
Achieving high-throughput State Machine
Replication in multi-core systems

Nuno Santos, André Schiper
Ecole Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland
Email: firstname.lastname@epfl.ch

Abstract—State machine replication is becoming an increas-
ingly popular technique among online services to ensure fault-
tolerance using commodity hardware. This has led to a renewed
interest in its throughput, as these services have typically a
large number of users. Recent work has shown how to improve
throughput of the ordering phase by improving the replication
protocol, using techniques like Ring-topologies, IP multicast, and
rotating leaders. The resulting systems, when deployed in modern
fast networks, achieve unprecedented levels of throughput. But
these systems are increasingly becoming limited by the CPU of
the replicas, especially with small client requests. However, the
problem is not lack of performance of the CPUs, but instead the
inability of typical implementations to effectively use the multiple
cores of modern multi-core CPUs. In this work, we show how
to architect a replicated state machine whose performance scales
with the number of cores. We do so by applying several good
practices of concurrent programming to the specific case of state
machine replication, including staged execution, workload parti-
tioning, actors, and non-blocking data structures. We describe
and test a Java prototype of our architecture, based on the
Paxos protocol. With a workload consisting of small requests,
we achieve a 6 times improvement in throughput using 8 cores.
More generally, in all our experiments we have consistently
reached the limits of network subsystem by using up to 12
cores, and do not observe any degradation when using up to 24
cores. Furthermore, the profiling results of our implementation
show that even at peak throughput contention between threads is
minimal, suggesting that the throughput would continue scaling
given a faster network.

I. INTRODUCTION

State machine replication is an effective mechanism for
achieving fault-tolerance by replication on commodity hard-
ware. For this reason, it is frequently used by online services
as a low-cost solution to achieve reliability and availability.
However, deploying state machine replication in such a context
creates new challenges to the design and implementation of
such services. In particular, online services are exposed to a
very large number of potential users, and therefore must be
engineered for high-throughput.

This raises the question of whether state machine replication
can support the required levels of throughput. If the service
being replicated is itself expensive, then this is a moot point,
as the system will be limited by the performance of the
service. But often the services are lightweight, like lock
servers [1], and coordination services [2], and can sustain
a very high-throughput, provided that the underlying state
machine replication layer can also sustain it. Additionally,
when multiple services within the same data center must be

fault-tolerant, it is often easier to delegate ordering to a single,
high-performance ordering service service instead of having
every service implement its own ordering layer [3]. As this
shared ordering service is potentially used by a large number
of other services, its throughput is critical.

Recently there has been a renewed interest in improving
the throughput of the ordering phase. For instance, [4], [5]
show how to achieve high-throughput with algorithmic im-
provements to the replication protocol. These protocols use
the network very highly efficiently, relying on techniques like
ring topologies and IP multicast to achieve an efficiency of
over 90% on Gigabit Ethernet, as measured by the amount of
data ordered over the bandwidth of the network. However, this
high efficiency is achieved only if requests are large enough,
usually ≥8KB. For smaller request sizes (<8KB) they become
CPU-bounded and their efficiency drops significantly [4]. A
similar CPU bottleneck with small request sizes has been
identified in many other systems, including in production-
quality implementations. For instance, in [2] the authors report
that the atomic broadcast protocol at the core of ZooKeeper
becomes CPU-bounded at the leader process when running
with a workload 1KB write requests. As small request sizes are
common in practice (e.g., coordination services, lock servers),
the CPU bottleneck is a significant limitation to achieving
higher throughput.

It is worth looking more carefully at the reasons behind this
CPU bottleneck. In recent years the single-thread performance
of CPUs improved only marginally, while the number of
cores increased greatly. A modern CPU for servers contains
anywhere between 4 and 16 cores, with even higher numbers
in the horizon. Although each cores may have a relatively mod-
est single-thread performance, their aggregate performance is
considerable. In the case of state machine replication, current
implementations are mostly unable to take full advantage of
multi-core CPUs, thereby being limited by the single-thread
performance.

As an example, consider Figure 1a, which shows the
throughput of ZooKeeper with increasing number of cores.
Although ZooKeeper scales well up to 4 cores, reaching a peak
of 50K requests per second, its performance degrades as the
number of cores increases, achieving less than 30K requests
per second when all 24 cores are used. The per-thread profiling
results with 24 cores (Figure 1b) shed some light on the cause
of this poor behavior. For each thread, we show the time spent



5 10 15 20
0

10

20

30

40

50

60

#cores

R
eq

ue
st

s/
se

c 
(x

10
00

)

(a) Throughput

0

20

40

60

80

100

 

 

C
om

m
itP

ro
ce

ss
or

Le
ar

ne
rH

an
dl

er
:1

Le
ar

ne
rH

an
dl

er
:2

P
ro

ce
ss

T
hr

ea
d

S
en

de
r:

1

S
en

de
r:

2

S
yn

cT
hr

ea
d

busy
blocked
waiting
other

(b) Per-thread CPU utilization at the
leader, when using 24 cores.

Fig. 1. Performance of ZooKeeper with increasing number of cores.
Ensemble of 3 replicas, 128 bytes write-request (setData() on a ephemeral
node). ZooKeeper 3.3.3 with the default configuration except that the leader
does not serve clients and logs and snaphsot directories were mapped to a
RAM drive (/dev/shm). More details and experiments in [6].

executing (busy), blocked trying to acquire a lock (blocked),
waiting to receive work (waiting), and in other states (other,
see Section VI-B for a detailed explanation). One problem is
a high level of contention, as shown by the large fraction of
time the threads spend blocked. Another problem is poor load
balancing, as several threads spend 100% of their time either
busy or blocked, creating a single-thread bottleneck.

We believe this is typical of many replicated state machine
(RSM) implementations. The traditional threading architecture
used by RSMs is based on an event-driven model, with a
event loop (thread) doing most of the work (with maybe the
exception of some IO operations). There are good reasons
why RSMs implementations use this design. First, it matches
closely the way replication protocols are typically expressed,
which is as a set of event handlers. It also simplifies thread
coordination, trivially preventing race conditions by not shar-
ing data among threads. This is especially important, because
RSMs have a complex internal state which is shared by many
different internal tasks (e.g., ordering, retransmission, failure
detection, snapshotting, and state transfer). Finally, before
the multi-core era, a single-thread event-driven design was
a good choice, as it avoided the cost of context switches
and concurrency control. But this traditional architecture is
reaching its limits and must be revised, in order to reach the
full potential of modern Gigabit networks, multi-core CPUs
and of the new generation of highly efficiency replication
protocols.

In this paper we show how to implement RSMs such that
their performance scales with the number of cores. For this,
we assume that the workload and the system are such that the
bottleneck is the single-thread performance of the CPU, which
is often the case with small request sizes and fast networks
(Gigabit or more). In order to scale the performance with the
number of cores, we must ensure that 1) the tasks performed
by a replica are evenly balanced among threads, so that no
replica becomes limited by the single-thread performance of
its CPU, and 2) threads make progress mostly independent
of others, with minimal time wasted in coordination (e.g.,
contention).

Some of the tasks performed by a replica, e.g., I/O, are

fairly easy to parallelize, But other tasks, like the execution
of the ordering protocol and the various housekeeping opera-
tions, pose a much greater challenge, either because they are
inherently serial or because their state is complex and shared
between several tasks. A naive separation into threads is likely
to make extensive use of locks, increasing contention, limiting
concurrency, and being prone to race conditions and deadlocks.
We propose an architecture that avoids these problems, by
grouping tasks into threading modules according to carefully
chosen boundaries that minimize shared state and contention.

We use a hybrid design, with a mixture of event-driven
and thread-based modules. This design draws inspiration from
SEDA [7] and from the concept of Actors in languages like
Erlang and Scala [8]. Each module consists of private state,
one or more threads, and a well-defined interface for com-
municating with threads from other modules (usually through
message queues). With few exceptions, the private state is
accessible only by the threads managed by the module. This
organization keeps complex state isolated inside a module,
with well-defined access points, simplifying reasoning about
thread-safety and parallelism.

We have implemented this architecture in JPaxos [9], a
fully-functional implementation in Java of state machine repli-
cation based on the Paxos protocol. We performed an experi-
mental study using a CPU-intensive workload on a cluster of
24-core machines connected by a Gigabit Ethernet.

The results show that the throughput increases with the
number of cores, either linearly or very close to linearly,
until reaching the limit of the network subsystem, which
happens when using between 8 to 12 cores. Furthermore,
the profiling results of our implementation show that, even
at peak throughput, contention between threads is minimal,
suggesting that performance would continue scaling in the
absence of non-threading related bottlenecks. This shows that
even with a demanding workload, the throughput of state
machine replication can be further improved by leveraging
multi-core CPUs.

To summarize, our main contributions are:

• Show that further improvements in throughput of state
machine replication require implementations capable of
exploiting the potential of multi-core CPUs.

• A multi-core scalable design for RSM.
• An experimental study showing the scalability of this

architecture in multi-core CPUs.

The remainder of the paper is organized as follows. Sec-
tion II discusses the related work, Section III provides the
background by describing how state machine replication works
and how it is typically implemented, Section IV discusses
the challenges in parallelizing RSM implementations and
describes our general approach, Section V describes in detail
the scalable threading architecture we propose, Section VI
presents the experimental results, and Section VII concludes
the paper.



II. RELATED WORK

The interest in state machine replication has been increasing
in the last years, not only in academia [4], [5], [10] but
also in industry. In the latter case, some of the noteworthy
examples are the Chubby lock-server [1] and the ZooKeeper
coordination service [2].

Recently, several works have focused on the performance
of state machine replication. Mencius [10] proposes a rotating
leader protocol that performs well in WANs. In [3], the authors
propose a protocol based on similar ideas as Mencius but
adapted to the LAN scenario, which improves throughput
by distributing over multiple replicas the load that usually is
concentrated on the leader. LCR [5] and Ring-Paxos [4] focus
instead on achieving high network efficiency on fast Gigabit
LANs. Zab [2], the atomic broadcast protocol at the core of
ZooKeeper, is a modified version of Paxos with focus on high-
performance. However, all these works are concerned only
with improving the replication protocol, and do not address
the potential CPU bottleneck. And in fact, some of results
presented in [4] and [2] show the implementations of these
protocols reach the single-thread performance bottleneck of
the CPU with workloads consisting of small requests. Our
work complements the algorithmic improvements proposed in
these papers, by showing how to leverage multi-core CPUs to
address the CPU bottleneck.

Outside the field of state machine replication, there is a
rich body of work on tools and techniques to exploit the
parallelism available on multi-CPU/multi-core systems. Our
work combines ideas from SEDA [7] and from the notion
of Actors from languages like Erlang and Scala [8]. SEDA
is an architecture for highly-scalable servers consisting of
interconnected event-driven stages, each implemented by one
or more threads, and using message queues to communicate
asynchronously. Actors can be regarded as an extension of
the concept of data encapsulation to threading: an Actor en-
capsulates both data and threading, forbidding explicit sharing
of state and communicating with other Actors only by means
of message passing. Like in SEDA, our architecture is partly
organized as a set of stages, but we also use thread-based
modules. Like Actors, we tried to encapsulate threading within
a module using message passing, but deviated from this rule
where needed to achieve performance.

III. BACKGROUND

This section gives an overview of how state machine replica-
tion works. Then it briefly describes the main tasks performed
internally by a replica and presents the generic design of an
implementation of a Replicated State Machine. This generic
design is the basis of the threading architecture proposed in
the following section.

A. State Machine Replication

A RSM makes a (deterministic) service fault-tolerant by
replicating it on several replicas, and ensuring that every
replica executes the same sequence of requests. This ensures

that the state of the replicas remains consistent and available,
in spite of a (limited) number of faults.

The key component at the heart of a RSM is the ordering
protocol used to ensure agreement on the sequence of requests,
which in most cases is one of the many variants of Paxos [11].
Paxos is a leader-based consensus protocol that tolerates the
crash of up to f replicas by using n ≥ 2f + 1 replicas.
Here, we give only a rough overview of the protocol, as
the details are not important for our work. Using a leader
election protocol, one of the replicas assumes the role of
leader, thereby becoming responsible for coordinating the
other replicas. The leader orders requests received from the
clients by executing a series of ballots. In each ballot, the
leader assigns to one or more client requests a tentative
sequence number and proposes it to the other replicas. Once a
majority of replicas receive and acknowledge this proposal, the
request is permanently assigned to the given sequence number.

Two optimizations that greatly improve the performance
of Paxos are batching and pipelining [12]. Batching consists
of grouping several client requests in the same ballot, while
pipelining consists of executing several ballots concurrently.
As these optimizations are common practice, in the following
we will assume they are used.

B. Processing a request

We now look at the tasks performed internally by a RSM.
When a replica receives a request from a client, it first queries
a cache of previously executed requests to check if the request
was already executed. If so, the replica sends the previously
computed reply back to the client. Otherwise, it initiates
ordering of the request by adding it to a batch. Once the batch
is ready, either because it reached the maximum size or its
timeout expired, the replica initiates ordering of the batch. This
involves exchanging several messages with the other replicas
according to the replication protocol, until enough messages
are received to decide the order of the batch. At this point the
requests inside the batch are assigned a final order, executed
sequentially, and the replies sent to the appropriate client.

C. Generic design of an RSM

Although implementations of replicated state machines dif-
fer in many aspects, they are usually organized around the
same set of modules, whose functionality and state are roughly
equivalent across implementations. We will therefore present
our work in the context of such typical design (see [13] for
an example). However, the threading architecture we propose
and the underlying guiding principles can be easily adapted to
other designs.

An implementation of a RSM consists roughly of four
modules: ClientIO, ReplicaIO, ReplicationCore, and Service-
Manager (Figure 2).

The ClientIO module manages the communication with the
clients, which is usually done using TCP connections. Its
main tasks are accepting new connections, receiving requests
and sending replies, and its state consists of the connection
information (sockets) and I/O buffers with partly read/written



Replica IO

- Sockets

- Read/write buffers

Service Manager

- Reply cache

- Service state

Client IO

- Sockets

- Read/write buffers

Replication Core

Failure Detection Retransmission

Ordering

Log managementCatch-up

- Replicated log

- Protocol state

Fig. 2. Main modules of a Replicated State Machine

packets. To achieve high-throughput even with small requests,
this module must be designed to handle thousands of connec-
tions and up to hundreds of thousands of small messages per
second.

The ReplicaIO is similar to the ClientIO module, managing
the communication with the other replicas. However, it must be
designed for a very different workload, i.e., for a small number
of connections (one for every other replica), each transmitting
a high amount of data. And contrary to the ClientIO module,
the size of the messages exchanged with other replicas is partly
under the control of the batching policy of the RSM, which
can choose a size that provides good bulk throughput.

The ReplicationCore executes the ordering protocol and all
the auxiliary services, like failure detection, log management,
message retransmission and catch-up/state transfer. Its state
consists of the replicated log containing the information on
every known instance of the ordering protocol, and a few other
control variables.

Finally, the ServiceManager module receives the ordered
sequence of requests, executes them on the service, and sends
the reply to the clients. Apart from the state of the service, this
module may manage a reply cache (used to ensure at-most-
once execution of requests) and some additional information
to manage snapshots.

IV. CHALLENGES AND DESIGN PRINCIPLES

Our goal is to design a threading architecture whose perfor-
mance scales with the number of cores. This goal requires first
finding and exploiting parallelism among the tasks performed
by a RSM. The difficulty of this depends greatly on the
nature of the particular module of the RSM, which can range
from embarrassingly parallel to inherently serial. Furthermore,
scaling the performance requires good load balancing among
threads, to avoid single-thread performance bottlenecks and
ensure that all threads are able to make progress concurrently.
Once again, this is easily done inside the modules with

homogeneous workload, like I/O, but difficult to do across
heterogeneous modules. Finally, to ensure correctness threads
must coordinate when accessing shared state. This is a hard
problem, susceptible to several classes of errors that can lead
to safety violations (race conditions), to liveness violations
(deadlock and livelock), or to poor performance (contention).

Our design draws inspiration from the architecture proposed
by SEDA [7], and from the concept of Actors in languages
like Scala and Erlang. It consists of a set of modules, with
some of them forming a pipeline used to process and order
requests, and the others providing auxiliary services.

Like Actors, each module encapsulates both state and
threading, and the primary means of communication between
threads in different modules are message queues. However,
a strict enforcement of this rule would at some places either
harm performance or scalability, or result in an unnecessarily
complex design. Therefore, we have allowed some carefully
designed exceptions where threads access state directly in
other modules.

Modules have one or more threads, and may be either event-
driven or thread-based. Note that single-threaded modules with
only private state are naturally thread-safe. Multi-threaded
modules, however, must use either locks or state partitioning to
protect the internal state. But this is an easier problem than in
a monolithic design because the module provides boundaries
to the shared state and threading.

This organization has several advantages for RSMs imple-
mentations. In addition to the well-known advantages of state
and thread encapsulation, it also allows each module to have
its own design. This is key in scaling the performance of RSMs
with the number of cores while keeping complexity under
control, since the many tasks performed by the implementation
of a RSM differ substantially in their structure, so that a
single homogeneous design would not provide the best results.
The critical factors that guided our design of the modules are
the potential for parallelism, the complexity of the state and
of the operations performed, the frequency and complexity
of interactions with other tasks, and the nature of the task
(sequential or event-handlers). The choice of the appropriate
design involves a series of tradeoffs between these factors.

As the CPU-intensive tasks have the greatest potential for
parallelism, they should be made into multi-threaded modules
whenever possible. This is easy in some cases; the I/O
tasks which are embarrassingly parallel in nature. However,
the ReplicationCore and ServiceManager modules pose a
greater challenge; although they are potential single-thread
bottlenecks, they are hard to divide into independent tasks
executing concurrently because of their complex state and
inter-dependencies. In these cases, we have used the natural
single-threaded, event-driven implementation for the core tasks
of the module, while offloading as much work as possible from
the main event-dispatch thread to auxiliary threads. For the
modules that have little or no potential for parallelism (e.g.,
retransmission and failure detection), we chose the design with
the simplest implementation, both in terms of code complexity
and thread safety.



Replica IO

Replication Core

Service ManagerClient IO

batch

message

message 
received

Batcher

CCC

Protocol

Failure Detector
Retransmitter

ReplicaIOSndReplicaIORcv

process 
suspected

request

reply

message 
received

message 
sent

DispatcherQueue

ProposalQueue
RequestQueue

DecisionQueue

SendQueue

Fig. 3. Scalable threading architecture. Dashed lines represent asynchronous
calls (putting a message on the message queue of the module), thin solid
lines represent synchronous calls, and thick solid lines represent network
communication.

V. THREADING ARCHITECTURE

To simplify our presentation, we will not distinguish be-
tween the case of a replica acting as leader from the case where
it is a non-leader replicas, even though the tasks performed
are not the same. Instead, we discuss a single case, where the
replica does both the leader and non-leader related tasks. Note
that this is often the case in reality, where leadership is just
an additional responsibility for the replica.

Figure 3 shows the threading architecture. Our design uses
several types of message queues. The RequestQueue connects
the ClientIO threads to the Batcher thread, while the Pro-
posalQueue does the same between the Batcher and Protocol
threads. The DispatcherQueue is the queue from where the
Protocol thread takes events to process. Each ReplicaIOSnd
thread has a queue with the messages waiting to be sent.
The DecisionQueue is used by the Protocol thread to pass the
ordered batches to the ServiceManager. Finally, each ClientIO
thread has a queue for the replies to be sent to the respective
client.

A. ClientIO module

Since clients connect to a replica using TCP and remain
connected for potentially a long time, the ClientIO module has
to handle thousands of concurrent connections. In this scenario
blocking I/O with a thread-per-connection model is inefficient,
so the ClientIO module uses instead non-blocking I/O (Java
NIO) and an event-driven architecture. For parallelism and
load balancing, it keeps a static pool of I/O threads and

assigns new connections to a thread in this pool using a round-
robin strategy1. For each connection, a ClientIO thread is
responsible for reading and deserializing requests, checking
the reply cache, and then either sending the cached reply back
to the client or putting the request in the Batcher queue. After
the request is executed, the ServiceManager thread places
the answer in the message queue of the ClientIO thread that
is handling the connection to the corresponding client. The
ClientIO thread will later serialize and send the reply.

Our profiling tests (Section VI-B) show that reading and
writing requests represent a significant fraction of the CPU
utilization in state machine replication. By using a configurable
number of ClientIO threads, this module can easily take
advantage of the cores available in the system.

B. ReplicaIO module

This module uses blocking I/O and a thread-based design,
with two threads per socket, one for reading and another for
writing. The reader thread for replica p reads and deserializes
the messages received from p, then passes the messages to
the Protocol thread using the DispatcherQueue. Any thread
wanting to send a message to replica p places the message
on the queue of the respective sender thread. This thread will
later take the message, serialize and send it to p.

Although the reader thread is necessary in a blocking I/O
design, the sender thread is not strictly required because other
threads can write directly to the socket. However, having a
dedicated thread to send messages has several benefits. First,
it improves parallelism by offloading to a dedicated thread
the work of serialization and of writing to a socket. Second,
it prevents the thread running the main event-loop (e.g., the
Protocol thread) from blocking on a socket write, which can
happen if other replicas are slow in reading from the network
or stop reading altogether because of crashing. Blocking in this
situation would at best slow down the main event-loop and, at
worst, lead to a distributed deadlock if the Protocol threads in
multiple replicas block trying to send messages to each other.
By having a dedicated send thread, this situation is detected by
other threads without blocking when the SendQueue becomes
full.

We chose blocking I/O for this module, because the number
of connections between replicas is relatively small, usually
comparable to the number of replicas, so it did not justify the
additional complexity of non-blocking I/O. As our experiments
show, a single thread can easily handle the load of reading or
writing to one other replica. Additionally, this design scales
well with the number of replicas, since the number of Repli-
caIO threads is proportional to the number of replicas. Given
enough available cores, we can expect that the performance
of reading/writing to other replicas will not degrade as the
number of replicas increases.

1Our design can easily accommodate more sophisticated load-balancing
strategies.



C. ReplicationCore Module

This module contains four threads: Batcher, Protocol, Fail-
ureDetector and Retransmitter. The Protocol thread has the
central role, because it executes the core operations of the
replication protocol. As such, it is the critical path for the
performance of both the local replica and of the system as a
whole. Therefore, we have reduced to a minimum the work
done by this thread, delegating as much as possible to other
threads. This is challenging, because the tasks done by this
module are closely related, sharing and manipulating the same
underlying state. Using locks to protect the shared state would
lead to a complex design, being prone to contention and race
conditions. Therefore, we have enforced in this module a ’no-
lock rule’: coordination between threads is done either by
message passing using queues, or by shared state if concurrent
access is not harmful. In spite of this strict rule, we have
identified several tasks that are mostly self-contained, having
only a few isolated interactions with other threads and sharing
only a few variables. We only allowed shared variables if
accessing them can be done without locks, i.e., by relying only
on atomic operations or on the semantics of volatile variables.
Several conditions must be met for this to be true, mainly the
variable cannot be used in a condition variable and it must be
possible to access the variable independently without exposing
inconsistent state.

1) Batcher thread: This thread takes requests from the
Request queue, forms batches according to the batching policy,
and puts them in the ProposalQueue. This thread accesses
directly the state owned by the Protocol thread to read the
number of ballots that are currently in execution (volatile
variable).

The Batcher thread removes from the critical path the task
of building a batch, doing it concurrently with the execution
of the ordering protocol by the Protocol thread. This both
reduces latency of request ordering and improves parallelism.
The latency is reduced because when the Protocol thread needs
a batch to start a new ballot, it can simply take one from the
ProposalQueue, which is faster than generating a new batch
from a list of requests. The parallelism is improved because,
as shown by the experiments in Section VI-B, Figure 8, the
total execution time of the Batcher thread can exceed 50% of
a CPU, which justifies having a separate thread to offload this
work from the Protocol thread.

2) Protocol thread: This thread implements the core repli-
cation protocol, consisting of an event-loop taking events from
the DispatcherQueue. The events that it processes consist of
messages from other replicas, suspicions raised by the failure
detector, batches ready to be proposed, and other housekeeping
events related to log management. This thread has exclusive
write access to the bulk of the state of the ReplicationCore
module, including the replicated log and the variables de-
scribing the current state of the protocol. In addition to the
DispatcherQueue, the Protocol thread uses a second queue
(ProposalQueue) to receive batches from the Batcher thread.
This second queue is needed to enforce flow control (explained

below) and to allow the Batcher thread to produce a (limited)
number of batches in advance.

This design matches closely the logical structure of a repli-
cation protocol, usually expressed as a collection of handlers,
and ensures that the implementation of its core is thread-safe.

3) FailureDetector thread: Depending on the role of the
replica, this thread either sends hearbeats to the other replicas
(leader role) or waits for heartbeats from the leader. When the
leader is suspected, it enqueues a suspect event on the Dis-
patcherQueue. It also receives notifications from the Protocol
thread whenever the view changes. For every other replica,
the FailureDetector thread keeps timestamps with the time
when the last message was received or sent. These timestamps
are updated directly by the ReplicaIO threads. In order to
avoid context switches, the ReplicaIO threads do not notify
the FailureDetector thread when timestamps are updated. This
is safe, because as timestamps never decrease, updating a
timestamp always results in delaying the corresponding event
(send heartbeat or suspect process), so the failure detector
thread can safely wait for the original delay and then decide
what to do based on the current values of the timestamps.

Using a dedicated thread for failure detection provides
significantly better timing guarantees than using an event-loop,
and as such significantly improves the chances that the failure
detector will work correctly, even under high-load.

4) Retransmitter thread: This thread ensures that messages
essential to the progress of the protocol are eventually de-
livered. This service is also needed when using TCP, be-
cause messages may be lost when a connection is broken
and reestablished. Internally, the Retransmitter thread uses a
priority blocking queue containing the messages to be retrans-
mitted sorted by time of retransmission. When the Protocol
thread sends a message for the first time, it also enqueues
it in the Retransmitter queue. As instances are decided, the
Protocol thread cancels the retransmission of the messages.
This operation must be very efficient, because under normal
conditions it will be done for all messages sent. We do it
without acquiring locks and without waking up the Retrans-
mitter thread. The Protocol thread simply sets a (volatile) flag
on the control structure associated with the message. Later,
when the retransmission timeout of the message expires, the
Retransmitter thread wakes up, sees that it was canceled and
drops the message.

D. ServiceManager module

This module contains a single thread, which receives the
ordered batches that the Protocol thread puts in the Decision-
Queue. For each batch, it extracts the requests, passes them to
the service in the final order, updates the reply cache with the
results of the execution of the request, and finally hands over
the reply to the ClientIO thread responsible for the connection
to the respective client.

The reply cache is a potential source of contention: it is
queried by each ClientIO thread when a client request is
received, and updated by the ServiceManager thread when



a request is executed. Under high load, it can be ac-
cessed several thousands of times per second from multi-
ple threads.2 A conventional hash table based on coarse-
grained locking performs poorly in this situation, as con-
firmed by our initial tests. Instead, this table should be
implemented using fine-grained locking. In our implementa-
tion we have used the class ConcurrentHashTable from
java.util.concurrent, which eliminated any signs of
contention in the reply cache.

E. Queues and flow control

Flow control based on backpressure can easily be imple-
mented in the architecture described above. This is achieved
by setting appropriate limits to each queue, so that when a
stage is not able to keep up with the incoming workload, the
queue fills up, which allows the stages before it to detect the
overload and take corrective action.

For instance, under high load the Protocol thread will
usually not be able to order batches as quickly as the Batcher
thread generates them. The ProposalQueue will therefore
become full, which in turn stops the Batcher thread from
taking requests from the RequestQueue. This is detected by
the ClientIO threads, which in turn temporarily stop reading
new requests from the clients. This activates the flow control
mechanisms of TCP, resulting in the send buffers at the client
side filling up, and the client being blocked from sending more
data.

This mechanism proved to be effective in our tests. Even
when high load, the resource usage at the replicas remains
bounded, without any noticeable degradation in performance.

VI. PERFORMANCE EVALUATION

We now evaluate the multi-core scalability of the architec-
ture described above (see [6] for the full results). We have
implemented it in JPaxos, which is a library for state machine
replication based on the Paxos protocol. JPaxos is based on
the generic design described in Section III, and includes the
optimizations of batching and pipelining. The details can be
found in [9].

The experiments were run on two different clusters of the
Grid50003 testbed, one with 8 core machines and the other
with 24 core machines. For the 8 core setup, we used the
edel cluster at the Grenoble site. This cluster consists nodes
with two quad-core CPUs (Intel Xeon E5520 CPU) running at
2.27GHz. The experiments with 24 core machines were run on
the parapluie cluster of the Rennes Grid5000 site. Each node is
equipped with two 12-core CPUs (AMD Opteron 6164 HE)
running at 1.7Ghz. Both clusters used a 1 Gigabit Ethernet
network with an effective inter-node bandwidth of 114MB/s.
Nodes were running Linux, kernel version 2.6.26-2, and the
JVM used was Oracle’s JRE version 1.6.0 25.

To restrict the number of cores used by the JVM, we used
the GNU command taskset to control the process affinity.

2The optimal number of ClientIO threads depends on the number of cores
and of clients, but in our tests it was usually between 3 and 6.

3https://www.grid5000.fr

In choosing the cores from the two CPUs, we tried to co-
locate cores in a single CPU as much as possible. This strategy
performs in general better than if CPUs are mixed, as the cores
in the same CPU share L3 cache and thereby can communicate
very quickly.

The workload was generated by nodes located in the same
cluster as the replicas, each running several client threads in
the same Java process. The clients send the requests directly
to the leader, using persistent TCP connections. After estab-
lishing the connection, they send requests in a loop, waiting
for the answer to the previous request before sending the next
one. Each experiment was run for 3 minutes, with the first
10% ignored in the calculation of the results. The request size
was 128 bytes and the answer size was 8 bytes. To focus our
evaluation on the ordering protocol, we used a null service,
which discards the payload of the request and sends back
a byte array of the size required by the test. Additionally,
we have not used stable storage, as that would introduce an
additional bottleneck making it harder to test the multi-core
scalability.

We used a total of 1800 clients distributed over six ma-
chines. For the pipelining optimization we set the maximum
number of parallel ballots to 10, and for batching we used a
maximum batch size to 1300 bytes. With these settings the
system is CPU-bound, thereby allowing us to better observe
the gains from parallel execution.

For each experiment we show the throughput, the speedup,
CPU utilization and the total thread blocking time. The
throughput is measured in requests per second. The speedup is
defined as the ratio between the throughput with k cores and
with 1 core The CPU utilization of a replica is measured using
the GNU time command and is shown as a percentage of 1
core, i.e., 100% is equivalent to one core being fully utilized.
These values are the average over the full run, including the
warm up period. The plots labeled Total blocked time show
the sum across all threads of the time spent blocked trying
to acquire a lock. The values displayed are normalized to the
run time, i.e., 100% corresponds to 3 minutes. This metric
gives an indication of the level of contention inside the JVM,
and therefore, the efficiency of the threading architecture.
These values are obtained using the Java Management inter-
face (ThreadMXBean) by a dedicated background thread.
This thread takes samples every second, starting 10 seconds
after JVM startup and continuing until shutdown. The values
reported below are the cumulative times between the first and
last samples.

Recall from Section V that the number of ClientIO threads
is configurable. This parameter has a significant impact on
performance in multi-core machines: too low and the cores
are underutilized, too high and performance drops due to
contention. Therefore, for each data point (number of CPUs)
in the plots in Section VI-A we have repeated the experiments
with various number of ClientIO and show the best results.



5 10 15 20
0

20

40

60

80

100

120

#cores

R
eq

ue
st

s/
se

c 
(x

10
00

)

 

 

n=3
n=5

(a) Throughput

5 10 15 20
1

2

3

4

5

6

7

#cores

S
pe

ed
up

 

 

n=3
n=5

(b) Speedup

Fig. 4. JPaxos performance with increasing number of cores, parapluie
cluster.

5 10 15 20
0

100

200

300

400

500

#cores

%
 s

in
gl

e 
co

re
 ti

m
e 

 

 

Replica 1
Replica 2
Replica 3

(a) Total CPU utilization (n = 3)

5 10 15 20
0

20

40

60

80

100

#cores

%
 s

in
gl

e 
co

re
 ti

m
e

 

 

Replica 1
Replica 2
Replica 3

(b) Total blocked time (n = 3)

5 10 15 20
0

200

400

600

800

#cores

%
 s

in
gl

e 
co

re
 ti

m
e 

 

 

Replica 1
Replica 2
Replica 3
Replica 4
Replica 5

(c) Total CPU utilization (n = 5)

5 10 15 20
0

20

40

60

80

100

#cores

%
 s

in
gl

e 
co

re
 ti

m
e

 

 

Replica 1
Replica 2
Replica 3
Replica 4
Replica 5

(d) Total blocked time (n = 5)

Fig. 5. JPaxos CPU usage and contention, parapluie cluster.

A. Multi-core Scalability

We performed the experiments using configurations with
three and five replicas. In each set of experiments, we varied
the number of cores from 1 to the maximum number of cores
in the nodes. Figures 4 and 5 show the results for the parapluie
cluster.

For n = 3, the speedup (Figure 4b) is linear up to six cores,
then sublinear up to twelve where it reaches the maximum
speedup of over 6.5, with a throughput of around 100K
requests/sec (Figure 4a). The throughput then remains stable
up to the maximum of 24 cores.

A common pattern in all our results is that the replica in
the role of leader (replica 3 and 5 in the tests with three
and five replicas, respectively) has significantly higher CPU
utilization and contention than the other replicas (Figure 5),
which is to be expected from leader-based protocols. There-
fore, in the following we will focus our analysis on the
leader. Interestingly, the CPU utilization (Figure 5a) increases
slower than the throughput (Figure 4a): at the leader, from
one to six cores it goes from 100% to 400%, while the
throughput increases six times. A possible explanation is that

with more cores available, threads run for longer without doing
context switches, resulting in less overhead and better caching
behavior than with fewer cores. Note that the CPU utilization
(Figure 5a) and total blocked time (Figure 5b) remain stable
up to the maximum number of cores. In particular, the total
blocked time remains under 20%, showing that increasing the
number of cores up to 24 does not cause additional contention
Recall from the results in Figure 1 that this is not always
the case, even in production quality implementations like
ZooKeeper.

For n = 5 the results are similar, with the exception of a
smaller speedup, reaching a maximum of 5.5 instead of 6.5.
This is likely an indirect consequence of the higher number
of messages (approximately the double) that the leader has
to handle. Receiving and sending are done by two dedicated
threads per replica, so these tasks scale linearly with the
number of cores. However, the main event-loop has to handle
all those messages, and being single threaded (Protocol thread)
it is limited by the single-thread performance of the CPU,
which accounts for the lower speedup. This effect is likely
more pronounced with higher number of replicas.

At 100K requests/second the leader hits the limit of the
network subsystem. At this point, the leader is exchanging
100K network packets per second with the clients, in addition
to the packets exchanged with other replicas, which amounts to
150K packets/second in each direction. In Section VI-D) we
analyze this bottleneck, performing experiments with differ-
ent parameters including smaller requests, larger batch sizes,
and larger maximum number of parallel ballots, obtaining
slightly better results in throughput in some cases. But in
all cases the throughput reached a peak when the leader
was handling around 150K network packets/second. As we
discuss in section VI-D, this bottleneck is likely in the Linux
kernel, since the version we used in the experiments (2.6.26)
is known to have several scalability bottlenecks when running
in multi-core machines, some of which affect the networking
subsystem [14].

Note that although by using a larger batch size it is possible
to pack more requests into a network packet, thereby making
more efficient use of the network, this works only among
the replicas. The communication pattern between clients and
replicas depends on the particular workload of the applica-
tion, which is generally not under the control of the RSM
implementation. This highlights the importance of considering
external clients when designing and benchmarking replicated
systems.

The experiments performed in the edel cluster show similar
trends, except that with only eight cores in each node the
system does not reach the limit of the network subsystem. With
n = 3, the speedup increases almost linearly, reaching a maxi-
mum of 7 with eight cores (Figure 6b), for a throughput of just
above 80K requests per second (Figure 6a). The shape of the
curve suggests that with more cores available, the performance
will increase further. Another indication that JPaxos would
scale further, comes from the results in the parapluie cluster,
which reached a maximum throughput of 100K requests per



2 4 6 8
0

20

40

60

80

100

#cores

R
eq

ue
st

s/
se

c 
(x

10
00

)

 

 

n=3
n=5

(a) Throughput

2 4 6 8
1

2

3

4

5

6

7

#cores

S
pe

ed
up

 

 

n=3
n=5

(b) Speedup

Fig. 6. JPaxos performance with increasing number of cores, edel cluster.

2 4 6 8
0

50

100

150

200

250

300

350

#cores

%
 s

in
gl

e 
co

re
 u

til
iz

at
io

n 

 

 

Replica 1
Replica 2
Replica 3

(a) Total CPU utilization (n = 3)

0 2 4 6 8
0

20

40

60

80

100

#cores

%
 s

in
gl

e 
co

re
 u

til
iz

at
io

n 

 

 

Replica 1
Replica 2
Replica 3

(b) Contention (n = 3)

2 4 6 8
0

50

100

150

200

250

300

#cores

%
 s

in
gl

e 
co

re
 u

til
iz

at
io

n 

 

 

Replica 1
Replica 2
Replica 3
Replica 4
Replica 5

(c) Total CPU utilization (n = 5)

2 4 6 8
0

20

40

60

80

100

#cores

%
 s

in
gl

e 
co

re
 u

til
iz

at
io

n 

 

 

Replica 1
Replica 2
Replica 3
Replica 4
Replica 5

(d) Contention (n = 5)

Fig. 7. JPaxos CPU usage and total blocked time, edel cluster.

second. As the both clusters use similar network infrastructure
and operating system, we can expect that the bottleneck from
the network subsystem will be reached at similar levels of
throughput, suggesting the the network subsystem in the edel
cluster still has room for higher performance.

Concerning CPU utilization and blocking time (Figure 7),
the results are once again similar to the ones in the parapluie
cluster, with the CPU utilization increasing slower than the
speedup; more precisely, for a 7x speedup there is a 3x
increase in CPU utilization. The total blocking time is once
again relatively low, with a total aggregate time across threads
of under 20% of a single core time. This shows that having
more cores allows a well-designed multi-threaded application
to run more efficiently, by avoiding the overhead associated
with sharing a small number of cores among a larger number
of threads.

B. Scalability limits of threading architecture

The results above confirm that the threading architecture
scales efficiently with the number of cores up to the limits of
the networking subsystem of the nodes. Although this shows
that the initial goal of this work was reached, it leaves open

0

20

40

60

80

100
Replica 2

 

 

C
lie

nt
IO

−
0

R
ep

lic
a

B
at

ch
er

R
ep

lic
aI

O
S

nd
−

1

R
ep

lic
aI

O
R

cv
−

1

R
ep

lic
aI

O
S

nd
−

0

R
ep

lic
aI

O
R

cv
−

0

P
ro

to
co

l

busy
blocked
waiting
other

(a) Parapluie - 1 core

0

20

40

60

80

100
Replica 2

 

 

C
lie

nt
IO

−
4

C
lie

nt
IO

−
3

C
lie

nt
IO

−
2

C
lie

nt
IO

−
1

C
lie

nt
IO

−
0

R
ep

lic
a

B
at

ch
er

R
ep

lic
aI

O
S

nd
−

1

R
ep

lic
aI

O
R

cv
−

1

R
ep

lic
aI

O
S

nd
−

0

R
ep

lic
aI

O
R

cv
−

0

P
ro

to
co

l

busy
blocked
waiting
other

(b) Parapluie - 24 cores

0

20

40

60

80

100
Replica 2

 

 

C
lie

nt
IO

−
0

R
ep

lic
a

B
at

ch
er

R
ep

lic
aI

O
S

nd
−

1

R
ep

lic
aI

O
R

cv
−

1

R
ep

lic
aI

O
S

nd
−

0

R
ep

lic
aI

O
R

cv
−

0

P
ro

to
co

l

busy
blocked
waiting
other

(c) Edel - 1 cores

0

20

40

60

80

100
Replica 2

 

 

C
lie

nt
IO

−
2

C
lie

nt
IO

−
1

C
lie

nt
IO

−
0

R
ep

lic
a

B
at

ch
er

R
ep

lic
aI

O
S

nd
−

1

R
ep

lic
aI

O
R

cv
−

1

R
ep

lic
aI

O
S

nd
−

0

R
ep

lic
aI

O
R

cv
−

0

P
ro

to
co

l

busy
blocked
waiting
other

(d) Edel - 8 cores

Fig. 8. JPaxos per-thread CPU utilization of the leader process. n = 3.

the question of what are the scalability limits of the threading
architecture itself. We can, however, use the previous results
to try to infer what would happen if the networking subsystem
were faster. For instance, the aggregate CPU utilization is
far from the theoretical maximum (500% for a maximum of
2400%), and the contention does not increase with the number
of cores, suggesting that the performance could continue
scaling.

In this section, we take a more detailed look at what happens
under the hood of JPaxos by analyzing how the threads
spend their time. The goal is both to better understand how
the architecture works internally, and to try to identify any
potential architectural bottlenecks. We discuss only the results
with three replicas, since the results with five replicas do not
differ substantially.

Figure 8 shows the CPU usage of the main threads in
JPaxos. For each thread, we show the time spent executing
(busy), blocked trying to acquire a lock (blocked), waiting on
a condition variable (waiting), and in other states (other). The
waiting state is a sign that the thread is idle, either because its
input queue is empty or because its output queue is full, and
thus must wait for other threads to advance. The blocked state
is a sign of contention for locks. Finally, the other state ac-
counts for the remainder of the time including, among others,
the time spent sleeping (e.g., called Thread.sleep()), the
time spent blocked on a system call (e.g., waiting for I/O), and
the time when the thread is ready to execute but is waiting to
be scheduled to some core.

Figures 8a and 8c show the results for the tests with 1 core
in the parpaluie and edel clusters, respectively. JPaxos is CPU-
bound in this test, as the sum of the busy time of all threads
is close to 100%, which is the maximum with one core. In
both cases, the ClientIO and the Batcher threads account for



most of the CPU utilization, with the sum of their busy time
reaching 80%. With all cores enabled in the parapluie cluster
(Figure 8b) all threads are busy between 30 and 60% of the
time. In the edel cluster (Figure 8b), the Replica thread stands
out somewhat, at more than 60% busy time, while the others
are under 40%. These results show that the workload is mostly
well-balanced between threads, which reduces the likelihood
of any single thread becoming the bottleneck when the load
increases. The only potential exception is the Replica thread,
which stands out somewhat in some tests. We discuss this
issue in more detail below.

The results also confirm that there is little contention among
threads, with most threads spending almost no time on the
blocked state. The exception is the Batcher thread, which
spends around 15% of its time blocked. Recall that this thread
competes for locks both with the ClientIO threads (Request
queue), and with the Protocol thread (Proposal queue), so it has
a higher chance of being blocked. Although this is undesirable,
it is not affecting the performance because the Batcher thread
still spends over 50% of its time in the waiting state, i.e.,
waiting for work.

From these results, we can extrapolate what is likely to
happen in the absence of bottlenecks other than the ones
inherent to the threading architecture. Interacting with clients
is likely to continue scaling with the number of cores and
with the workload. The absence of contention among these
threads confirms that this is a highly parallelizable task, so
adding additional ClientIO threads will improve performance
if enough cores are available.

Communication with other replicas should also scale. By
using a pair of dedicated send/receive threads per replica, if
more replicas are deployed there will be also more ReplicaIO
threads, which can run independently given enough cores. The
only potential bottleneck is at the level of an individual con-
nection, since all the reading from (resp. sending to) another
replica is done by a single thread. However, the per-connection
workload is mainly a function of the size of the batches (which
is under control of the RSM), being mostly independent of the
number of the clients and number of replicas. And in our tests,
even at peak throughput, the ReplicaIO threads are busy less
than 40% of the time, suggesting that there is room to more
than double the throughput given a faster network.

The busy time of the Replica, Batcher and Protocol threads
is between 40 and 50%, suggesting that if no other bottlenecks
were present, the nodes used in this experiment could sustain
up to double the current throughput before hitting the single-
thread performance limits of the CPU. Further improvements
would require changing the architecture.

Next are some ideas that could extend even further the
scalability of our architecture. The creation of batches can be
parallelized by using several Batcher threads, each with its own
queue of incoming requests. However, this change is far from
being trivial to implement, since it requires addressing load
balancing among Batcher threads and can potentially increase
latency as batches take longer to be formed. The work done by
the Protocol thread cannot be easily parallelized because of the

5 10 15 20
0

50

100

150

ClientIO threads

T
hr

ou
gh

pu
t (

x1
00

0)

(a) Throughput

5 10 15 20
0

100

200

300

400

500

600

ClientIO threads

%
 C

P
U

 u
til

iz
at

io
n

(b) Total CPU utilization at leader

Fig. 9. Varying the number of ClientIO threads. Parapluie cluster, n = 3

complexity of the state managed by this thread. But since the
work of this thread is proportional to the number of batches
ordered, it is possible to reduce its load by increasing the batch
size. The Replica thread poses the biggest challenge, because
its work is proportional to the number of requests and it cannot
be easily parallelized, as at this stage requests are put on their
final sequential order. The only obvious way to improve this
stage is by optimizing its single-thread performance.

C. Effect of number of ClientIO threads in throughput

As mentioned previously, the number of ClientIO threads
is an important factor in the scalability of JPaxos. In Sec-
tion VI-A we have shown the results obtained with the optimal
number of ClientIO threads for each data point (number of
cores). In this section, we look in more detail at the effect of
this parameter in the throughput.

Figure 9 shows the results of an experiment using all
24 cores of the parapluie while varying the number of Cli-
entIO threads, using the same experimental settings as in
Section VI-A. The results show clearly that handling client
connections offers a major opportunity for parallel execution:
the throughput goes from 40K requests per second with one
ClientIO thread to over 100K with four threads (Figure 9a),
a 2.5x improvement with just three additional threads. How-
ever, the performance degrades slightly with more than eight
threads, dropping to 80K requests per second. Figure 9b shows
that the CPU utilization mirrors the behavior of the throughput,
reaching a maximum of 550% with four ClientIO threads, then
decreasing slightly.

We were not able to determine precisely the cause of the
degradation in performance with more than eight threads,
although we ruled out some possibilities. It is not caused by
contention on locks inside the JVM, as even with 24 ClientIO
threads the total blocked time of all threads is under 10%
of the run time, even less than with the optimal of four
threads (See Section VI-B). There may be other sources of
contention that are not reported by the JVM, like the reply
cache kept in a ConcurrentHashMap (See Section V). As
this data-structure uses non-blocking primitives like test-and-
set, contention would manifest itself as higher CPU utilization.
However, this hypothesis is not supported by the results, which
show lower CPU utilization with 24 threads than with eight
threads. In Section VI-D, we show that the cause of contention
is likely in the Linux TCP stack, which as mentioned previ-



ously suffers from scalability bottlenecks in the networking
subsystem in the kernel version used in the tests [14].

These results illustrate the importance of carefully choosing
the level of parallelism, as often there is a narrow range in
which the performance is optimal.

D. Determining the system bottleneck

In the experiments in the parapluie cluster, the through-
put peaked at around 100K requests per second with eight
cores, remaining at this level as the number of cores was
increased further. The results did not show any clear indication
of a bottleneck. From Figure 8b we can conclude that threads
are not spending a significant amount of time blocking on
locks, there is no single-thread bottleneck (i.e., the busy time
of every thread is under 60%), and the total CPU utilization
is well under the maximum. Therefore, it remains to identify
the bottleneck limiting the performance. In this section, we
show that at this performance level the system is limited by the
network subsystem of the leader replica. This confirms that we
have not hit the scalability limits of the threading architecture
of JPaxos, even in a 24 core cluster with high-end network
equipment.

In the rest of this section we use WND to denote maximum
number of parallel ballots the leader is allowed to execute, and
BSZ to denote the maximum batch size. Note that both are
limits defined by configuration parameters. The actual number
of parallel ballots in execution at any given time and the
actual size of batches created by the leader, vary during a
run according to the workload.

1) Internal queues: We start by looking at what happens
inside JPaxos during a run, by looking at the average size of
the internal queues that are used by threads to communicate
with each other. Table I shows, for experiments using dif-
ferent values of WND , the average size of the three queues
that play the most important roles, i.e., RequestQueue, the
ProposalQueue and the DispatcherQueue (See Section V).
Additionally, it shows the average number of parallel instances
during each run.

In average, the RequestQueue is always more than one-
quarter full (maximum 1000) and the ProposalQueue more
than half full (maximum 20). This shows that the bottleneck is
not between the clients and the leader, as the leader has batches
waiting to be ordered. On the other hand, the DispatcherQueue
is in average empty, indicating that the Protocol thread is most
of the time idle. The reason for this is clear from the average
number of parallel instances, which is always very close to
the limit. This indicates that the Protocol thread cannot start
new instances because it is waiting for messages from other
replicas in order to decide the current instances.

This shows that the bottleneck is in the network between the
leader and the other replicas. There are several possible causes
for this delay, the most obvious ones being limited bandwidth,
high latency, and slow replicas. The bandwidth is not the
limit because in the experiments above the maximum data

10 20 30 40 50
100

105

110

115

120

125

Max. Window Size (WND)

R
eq

ue
st

s/
se

c 
(x

10
00

)

(a) Requests/sec

10 20 30 40 50
0.5

1

1.5

2

2.5

3

3.5

4

Max. Window Size (WND)

La
te

nc
y 

(m
s)

(b) Instance latency

10 20 30 40 50
9

9.5

10

10.5

11

11.5

Max. Window Size (WND)

#R
eq

ue
st

s

(c) Avg batch size (bsz )

10 20 30 40 50
0

10

20

30

40

50

Max. Window Size (WND)

#I
ns

ta
nc

es

(d) Avg window size (w )

Fig. 10. Performance as a function of window size. Parapluie, 24 cores, n=3,
BSZ = 1300.

rate reached by the leader4, is 38MB/sec out and 22MB/sec
in, which is far from the limit of 114MB/sec. We can also
exclude the other replicas as the cause of the delay, as they
were very lightly loaded in all experiments and showed no
signs of contention. In the next section we investigate the
remaining possibility, that is, that the latency is the cause of
the delays.

2) Varying the window size: If the communication latency
between the leader and the followers is the cause of the poor
performance, then by increasing the limit WND the leader
should be able to use its idle time to start more ballots
while waiting for the messages of the previous ones, thereby
improving throughput. Figure 10 shows the results of a set of
experiments where WND varies from 10 to 50.

Increasing WND improves the throughput from 100K to
a peak of 120K requests per second with WND = 35
(Figure 10a). But for higher values of WND , the throughput
drops to 110K. The other plots explain the reason. Figure 10c
shows that batches are always full and Figure 10d shows that
the average number of parallel instances in execution at any
given time is always very close to the limit. But in spite of
executing more instances in parallel, the throughput does not
increase after WND = 35. The reason can be inferred from
the instance latency (Figure 10b), i.e., the time the leader has
to wait since it proposes a value for an instance until receiving
at least one Phase 2b message from another replica, and thus
deciding the instance. The instance latency grows steadily with
the maximum number of parallel instances: up to 35, it grows
slower than WND , resulting in a net gain in throughput, while
after 35 it grows faster than WND , resulting in a decrease in
throughput.

4These values were measured with the Ganglia monitoring interfaces of
Grid 5000: https://helpdesk.grid5000.fr/ganglia/.



WND RequestQueue ProposalQueue DispatcherQueue Avg parallel ballots
10 629.70 ± 23.94 14.33 ± 0.36 2.14 ± 0.25 9.63 ± 0.12
35 550.29 ± 8.11 14.94 ± 0.29 1.26 ± 0.41 34.67 ± 0.20
40 440.30 ± 7.49 14.97 ± 0.30 1.47 ± 0.31 39.50 ± 0.26
45 406.52 ± 8.36 14.85 ± 0.33 1.54 ± 0.54 43.88 ± 0.47
50 255.91 ± 10.90 12.99 ± 0.46 4.51 ± 1.14 45.86 ± 0.85

TABLE I
AVERAGE SIZE DURING A RUN OF INTERNAL QUEUES AND OF THE NUMBER OF PARALLEL BALLOTS. PARAPLUIE CLUSTER, n = 3, BSZ = 1300.

ping (ms)
idle any ↔ any 0.06

experiment

other ↔ other ≈ 0.06
follower ↔ other ≈ 0.06
follower ↔ follower ≈ 0.06-0.08
leader ↔ any ≈ 2.5

TABLE II
PING TIMES BETWEEN NODES OF THE PARAPLUIE CLUSTER, WHILE IDLE

AND DURING AN EXPERIMENT (WND = 35, BSZ = 1300, n = 3). other
DENOTE A NODE IN THE CLUSTER NOT INVOLVED IN THE EXPERIMENT,

AND follower DENOTES NON-LEADER REPLICAS.

This increase in latency is not due to delays in processing
the messages inside the replicas JVM, because as seen before
both the leader and the non-leader replicas are far from being
overload. To determine the cause, we have instead to look at
the network latency between replicas during an experiment.
Table II shows the round-trip-time (RTT) between nodes in
the cluster before and during an experiment, measured using
the ping command. While idle, the RTT is consistently
around 0.06ms between any node. During an experiment, it
is also 0.06ms between nodes not involved in the experiment.
Between nodes involved in the experiment, but excluding the
leader, the RTT becomes more irregular, varying between 0.06
and 0.08, a marginal increase. But between the leader and any
other node in the cluster it increases to 2.5ms. This value
matches the instance latency in this experiment (Figure 10b,
which is also around 2.5ms. Since the RTT only increases
when the leader node is involved, this leaves only the network
subsystem of the leader as the cause of the delays. Also note
that the ping command uses directly the low-level networking
system of the kernel, which further confirms that the source
of the delay is within the kernel and not in the JVMs or
even in the TCP stack. This conclusion is validated by results
published in [14], which show that the network subsystem
of the Linux kernel in versions prior to 2.6.35 (so including
version 2.6.26 used in our experiments) suffered from poor
scalability in multi-core machines when processing a large
number of packets.5

3) Varying the batch size: The limiting factor in the ex-
periments above was the number of packets processed by

5Since the initial version of this article was written, we have determined that
the bottleneck is caused by the way the Linux kernel handles interrupts from
the network card. By default, it directs all the network interrupts to a single
queue that is served by only one core, which creates a single-thread bottleneck
as the number of packets increases. However, it is possible to distributed the
load among cores using mechanisms like Receive Side Scaling (RSS) and
Receive Packet Steering (RPS) [15]. We have repeated some experiments
with these settings enabled and in most cases the throughput doubled.

2 4 6 8 10
0

20

40

60

80

100

120

140

Max. Batch Size (KB) (BSZ)

R
eq

ue
st

s/
se

c 
(x

10
00

)

 

 

WND=35

(a) Requests/sec

2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

Max. Batch Size (KB) (BSZ)

La
te

nc
y 

(m
s)

(b) Instance latency

2 4 6 8 10
0

5

10

15

Max. Batch Size (KB) (BSZ)

B
at

ch
 S

iz
e 

(K
B

)

(c) Avg batch size (bsz )

2 4 6 8 10
0

10

20

30

40

Max. Batch Size (KB) (BSZ)

#I
ns

ta
nc

es

(d) Avg window size (w )

Fig. 11. Performance as a function of batch size. Parapluie, 24 cores, n = 3,
WND = 35.

the network subsystem of the leader. We now investigate if
increasing the maximum batch size improves the throughput
beyond the maximum of 120K requests per second achieved
in the previous section. The rationale is that for the same
throughput, larger batches may decrease the total number of
individual network packets handled by the leader, because the
larger messages sent by the leader to the other replicas will be
split into packets of an higher average size. Figure 11 shows
the results.

As BSZ increases from 1300 bytes to a little over 10KB,
the throughput remains at 120K requests/sec (Figure 11a).
Therefore, higher batches do not improve the throughput.

To understand the reason, we show in Table III the average
number of packets per second sent and received by the leader
and the total outgoing and incoming bandwidth, as reported
by the monitoring interfaces of Grid 5000.

For all batch sizes displayed, the number of packets/sec sent
by the leader is at 150K, which suggests that this is the limit
of the network subsystem of the leader. The leader uses the
same network interface to communicate with the clients and
the replicas. Therefore, for a throughput of X requests/sec, the
leader has to received/send X packets/sec from/to the clients
(each request is sent in a single packet), regardless of BSZ .
The leader must also use a number Y of packets/sec to order



BSZ Throughput Packets/s (out/in) Bandwidth (out/in)
650 83K 150/145 K 38/22 MB/s
1300 114K 150/145 K 44/25 MB/s
2600 119K 150/140 K 44/25 MB/s
5200 120K 150/135 K 44/25 MB/s

TABLE III
THROUGHPUT AND NETWORK UTILIZATION FOR VARYING SIZES OF BSZ .

PARAPLUIE CLUSTER, n = 3, WND = 35.

5 10 15 20
0

20

40

60

80

100

120

#cores

R
eq

ue
st

s/
se

c 
(x

10
00

)

 

 

JPaxos
ZooKeeper

(a) Throughput (parapluie)

5 10 15 20
1

2

3

4

5

6

7

#cores

S
pe

ed
up

 

 

JPaxos
ZooKeeper

(b) Speedup (parapluie)

Fig. 12. JPaxos vs ZooKeeper with increasing number of cores. Parapluie
cluster, n = 3

these requests, but this number will depend on BSZ : higher
BSZ decrease the number of packets required to order the
same number of requests. With this in mind, we can interpret
the results.

With BSZ = 650, the leader sends 83K packets/sec to
the clients and 67K to the replicas. This is an inefficient
configuration, because an Ethernet frame can be up to 1500
bytes in a typical deployment, while the leader is sending
batches of 650 bytes to the other replicas. With BSZ = 1300,
the leader packs the double number of requests in a single
Ethernet frame, therefore halving the number of frames ex-
changed with other replicas for the same throughput. The
spare budget of network frames allows the leader to process
more client requests, resulting in a higher throughput. Further
increases in BSZ do not translate in a significant increase in
the average size of each Ethernet frame sent by the client,
because with BSZ = 1300 bytes the packets were already
close to the limit. Therefore, the increases in throughput are
small for BSZ > 1300.

The slight decrease in the number of packets received by
the leader is because replicas send a single Phase 2b message
to the leader in response to each batch, therefore with bigger
batches the leader receives fewer Phase 2b messages for the
same throughput.

E. Comparison with ZooKeeper

In this section we compare the results of our threading
architecture with ZooKeeper, to show how it improves over
a production-quality implementation of RSM. The tests in
this Section were performed with ZooKeeper 3.3.3. We used
the default behavior for the connections between the clients
and replicas: the clients connect via TCP to a replica chosen
randomly. As recommended in the ZooKeeper’s documenta-
tion for achieving better performance, we changed the default
configuration to force the leader to refuse client connections.

5 10 15 20
0

100

200

300

400

500

#cores

%
 o

f s
in

gl
e 

co
re

 u
til

iz
at

io
n

 

 

Replica 1
Replica 2
Replica 3

(a) CPU Usage

5 10 15 20
0

20

40

60

80

100

120

#cores

%
 o

f s
in

gl
e 

co
re

 u
til

iz
at

io
n

 

 

Replica 1
Replica 2
Replica 3

(b) Contention

Fig. 13. ZooKeeper cpu usage and contention. Parapluie cluster, n = 3

Each ZooKeeper client creates an ephemeral node at startup
and then enters a loop issuing write requests (setData())
in that node. We used write requests to force ZooKeeper to
execute the full ordering protocol, thereby making the results
comparable with JPaxos which does not allow local reads
and orders all requests. Otherwise, the workload settings were
similar to the ones used by JPaxos. As we are interested
on the multi-core scalability of the system, we did not use
stable storage in our tests. However, ZooKeeper does not
allow disabling stable storage. Instead, we have used a ramdisk
(/dev/shm) for its transaction log and for saving snapshots,
which effectively removes most of the cost of the disk writes.

Figures 12 and 13 compare JPaxos and ZooKeeper in terms
of performance, CPU usage, and contention.

ZooKeeper scales super-linearly up to four cores where it
reaches a speedup of six (Figure 12b). However, for higher
number of cores its performance degrades substantially, finish-
ing at only four when all 24 cores are used. This degradation
is caused by contention.

Figure 13b shows that the leader, Replica 3, suffers from
very high levels of contention, with the aggregate blocking
time of its threads exceeding 100% of the run time. By
comparison, the blocking time in JPaxos does not exceed
20% (Figure 5b). ZooKeeper’s CPU utilization (Figure 13a)
is another sign of the problems with its architecture. Although
the throughput drops when using more than four cores, the
CPU utilization continues increasing up to ten cores, when it
finally stabilizes; this means that the additional CPU utilization
is spent on contention. With JPaxos, on the other hand, the
CPU utilization (Figure 5a) closely follows the throughput,
indicating minimal or no CPU wasted on contention. Looking
in more detail at how threads spend their time (Figure 14)
further confirms the high level of contention. Even when using
a single core, several threads spend between 10 and 30% of
their blocked. The situation gets worse when 24 cores are used,
with one thread, the CommitProcessor, spending around
40% of its time blocked.

ZooKeeper also suffers from several single-thread bottle-
necks, because the workload is poorly balanced among its
threads. Figure 14b shows that when 24 cores are used, three
of its main threads are busy or blocked 100% of their time,
which limits the overall performance in spite of having more
cores available.



0

20

40

60

80

100

 

 

C
om

m
itP

ro
ce

ss
or

Le
ar

ne
rH

an
dl

er
:1

Le
ar

ne
rH

an
dl

er
:2

P
ro

ce
ss

T
hr

ea
d

S
en

de
r:

1

S
en

de
r:

2

S
yn

cT
hr

ea
d

busy
blocked
waiting
other

(a) One core

0

20

40

60

80

100

 

 

C
om

m
itP

ro
ce

ss
or

Le
ar

ne
rH

an
dl

er
:1

Le
ar

ne
rH

an
dl

er
:2

P
ro

ce
ss

T
hr

ea
d

S
en

de
r:

1

S
en

de
r:

2

S
yn

cT
hr

ea
d

busy
blocked
waiting
other

(b) 24 cores

Fig. 14. ZooKeeper: per-thread CPU utilization of the leader process.

VII. CONCLUSION

As replication protocols improve and the network infras-
tructure becomes faster, implementations of replicated state
machines are increasingly limited by the single-thread per-
formance of the system. This is because most of these imple-
mentations, including research projects and production-quality
implementations like ZooKeeper, are not designed to take full
advantage of multi-core systems. In this paper we have shown
how to parallelize a generic implementation of a replicated
state machine, so that its performance scales with the number
of cores in the nodes.

The proposed threading architecture divides the internal
state and tasks into a set of modules, with well-defined bound-
aries. At the core, there is a pipeline of event-driven stages
that handle requests, with several satellite modules providing
auxiliary services. As these modules differ substantially in
complexity we used a variety of techniques, choosing the
implementation of each module based on its potential for
parallelism and complexity. We believe that the architecture
proposed is general enough to be applied in a variety of
implementations of state machine replication, with only minor
adaptations needed.

The experiments show that in a 24 cores system, the
architecture scales with the number of cores, until reaching
the limits of the network subsystem. The results also suggest
that in the absence of other bottlenecks, the performance would
continue scaling with additional cores.

REFERENCES

[1] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in Proceedings of the 7th symposium on Operating systems
design and implementation, ser. OSDI ’06. Berkeley, CA, USA:
USENIX Association, 2006, pp. 335–350.

[2] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: wait-
free coordination for internet-scale systems,” in Proceedings of the
2010 USENIX conference on USENIX annual technical conference, ser.
USENIXATC’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 11–11.

[3] M. Kapritsos and F. P. Junqueira, “Scalable agreement: toward ordering
as a service,” in Proceedings of the Sixth international conference on
Hot topics in system dependability, ser. HotDep’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 1–8.

[4] P. Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos: A
high-throughput atomic broadcast protocol,” in Dependable Systems and
Networks (DSN’10), Jun. 2010.

[5] R. Levy, “The complexity of reliable distributed storage,” Ph.D. disser-
tation, EPFL, 2008.

[6] N. Santos and A. Schiper, “Achieving high-throughput state machine
replication in multi-core systems,” EPFL, Tech. Rep. (to appear), Nov.
2011.

[7] M. Welsh, D. Culler, and E. Brewer, “Seda: an architecture for well-
conditioned, scalable internet services,” in Proceedings of the eighteenth
ACM symposium on Operating systems principles, ser. SOSP. New
York, NY, USA: ACM, 2001, pp. 230–243.

[8] P. Haller and M. Odersky, “Scala actors: Unifying thread-based and
event-based programming,” Theoretical Computer Science, 2008.

[9] N. Santos, J. Kończak, T. Żurkowski, P. Wojciechowski, and A. Schiper,
“JPaxos - State machine replication in Java,” EPFL, Tech. Rep. 167765,
Jul. 2011.

[10] Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: building effi-
cient replicated state machines for wans,” in Proceedings of the 8th
USENIX conference on Operating systems design and implementation,
ser. OSDI’08. Berkeley, CA, USA: USENIX Association, 2008, pp.
369–384.

[11] L. Lamport, “The part-time parliament,” ACM Transactions on Computer
Systems, vol. 16, no. 2, May 1998.

[12] N. Santos and A. Schiper, “Tuning Paxos for high-throughput with
batching and pipelining,” in 13th International Conference on Dis-
tributed Computing and Networking (ICDCN 2012), Jan. 2012.

[13] Y. Amir and J. Kirsch, “Paxos for system builders,” Johns Hopkins
University, Tech. Rep. CNDS-2008-2, 2008.

[14] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek,
R. Morris, and N. Zeldovich, “An analysis of Linux scalability to many
cores,” in Proceedings of the 9th USENIX conference on Operating
systems design and implementation, ser. OSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 1–8.

[15] T. Herbert and W. de Bruijn, “Scaling in the linux networking
stack,” Nov. 2011. [Online]. Available: http://www.mjmwired.net/
kernel/Documentation/networking/scaling.txt


