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Abstract—Virtual coordinate systems (VCS) provide accurate VCS to build robust services, there have been several propos
estimations of latency between arbitrary hosts on a network als to secure them. For example, outlier detection [17, 18]
while conducting a small amount of actual measurements and and voting [19] were used to detect equivocation of lying

relying on node cooperation. While these systems have good . ;
accuracy under benign settings, they suffer a severe decrea attackers. Most of these defense methods ultimately decide

of their effectiveness when under attack by compromised naes if an update from a node is malicious or not by learning
acting as insider attackers. Previous defenses mitigate s good behavior through system observation over time. As a

attacks by using machine learning techniques to differentite result, these schemes are vulnerable to attacks wheregtirou

good behavior (leamed over time) from bad behavior. Howeve — a1 changes attackers make the defense mechanisms learn
these defense schemes have been shown to be vulnerable tQ

advanced attacks that make the schemes learn malicious behar maI|C|ous behavior as be|.n-g good behavior. One such.attack
as good behavior. is the well-known frog-boiling attack where attackers lig b
We present Newton, a decentralized VCS that is robust to small amounts that accumulate over time and gradually lead
a wide class of insider attacks. Newton uses an abstractiorf o to large changes in performance [20]-[22].
a real-life physical system, similar to that of Vivaldi, but in A classical approach for designing distributed systems is
addition uses safety invariants derived from Newton’s lawsof . - .
motion. As a result, Newton does not need to learn good behayi to usesafety |_nvar|.ant3n ord(?r to ensqre systgm Corr(.ectness.
and can tolerate a significantly higher percentage of malicus 1hese safety invariants specify states into which theidistd
nodes. We show through simulations and real-world experimets ~ system should never enter. For example, a distributed reyste
on the PIanetLab.testbed tha.t Newtpr] is able to mitigate all that forms a tree of nodes should never have any IOOpS, or a
known attacks against VCS while providing better accuracy ban  gigirihuted hash table should never form multiple rings;, bu
Vivaldi, even in benign settings. . . .
only one continuous ring. At first glance, VCS do not appear
to have such invariants as minimal constraints are imposed o
how neighbors are selected or on what coordinates a node can
Numerous distributed protocols use network locality fopossibly have. We make the key observation that some VCS
optimized replica placement [1], multicast tree and mesire designed around an abstraction of a physical system [6, 7
construction [2], routing on the Internet [3, 4], and Byzaat 23] and that physical systems follow physical laws. As these
fault-tolerant membership management [5]. Virtual Cooaté laws are universally true, we can leverage them to identify
Systems (VCS) have been proposed as an efficient and Isafety invariants for VCSs based on physical systems.
cost service to provide network locality estimations by ac- We present Newton, a decentralized VCS which extends
curately predicting round-trip times (RTT) between aibiyr Vivaldi [7] to withstand a wide class of insider attacks byngs
nodes in a network. Each node measures the RTT to a snsalfety invariants derived from Newton'’s three laws of motio
number of other nodes and the VCS then assigns a coordins&svton relies on the observation that Vivaldi is an absioact
to each node. Each node can then estimate the RTT betweém real-life physical system and therefore all partidipgt
itself and any arbitrary node by calculating some distanc®des must follow Newton’s three laws of motion. As there
function. is a direct mapping between the actions taken by nodes, in
While some VCS are centralized in nature [6], many haveporting their coordinates and RTTs, and the forces tlesteth
been designed as distributed systems [7], where each nptigsical laws govern, any attack in which malicious nodes
maintains and updates its own coordinate by relying die about their coordinates or delay probes will result ie th
information received from other nodes. Distributed VCS canvariants being violated. We leverage this fact to detdatis
be classified as landmark-based and decentralized. Lakedmand discard malicious updates. Our contributions are:
based systems [8]-[12] assume a trusted set of nodes thalfe describe how to use Newton’s three laws of motion as
form the infrastructure by which other nodes can determimeell as a mapping between forces and virtual coordinates to
their coordinates. Decentralized VCS [7, 13]-[15] assume mdentify invariants that mitigate a wide range of attackaiagt
such infrastructure; a node updates its coordinate based\iveldi. We show how to use the three identified invariants to
measurements and information from a random set of nodedetect and mitigate the well-studied inflation, deflationd a
Unfortunately, distributed VCSs have been shown [16] toscillation attacks, as well as the more recent frog-bgiéind
be vulnerable to insider attacks, where compromised nodestwork-partition attacks.
delay measurement probes and lie about their coordinatestdVe conduct extensive simulations and real-world experi-
decrease system performance. As many applications rely ments on PlanetLab to demonstrate that Newton is able to

I. INTRODUCTION



mitigate all known attacks against VCSs. We compare Newt@ime 5) and updates its coordinate by finding how far it sdoul
with Vivaldi outfitted with Outlier Detection [18] and showmove and then multiplying that by a unit vector (represented
that Newton is not vulnerable to the frog-boiling and netivor by u(e)) in the direction it should move (line 6).

partition attacks. We also find that, even with no attackers, A VCS generally has the system goals of providing accuracy
Newton has better performance than Vivaldi, i.e. Newton &nd stability with respect to the coordinates that it praduc
25% more accurate and 68% more stable. Accuracy describes how closely the coordinates reflect the
e We consider extreme scenarios where the attackers amtual RTT between nodes. Stability describes how quickly
present in a much higher percentage, over 50% of nodes in tligles converge to a set of accurate coordinates and how long
network are malicious, and also where attackers are coingucta node can be absent from the system and still have accurate
attacks from the beginning of the experiment, while theayst coordinates.

has not converged yet to a steady state. We show that eveAccuracy. We useprediction error to measure accuracy:
under such conditions Newton still performs well. Errorpreq = |RTTact — RTTrst|, where RT T is the

¢ We consider adaptive attackers that know how the invariagasured RTT andTTgs; is the estimated RTT. A small
are used and try to exploit them. Because in real-deploysneptediction error indicates high accuracy. We report theiared
Newton is not a perfect abstraction of a physical system, @hall the prediction errors at a time instant.

attacker can try to exploit the invariants. We explore a ngwet  Stability. We usevelocity of a node to measure stability:
of attackrotation attack where attackers rotate their positiond/ elocity = 22, whereAz; is the change in coordinates for
slowly around the origin of the coordinate plane in an attempode: (or distance traveled by a node), ahds the amount

to destabilize nodes while remaining undetected. We find tHef time taken to make that change. A small velocity indicates
Newton holds up well to such attacks, incurring only slight/high stability. We report the average of velocity of all nede
decreased accuracy. at a time instant.

The remainder of this paper is organized as follows: We
describe Vivaldi in Sec. Il and attacks against it in Sec. Ill
We describe Newton and our invariants in Sec. IV. We show We consider that a bounded number of compromised and
simulation results in Sec. V and PlanetLab experimentalies colluding nodes act maliciously. To attack Vivaldi, a malics
in Sec. VI. We present related work in Sec. VII and oupode can (1) influence the coordinate value computation by

Il. ATTACKS AGAINST VCS

conclusion in Sec. VIII. lying about its coordinate and local error value or (2) infloe
the RTT computation by delaying the measurement probe.
Il. VIVALDI COORDINATE SYSTEM An attacker can exploit coordinate and RTT computation to
conduct the followingbasic attacks
Algorithm 1: Nodei Coordinate Update o Inflation: Attackers lie about having very large coordinates.
Input: Remote node tupléz,, e,, RTT,, ) This pulls benign nodes far away from their correct coortdina
Output: Updated local coordinate and errog, e; and thus is an attack on accuracy.
, Z::e‘”/z(e;;fﬁ s RTT;;|/RTT;; « Deflation: Attackers lie about having small coordinates near
3 a=ceXw the origin. This prevents benign nodes from being able to
4 e, =(axes)+ ((1—a)xe;) . . .
5 6= coxw update to their correct coordinates and therefore is also an
6z =i + 0 X (RTTi; — |los — x5 ||) X w(z: — z5) attack on accuracy.

e Oscillation: Attackers lie by reporting randomly chosen
Vivaldi [7] is a decentralized VCS where the distanceoordinates and randomly delaying measurement probes. Thi

between coordinates represents the estimated RTT betweean attack both on accuracy and stability.

nodes. All nodes start at the origin and periodically update Basic attacks against Vivaldi have been shown to be very

their coordinates based on interaction with a subset of :ioddfective in reducing accuracy and stability [16]. Moregve

referred to as the neighbor set. A node chooses half of thegeile defenses have been proposed, recent work [20]-[22]

nodes randomly from all possible nodes and the other halkentified moreadvanced attack¢hat are able to bypass all

from a set of low-latency nodes. Research [7] has shown thmaeviously proposed defenses [17]-[19]. Advanced attaoks

a neighbor set of 64 nodes ensures quick convergence. e Frog-boiling: Attackers lie by small amounts at a time,
In addition to the coordinate value, each node also maislowly increasing this amount by moving their coordinates i

tains a local error value which shows the confidence in tleae direction. Over time though, the attacker ends up regprt

coordinate. Algorithm 1 describes how each nadepdates coordinates that are far away from their correct coordinate

its coordinate. Specifically; will send a request to node This results in an attack on both accuracy and stability.

j for its coordinate and local error value. When nogle e Network-partition: Attackers lie similarly as in the frog-

replies nodel also measures the actual RTT. An observatidppiling attack, but instead groups of nodes collude togethe

confidencew is calculated first (line 1) along with the errorand move in opposite directions, again attacking both amgyur

e, in comparing the coordinates with the actual RTT (linend stability.

2). Nodei updates its local error (line 4) by calculating an

exponentially-weighted moving average with weightand

system parametet, (line 3). Next,i computes the movement In this section we present our VCS, Newton, which builds

dampening factor calculated with another system paramgtemupon Vivaldi by implementing invariants derived from ploai

IV. DESCRIPTION OFNEWTON



laws to defend against all known insider attacks against.VC§is lying about the force between itself and another node,
thus introducing extraneoudirect forcesinto the system.
ing about such forces breaks the second law, as nodes

on a mass-spring system abstraction, where each pair 0§no Q not undergo accelerations that are governed by the forces

have a spring connecting them. Depending on its state, g{[/\(irmmed by Hooke’s law.

spring applies a force to the nodes to either push them tegeth ''¢ show hOW_ to I(_average I_\levvton’s three laws of motion
bring appi ! pu g 0 identify three invariants, which we cdlN1, IN2 andIN3.

or pull them apart. This force is calculated by Hooke's Iav#\,l ; .

F — —ka, wherek is a spring constant andis the amount of odes can then use these invariant$oially detect whether

displacen’1ent that a spring currently is from its equilibmior an update that results in a force being acted upon is thetresul
of nodes behaving according to the protocol and thus foligwi

rest position. Every node has a spring constangalue of 1. ical| th It of a Ivi ttacker. Bel i
To determine displacement, the measured RTT between a p? ysicaliaws, or the resuit of a lying atiacker. Below we et
e invariants and describe how to detect extraneous irtdire

of nodes is considered to be the length of the spring at its r . . .
position, while the current length of the spring is the eatied and direct forces with their help.
RTT. Over time, the system stabilizes when all pairs of nodé€s Detecting Extraneous Indirect Forces
minimize the amount of force that is placed upon them. We first focus on how to detect whether a node is lying
When updating its coordinate based on information fro@bout the forces that have acted upon it, resulting in mali-
nodej, a nodei calculates the magnitude and direction of theiously derived coordinates. For ease of exposition, agsum
force f:j that nodej is applying to it. The magnitude of theeach nodé is at coordinater; and at any moment is applying
force m;; is determined by the RTT between the two noddgbe force f;; onto nodej. As described in Sec. I, a node
and the distance of the current nodes’ coordinates; = chooses its neighbor set based on two criteria: (1) half are
RTT;; — ||z — x;||. The direction of the forceg:.j is a unit chosen randomly and (2) half are chosen based on if they are

vector that is calculated based on the two nodes’ coordinatBhysically close. We design two detection schemes, one for
d:-j = u(z; — z;j). The forceﬁ-j is then simplyﬁj = m;; + nodes that are randomly chosen, and the other for nodes that

-

d;;. This determines how much the coordinate needs to BE¢ Physically close. .

updated from the previous value and corresponds to Line ePetection for malicious random nodes from the neighbor

in Algorithm 1. Note that Vivaldi is not a perfect physicalSet: We observe that the third law states that there can be
system and also takes into account the perceived errortegpoi© unbalanced forces in the mass-spring system. An attacker
by the nodej and its own local error value. We discuss théhtroducing any extraneous indirect force that causes siode

Sec. IV-E. law. The third law then implies that an unbalanced force aan b

. hvsical dent i detected by finding the centroid of all the node’s coordisate
B. Usmg_ P ysica Laws to I_ en_tlfy_ Invariants where the centroid is the average of all the coordinates and
De'_[ectln_g _'”S'P'er Qttack_s in distributed syste_zms can bengfhs the physical analogue of being the center of mass of
from_|dent|fy|ng |nvar|ant.s In thg system. For.V|vaId|, nock the mass-spring system. We note that while perfect detectio
invariants appear to exist at first glance since nodes maig ires knowledge of the coordinates of all nodes, usieg ju

decisions based on inputs from nodes in their neighbor $gk andomly selected nodes also provides a good vantage
and there are no constraints imposed by the system in nQgg.+ tom which to calculate an approximate centroid. We
selection. We make the key observation that since Vivalfli [,y marize our first invariant

is built upon an abstraction of a mass-spring system, ale80qy1. |f the centroid of a node and the randomly selected
must follow physical laws. These laws are universal fruths,qes from its neighbor set is at the origin then no unbaldnce
so they represent invariants that all nodes in Vivaldi stioulyce has been introduced. However, if the centroid is not at
globally follow. In particular, n.odes must follow Newton'sy,e origin, then an attacker (or collection of attackerspsh
th_ree laws of motion which are: introduced an unbalanced force that has the same direction
First law: A body stays at rest unless acted upon by &gy 5 force vector from the origin to the centroig).(

external, unF)aIanced force. In Figs. 1(a) and 1(b) we illustrate how to uél to detect
Second law:A force I on a body of mass: undergoes an aitacks. In Fig. 1(a) node located at coordinate; = (2,3),
accelerationa, such that the acceleration is proportional t0js the victim and all the other dots are the randomly selected
the force and indirectly proportional to the mass. nodes from its neighbor set, including nogie Node i can

Third law: When a first body exerts a force on a second body|cylate the centroid based on its own coordinate and the
the second body exerts an equal but opposite force on the first S

body. coordinates of all those neighbats= p:; . Since the third
When an attacker lies about its own coordinate, it iaw states that all forces must be balanced, we would expect
implicitly lying about forces that have previously actedonp that the centroid would never move, and thus even during
it, thus introducing extraneousdirect forcesinto the system. normal operations, would be at the origin. In Fig. 1(a) the
Introducing such forces into the system breaks the first ageeen square signifies this calculated centroid, and simce n
third laws, as attackers are not acting according to the iattack has taken place yet, it is at the origin.
fluences of the outside forces upon them. When an attackein Fig. 1(b), we consider what happens when the attacker,
delays a measurement probe or lies about its local erroeyalnodej, represented by the red triangle at coordinate= (-

A. Vivaldi as a Physical System
The coordinate update in Vivaldi is actually modeled bas
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(d) Physical close: attack

Fig. 1: Detecting extraneous indirect forces

2,2), introduces an extraneous unbalanced force. In this, cahe previous coordinate that was reported kwnd when it
the attacker moves to coordinate (-9,9). Nadeecalculates receives a new update froinit calculates the changeMzy).
Syt Fij This difference and the sum of vector projectiansshould
the centroid, using; = “~———, to be at coordinate (-1,1), be equivalent, if they are not, théndid not move according
which corresponds t@, the force that moved the centroid fromto the external unbalanced force.
the origin. Nodei also experiences a for(;féj, represented by
the arrow pushing it towards the attacker. Nadean detect . . .
the attack by finding that is non-zero, as described iN1. It We now focus on how to detect if a force directly acting

can then find which node introduced the unbalanced force, ayye node II'S ﬁxtl:_aneouls and is c?]used bydalmall(;lous.procezs.
thus is the attacker. Specifically, for every neighbor nédé To accomplish this, we leverage the second law of motion an

sums up the forces?(;) thatk has applied to it sinck entered Hooke’s law. The second law states how much a node should

its neighbor set and then calculates the vector projecficiy,o acc_elerate g|venhthe force fand maSSdOf a r;ode.dlnhour masbs-
ontoc. The node whose projection has the greatest magnitLﬁfg'ng system, the mass of every node is 1, and thus can be

is the one who has contributed most to the centroid be”%mred.dln a mass—slpl)rggbsyatemk, t,hel a\g;ou_nt oll;forcr? ar]:)plle
moved, thus an attacker, and its force is ignored. to'a node is controlled by Hooke's law = —kz whic

IN1 holds even if a malicious node initially reports arpiates that the amount of force on a node is proportional to
incorrect coordinate because the system always starts ii'g SPring’s current displacement from its rest positiore W

correct state (all the nodes start at the origin, and so dd¥&V State our third and final invariant: N
the centroid). IN3: As the springs in the physical system stabilize and come

Detection for malicious physically close nodes from closer to their rest position, nodes should decelerate dud t

neighbor set: For nodes that are physically close, we obsenjge forces that are applied to them should decrease over time
that because all nodes are connected via springs they willN3 applies also to joining and leaving nodes. While joining
experience very similar forces from the same nodes. We capgdes may lie about their initial forcé\3 obliges a decreas-
use the first law, which dictates that a node in a mass-sprifig) force over time. Leaving nodes stop moving and the force
system must move if acted upon by an external, unbaland@Fomes zero.
force. Moreover, the second law implies that we can detext if One possible detection scheme is to impose a certain rate
node should be moving or not and we can calculate how mueh decrease on the forces applied to a node, and if the
it should move. Our second invariant can now be summarizd@rce is larger than expected, offending nodes are coresider
IN2: Nodesi and k are physically close and if node malicious. However, we have experimentally found that this
experiences a forcg;; from nodej, then node would expect approach is too strict for real deployments, due to praktica
node k to experience a force fromj similar to the vector aspects of the Internet. First, triangle inequality vidlas
projection off;j onto the vectow(z; — ). result in nodes stabilizing even though springs are stékrgng

We use Figs. 1(c) and 1(d) to illustrafe2. Fig. 1(c) shows force on nodes. Thus we can expect forces to never decrease
the nodes before the attack. The black dot at coordinatg)(-2all the way to zero, but rather opposing forces will simply be
is nodei, the victim, the blue dot at coordinate (-6,6) is nodbalanced. SecondN3 assumes that latencies do not change
4, and the red triangle at coordinate (-3,2) is the attackdenoas real springs can not change their rest position. However,
k. Both i andk experience forces upon them frogmNodei on the real Internet this will not hold as routes change and
can calculate what it expects the force upgoto be and thus mobile nodes move.
determine that it expects to update its coordinate to (2,-5). We instead take a different approach. A node calculates the

Fig 1(d) shows the nodes when the attack happens. Modmedianf and median absolute deviatidn of the magnitude
does move according to the force applied to it to coordinaté the force that each node is applying to it. Then if the
(7,-3). However, wherk attacks by introducing an extraneousnagnitude of any forcen; is a few deviations larger than
indirect force, it moves in a different direction than exiget the medianm; > f 4 k = D, the node will ignore it. We
To detect the attack, nodecan calculate the force value foruse the median and median absolute deviation instead of the
node k£ as described iHN2 for every force that is applied average and standard deviation, as the former are moretrobus
to itself and sum up that value’y). Node: will remember to outliers and have been shown to be resilient against frog-

D. Detecting Extraneous Direct Forces
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Fig. 2: Invariants shown through deployments of Vivaldi on PlafdtL

boiling attacks [24]. TABLE [I: Sensitivity on threshold for IN2

Threshold (ms)| FPR | TPR

E. Using IN1, IN2, and IN3 to Design Newton o R M
We useIN1, IN2, and IN3 combined with Vivaldi to 20 0.27 | 0.95
create Newton. We investigate if these invariants hold on gg 8'12 ggé
real deployments of Vivaldi on PlanetLab. While Vivaldi 5 011 084
models a mass-spring system, the actual protocol, and more 40 0.09 | 0.83
importantly, any network on which it runs, will not perfectl ;‘2 8282 8:?1’

emulate a physical mass-spring system. Thus, we expect some
discrepancy between the ideal physical system and the rggtlzillation attack we see that this value quickly grows and

deployed system_. We investigate these discrepancies and i93inconsistent with benign behavior. To detect attackees,
the results to calibrate Newton.

W its of Vivaldi PlanetLab deol N ave found that it is best to calculate the median separately
€ use resulls of vivaidi on Flanetl.ab deployments g r randomly chosen nodes and physically close nodes. $his i
500 nodes to investigate the invariants. We implement

. : . — . e to physically close nodes having smaller force values, b
5 attacks (|r_1f_lat|on, deflation, oscillation, frog-b0|I|,r_1_gnd deviate more from the median, while randomly chosen nodes
netv_vork-_parntlon) and _plot results _re!evant to each |_ra/ralx _have the opposite characteristics. Thus we choose a thdesho
As inflation and deflation share similar characteristicghwi

. : . ) ... of 8 absolute deviations for physically close nodes and 5 for

inflation being a more damaging attack, and network-partiti

: : o : randomly chosen nodes.

is a stronger variant of the frog-boiling attack, Fig. 2 skow _ _ _

results for inflation, oscillation, and network-partitioBach Implementation. Tf) |mplement Newton, we sFartqu with

attack starts at 600 seconds into the experiment and #te base code of Vivaldi and then added the invariants. In

conducted where 10% of nodes are attackers. Newton, every node checks the invariants after receiving an
IN1. In Fig. 2(a), we plot the distance from the origin tg/Pdate from another node. If at least one invariant is \éolat

the centroid of the coordinates of randomly chosen neightb€ update is discarded.

nodes, averaged for all nodes in the system. We expect thisrhresholds. Because Newton uses thresholds that rely on
distance to be zero or very small. When there is no attaKsixed point as a reference, such as the origin, they are more
we find the centroid to be less than 20 ms away from thgsficult to exploit by an attacker. Nevertheless, an atéack
origin. However, during an inflation attack, the value irr@es an still try to exploit these thresholds by staying undeirth
drastically as nodes start to lie about their coordinate. Wa|,es We discuss scenarios where an attacker can exploit
select a threshold of 20 ms to detect an attack. these thresholds in Sec. V-D and show that Newton is robust
IN2. In Fig. 2(b) we plot the difference in distance fromeyen under such scenarios.

where physically close nodes were expected to have their o - .
coordinates located at, versus where they actually regorte Overhead.As V'Yald' IS an eff|_0|ent and low cost service
themselves to be. We expect this value to be zero or very smctﬂf I_ate_ncy estimation, we also aimed to preserve that goal |
When there is no attack on Vivaldi, we find these values #£SI9ning Newton. As such, we do not add any extra network

be small. with most less than 50 ms. When under a netWort.*rgmmunication, as the use of our invariants do not requjre it
partition attack, these values increase dramaticallyeciafly and the added computation and memory usage are very small.

the further a node has moved from its correct coordinate. ToNon-Euclidiean spacesSince Newton is based on physical
find a good value for the threshold we conducted a sensitivigsws found in our Euclidean-based world, we investigate if
study by varying it between 10 and 50 and then finding thgewton works in non-Euclidean spaces. We show results for
true positive rate (TPR) and the false positive rate (FPRyrwhNewton in hyperbolic spaces in Sec. V-C. Furthermore, as the
classifying updates. We show the results in Table | and founsbst general form of non-Euclidean spaces are Riemannian
a good threshold for detecting the attack to be 35 ms, whigtanifolds, and as the Nash embedding theorem says that
trades-off discarding some benign updates for better tietec any m dimensional Riemannian manifold can be embedded
of malicious nodes. isometrically in some Euclidean space, we see that the define

IN3. Fig. 2(c) depicts the median of the magnitude of thmvariants would still hold in non-Euclidean spaces. Hoergv
force applied to a single node over time. We see that whillee construction of this isometrical embedding is not gtri
there is not a strictly decreasing line as one would expdaorward and if pseudo-Riemannian manifolds are used for
in an ideal system, the general trend is present. Also, in gintual coordinates then no such embedding might exist.
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V. SIMULATION RESULTS that the attacker nodes are introducing unbalanced fores a

We show through simulations, using the p2psim simulglhus shifting the centroid far away from the origin.

tor [25], how effective Newton is in defending against attac Deflation. Results for the impact of the deflation attack on

We compare Newton against the unsecured Vivaldi and afggcuracy are in Figs. 4("_’1) and 4(b)._The_deflgtion.attack does
Vivaldi outfitted with Outlier Detection [18], referred tosa not have as great of an impact on Vivaldi as inflation, but the

Outlier Detection We also include Vivaldi when no attacker?PPOSIte IS true of Outlier Detection. However, we see again

are present, referred to o Attack as a baseline comparison.that Ngwtpn is able to ;ucpessfully m|.t|gat.e the attack.
Oscillation. The oscillation attack is different from the

We use the King data set [26] which contains Internet ~ ; . . .
. previous two attacks in that while attackers lie about their
pairwise measurements between 1740 nodes (average RTT IS

180 ms and maximum RTT is 800 ms). Simulations last f(g:roordmates in a random way, they also delay measurement
obes up to 1 second. We show the results of how the

200 time units, where each time unit is 500 seconds. Ea Fﬁ .
node joins at the beginning of the simulation in a flash-crowd grent systems handle the attack ffjmd. the |mpac'§ on acgura
IN Figs. 5(a) and 5(b). Outlier Detection is able to withstéme

scenario and remains for the entire duration. We use a tiypic / .
. ' . . p acks until there are 30% attackers, when the predictiam e
setting for Vivaldi [7], where every node has a neighbor se : .
Increases to 26 ms. However, Newton continues to provide

of 64 nodes, with half randomly chosen and the other hg ood performance for all percentage of attackers. We attrib
being nodes with low RTT (also referred to as physically elos; . P o P 9 .
his to IN3, requiring forces to decrease over time.

nodes). The attackers are chosen randomly from all nOdesFrog-boiIing. The frog-boiling attack, has been shown in

Unless_ otherwise stated, maI|C|ou_s nod(_as start_ thelrlaﬂ_ac L?O]—[ZZ] to be an effective attack against VCS defenses tha
one-third of the way through the simulation. This is to give . .
must learn over time what good behavior is. We now show the

fair comparison for Outlier Detection, as it needs to leahatv impact of the attack on accuracy in Figs. 6(a) and 6(b). Simil

good behavior is. Outlier Detection uses spatial and teaipo . . o
thresholds of 1.25 and 4. respectively. as described in u&@prewous works, we see that Outlier Detection indeed does
) ' P Y ) t protect against such an attack. Newton, though, is able t

Newton uses the thresholds described in Sec. IV-E Whia&ccessfull rotect aainst the froa-boiling attack
any Internet-wide deployment could use. For the coordinaté, yp 9 9 9 '

X : . o e give insights about how Newton works in Fig. 7(a)
space, we use a Euclidean distance and gradient function in : : . :
! . . showing how the centroid moves over time on the coordinate
dimensions, unless otherwise stated.

plane when under attack (10% attackers). Vivaldi's cedtroi
A. Attacks Mitigation moves far away from the origin. Outlier Detection’s cendroi
We vary the percentage of nodes that are attackers betweers not move as far, but still it moves close to (100,100).
10%, 20%, and 30%. For lack of space and similarity of resulf® be able to see how Newton’s centroid moves, we show
we show only the 10% and 30% cases. a zoomed in picture in Fig. 7(b). Newton’s centroid also
Inflation. Figs. 3(a) and 3(b) show the accuracy under anitially moves away from the origin, until it almost reache
inflation attack. We can see that when under attack Vivaldi haoordinate (13,15). At this point individual nodes calt¢elénat
very poor accuracy, which gets increasingly worse with thtee centroid is near 20 ms away from the origin, thus trigogri
percentage of attackers. Both Outlier Detection and Newttine detection mechanism. The honest nodes can then degermin
are able to effectively keep the error low after the attaekist who the attackers are and ignore their updates.
However, as the percentage of malicious attackers increaseNetwork-partition. The network-partition attack is similar
Outlier Detection’s prediction error also increases agtpro- to the frog-boiling attack, except multiple groups of akiars
gresses, while Newton is able to match the baseline predictimove in opposite directions, trying to split the network. We
error. We attribute Newton’s performance to its ability &tett consider four groups of nodes moving in four different direc
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Fig. 11: Simulation results - accuracy when using 4 dimensions iretyglic space with 30% attackers

tions. Figs. 8(a) and 8(b) show the accuracy for the differeand frog-boiling attacks as results for the other attackeewe
systems under attack. This attack is successful againseOutsimilar. Fig. 10 shows results when attacks start from the
Detection, while Newton still performs well under attackid beginning of the simulation. As can be seen, Newton mitigate
is even though groups of attackers moving in different direthe attacks. Under the oscillation attack, as the percentég
tions give the illusion that they are actually acting acaoogd attackers increase, it takes slightly longer for coordinab
to balanced forces by not moving the centroid, thus makingstabilize and become accurate. This is because we do not
difficult to detect this attack usindN1. However, in this case, enforce a strict rate of decrease on the amount of force legtwe
attackers that are physically close can still be detecteliNBy two nodes and instead use the median force to detect nodes.
and all types of attackers can be detectedM§. Nodes must first sample a number of forces before they can
calculate the correct median. Thus, in Newton an honest node
cannot immediately detect if a node is artificially increasi
High percentage of attackers.We also show extreme the force between itself and another node.
scenarios where Newton must face an increasing percentage o
attackers. We show the advanced attacks in Fig. 9, resutes we. Newton in Higher-dimensional and Hyperbolic Space
similar for the basic attacks, but we did not include themtdue gg 5y we have shown that Newton works well in simple
space constraints. Overall, we see that Newton is able @l@am_gimensjonal Euclidian coordinate spaces. However, more
50% attackers without losing significant accuracy. HOWEVQ{ompIex spaces have been shown in the past to improve
under 60% and 70% of attackers accuracy starts to degrgdi@giction error. For example, Ledligt al. [27] have shown
particularly for the network-partition attacks. We poinito ihrough a Principal Component Analysis that 4 dimensioas ar
that each node updates its coordinate based on a set ofa§fropriate for Internet-scale network coordinates. Hypkic
nodes, thus the high-percentage of malicious nodes réstits gpaces also have been proposed as an alternative to Euclidea
a lower percentage in the neighbor set. For example, us&\g Uhaces as they better represent the structure of the Inf2&ie
analysis from [18], when there are 70% malicious nodes in tgera| works have applied Vivaldi to such spaces and have
entire network, about 54% of nodes will be malicious in thgnown that it does produce an accurate embedding [29, 30].
neighbor set and thus able _to manipulate the median thatM%difying Vivaldi and Newton to work in hyperbolic spaces
used to detect extraneous direct forces. simply involves changing the distance and gradient functio
Attacks before system converges to steady statén We implement these functions as described in [30]. Hypézbol
previous simulations, we showed performance when there v&gmces also have a curvature parameter that describes how
a period before attacks started to allow Outlier Detection much a line deviates from being flat. We experimentally
learn good behavior. Newton does not need such period sificend that a value of 60 provides good accuracy in benign
it is based on invariants. We show results only for oscilati environments. We ran simulations in hyperbolic space in 4

B. Extreme Attack Scenarios
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D. Invariants under Attack

Because in real-deployments Newton does not behave ex-z .
actly like a physical system, it uses thresholds for theehre 1060 80 100 120 140 160 180 200 4060 50 100120 140160160 200
invariants. We note that Newton'’s thresholds use as a refere i,

- . _ . . . (a) Accuracy (b) Stability
a fixed point such as the origin, while Outlier Detection’gjg. 13: Simulation results - attackers (30%) rotate around therorig
thresholds use as a reference a moving point (the centroid of at a slow rate
metrics derived from all nodes in the neighbor set), allgvin
attacks such as frog-boiling to move it. Thus, Newton’sshre start performing attacks immediately once the experiment
olds are more difficult to exploit by an attacker. However, agtarts. All other parameters are the same as in the simoatio
adaptive attacker can still exploit the values of the thotddr We compare Newton with Vivaldi under attacks and consider
used by Newton to his advantage. as baseline Vivaldi with no attacks.

We conduct three tests, one for each invariant, where the performance in Benign Networks
attacker tries to remain undetected, yet come as close 10 thye first show the results when there are no attackers in
threshold as possible. FtN1, the attackers push the centroidig 14 Accuracy is shown in Fig. 14(a) where the prediction
to right below the 20 ms threshold. FtZ, attackers initially - eror is lower in both Vivaldi and Newton for PlanetLab than
move as the forces dictate, but then always shift just be®Bw ¢ simulations. This is most likely due to the smaller numbe
ms away from this position. Finally, fdN3, attackers delay ot pnodes involved as the error needs to be minimized for
probes only enough to stay beneath the deviation threshaldie\ver number of nodes. Furthermore, Newton only has a
The results of these tests are shown in Fig. 12, where &y iing prediction error of 9 ms, while Vivaldi has one of
zoom in on the results of the steady state performance {9 ms The difference in stability has also increased over th

see the effects. We compare the normal baseline of Vivaldi,jations, as shown in Fig. 14(b). Vivaldi has a resulting
when no attack occurs, Newton when no attack occurs, 'abe(f‘é%city of 0.8 ms/s, while Newton is only 0.25 ms/s. This

Newton 0% and also Newton when there are 30% attackefigcrease in accuracy and stability is due to Newton being les
labeledNewton 30%We find that even 30% attackers can nalansitive to probes that get delayed occasionally as thet res
significantly increase the prediction error. of benign occurrences such as queueing delays on routers.
Attackers can also conduct a new attack, which we call the
rotation attack where the goal is not necessarily to disrupt
accuracy, but rather stability. In this attack, colludingdes
rotate around the origin in the same direction at a slow ra
This attack will not triggerdN1, and if done slowly enough,
will bypass the thresholds ¢R2 andIN3. We implement this L |
attack and show the results in Fig. 13 (notice the zoomed- ° , rdvosons oo mnagaes
in y axis scale). We find the accuracy in Fig_ 13(3) to 0n|y 0 300 600 900 1200 1500 1800 0 300 600 900 1200 1500 1800
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be slightly raised over our baseline. Stability, as shown in @ AZZ:;ZC ) SI:;::&
Fig. 13(b), is also raised over Newton’s normal levels, lsut i Fig. 14:yp|anet|_ab results - no attack)(/ers
not yet worse than the baseline. Adapting to changes in the network.In real deployments,

such as on PlanetLab, route changes will take place, patignti
having an effect oiN3. To show that Newton can withstand
We evaluate Newton in real-life experiments on the Planettuch changes, we run Newton féyur dayson 350 nodes
Lab testbed. We use 500 nodes and run each experiment fooBOPlanetLab. For this particular experiment we reduce the
minutes, unless otherwise stated. Every second a nodeehodiequency of how often a node sends a probe to a neighbor to 5
one of its neighbors to probe and gets their coordinate epdateconds, all other parameters remained the same as before. W
We use Newton configured for a Euclidean coordinate spaperformed traceroutes between all-pairs of nodes befode an
Due to PlanetLab being an Internet-scale testbed, we usafter the experiment to estimate the number of routes cliange
dimensions as suggested by Lediieal.[27]. Malicious nodes We conservatively only count routes as changed if they ¢onta

VI. EXPERIMENTAL RESULTS
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different routers and also have a difference in RTTs greatgr ,,| I .
than 10 ms. We find that 12% of all routes changed. 0 oL ~ =

Fig. 15 shows the results. Initially, Newton is able to =~ ° ** o0 7 190 1 O e R T e e
Stabilize W|th|n an hour to 6 ms Of error. We attribute thIS (a) Accuracy - 10% attackers (b) Stabi"ty - 30% attackers
smaller error, compared to the 9 ms seen earlier, to the small Fig. 18: PlanetLab results - oscillation attack

number of nodes that must embed coordinates. However, ovefrog-boiling and network-partition. Results for frog-
time, Newton reduces the error even further to 3 ms. We alBgiling are shown in Fig. 19, which while we find it to be
investigate in more details what happens when routes chanig® most effective attack on Vivaldi, for reasons previgusl
We find that in many cases the resulting change is not so lagjglained, it has no effect on Newton. Unsurprisingly, wel fin
thatIN3 is violated. However, there are cases in whinis is that the network-partition attack, which is similar to thed-
violated for a short period of time, for one of the two node&0iling attack but nodes move in different (four in our case)
This is due to when a Sing|e path between routers Changg'ections, has similar results to it. We p|0t the effectdlo$

it often affects many end-to-end routes for one node, thaack in Fig. 20.
causing RTTs to multiple neighbors to change simultangousl

Thus, one node will realize that many neighbors are putting = ¢ Noatack ——

100 . Vivaldi e

extra force on it, and change its coordinate accordingly. ¢ .| [ Newtan z
= £
o . w -
B. Attack Mitigation g ® g
Inflation and deflation. Figs. 16 and 17 show accuracyg |} g
. . . . 20
under inflation and deflation attacks respectively, for 10% a . ; .
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not a.S effec_:tlve against \ﬁvald! in these ex_perlments as i (a) Accuracy - 10% attackers (b) Stability - 30% attackers
the simulations, even though in the experiments we incrkase Fig. 19: PlanetLab results - frog-boiling attack
the amount that attackers lie about so that they have larger
coordinates. The deflation attack is also not as effective as?® No Attack™™ 5 No Attack —+—
. . . . D, i Vivi @ Vivaldi e
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7 10 Viald o= 7 00} vald o to model the behavior of trusted landmark nodes using a
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[} H i} H . . .
5 Op 5 O which nodes learn good behavior and can then filter out
g “ T N malicious updates. Their technique requires 8% of all nodes
o 20f & 6606 o 20 3. Q8o . .. . .
. i et x . to be trusted, which could be non-trivial to obtain given
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ime (s, Ime (s, .
) ) reputation based system that leverage trusted nodes and a
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Fig. 17: PlanetLab results - deflation attack reputation certification agent to calculate the other nodes

Oscillation. For the rest of the attacks, we show just 30%eputation. Treeple [22], while not strictly coordinatesbd,
attackers. We conducted experiments with lower percestageovides secure latency estimation, using landmarks asagan
of attackers, but we did not include them because of lagoints for providing traceroutes on the Internet. In Treepl
of space and similarity. Fig. 18 shows accuracy and stgbiliandmarks perform traceroute measurements to peers, which
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