y

∑

i<j

(∆di,j−h(X, Y ; Xi, Yi, Xj , Yj))
2 (2)

where h(X, Y ; Xi, Yi, Xj, Yj) represents the distance differ-

ence from point (X, Y ) to anchors i and j.

If the target is detected by three anchors, two hyperbolic

functions can be obtained. In general, two hyperbolas may

have four intersection points, but two hyperbolas that corre-

spond to distance differences to a source have at most two

intersections [23]. In this case, we can use past and new

received information to eliminate the impossible location.

V. TRACKING WITH INSUFFICIENT ANCHOR COVERAGE

Our main objective is to bound the possible area a target

travels between two uniquely determined positions, and then

to find a maximum-likelihood path from the bounding area.

We first present an overview of a four-step design, followed

by a detailed description of each step in the following sections.

A. Design Overview

Without loss of generality, we define a start point and an

end point as Ps and Pe, which are uniquely localized positions

of the target at time ts and te by utilizing three or more

anchors. During the interval between ts and te, the location

of the target can’t be uniquely determined. We develop a bi-

directional bounding algorithm to form a bubble region which

consists of possible locations, and then identify a maximum-

likelihood trace from the bubble region. The whole working

process includes four steps:

• Step 1: Forward Tracking. Starting from point Ps at

time ts, the tracking algorithm recursively estimates the

possible positions of the mobile target at each step based

on signal detections and previous estimations.

• Step 2: Backward Tracking. When the target arrives at

the point Pe, backward tracking is performed for reverse

tracking. History information is employed to estimate the

previous target locations until the start point Ps.

• Step 3: Bubble Formation. By intersecting the results

obtained from the above two steps, we can obtain a

bubble region, which contains possible target locations

during the interval ts and te.

• Step 4: Trace Identification. Instead of separately estimat-

ing each position of the target, we construct the trace by

finding a maximum-likelihood path in the bubble region.

B. Step 1: Forward Tracking

Briefly, the forward tracking includes a prediction step and

a filtering step. In the prediction step, the possible locations

of target are predicted based on the previous locations and its

movement. In the filtering step, we use new observations to

eliminate the impossible predicted locations. We first describe

the target tracking case in which a target is heard by two

anchors, followed by the cases with one or zero anchor.
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Fig. 4. Hyperbola dividing.

1) Tracking with Two Anchors: Without loss of generality,

we assume that the target S is uniquely localized at a certain

position covered by three anchors. As shown in Fig. 4, we

use P0 to represent the location at time t, where t denotes

the discrete time. Based on this initial target position P0,

we are certain that the next position of target is contained

in the circular region with origin P0 and radius vmax · T . If

the target is heard only by two anchors, the measurement of

time difference of arrival between these two anchors confines

the possible locations of the target within a hyperbola curve.

Therefore, at time (t + 1) we can confine the possible target

locations within a hyperbola branch. As shown in Fig. 4,

the final possible target locations should be located on the

hyperbola segment which is contained in the circular region.

To simplify computation, we choose k discrete points from

the segment as the estimated target positions at time (t + 1).
These discrete points are placed evenly along the segment

with predefined fragment interval lf . The length of fragment

interval lf can be determined based on accuracy requirement.

Its value would not make a significant impact on the tracking

performance, as indicated by our evaluation in the Section VII.
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k

lf

Sample Points Hyperbola Segment 

Fig. 5. Sample points selection.

Fig. 5 illustrates how we predict the position of the target

S at time (t + 2). Clearly, we can conclude that the target

position at time (t + 2) should lie in the k circle regions,

each of which is centered at one possible point at time

(t + 1). With a new TDOA measurement at time (t + 2), the

possible target locations are decayed on the hyperbola segment

contained within the k circular regions. In the same way, we

select several points from the hyperbola segment according

to the fragment length lf , and a new group of possible target

locations at time (t+2) can be obtained. We use edges between

the estimated points at time (t+1) with the estimated points at

time (t+2) as the possible target traces, as long as the distance

between them is smaller than vmax · T . The above operation

will be performed recursively for the subsequent time steps.

P0

Estimated Positions

Actual Locations

Abandoned Points

Fig. 6. All paths before cutting.

Fig. 6 illustrates a recursive seven-step tracking with k = 5
in the first step. A target location is said to be feasible at time

(t+ j), if this location satisfies two constraints: (i) it is on the

hyperbolas branch determined by the TODA measurement at

time (t+ j), and (ii) the distance between this location and at

least one of previous possible locations is less than vmax · T .

In Fig. 6, diamond-shape points are feasible points and star-

shape points are infeasible points. A target path is said to be

feasible at time (t + j) if this path satisfies one condition: all

points along the path up to time (t + j) are feasible points.

P0

Estimated Positions

Actual Locations
Abandoned Points

Possible Positions

Fig. 7. Final possible paths after cutting.

The filtering step is then straightforward. If a point is

located only within infeasible paths, it shall be removed.

Fig. 7 displays the final estimated traces composed of feasible

location points (circle points). We note because our filter

operation is done at the path-level instead of at individual

points, the number of estimated target locations at each step

grows moderately, leading to good tracking performance.

To further investigate the performance of our step-by-step

tracking, Fig. 8 shows simulation results of four tracking cases

with different types of target trajectories. In all these cases,

the target generates signals with same intervals and moves

at random moving speeds. The shaded region indicates the

possible target positions, while the solid square represents the

actual location of the target when it generates signals. From

these four tracking cases and many other cases we studied, we

have the following observation:
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Fig. 8. Illustrations for forward tracking.
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Fig. 9. Illustrations for backward tracking.

Observation 1. During recursive tracking, the number of

estimated target locations at each step doesn’t always increase

significantly. This is because our filter process removes infea-

sible points and all associated infeasible paths.

Besides the above observation, the predicted locations which

are inconsistent with new measurements will be eliminated at

each time step. Let As be the set of all anchors, and A and

B are the two anchors which detect the target. The filtering is

performed based on the below facts:

• The target is simultaneously detected by anchors A and

B. That is, dsa ≤ rmax and dsb ≤ rmax, where dsa and

dsb denote the distances from the target S to anchors A
and B, respectively. If a predicted point can’t satisfy the

above condition, it should be filtered.

• The target isn’t detected by any other anchor except A
and B. ∀ anchor i ∈ {As − {A, B}}, dsi > rmin.

• The target lies on a branch of the hyperbola, which can

be judged based on the sign of the difference (dsa−dsb).

When the target is no longer detected by three or more

anchors after one unique localization, we can get a series of

possible target positions for each time step by the forward

tracking, which can reflect the basic target movement trend.

Moreover, based on the obtained locations a real-time target

trace can be constructed by finding a maximum-likelihood

path, which will be described in the later subsection.

2) Tracking with One or Zero Anchor: Given the set of

possible locations computed in the previous step, we can first

predict that their next positions are contained in several circu-

lar regions with radius vmax ·T . Next we select position points

uniformly from these circular regions. If there is only one

anchor A detecting the target, the elimination of impossible

sample points is based on the below facts:

• The target location is covered by anchor A. Namely,

dsa ≤ rmax. A sample point is invalid if the distance

between it and anchor A is larger than rmax.

• The target isn’t heard by any other anchor except A. That

is to say, ∀ anchor i ∈ {As − {A}}, dsi > rmin. If a

point lies in a circular region whose origin belongs to

{As − {A}} and radius is rmin, it should be removed.

Similarly, the filtering condition is ∀ anchor i ∈ As, dsi >
rmin, when the target can’t be detected by any anchor.

C. Step 2: Backward Tracking

If the target is uniquely localized at end point Pe after

an interval, backward tracking is performed. It starts from

point Pe, and applies the methods used in forward tracking to

estimate the historical target positions. Similarly, we can also

obtain a series of possible target positions for each emitting

during the interval between ts and te. Based on the same

simulation parameters used in the Fig. 8, the corresponding

backward tracking results are displayed in Fig. 9.

In practice, the target often can’t be localized immediately

when it just enters the monitoring area, due to the sparse

anchor deployment in the boundary region. In this case, we

can estimate the previous target locations by the backward

tracking, once it is uniquely localized.

D. Step 3: Bubble Formation

For each emitting of a target, we can obtain two groups of

possible locations by forward and backward tracking. The final

possible target positions should be the common intersection

of two groups. As shown in Fig. 10, the obtained final bubble

regions for four cases are all deflated significantly. And these

bubble regions indeed indicate the target moving trend. Thus,

we have the second interesting observation, which can help us

to decay the uncertainty of target locations further.
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Fig. 10. Illustrations for bubble formation.

Observation 2. Through performing the above three steps,

the region which indicates the possible target locations shrinks

quickly and shapes a bubble when the target arrives at the end

point. The positions in the bubble region which are close to

Ps and Pe have higher certainty than others.

Using the bi-directional bounding algorithm, we can get a

bubble-shaped region that indicates the possible locations of

the target. In next step, we are interested in constructing an

approximate trace by finding a maximum-likelihood path in a

graph, which will be described in the next subsection.

E. Step 4: Trace Identification

Estimated Target Locations

Synthesized Target Locations

Synthesized Target Trace

d

v
m
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(a) Examples for location estimation (b) The computation of arrival probability 
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Given a group of estimated target locations at time t, the

straightforward approach to determine the target position is

using the following formulas:
{

Xt = 1

n

∑n

i=1
xt(i)

Yt = 1

n

∑n

i=1
yt(i)

(3)

where n is the number of the estimated position points at

time t and (xt(i), yt(i)) represents coordinates of the ith point

along a hyperbola branch. Obviously this method leads to low

accuracy. For example, if the target is detected by two anchors,

it should lie on the hyperbola. But the synthesized point may

be far from it, as shown in Fig. 11(a). Second, the distance

between two adjacent synthesized points may be larger than

vmax ·T , which is inconsistent with the maximum target speed

assumption. Thus, instead of estimating the position separately,

we estimate the target trace by finding a maximum-likelihood

path in a graph, which is described in the following.

A graph G can be built based on the estimated positions

between Ps and Pe, as shown in Fig. 11(b). The vertex set

V (G) is composed of all estimated positions, and the edge set

E(G) denotes the possible target movements. The length of

any edge in E(G) is smaller than vmax · T . A point is said

to be in the level-l point set, if it is l steps away from Ps

and we assume there are m levels in total. The target trace

is determined by finding a maximum-likelihood path in the

graph, which is implemented as follows: we first compute the

arrival probability of each vertex, and then define each vertex’s

weight by its tracking error. Finally we find a path from Ps to

Pe in the graph G, which has a minimum accumulated error.

1) Arrival Probability Computation: We compute the ar-

rival probability pl(i) for each point i in the level-l set. The

computation of forward arrival probability starts from the

level-0 point Ps and spreads throughout the graph step by

step. Fig. 11(b) shows an example of the arrival probability

computation process. Initially, the point Ps is uniquely local-

ized and its probability is 100%. Since the target only reaches

three possible locations at next level, the forward probability

of each point in level-1 is calculated as 100%∗ 1

3
. Similarly, the

forward probability of each point in level-2 is calculated based

on its adjacent vertices’ forward probability in level-1. In short,

given the forward probability pl(i) and the outdegree cl(i) for

any point i in level-l, we calculate the forward probability of

point j in level-(l + 1) by the following recursive formula:

pl+1(j) =
k

∑

q=1

pl(vq) ·
1

cl(vq)
(4)

where the number of adjacent vertices in level-l for point j is

k and point vq denotes the adjacent vertex. The forward proba-

bility of each point can be obtained from its adjacent vertices’

probability in last level recursively, with initial known location.

Similarly, as shown in Fig. 11(b), we calculate the backward

probability of each point, which spreads from end point Pe

to start point Ps using the above method. For each vertex in

the graph, we take the average of its forward probability and

backward probability as the final arrival probability .

2) Vertex Weight Definition: In the step, we calculate the

error weight of each vertex in the graph. Refer to the weighted

least squares principle, the weight of vertex can be defined as:

Wl(i) =

n
∑

j=1,j 6=i

pl(j)h(xl(i), yl(i); xl(j), yl(j))
2

(5)

where Wl(i) represents the error weight of point i in level-

l, h(xl(i), yl(i); xl(j), yl(j)) denotes the distance between

points i and j, and n is the number of points in level-l.
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3) Optimal Path Matching: The optimal target trace with

overall maximum likelihood in the graph can be obtained by

choosing a point f(l) from each level, which minimizes the

accumulated vertex weight. Namely,

minimize

m
∑

l=1

Wl(f(l))

subject to f(l) ∈ V (G),

∀l, edge(f(l), f(l + 1)) ∈ E(G)

(6)

Let the accumulated vertex weight of a path in G be the

length of the path, the problem turns into a shortest path

problem, which can be solved by Dijkstra algorithm [24].

Here are two points to be noted. First, before the target

is uniquely localized again, we only compute the forward

probability and find a shortest path from the start point to

current estimated positions for providing a real-time trace.

Second, the target might not be localized immediately when it

enters the boundary region of the monitoring area. In this case,

we compute the backward probability and offer a historical

trace until the target is uniquely localized.

VI. DISCUSSION

A. Hyperbola Determination without Time Synchronization

In the above design, time synchronization is needed among

anchors for constructing the hyperbolic function. Here we

describe an improved solution, which can transform the arrival

time measurements into hyperbolic functions without time

synchronization among anchors.

t a1

tb2

S

dsa dsb
t
b1

(a) Hyperbola determination

 a

BA

(b) Time lines of anchors A and B

S

Clock at A

Clock at B

 a

ta1

tb1 tb2

dsa/c

dsb/c
tab

Fig. 12. Hyperbola determination and time lines.

As shown in Fig. 12(a), given the locations of anchors

A and B, we are going to estimate the location (x, y) of

target S that emits a signal every T seconds. Let dab be

the distance between anchors A and B. Let dsa, dsb be the

unknown distances from S to A and B, respectively. Fig. 12(b)

illustrates the hyperbola function generation scheme: when the

target emits a signal, anchors A and B both record the signal

at their local time ta1 and tb1. Then the anchor A send a signal

to the anchor B after time τa. This signal will reach anchor

B at its local time tb2. Through the analysis of timelines of

anchors A and B, we can obtain the following equation:

dsa

c
+ τa + tab =

dsb

c
+ tb2 − tb1 (7)

Let ∆t = tb2 − tb1 − τa − tab, which gives

∆d = dsa − dsb = (tb2 − tb1 − τa − tab) · c = ∆t · c (8)

The communication between anchors A and B can be wired,

wireless or any other form. And the transmission time tab from

anchor A to B can be easily solved or profiled, since the

locations of A and B are known and fixed. Then a hyperbolic

function can be obtained from Eq.8, whose foci are A and B.

Note τa is measured based on anchor A’s local timer in this

scheme, while tb2 and tb1 are based on anchor B’s local timer.

All anchors measure the arrival time of signals and schedule

their transmissions using a local clock. Therefore, it doesn’t

require time synchronization between the target and anchors.

Also the time synchronization is not needed among anchors.

B. Factors Affecting Tracking Performance

In our design anchors are required to detect signal arrival

time accurately. Unlike the hyperbola curve assumed in pre-

vious design, it is an uncertain hyperbolic area in practice.

The farther away along the asymptotes, the larger absolute

uncertainty in position. However, the time measurement noises

don’t lead to serious performance degradation, because the

uncertainty can be bounded by the detection range of the

anchors and the trace is estimated in an uncertain area instead

of estimating the position separately. One interesting observa-

tion we have for bubble trace is that the actual target speed

can affect the shape of the bubble region. If we significantly

over-estimate the maximum speed, the bubble region becomes

larger, leading to less accurate tracking performance. Our

evaluation has confirm this observation.

VII. EVALUATION AND EXPERIMENT

A. A Whole Simulation Example

This subsection gives an intuitive tracking process through a

simulation example. Detailed performance analysis is provided

in later subsections. Fig. 13(a) displays all possible position

points estimated in the forward tracking process and Fig. 13(b)

shows the final positions after bi-directional bounding. Two

traces are given in Fig. 13(c), which are generated by path

matching and direct connecting, repetitively. It is clear that

the former trace is much more closely around the true one.

B. Simulation Setup

In the simulation, an estimation error at one point in the

trace is defined as the geographic offset between the estimated

position and corresponding true position. The mean tracking

error is defined as average error of points in the trace. We

conduct two types of simulations in which the target emitting

period is one second. In the first scenario where multiple

anchors are deployed randomly and the target may be detected

by zero, one, two or more than three anchors during its

movement, we compare the average errors for four different

methods. In the second scenario, we evaluate the performance

when the target can only be detected by two anchors.

In the first scenario, we vary the following parameters:

• Number of anchors. The number of anchors varies from

50 to 100. And they are randomly distributed in the 10r×
10r rectangular region.
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(a) Positions estimated in forward tracking (b) Positions estimated after bounding (c) Optimal path matching

Fig. 13. Visualized simulation example.
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Fig. 14. Performance evaluation for multiple anchors.

• Degree of irregularity. We use degree of irregularity

(DOI) [25] to denote the signal detection range variation

of anchors, which varies from 0 to 0.3r.

• Speed of target. We adopt the random way point mobility

model [26] for the target. It is one of the most commonly

used mobility models for mobile ad hoc networks. Here

the target’s speed is randomly chosen from [0, vmax].

We compare the performances for the following methods:

• Direct connecting. The target trace is given by directly

connecting points which are localized uniquely.

• Modified centroid. At each step we can obtain a set of

possible positions based on the maximum speed condition

and previous locations. We simply calculate the centroid

for each step and connect them to form a trace.

• Individual estimate. After bi-directional bounding, we

estimate each position separately by Eq.3.

• Path matching. After the bi-directional bounding, the

trace is obtained by finding a maximum-likelihood path.

In second scenario, we mainly study the impact of time

measurement error, hyperbola segment dividing and actual

target speed. In this simulation, two anchors are deployed at

(−30m, 0) and (30m, 0), respectively. The start point and end

point of target are assumed to be known and the maximum

speed of the target is specified as 5m/s.

C. Accuracy

1) Impact of the Number of Anchors: Increasing the number

of anchors makes localization easier, but increases network

and deployment costs. Fig. 14(a) shows the average error

for different tracking algorithms when the number of anchors

varies. The accuracy of both direct connecting and modified

centroid improves as the anchor density increases, since the

target can be detected by more anchors. Path matching al-

gorithm performs adequately even for low anchor densities

and outperforms the other techniques. With 50 anchors, the

estimate error is 0.77r for the direct connecting method, while

the error in the path matching method is reduced to 0.18r.
2) Impact of Irregularity: Unlike the perfect circles, the

reception range of anchors can vary substantially with environ-

mental conditions and antenna irregularities. Fig. 14(b) shows

the impact of DOI on estimate error when 80 anchors are

deployed. The average estimate error of the direct connecting

decreases as DOI increases. This is because the increasing

of DOI enlarges the detection radius of anchors at a certain

extent. Hence the target can be detected by more anchors

with greater chance and then localized uniquely. For other

methods, the number of estimated possible points will increase

drastically with the increasing of detection radius, leading to

the performance degradation.
3) Impact of Maximum Target Speed: Varying target speed

is similar to varying the emitting periods. If transmissions are

more frequent, the tracking is more accurate but computation

overhead increases. Fig. 14(c) shows the impact of target

speed on the error as the maximum speed increases from 0.1r
to 0.8r with 80 deployed anchors. The increased maximum

speed makes the tracking less accurate. That’s because the

next possible locations fall into a larger uncertain region.
4) Impact of Time Detection Error: The impact of TDOA

measurement errors for multiple anchors was extensively stud-

ied, we evaluate their impact with two deployed anchors. The

errors of time measurement ∆t are assumed to be normally

distributed according to N(0, δ2). Fig. 15(a) shows that the

maximum position error depends on the variance of measure-

ments. However, the variance doesn’t have a great influence

on mean tracking errors for path matching algorithm.
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Fig. 15. Performance evaluation for two anchors.

5) Impact of Dividing Hyperbola Segment: In the track-

ing with two anchors, the hyperbola segment is divided for

obtaining the sample points. More division will increase the

computational complexity. However, it doesn’t bring signifi-

cant performance improvement. As shown in Fig. 15(b), the

tracking accuracy is affected slightly by the dividing length.

In this simulation, the hyperbola segment can be divided into

several fragments with the length of 2 m, which has little

accuracy loss and low computation complexity.

6) Impact of Minimum Target Speed: The tracking perfor-

mance is considerably affected by the minimum target speed.

In this simulation, we vary the minimum target speed from

0m/s to 4.8m/s, and the actual target speed is randomly

chosen from [vmin, vmax]. As shown in Fig. 15(c), with

the increasing of the minimum speed, the tracking accuracy

becomes more and more precise. And the estimate errors drop

fast as the minimum target speed increases from 3m/s.

D. Experiment

(a) System evaluation
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Fig. 16. A prototype system.

A simple prototype system of the design is implemented.

A speaker which generates 4.7Khz acoustic signals is used

as the target. And 20 MicaZ nodes which are equipped with

microphones are deployed in (4 × 5) grids. In order to make

the speaker and the nodes lie in the same horizontal plane,

each node is left 8 inches above the ground as shown in

Fig. 16(a). In the prototype system, the locations where the

speaker emits signals form a “⊓” shape trace, in which the

start point and end point are known. And the MicaZ nodes are

responsible for detecting the speaker’s signal and recording

the arrival timestamps. During the speaker’s movement, it

may be detected by more than two nodes. In order to verify

the effectiveness of the proposed design, we only use the

timestamps measured from two nodes which are close to the

speaker. After collecting all the arrival time data, we process

them off-line. Fig. 16(b) illustrates the results where the dotted

line is our estimated trace and the long dashed line denotes

the trace generated by direct connecting method.

VIII. RELATED WORK

A. Location Determination Approaches

Existing localization schemes are mainly categorized into

two classes: range-free and range based. Range-free solutions

like APIT [25], Centroid method [27], DV-HOP [28] don’t

need to measure accurate distances or angles. Instead, seeds or

controlled-event distributions are used for node localization. In

order to remove the impact of holes in the network, a Rendered

Path (REP) technique is proposed for anisotropic sensor net-

works in [29]. Range-based approaches like Received Signal

Strength (RSS) [30], Time of Arrival (TOA) [31], Angle of

Arrival (AOA) [3] assume that nodes can measure the distance

or the relative directions of neighbor nodes. In addition, there

is another localization method also named “TDOA” [32], using

ultrasound and Radio-frequency (RF) signals simultaneously

on the sender. When a receiver records the signal arrival time,

the difference of two timestamps can be used to calculate the

sender-receiver distance.

B. Target Tracking Techniques

Many techniques have been proposed for target tracking so

far [33] [34] [35] [36] [37] [38]. In most tracking approaches

the target is often localized based on trilateration, which

needs dense infrastructure support and incurs heavy cost.

They will suffer from severe performance degradation with the

decreasing number of seeds. The dead reckoning approach es-

timates the current location by adding estimated displacement

to the previous location estimation [39]. Although it is less

dependent on the infrastructure, specialized hardware on target

like accelerometer and digital compass are required, which

limits the practical aspects. Different from previous work, we

provide a tracking framework for an asynchronous network

with insufficient anchor deployments which can provide fair

tracking accuracy.

Another key idea in tracking mobile targets is to include

a dynamic model for predicting the position at the next

time step. The widely used filtering techniques are Bayesian

networks [40] and Kalman filter [41]. However, the model

based methods not only bring about a complex system design,

but also require some maneuver-related assumptions about the

mobile target. In contrast, we impose the maximum target

speed as the only constraint in this work.

778



IX. CONCLUSIONS

This paper presents the work for target tracking under

sparse anchor deployment, which can improve the tracking

accuracy compared to the traditional TDOA method. Without

assumptions of time synchronization among anchors, we first

determine the possible target region by the bi-directional

bounding algorithm and then find a maximum-likelihood path

from a graph. Our simulations and experiment reveal that the

proposed technique can provide fairly accuracy, especially in

the sparse anchor deployment environment.

Nevertheless, many issues still remain to be explored. Our

ongoing work are: (1) study the optimal anchor placement

problem, since the error is related to the anchor placement;

(2) integrate the bubble generation step with the formation of

particle filters to provide a predictable performance; (3) extend

the proposed algorithm with multiple targets tracking, and see

if we can find some new methods for joint targets tracking.
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