Towards Fine-Grained Access Control in JavaScript Contexts

Kailas Patil, Xinshu Dong, Xiaolei Li, Zhenkai Liang

School of Computing
National University of Singapore

Abstract—A typical Web 2.0 application usually includes
JavaScript from various sources with different trust. It is
critical to properly regulate JavaScript’s access to web
application resources. Unfortunately, existing protection
mechanisms in web browsers do not provide enough gran-
ularity in JavaScript access control. Specifically, existing
solutions partially mitigate this sort of threat by only
providing access control for certain types of JavaScript
objects, or by unnecessarily restricting the functionality
of untrusted JavaScript. In this paper, we systematically
analyze the complete access control requirements in a
web browser’s JavaScript environment and identify the
fundamental lack of fine-grained JavaScript access control
mechanisms in modern web browsers. As our solution, we
propose a reference monitor called JCShadow that enables
fine-grained access control in JavaScript contexts without
unnecessarily restricting the functionality of JavaScript. We
have developed a proof-of-concept prototype in the Mozilla
Firefox browser and the evaluation with real-world attacks
indicates that JCShadow effectively prevents such attacks
with low performance overhead.

I. INTRODUCTION

JavaScript is one of the most important components on
the web platform. It enables a new generation of dynamic
and interactive web applications, which commonly use
JavaScript from various sources, such as third-party
JavaScript libraries. Some of these third-party scripts
are untrusted and can become malicious. To ensure web
application security, it is critical to properly regulate
accesses by JavaScript to web application resources. Web
browsers control the accesses made by JavaScript using
the same-origin policy (SOP) [30]. In SOP, an origin is
defined as the triplet of protocol type, host, and port.
SOP allows a piece of JavaScript to access an object
only if the JavaScript and the object are from the same
origin. Under SOP, loading untrusted JavaScript, such as
JavaScript libraries and advertisement scripts, opens up
the resources of the whole origin to the script. This is
the root of a series of attacks.

To better understand the attacks and existing solu-
tions, we need to understand the environment in which
JavaScript is executed. A typical JavaScript environment
includes three components: the JavaScript engine, the
JavaScript context, and the host objects. The JavaScript
engine executes JavaScript; The JavaScript context con-
tains the objects defined by the JavaScript standard
and the objects created in JavaScript code; the host
objects are supplied by the hosting environment, such

Xuxian Jiang
Department of Computer Science
North Carolina State University

as the Document Object Model (DOM) [37] in web
browsers. Under SOP, scripts from the same origin share
a JavaScript context and host objects.

A common solution for protecting web applications
against a malicious JavaScript component is to host it
on a separate domain and isolate it in an iFrame in
the web application. In this way, JavaScript in the third-
party component is automatically isolated by browser’s
same-origin policy. However, the third-party component
often needs to access host objects to obtain information
from other parts of the web application. To address this
problem, one type of solutions is to restrict the access
from untrusted JavaScript [3], [15], [24], [28], [29],
but they unnecessarily impede existing web applications
that require a rich set of JavaScript features. For less
restriction on JavaScript functionality, another type of
approaches [18], [25] develops access control mecha-
nisms to regulate the access to host objects. However,
the access control to the objects in a JavaScript context
is still not regulated.

In this paper, we systematically analyze the complete
access control requirements in the JavaScript environ-
ment, and identify the fundamental lack of fine-grained
JavaScript access control mechanisms in modern web
browsers. More specifically, existing access control solu-
tions in the JavaScript context are still too coarse-grained
and are insufficient to mitigate the threats from third-
party JavaScript. The overly restrictive policy that blocks
a certain JavaScript feature affects normal functionality
of legitimate web applications. For example, JavaScript
allows functions to be overridden during execution,
which is commonly used in web application toolkits to
smooth out browser differences or fix browser bugs [39].
On the other hand, this very feature is being exploited
by attackers to change the behavior of trusted JavaScript
where it should be blocked. When one native object
is overridden by a malicious script, all other scripts
accessing that object in the same JavaScript context
may be compromised [2], [6], [32]. Therefore, instead
of imposing an all-or-none restriction, the JavaScript
context needs a fine-grained access control mechanism
to accommodate both security and functionality.

As our solution, we present JCShadow, a reference
monitor that provides the desired fine-grained access
control mechanism for JavaScript context protection. In
essence, JCShadow partitions JavaScript objects in a

JavaScript context into multiple groups, and confines
each group using a shadow JavaScript context. With
the presence of a (shadow) context for each group,
we can efficiently isolate one group from another and
effectively regulate cross-group accesses with a security
policy so that untrusted JavaScript can execute poten-
tially dangerous JavaScript features without affecting
trusted JavaScript from the same origin.

We have implemented a proof-of-concept JCShadow
by extending the JavaScript engine of Mozilla Firefox.
Our evaluation with real-world example attacks indi-
cates that JCShadow can effectively block malicious
JavaScript code from compromising benign JavaScript
from the same origin. The capability of performing fine-
grained access control on JavaScript objects is achieved
with a low performance overhead. Moreover, our ex-
perience indicates that our solution is not limited to
web browsers. Instead, it can be generally applicable
to a variety of JavaScript environments that integrate
JavaScript from different sources, such as bookmarklet-
based tools and Firefox extensions.

To summarize, our paper makes the following contri-
butions:

« We systematically analyzed the access control prob-
lem of a JavaScript environment and identified the
common weakness of existing solutions in handling
untrusted JavaScript, i.e., the lack of fine-grained
access control mechanism for JavaScript context
protection.

o We presented a novel solution called JCShadow. By
effectively dividing JavaScript objects into different
groups and providing each group with its own
shadow context, JCShadow enables fine-grained ac-
cess control in a JavaScript context.

+ We demonstrated the effectiveness and practicality
of our approach by implementing a JCShadow
prototype in Mozilla Firefox 3.5. The evaluation
with a number of example attacks confirmed its
effectiveness and practicality.

The rest of this paper is organized as follows. Section
IT discusses the problem and existing research work,
and illustrates the attack threat with an example. Next,
Section III explains the detailed design of JCShadow
and Section IV presents key implementation details in
our Mozilla Firefox-based prototype. After that, Section
V reports our evaluation results and Section VI examines
possible limitations and suggests ways for improvement.
Finally, Section VII covers the related work and Section
VIII concludes this paper.

II. BACKGROUND

In this section, we first introduce the JavaScript
environment and classify existing research work that

JavaScript Environment

JavaScript Engine

| JS Execution Module |
==

o
JavaScript Contexts
Objects J | Objects
J

= —

Ve

e : ™
Host Objects
Document
Object Model XMLH;EﬂEequest TR
(DOM) (XHR)
J
Fig. 1. Components in a JavaScript Environment.

provides access control in the JavaScript environment.
We then present a motivating attack example.

A. Access Control in the JavaScript Environment

Figure 1 illustrates the components of a JavaScript
environment. JavaScript runs in the execution module of
the JavaScript engine, which has access to the JavaScript
context and the host objects [14]. The JavaScript context
contains two types of objects, native objects and custom
objects. Native objects (a.k.a., built-in objects) are de-
fined by the JavaScript standard, such as Date, String,
and etc. Custom objects are defined by JavaScript code,
including variables and functions. Host objects are ob-
jects provided by the hosting application (for example,
the web browser) of the JavaScript engine for accessing
peripheral resources outside the JavaScript engine, for
example, DOM and network services. Therefore, for
each origin, browsers create a JavaScript context and
a set of host objects under the same-origin policy.
JavaScript in one JavaScript context can access all ob-
jects in the same context, as well as those host objects
from the same origin, but it is not allowed to access
objects from other origins. Therefore, the access control
in the JavaScript environment is on an all-or-none basis.

To address the lack of granularity in the JavaScript
environment, researchers have proposed a number of
systems. According to the way these systems handle
various components in the JavaScript environment, we
categorize them as follows:

e To prevent malicious JavaScript from accessing
objects from an origin, a few projects recog-
nize unwanted JavaScript and exclude it from the
JavaScript environment [4], [13], [19], [22], [26],
[31], [34]-[36].

o Another group of research work allows third-party
JavaScript to be included in a JavaScript environ-
ment, but the functionality of third-party JavaScript
is restricted [3], [10], [15], [29].

\

Context Integrator

Security
< Policy

JavaScript Environment I e
(JavaScript Engine
| JS Execution Module |
e T
i JCShadow ;
L AR S T
= —
(Host Objects
Document
[Object Model {XM'-F&%F’%quest}.. |]
(DOM) .
1 —mim =
Fig. 2.

e Other work provides fine-grained access control to
host objects [18], [25].

Complete mediation to object accesses in a JavaScript
environment involves fine-grained access control in both
JavaScript context and host objects. However, none of
existing approaches provides fine-grained access control
in the JavaScript context.

B. Attack Example

We use an example to demonstrate the weakness
caused by the coarse-grained access control in the
JavaScript context.

<script
src='"http://untrusted.com/ulib. js’ >
</script>
<script>
result = function_in_ulib();
if (location.href.toString()
== "http://public.com") {...}

</script>
Fig. 3. An example of using a JavaScript library in web applications.

Third-party JavaScript libraries are commonly used
in web applications. Figure 3 is an example of using
JavaScript library in a web application, which shows
scripts on a web page from http://public.com.
It uses a JavaScript library ulib.js hosted on
untrusted.com. On the page, there is another piece
of JavaScript, which calls function_in_ulib in the
JavaScript library ulib.js. This piece of JavaScript
is shared among several pages and behaves differ-
ently on different pages. It checks its location through
location.href.toString().

According to the same-origin policy, the library
ulib.js runs in the origin of the web page on
public.com. Therefore, the script can access all re-
sources of the page. The threat from the untrusted

Shadow

Context 1

Shadow
Context 2

Shadow

Context N

JCShadow,

Overview of JCShadow. It extends the JavaScript engine to support shadow JavaScript contexts.

JavaScript can be partially mitigated by existing so-
lutions to provide fine-grained access control to host
objects. For example, it can disallow the untrusted
script to modify the body of the web page. However,
in practice, without fine-grained access control to the
JavaScript context, either the JavaScript library is iso-
lated from other scripts on the page, which breaks the
page functionality, or full access to the JavaScript context
is allowed, which is vulnerable to the following attack
through the JavaScript context.

If the access to JavaScript context is fully allowed,
code in the untrusted JavaScript library ulib.js can
override the native toString function of the String
object with its own function:

String.prototype.toString=function () {
// code to add the malicious AD content

}

When the calls the
location.href.toString() function to
retrieve the location of the web page, its call to
location.href.toString() is answered by the
function defined by the untrusted JavaScript library,
which for example, can add malicious contents to the
page. In this way, attackers can bypass the access
control to host objects and breaks the integrity of web
applications.

trusted script

III. OUR APPROACH

The goal of JCShadow is fo provide fine-grained
access control in JavaScript contexts. To achieve this
goal, JCShadow mediates all accesses to objects in the
JavaScript context, and prevents malicious JavaScript
from affecting the integrity of other JavaScript running
in the same JavaScript environment. We stress that JC-
Shadow’s goal is to provide access control to objects in
JavaScript contexts. It complements other solutions [18],
[25] that develop fine-grained access control to host
objects of a JavaScript environment.

Web Page JavaScript Library

String.prototype String.prototype
.toString() .toString()

Web Page

JavaScript Library

String.prototype
.toString()

String.prototype
.toString()

(" i JavaScript Engine / N\ | (

______ = O S

| JS Execution Module |

T

I e

1 v

1 .

1

1
T .
i

Original JavaScript Context
for both Web Page and JavaScript Library

1

< - !
String.prototype !
.toString() !

1

1

i

1

Shadow Context for

)\ o——7 ... _——=——7 JCShado w;)

. ‘I
Context Integrator H— ssgll: cn;y i

String.prototype
.toString()

Shadow Context for
JavaScript Library

JCShadow

Web Page

Without JCShadow

Fig. 4.

A. Overview of JCShadow

Figure 2 shows the design of JCShadow. It extends
the JavaScript engine to mediate accesses to objects in
the JavaScript context. Rather than simply allowing or
denying access to JavaScript objects, JCShadow creates
shadow contexts to support less restricted JavaScript
functionality. A shadow context is an isolated copy of
the JavaScript context, which is associated to selected
JavaScript in the JavaScript environment. The context
integrator integrates shadow contexts according to user-
specified security policies and presents a single view of
JavaScript context to JavaScript in the execution module.
It intercepts access to the JavaScript context, and decides
which shadow context should be accessed. By default,
JavaScript associated with one shadow context is only
allowed to access objects in its own shadow context.
A permissive security policy would allow JavaScript
to have regulated access to objects in other shadow
contexts.

JCShadow divides JavaScript running in a JavaScript
environment into groups and assigns each group
a shadow context. Users or developers can group
JavaScript by the trust they have toward the sources of
JavaScript. For example, mashup web sites may have
gadgets from long-term collaborator domains in one
group, and other newly included gadgets in another,
or they can put gadgets from each different domain in
a separate group to prevent them from affecting one
another.

B. Shadow JavaScript Contexts

Stemming from ECMAScript [14], JavaScript code is
executed in execution contexts. In browsers, a unique
JavaScript context is typically assigned for each web
page, including those embedded in iFrames, to prevent
scripts of different web pages from affecting each other.

With JCShadow

Illustration of the scenario when an included JavaScript library attempts to override the t oSt ring function.

Each JavaScript context contains custom and native
objects, and it also provides interfaces to host objects
provided by the hosting application, such as DOM
objects and XMLHttpRequest.

JavaScript contexts are isolated from each other to
enforce the all-or-none same-origin policy: JavaScript
code running in one context is unable to access objects
defined in other contexts; However, once a piece of
JavaScript is allowed to execute in a context, it has
full control of all objects in that context. To provide
finer granularity of access control to JavaScript contexts,
JCShadow creates shadow contexts to further isolate
JavaScript in the same JavaScript context.

Each shadow context is conceptually a dedicated sub-
set of the original JavaScript context with all of the ob-
jects created or updated in the corresponding JavaScript
group. As a result, objects in the original JavaScript
context are now separated into different shadow contexts
according to the way JavaScript is grouped. Native
objects accessible in the original JavaScript context
are provided for each derived shadow context. Custom
objects created by the JavaScript are created only in the
shadow context of the JavaScript to which it belongs.

Figure 4 illustrates the idea of shadow contexts using
the JavaScript library attack example described in Sec-
tion II. The attack scenario is illustrated on the left hand
side. Without JCShadow, the untrusted JavaScript library
and the web page share the same JavaScript context, and
thus the JavaScript on the web page can be affected
by the JavaScript library. The result of JCShadow is
illustrated on the right hand side of Figure 4. JCShadow
creates separate JavaScript shadow contexts for the
trusted JavaScript in the web page and the untrusted
JavaScript library. When the toString native function
of the string object is modified by the JavaScript
library by overwriting it with the custom function say,

foo. A new toString function object is created in the
library’s shadow context, which is assigned to the foo
function. To the trusted JavaScript on the web page,
the toString native function object referred to remains
unchanged. Note that our solution allows JavaScript
to override functions, but the overridden toString
function is only visible to JavaScript in its own shadow
context. Later, when the trusted JavaScript invokes the
location.href.toString () function, the context in-
tegrator redirects the invocation to the original function
that would return http://public.com. Therefore, JC-
Shadow prevents the execution of trusted JavaScript from
being affected by the malicious behavior of the untrusted
JavaScript library.

Isolating JavaScript execution in shadow contexts.
The main challenge in achieving JCShadow’s confine-
ment is from the dynamic behaviors of JavaScript.
JavaScript can create new custom objects or redefine
existing native or custom objects during its execution.
JCShadow should confine objects inside the correspond-
ing shadow context to prevent breaches.

New JavaScript objects can be created indirectly, for
instance, by generating a new <script> element on
the web page through the DOM interfaces, or adding
a new onclick event handler to an existing element.
JCShadow needs to track these new scripts and associate
them to the corresponding shadow contexts where they
are created; otherwise, untrusted JavaScript would easily
escalate its privilege by injecting code into a shadow
context with higher privilege via DOM interfaces. JC-
Shadow monitors DOM element creation and attribute
addition that introduce new JavaScript, and associates
the newly added JavaScript to the shadow contexts of
their creator JavaScript. JavaScript can also dynamically
redefine native or custom objects. JCShadow handles
object redefinition in a similar way as object creation.

C. Context Integrator and Security Policies

JCShadow provides a framework for fine-grained ac-
cess control in the JavaScript context. After intercepting
the access to JavaScript objects, JCShadow passes the
access to the context integrator, which in turn integrates
shadow contexts to serve the request. In this way,
JCShadow supports controlled object sharing between
shadow contexts, a unique feature that enables less
restrictive JavaScript confinement.

As a reference monitor, JCShadow mediates all types
of accesses to objects in a JavaScript context, namely,
read, write, and invoke operations. The read operation
is to read a value or a property of an object. The write
operation is to create a new object, to assign a value to an
existing object, or to define or redefine a function object.
The invoke operation is to invoke a JavaScript function.
Note that parameter passing in function invocations also

Access Source | Dest. Action
Type Trust Trust

Read, Invoke Low High Disallow
Read High Low Allow
Invoke High Low Degrade trust
Write Low High | Allow-In-Isolation
Write High Low Allow

TABLE I

SECURITY POLICY 2 FOR HOST AND CUSTOM OBJECTS

results in read operations.

If the requested object exists in the requester’s own
shadow context, the context integrator directly allows the
access. Otherwise, the context integrator uses security
policies to choose objects in the shadow contexts. An
access request is in the form of <Source, Destination,
AccessType>. The security policy specifies actions for
the access based on the properties of the elements in
the request. For example, when JavaScript in a shadow
context ¢ requests an access to a custom object o defined
in another shadow contexts 4’, the context integrator can
abort the access, create a new object in the shadow
context ¢, or allow the access to o.

Next, we present sample security policies to demon-
strate how JCShadow prevents different attacks. These
security policies focus on protecting the execution in-
tegrity of trusted JavaScript against various threat sce-
narios and separating the code privilege according to
shadow contexts.

1) Sample security policy 1, Horizontal isolation:
When multiple JavaScript libraries are included into the
same web page, they may cause conflicts to each other if
they override JavaScript objects shared by other scripts
on the page. With this policy, JCShadow ensures that the
scripts cannot interfere with one another.

Under this policy, JCShadow allocates a shadow con-
text to each JavaScript library. When the JavaScript
in one shadow context attempts to add new properties
to native or custom JavaScript objects or to override
certain objects, the modification occurs locally in its
own shadow context and is not visible to other shadow
contexts.

Therefore, each script running in one shadow context
uses its own native and custom objects. This security pol-
icy isolates the execution of different JavaScript libraries
and does not allow any sharing of native or custom
JavaScript objects between them.

2) Sample security policy 2, Ring-based access con-
trol in JavaScript context: ESCUDO [18] uses a ring-
based access control framework to regulate accesses to
host objects. By default, all scripts in one web page run
in the same JavaScript context and have access to all
host objects of that page. To prevent untrusted JavaScript
included in a web page from arbitrarily accessing the
host objects, ESCUDO [18] divides the web page into
rings according to the trust levels on page elements.

JavaScript in one region can only access regions with
higher ring numbers, i.e., lower trust. ESCUDO provides
fine-grained access control to host objects. This security
policy of JCShadow complements ESCUDO to provide
similar fine-grained access control to the JavaScript
context.

The policy is shown in Table I. The JavaScript on
a web page is assigned to rings based on its trustwor-
thiness. The policy decides the action by the type of
operation, the trust of the source JavaScript, and the
trust of the destination object. Generally speaking, this
policy only allows JavaScript with higher trust to access
objects with lower trust. JavaScript with lower trust is
not allowed to read objects with higher trust or invoke
functions with higher trust. However, if the JavaScript
with lower trust overwrites objects with higher trust,
JCShadow allows the write operation in the JavaScript’s
own shadow context (“allow-in-isolation”). Read and
write operations from scripts with higher trust to ob-
jects with lower trust are allowed. We need special
treatment for invoking lower trust functions. To pre-
vent lower trust function from accessing the JavaScript
context with higher trust, the invoked function will run
with temporarily degraded trust, i.e., in the functions
own shadow JavaScript context. The parameters to the
function will be explicitly copied into the function’s
shadow context. By allowing function invocations with
degraded privilege, it allows legitimate use cases in
the mashup scenario where JavaScript with higher trust
may need to invoke the function of lower trust. For
example, the integrator (i.e. hosting web page) may
invoke the function of a third-party gadget integrated in
the web page to initialize it. With privilege degradation
for function invocations, this security policy supports
legitimate functionality.

With this policy, JavaScript with lower trust is not
allowed to modify the functions defined in JavaScript
with higher trust. Unless JavaScript with higher trust
intentionally reads lower trust data and turns them into
code via eval, etc., this policy guarantees the integrity
of JavaScript with higher trust and enforces the ring-
based policy as well. For this reason, this security policy
currently disallows eval.

IV. IMPLEMENTATION

We implemented JCShadow in the Mozilla Firefox
version 3.5 by extending its JavaScript engine Trace-
Monkey. In TraceMonkey, JSRuntime is the top-level
object that represents an instance of the JavaScript en-
gine. The JavaScript context, JSContext, is a child of
JSRuntime. In Firefox, JavaScript from the same origin
runs in an instance of JSContext. JSContext contains
a global object, which holds pointers to all variables and
functions that are available to the JavaScript code.

For example, the toLowercase () function is a prop-
erty of the st ring class, which is in turn the property of
the global object. As a script runs within a JSContext,
all the newly created global functions and variables
will be added as properties of the global object of that
JSContext.

A. Extending TraceMonkey

JCShadow extends TraceMonkey with three main
components: assigning shadow contexts to JavaScript,
tracking JavaScript in shadow context, and enforcing the
access control policy. JCShadow relies on web applica-
tion developers to divide the web page into regions and
assign each region with a shadow context ID. JCShadow
keeps track of the JavaScript shadow context ID of the
script running in JavaScript engine and uses it to enforce
policies. JavaScript interpreter in TraceMonkey has 234
different bytecode for JavaScript operation, for example,
bytecode JSOP_DEFFUN for function object creation
and bytecode JSOP_DEFVAR for variable creation. JC-
Shadow intercepts accesses to objects in TraceMonkey’s
interpreter by intercepting object creation, function invo-
cation, and object property setter/getter operations.

JCShadow marks it with the shadow context ID of the
JavaScript when an object is created by JavaScript. It
also intercepts the object property setter and getter
functions. In Firefox, all global functions and variables
are properties of the global object. If a script modifies
an object, it actually modifies the property of the ob-
ject’s parent object, which will eventually trigger the
set property operation in the JavaScript engine. In the
property setter, if the operation is to modify an object
that belongs to a different shadow context, the context
integrator consults security policies to decide the ap-
propriate operation. In the property getter, JCShadow
consults security polices when JavaScript attempts to get
the value of an object. JCShadow also instruments the
function invocation in the JavaScript engine. Function
invocations are handled in a similar way as the object
property getter by the context integrator.

B. Dynamic Script Introduction

Assigning the correct shadow context IDs to dy-
namically generated JavaScript is critical in JCShadow.
Otherwise, JavaScript web pages may easily esca-
late their privilege by injecting code into DOM ele-
ments. Hence, JCShadow assigns dynamically generated
JavaScript the shadow context ID of the script that
creates it. In practice, third-party JavaScript makes use
of DOM interface functions such as setAttribute,
createElement, etc. to attach a piece of JavaScript
code into an HTML element event handlers (for example,
) or to create new
script element dynamically.

We implement attribution to the original JavaScript by
simulating the call stack functionality. We intercept the
JavaScript engine before it invokes DOM functions, and
record the current shadow context ID. After the DOM
function call returns, the shadow context ID is cleared.
We also intercept functions that may bring in new
JavaScript, and checks whether the JavaScript shadow
context ID is set. If so, and if the DOM function is a
call from user JavaScript, we assign the newly generated
JavaScript with the shadow context ID stored.

C. Configuration Files of Shadow Contexts and Security
Policies

JCShadow uses XML-based configuration files to
specify the grouping of JavaScript on web pages, assign
shadow context IDs to them, and specify security poli-
cies. We also implemented a GUI tool that is integrated
into Firefox preferences dialog to help users to specify
configurations. The configuration files can also be spec-
ified by web developers. In contrast to using markups
in a web page, the external configuration files make it
flexible to adapt the context ID assignment to JavaScript
environments beyond web applications, such as Firefox
extensions.

V. EVALUATION

We evaluated JCShadow with real-world examples to
ensure that it is able to protect JavaScript context. We
also measured the runtime overhead of JCShadow, and
tested its compatibility with real-world websites. Our
experiments were performed on a computer with an Intel
Core 2 Duo 2.33GHz and 4GB RAM, running Ubuntu
9.10.

A. Effectiveness

We tested JCShadow using a web mashup example, as
well as attacks to bookmarklets where native JavaScript
functions were overwritten by malicious web pages.

Bookmarklet Attack: A bookmarklet is a piece
of JavaScript saved as a bookmark entry in the
browser’s bookmark menu. When activated by a user
click, the JavaScript code in the bookmarklet executes
in the JavaScript context of the current web page.
MashedLife [1] is a bookmarklet-based password man-
ager, providing an online password management service
that helps users remember passwords of web sites. Users
need to first store their passwords on the MashedLife’s
server. If they want to log into some web site, say
www.example.com, they invoke MashedLife’s book-
marklet, whose JavaScript retrieves the password stored
in MashedLife’s server and fills in the log-in information
to the web page.

More specifically, MashedLife’s bookmarklet first
checks the current web page’s location by calling

the JavaScript function location.href.toString ().
The location is used to construct a request for a piece of
external JavaScript from the MashedLife server, which
fills the user’s log-in information (user name and pass-
word) encoded in the script.

An attack on the bookmarklet has been reported in
Adida et al. [2]. In the attack, a malicious web page
at http://www.malicious.com overrides the native
tostring function of the String object with its own
function:

String.prototype.toString = function() {
return "https://www.example.com";

}

When MashedLife’s bookmarklet checks the
location of the malicious page, its call to
location.href.toString() is answered by the
function defined on the malicious page, which

returns https://www.example.com instead of the
actual location http://www.malicious.com. The
bookmarklet then retrieves the user’s password of
example.com and fill it into the malicious page, which
is accessible by the attacker.

With JCShadow enabled, using the security policy 2,
the web page and bookmarklet ran in different shadow
contexts, say WpC and BMC respectively. We assign higher
trust to the JavaScript in the bookmarklet’s shadow
context. Scripts on the web page are allowed to override
native JavaScript functions in the shadow context wWpcC.
Specifically, the web page script with a shadow con-
text ID of wpc, was allowed to replace the toString
function object with its custom function in wpc. When
bookmarklet invoked toString function to retrieve the
location string of the web page, JCShadow intercepted
the function invocation. Because the call was made
from the more trusted BMC, JCShadow invoked native
function object provided by JavaScript environment to
BMC.

Similarly we used this security policy to successfully
prevent malicious web mashup attack described in Sec-
tion II.

B. Compatibility

To evaluate the compatibility of our sample policies,
we tested JCShadow on 25 top web sites listed by
Alexa [8] with our security policies. We locally cached
the copies of these websites and assigned different
shadow context IDs for web page scripts and third-party
JavaScript libraries. We whitelisted content distribution
networks (CDN) and sub-domains of web sites to run
scripts from sub-domain and CDN in the same shadow
context with the original web sites.

The security policy 1 is compatible with 16 websites
out of 25 web sites evaluated. The broken function-
ality was because these web pages have interactions

Unmodified Time With Time With JCShadow Web Sandbox
Operation Browser JCShadow Web Sandbox Overhead Overhead
(ms) (ms) (ms) (%) (%)
Function Invocation 8.4808 11.0522 95.153 30.32% 1021.99%
Get Object Member 5.4962 79173 94.6788 44.05% 1622.62%
Set Object Member 7.128 10.0705 95.1626 41.28% 1235.05%
Invoke Object Member | 9.3994 12.6262 95.488 34.32% 915.9%
TABLE 11

PERFORMANCE OF OUR SOLUTION FOR BASIC OPERATIONS. TIME IN FIRST THREE COLUMNS ABOVE IS MEASURED IN MILLISEC.

between scripts on the page and scripts in the libraries.
For example, Google Analytics was included into web
applications in the forms of both inline page JavaScript
and external JavaScript. As a policy supporting sharing
across shadow JavaScript contexts, the security policy 2
of the JCShadow is compatible with 19 of the 25 web
sites in our experiments. In this test, we assigned scripts
from the web page with high trust, and assigned third-
party scripts with low trust. The broken functionality
is caused by the use of eval, which was disabled
by security policy 2. Eval were used to deobfuscate
JavaScript. If eval is permitted for this usage, the
sample security policy 2 was compatible with all 25
web sites. We discuss this limitation and its solution in
Section VL.

C. Performance Overhead

Overhead incurred on real-world web sites. We mea-
sured the performance overhead of JCShadow on the
25 different web sites top-listed by Alexa. We locally
cached the copies of these websites and assigned shadow
context IDs for third-party scripts. In the JavaScript
engine we measured the total time taken by the execution
of all JavaScript in a web page (averaged on five runs).
We noted that the overhead ranged from 0.44% to
13.45%, averaged at 3.65%.

JavaScript Runtime Overhead. JCShadow performs
access control check on objects in the JavaScript engine.
We measured the performance overhead incurred by
JCShadow in JavaScript engine with basic operation tests
and industry-standard benchmarks.

a) Basic Operation Overhead: In JCShadow, we
interposed on object property getter and setter func-
tions, as well as function object creation and invoca-
tion points in the JavaScript engine. In the experiment,
we measured the performance overhead incurred by
these basic operations. Table II shows the performance
overhead (average computed on five runs) for basic
operations against user-defined objects used in a loop
for 10,000 iterations. We did this experiment to estimate
the worst-case overhead of JCShadow and compared it
with the translation-based WebSandbox [15]. JCShadow
has a much lower overhead of 30 to 40 percent, while
WebSandbox’s overhead ranges from 900 to 1600 per-
cent.

Benchmark Original JCShadow | % Overhead
Name Browser (runs/sec)
(runs/sec)
Dromaeo 9.386 9.06 3.60%
SunSpider 15.938 15.15 5.20%
V8 Test Suite 2.496 2.358 5.85%
TABLE III

OVERHEAD INCURRED BY JCSHADOW ON INDUSTRY-STANDARD
JAVASCRIPT BENCHMARK

b) JavaScript Industry Standard Benchmark: We
also measured the overhead of JCShadow on industry-
standard benchmarks. Table III shows the results. On the
Mozilla Dromaeo JavaScript benchmark, we observed a
3.60% performance overhead; On SunSpider JavaScript
benchmark, we observed a 5.20% performance overhead;
And on V8-test suite, we observed a 5.85% slowdown.
As these numbers indicate, JCShadow incurs low per-
formance overhead on industry-standard benchmarks.
The current prototype of JCShadow uses a suboptimal
search operation when searching for variables in shadow
contexts, which has room for further improvement.

VI. LIMITATION AND DISCUSSION

Native-code JavaScript Engines. The TraceMonkey
JavaScript engine in Firefox 3.5 compiles JavaScript
code into bytecode, and interprets the bytecode. It also
has a JIT feature that compiles JavaScript code into
binary code to speed up JavaScript execution. Specif-
ically, each time the interpreter interprets a backward-
jump bytecode, TraceMonkey notes the number of times
the jump target has been used. This number is called the
hit count. It the hit count reaches the threshold, it is con-
sidered hot. TraceMonkey prepares traces for hot code
and compiles it into native code. The native code of the
traces needs to call JavaScript engine C/C++ functions to
read and write to JSObject in the TraceMonkey’s heap.
However, in TraceMonkey tracing is enabled only for
basic operations such as arithmetic operations. Advanced
features, such as getters and setters, are not traced.
Therefore, JCShadow is not affected by the JIT feature in
TraceMonkey. The JavaScriptCore JavaScript engine in
WebKit and the V8 JavaScript engine in Google Chrome
compile JavaScript directly into native code to speed
up JavaScript execution. Our next step is to extend JC-
Shadow to compilation-based JavaScript engines through
binary rewriting or compiler instrumentation.

Supporting eval via Information Flow Tracking. The
current implementation of JCShadow cannot determine
whether the parameter to eval is affected by informa-
tion from low-trust objects. Information flow tracking
techniques, such as in SIF [7], are needed to achieve
better accuracy. With such improved information flow
tracking ability, JCShadow will support eval. We leave
it as the future work.

VII. RELATED WORK

Access control in JavaScript environment. The re-
search work closely related to JCShadow is the ap-
proaches that improve access control granularity in the
JavaScript environment. ESCUDO [18] develops a new
web application protection model providing mandatory
access control. It enables fine-grained access control to
the JavaScript host objects in web applications. Louw et
al. [25] provide a policy enforcement framework for the
JavaScript in Firefox extensions. It controls extensions’
access to XPCOM services, network services, browser’s
password manager, etc. These two approaches provide
fine-grained access control to the host objects of their
JavaScript environment. In contrast, JCShadow develops
fine-grained access control to the JavaScript context,
which can be combined with the above two approaches
to completely mediate accesses in a JavaScript environ-
ment.

Object Views [27] creates object proxies, called views,
to support sharing in a browser JavaScript environment.
This approach selects objects to form a view, and uses an
aspect system to support fine-grained sharing. Compared
to JCShadow, the advantage of Object Views is the
support of secure cross-origin sharing, while JCShadow
has the flexibility of integrating multiple shadow contexts
within the sample origin. CONSCRIPT [28] introduces
fine-grained access control to JavaScript by an aspect-
oriented approach. It allows security advice to be exe-
cuted before a JavaScript function is called or before
a piece of JavaScript is executed. The granularity of
access control in CONSCRIPT is at the whole-script and
function level, compared to JCShadow’s access control
to each JavaScript object access. JCShadow’s also allows
less restrictive policy through the ‘“allow-in-isolation”
action. Phung et al. [33] associate aspects with JavaScript
through JavaScript function wrapping, but it is not suited
to be used in a hostile environment.

JavaScript Subset Various object-capability solutions
exist that try to restrict the excessive power of the
JavaScript language with a safe subset of the original
language. ADsafe [3] is a static verifier that removes
unsafe JavaScript features such as global variables, this
pointer, and eval. Caja [12] dynamically translates a
web application, perform static analysis to verify security
properties, and adds runtime checks. Web Sandbox [15]

uses dynamic translation to run untrusted JavaScript
code in the virtual machine that provides an isolated
environment. The virtual machine interacts with the
JavaScript and DOM modules of the browser, and uses
the policy rules to mediate runtime checks. FBJS [10]
creates a separate virtual scope for every application
running in Facebook. These solutions aim at preventing
embedded third-party malicious JavaScripts from com-
promising other portions of web applications. In contrast,
JCShadow provides less restrictive environments to ex-
ecute untrusted JavaScript.

Untrusted JavaScript Prevention and Isolation Cross-
site scripting (XSS) attack prevention has been ex-
tensively researched [4], [13], [19], [22], [26], [31],
[34]-[36]. However, due to the lack of access control
granularity in existing JavaScript context, these solutions
aim to prevent malicious JavaScript from being executed
in the web application.

AdJail [24] isolates web advertisements using iFrames
and builds a communication channel to pass around
interactions between the isolated advertisement and the
hosting page. AdJail focuses controlling the access to
host objects, and completely isolates the access to cus-
tom objects between the isolated advertisement and the
rest of the web page. Finifter et al. [11] propose a safe
JavaScript subset that whitelist known-safe properties by
separating the JavaScript namespaces used by different
parties, which completely isolate untrusted JavaScript
into different JavaScript contexts. Barth et al. [5] create
“isolated worlds” for DOM objects to isolate access to
DOM from different browser extensions.

Compared to this line of work, JCShadow aims to

improve the control granularity inside a JavaScript con-
text, so that the untrusted JavaScript can be allowed
more permissively without threatening web application
security.
New security primitives and policies Mash-up applica-
tions integrate various JavaScript from different origins
into their own pages. Therefore, all integrated applica-
tions run in privilege of the integrator. Several recent
proposals develop new primitives for web applications
to adapt to mash-up applications [9], [17], [21], [38].
Extensions [16], [20], [23] to the same-origin policy
have also been proposed to allow better separation of
JavaScripts even if they are from the same origin. Com-
pared to JCShadow, the granularity of access control is
coarse, and they do not support dynamic access control
policies.

VIII. CONCLUSION

Web applications usually integrate JavaScript from
various sources, which have different levels of trust,
but existing solutions do not provide fine-grained ac-
cess control to protect trusted resources in a JavaScript

context. In this paper, we systematically analyzed the
access control problem in a JavaScript environment and
identified the common weakness of the existing solutions
in handling untrusted JavaScript: the lack of access
control granularity in a JavaScript context. We developed
a reference monitor called JCShadow, which isolates
JavaScript using shadow JavaScript context and regulates
each object access in a JavaScript context. We imple-
mented JCShadow in the JavaScript engine of Mozilla
Firefox. Our evaluation and measurement demonstrated
the effectiveness and efficiency of JCShadow.

Acknowledgments We thank Wenliang Du for his in-
sightful feedback on the draft. We also thank the anony-
mous reviewers for their valuable comments. This paper
is supported in part by an NUS Young Investigator
Award R-252-000-378-101.

[1]
[2]

[3]
[4]

[5]

[6]
[7]

[8]
[9]

[10]

(1]

[12]
[13]

[14]
[15]

[16]

[17]

[18]

REFERENCES

Mashedlife. http://mashedlife.com.

B. Adida, A. Barth, and C. Jackson. Rootkits for JavaScript En-
vironments. In the USENIX Workshop on Offensive Technologies
(WOOT), 2009.

ADSafe. Adsafe. http://www.adsafe.org/.

D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In the IEEE
Symposium on Security and Privacy, 2008.

A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting
browsers from extension vulnerabilities. In the Network and
Distributed System Security Symposium (NDSS), 2010.

B. Chess, Y. T. O’Neil, and J. West. Javascript hijacking.
Technical report.

S. Chong, K. Vikram, and A. C. Myers. SIF: Enforcing confiden-
tiality and integrity in web applications. In the USENIX Security
Symposium, 2007.

A. T. W. I Company. Top
http://www.alexa.com/topsites/category.
S. Crites, F. Hsu, and H. Chen. Omash: enabling secure web
mashups via object abstractions. In the ACM conference on
Computer and Communications Security (CCS), 2008.
Facebook. FBJS - Facebok Developers
http://wiki.developers.facebook.com/index.php/FBJS, 2008.
M. Finifter, J. Weinberger, , and A. Barth. Preventing capability
leaks in secure javascript subsets. In the Network and Distributed
System Security Symposium (NDSS), 2010.

Google. Caja. http://code.google.com/p/google-caja/.

M. V. Gundy and H. Chen. Noncespaces: Using randomization to
enforce information flow tracking and thwart cross-site scripting
attacks. In the Network and Distributed System Security Sympo-
sium (NDSS), 20009.

E. International. = Standard ECMA-262. http://www.ecma-
international.org/publications/standards/Ecma-262.htm, 2009.

S. Isaacs and D. Manolescu. WebSandbox - Microsoft Live Labs.
http://websandbox.livelabs.com/, 2009.

C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Protecting
browser state from web privacy attacks. In the International
World Wide Web (WWW) Conference, 2006.

C. Jackson and H. J. Wang. Subspace: secure cross-domain
communication for web mashups. In the International World
Wide Web (WWW) Conference, 2007.

K. Jayaraman, W. Du, B. Rajagopalan, and S. J. Chapin. Escudo:
A Fine-grained Protection Model for Web Browsers. In the
International Conference On Distributed Computing Systems
(ICDCS), 2010.

sites by category.

Wiki.

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

T. Jim, N. Swamy, and M. Hicks. Defeating script injection
attacks with browser-enforced embedded policies. In the Inter-
national World Wide Web (WWW) Conference, 2007.

C. Karlof, U. Shankar, J. D. Tygar, and D. Wagner. Dy-
namic pharming attacks and locked same-origin policies for web
browsers. In the ACM conference on Computer and Communi-
cations Security (CCS), 2007.

F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and S. Yoshi-
hama. Smash: secure component model for cross-domain
mashups on unmodified browsers. In the International World
Wide Web (WWW) Conference, 2008.

E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: A
client-side solution for mitigating cross site scripting attacks. In
the ACM Symposium on Applied Computing, 2006.

B. Livshits and U. Erlingsson. Using web application construc-
tion frameworks to protect against code injection attacks. In
Workshop on Programming Languages and Analysis for Security
(PLAS), 2007.

M. T. Louw, K. T. Ganesh, and V. N. Venkatakrishnan. Adjail:
Practical enforcement of confidentiality and integrity policies on
web advertisements. In the USENIX Security Symposium, 2010.
M. T. Louw, J. S. Lim, and V. N. Venkatakrishnan. Enhancing
web browser security against malware extensions. In Journal in
Computer Virology, 2008.

M. T. Louw and V. N. Venkatakrishnan. Blueprint: Robust
prevention of cross-site scripting attacks for existing browsers.
In the IEEE Symposium on Security and Privacy, 2009.

L. A. Meyerovich, A. P. Felt, and M. S. Miller. Object views:
Fine-grained sharing in browsers. In the International World Wide
Web (WWW) Conference, 2010.

L. A. Meyerovich and B. Livshits. ConScript: Specifying and
enforcing fine-grained security policies for javascript in the
browser. In the IEEE Symposium on Security and Privacy, 2010.
M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja
- Safe Active Content in Sanitized JavaScript. http://google-
caja.googlecode.com/files/caja-spec-2007-10-11.pdf, 2007.

M. Mozilla. Same origin policy for javascript.
https://developer.mozilla.org/En/Same_origin_policy_for
_JavaScript, 2009.

Y. Nadji, P. Saxena, and D. Song. Document structure integrity:
A robust basis for cross-site scripting defense. In the Network
and Distributed System Security Symposium (NDSS), 2009.

S. D. Paula and G. Fedon. Subverting ajax. In the Chaos
Communication Congress (CCC) annual conference, 2006.

P. H. Phung, D. Sands, and A. Chudnov. Lightweight Self-
Protecting JavaScript. In the ACM Symposium on Information,
Computer and Communications Security (ASIACCS), 2009.

C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir.
Browsershield: Vulnerability-driven filtering of dynamic html.
In the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2006.

R. Sekar. An efficient black-box technique for defeating web
application attacks. In the Network and Distributed System
Security Symposium (NDSS), 2009.

P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna. Cross-site scripting prevention with dynamic data
tainting and static analysis. In the Network and Distributed
System Security Symposium (NDSS), 2007.
W3C. Document object
http://www.w3.0org/DOM/.

H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection and
communication abstractions for web browsers in MashupOS. In
the ACM Symposium on Operating Systems Principles (SOSP),
2007.

J. M. Wilson.
explorer’s

model (DOM).

IE JavaScript bugs: Overriding internet
document.getElementBylId() to be Ww3C
compliant exposes an additional bug in getAttributes(),
2007. http://www.sixteensmallstones.org/ie-javascript-bugs-
overriding-internet-explorers-documentgetelementbyid-to-be-
w3c-compliant-exposes-an-additional-bug-in-getattributes.

