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Abstract—It is generally recognized that the traffic generated
by an individual connected to a network acts as his biometric
signature. Several tools exploit this fact to fingerprint and
monitor users. Often, though, these tools assume to access the
entire traffic, including IP addresses and payloads. This is not
feasible on the grounds that both performance and privacy
would be negatively affected. In reality, most ISPs convert user
traffic into NetFlow records for a concise representation that
does not include, for instance, any payloads. More importantly,
large and distributed networks are usually NAT’d, thus a few
IP addresses may be associated to thousands of users. We
devised a new fingerprinting framework that overcomes these
hurdles. Our system is able to analyze a huge amount of network
traffic represented as NetFlows, with the intent to track people.
It does so by accurately inferring when users are connected
to the network and which IP addresses they are using, even
though thousands of users are hidden behind NAT. Our prototype
implementation was deployed and tested within an existing large
metropolitan WiFi network serving about 200,000 users, with an
average load of more than 1,000 users simultaneously connected
behind 2 NAT’d IP addresses only. Our solution turned out to
be very effective, with an accuracy greater than 90%. We also
devised new tools and refined existing ones that may be applied
to other contexts related to NetFlow analysis.

I. INTRODUCTION

Tracking down individuals on the Internet is fairly simple
nowadays. Governments collect a huge amount of Internet
traffic to carry out mass surveillance programs and monitor
terrorist organizations or suspects. Analysis and monitoring
tools exist that can detect and locate anyone by simply looking
at Internet traffic logs. Indeed, network traffic generated by a
single user contains certain patterns that make it unique and,
thus, discernible. Much work has been done in this area of
research and it is now well established that network traffic
acts as a biometric signature, or fingerprint, of the user that
generated it. The way it works is that a classifier, based on
machine learning, is first trained on the traffic generated by a
certain individual to extract and learn distinctive characteristics
from it, and then used to trace the same individual from his
traffic produced afterwards, while surfing the Internet.

But, how effective are these classifiers? How realistic is the
environment in which they operate?

Classifiers are indeed very effective, but it is often assumed
that they are given as input the entire traffic, including pay-
loads, headers, and other timing information. The reality is
quite different, however. For performance reasons, the attacker

cannot analyze or store the entire traffic, that can reach a
throughput higher than 2, 000 Gbit/s in the case of large In-
ternet Exchange points. However, ISPs often convert network
traffic into NetFlow records for a more concise representation.
These records are used to collect IP traffic statistics for data
analysis and contain very little information (no payload, for
example). Not all is lost, however, since it may not be difficult
for an attacker to devise improved classifiers that can pinpoint
individuals by just looking at NetFlow records. Even in this
case though, it seems we must at least assume that users are
identified by unique IP addresses. But again reality is harsher,
and often users are hidden behind NAT and are all seen outside
their network as a single entity, with only one IP address.

In this paper we show that, quite surprisingly, by mining
solely NetFlow data belonging to an Internet Service Provider,
or that of an Internet Exchange Point, an attacker is able to
track users, and accurately estimate when they are connected to
the network and which IP address they are using. The approach
that we propose works also if the target user is hidden behind
NAT. This privacy attack corroborates that massive spying
activities, such as the ones performed by intelligence agencies
([26],[20]) are not only possible, but also require very limited
computational effort. The fact that it is possible to trace users
hidden behind a NAT by just mining NetFlow data is far
from being obvious. Indeed, standard classification techniques
are ineffective when naively applied in this context. Existing
solutions that may work for NAT’d addresses are not designed
to work with NetFlow records alone. We devised a new
fingerprinting framework that overcomes these hurdles. Our
system was tested by targeting users connected through their
smartphone to an actually-deployed WiFi network, covering
a metropolitan area and its surrounding county, that spans a
region of nearly 15,000 km2 and that employs more than 1,300
access points. Such a huge network serves routinely about
200,000 total users, with an average load of more than 1,000
users simultaneously connected behind 2 natted IP addresses
only. Despite the “noise” of so many users inside NetFlow
logs, users were still fingerprinted with a very high accuracy.
In all the analyzed cases, we achieved both precision and
recall greater than 90% (more on this later). Even though
we experimented with individuals using smartphones, our
approach may be generalized and applied to fingerprint users
carrying a variety of other devices, such as laptops or tablets.
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Application scenarios. Some examples of applications of
our solutions include:
1. After-the-fact forensic analysis. Since ISPs routinely col-
lect NetFlow records, they might provide assistance to law
enforcement agencies and track down criminals after the fact
or learn about their habits at different points in time.
2. Covert intelligence operations. Officials may be mandated
to trace certain individuals on national security grounds. While
ISPs readily collaborate with their own Governments, they
may refuse to provide relevant information to other entities
outside the borders. Sometimes even asking for an authoriza-
tion to access data may not be an option. Our framework
can easily be used to monitor the traffic on out-of-bounds
routers and fingerprint individuals roaming within the domains
of targeted ISPs.
If abused, our solutions can also be used to violate the privacy
of citizens. Therefore, in this respect, our work should be
interpreted as a warning sign of what certain organizations
might be able to undertake.

Contributions. Our main contribution is to provide the first
solution for fingerprinting individuals hidden behind a NAT
router when only NetFlow records are available. We believe
our solutions are significant since we deployed them within an
existing metropolitan WiFi network with thousands of (real)
users. Along the way, we also devised novel techniques and
classification strategies that required appreciable efforts and
which we believe are of independent interest (at least to those
working with NetFlow analysis). In particular, other relevant
contributions are:
1. A novel method to encode NetFlow records into training
sets suitable for several HMM classifiers run in parallel. We
employed HMMs for their ability to properly capture “time”
information, as in time series analysis, and to handle changes
in data distribution over time.
2. The definition of a User Detector that operates on the
outputs of multiple HMMs, and performs a time interval
aggregation of the individual results. In our experiments, a
simple weighted sum was adopted as aggregation function
for its ability to meaningfully combine distinct HMM outputs
(more on this later).
3. The design of a classification component, based mainly on
Random Forest, that can automatically interpret the output of
the gating component and supply the final classification.

Organization of the paper. Section II reports on related
work. In Section III, we introduce the background and the
definitions needed to introduce our framework. The different
components of the framework are detailed in Section IV, while
Section V reports several experimental results that show the
viability of our approach. Finally, Section VI provides the
conclusions.

II. RELATED WORK

Our main claim in this paper is that there is no effective
technique to fingerprint individuals hidden behind NAT when
only NetFlow records are available. To justify this claim,
we performed an extensive and rigorous analysis of previous

proposals in the area and classified them based on (1) the in-
tended target (whether device, host, user, application, etc.) and
(2) the technique used to perform the fingerprinting/profiling.
Indeed, it is important to remark that there are many proposed
solutions that work for, e.g., devices or applications but cannot
be used for individuals. Or, rather, they work for individuals
but only when payloads are available (but fail when applied
to NetFlow logs only).

We report the results of our classification in Table I.
We identified three main strands: works based on Netflows
analysis, those based on stream statistic analysis, and those
based on the payload analysis. With respect to the target, we
identified four different categories: user and host profiling,
traffic and application profiling, information leaks and device
profiling.

a) User and Host Profiling: We distinguish two addi-
tional sub-categories: behavioral targeting and single user/host
profiling. We anticipate, however, that behavioral targeting
focuses only on identifying communication patterns that are
in common to many users (or hosts), with the intent of
analyzing anomalies. Thus, it does not consider the same
problem addressed in this paper.

Behavioral targeting refers to a range of technologies and
techniques used to model the behavior of sets of users or hosts
with the intent of identifying (1) common features, or (2)
anomalies from the typical behavior. The main objective of
this line of work is to build user profiles to offer customized
services and it is thus valuable to website publishers and
advertisers. As described in [36], some of these techniques
analyze the interactions between users and one or more fed-
erated content provider servers. Identifying groups of Internet
hosts with a similar behavior is convenient to detect security
breaches, such as DDoS, worms, viruses, botnets, etc. In [34]
and [35], the authors profiled the Internet backbone traffic with
the intent of discovering compromised hosts. They analyzed
the communication patterns of end-hosts and services via
data mining and information-theoretic techniques. In the end,
they showed how to identify common traffic profiles, as
well as anomalous behavior patterns, that are of interest to
network operators and security analysts. A similar problem
was addressed in [32], where host profiles were used to detect
anomalous behaviors during the Slammer worm spread. We
emphasize that our target is different: we are not interested in
creating a cluster of similar users but rather our focus is to
improve our ability to single out users.

Melnikov et al. [22] introduced a proof-of-concept tech-
nique used to distinguish between users by analyzing their
NetFlow traffic. However, details on how their technique
can be employed in a real-world environment are missing
and their experiments provide very limited insights. In [4],
the authors show how to distinguish distinct users during
their online playing activities. However, their approach is not
generalizable and hence not applicable to our context. Profiling
end-host systems based on their transport-layer behavior was
proposed in [16]. There, the authors used graphlets to capture
information flows and inter-flow dependencies. Their basic



TABLE I
CLASSIFICATION OF THE RELATED WORK

Used Technique
Netflow Analysis Stream Statistics Analysis Payload Analysis

Ta
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User and Host Profiling [22], [21] [34], [35], [32], [4], [16], [24] [36], [12]
Traffic and Application Profiling [3], [25], [28] [37], [23], [15], [29] [6]
Information Leaks [19], [30], [5], [33]
Device Profiling [17], [11], [8]

technique though cannot be used to re-identify users later
on. Re-identification is explicitly considered in [12], where
patterns mined from web traffic are used to link multiple
sessions of the same user. Unfortunately, this solution does
not work for users hidden behind NAT. The same applies for
the work in [21], where NetFlows are used to detect behav-
ioral changes, identify anomalies and trace the propagation
of malware. In [24], Pang et al. showed that users can be
tracked through implicit identifiers in 802.11 networks even
when unique addresses and names are removed. However,
their technique works only when the attacker is physically
close to the target and can eavesdrop the wireless traffic. A
completely different approach is proposed in [31], where the
authors use Open Source Intelligence to improve the results
of host profiling. This refinement can also be used within our
framework to improve our results.

b) Traffic and Application Profiling: This category aims
at recognizing either the type of network traffic (i.e., p2p,
streaming video, VoIP, etc.), or the application that generated
it (i.e., Skype, Gnutella, etc.). It is a classification technique
employed by network administrators to monitor network traffic
and identify different applications. As shown in Table I, several
works rely on statistics extracted from the network traffic. To
compute these statistics, it is sometimes sufficient to access
just the header of TCP/IP packets [37], [23], [15], [29], but
in general the entire packet payload is necessary [6]. These
approaches do not scale for large networks where NetFlow
analysis is preferred. Indeed, in [3], [25] and [28], the authors
use NetFlow analysis for traffic monitoring and application
classification. However, their techniques cannot be applied to
fingerprint users hidden behind a NAT router.

c) Information Leaks: Information leaks category aims
at analyzing encrypted traffic with the intent to uncover any
useful information.

In [19] and [30], two attacks against encrypted HTTP
streams were presented. The authors identified webpages
visited by victims based on a pre-built database containing
webpage fingerprints. Chen et al.[5] make use of fingerprints
of different webpages to infer users’ browsing habits. Similar
approaches have been used to identify spoken phrases within
a VOIP call. In [33], for example, the authors show how the
lengths of encrypted VoIP packets can be used to identify
spoken phrases of a variable bit rate encoded call.

d) Device Fingerprinting: Device fingerprinting aims at
identifying different physical devices (such as mobile phones).
Microscopic deviations in hardware components, such as the

clock skews, were used in [17] to fingerprint computer devices.
This technique works even when the device is behind a
NAT or a firewall, and also when the device’s system time
is maintained via NTP or SNTP. Clearly, it won’t work to
distinguish two devices of the same model (i.e., with the
same hardware specs). The same issue applies to the work
in [11], where a technique to accurately identify the software
driver used by 802.11 wireless adapters is proposed. In [8], the
authors propose to identify devices by using timing analysis
of probe request frames emitted from wireless client stations
when scanning for access points. However, this approach
cannot be used at the network level since wireless frames can
only be captured within the wireless transmission range.

III. BACKGROUND AND DEFINITIONS

This section summarizes two main components used in
this work: the NetFlow technology and our machine learning
approach based on HMMs. Netflows are used as building
blocks to enable the analysis of the network traffic. HMMs
are adopted to model the traffic of a user and to re-identify
him later on, when his traffic will be mixed with the traffic of
a number of other users.

A. NetFlows

NetFlow is a protocol designed by Cisco to collect IP traffic
information, getting rid of any IP packet payload. It makes use
of compact representations of the packet exchange between
two network peers. NetFlow collects traffic information but
discards IP packet payloads and it is commonly used for
network traffic monitoring and reporting. NetFlow v9 has
evolved as a IETF standard called IPFIX, already implemented
by most network equipment vendors [1].

We decided to focus on NetFlow since most routers natively
support it and it is the de facto standard for a compact
representation of a large amount of network traffic. Further-
more, NetFlow records do not contain packet payloads, thus
the activity of collecting and analyzing them is considered
legitimate and does not raise privacy concerns (unlike deep
packet inspection).

A NetFlow enabled device (a probe) extracts from each
packet a key composed of specific IP header fields. To simplify
the exposition, we can think to this key as a 5-tuple containing
IP source and destination addresses, source and destination
ports, and the protocol used. More formally, we define a
NetFlow key function that takes as input an IP packet and
outputs a 5-tuple of attributes.



Definition 1: A NetFlow key function fkey is defined as
fkey : I → K, where the set I denotes the set of possible
IP packets, and the set K is the set of 5-tuples of the form:
(IP src , portsrc , IPdst , portdst , protocol)1

A NetFlow probe applies the NetFlow key function to each
single packet and dynamically builds in its cache memory a
set of NetFlow raw records. These also contain several other
attributes, among which the most relevant are: cumulative
number of exchanged packets, bytes counters, flow starting and
finishing timestamps, TCP flags, and Type of Service (ToS).
More formally:

Definition 2: A NetFlow raw record nfr is composed
by a key value k ∈ K and a data tuple (packets, bytes,
start timestamp, end timestamp, TCP flags, ToS). Each ele-
ment of the data tuple represents a feature of the set of IP
packets I ∈ I, with k = fkey(I), exchanged among a single
connection between two network peers.

NetFlow raw records, along with the output of the NetFlow
key function, are subsequently sent via UDP to a NetFlow
collector, for storing and analysis purposes. A new nfr is sent
to the collector when the connection is closed (i.e., a packet
explicitly terminates the flow via TCP FIN or RST) or the
NetFlow expires. Indeed, a NetFlow can expire for three main
reasons: (1) the flow has been inactive for a time period longer
than the inactive timeout; (2) the flow has been active for a
time period longer than the active timeout; (3) the flow cache is
full and some space needs to be freed for new flows. Default
values for inactive timeout and active timeout are set to 15
seconds and 30 minutes, respectively.

The NetFlow collector may store multiple records for each
NetFlow key. Indeed, the router may receive a packet with the
same fkey of an expired NetFlow raw record. In this case, a
new nfr with the same key is created. We will leverage this
feature to build our framework later. First, we need to define
the flow as the composition of several related NetFlow raw
records.

Definition 3: A flow f is defined as a set of NetFlow raw
records {nfr1, . . . , nfrn} such that ∀1 ≤ i, j ≤ n, the key
associated with nfri is equal to the key associated with nfrj .
We realized that the flow defined above is very convenient
and effective in identifying users. For instance, a flow properly
captures certain usage patterns and is oblivious to NAT routers.
Indeed, two NAT’d users connecting to the same IP address
and port will be assigned two distinct local ports. Therefore,
two distinct flows will be generated, one per each user.

In the following, we define a bi-directional flow as the union
of two distinct flows:

Definition 4: Given an IP protocol protocol, two pairs of
IP addresses and ports ip1:port1 and ip2:port2, we define a
bi-directional flow as the union of the flow from ip1:port1 to
ip2:port2 with the one from ip2:port2 to ip1:port1.

1NetFlow v5 includes two more fields within the key but they are
not relevant to our work. These are: the type of service and the index
of the ingress interface. Newer NetFlow versions have also introduced
the possibility to specify custom keys and attributes.

Finally, we will consider only ordered flows, applying a
ordering function sort that rearranges a flow, sorting its
nfr’s with respect to the start timestamp. More precisely,
we say that an ordered flow is the flow obtained applying
the sort function to the nfr’s that compose the input flow,
namely sort(f) = {nfr1, . . . , nfrn}, such that ∀i < j,
nfri.start timestamp ≤ nfrj .start timestamp.

Similarly, we can say that an Ordered Bi-directional
Flow (OBF) is the bi-directional flow obtained by applying
the sort function. OBFs are therefore sequences of NetFlow
raw records that describe how the connection between two
endpoints evolved over time. OBFs are essential components
in our framework. When properly encoded, they are used to
train HMM classifiers which are described next.

Table II reports an example of generation of OBFs. Five
Netflow raw records are listed as nfr1 to nfr5. Each one is
composed by a key and a data tuple. The key contains source
and destination IP addresses, ports, and protocol. The data
tuple associated with the key reports the number of exchanged
packets, bytes, the start and end timestamp, TCP flags and
the type of service. Since nfr1 and nfr3 share the same key
value, they are aggregated together in the same flow. As such,
the five netflow raw records compose four different flows
f1,f2,f3,f4. Netflow raw records nfr1, nfr2 and nfr3 compose
an Ordered Bidirectional Flow. Indeed, they are related to the
same TCP connection between the IP addresses 192.168.1.10
and 173.124.18.52. Netflow raw records nfr5, nfr4 compose
another Ordered Bidirectional Flow. Note that nfr5 precedes
nfr4 since the start timestamp of nfr5 is prior to the start
timestamp of nfr4.

B. Hidden Markov Models

An HMM is a Finite State Machine able to model a doubly
stochastic process with an underlying stochastic process that is
not observable (it is hidden), but can only be observed through
another set of stochastic processes that produce a sequence of
observed symbols, or vectors, as in our case [27]. We consider
HMMs with continuous observation densities. In its compact
form, an HMM is defined by λ = (A,B, π):

A: N ×N state transition probability matrix, where N is
the number of hidden states. Each matrix element aij is the
probability of a transition of the hidden process from state
i to j.
B: N observation probability densities. Each probability

density represents the probability of a certain observable,
when the hidden process is in state i.
π: N length initial state probability vector. Each vector

element πi is the probability that the hidden process starts
from state i.

The use of HMMs is proposed when solving one or more of
the following problems related to the modeled phenomenon
[27]:

Problem 1: Given an HMM λ and a sequence O of observ-
ables o1, o2, ..., ot, find the probability P(O—λ) that these
observables are generated by the given model.



TABLE II
ORDERED BIDIRECTIONAL FLOWS: A SIMPLE EXAMPLE

Object Name Content

N
et

flo
w

R
aw

R
ec

or
ds

nfr1 key: (192.168.1.10, 5430, 173.124.18.52, 80,TCP), data tuple: (145, 1815, 1375690161, 1375699541, SIN+ACK, 0)
nfr2 key: (173.124.18.52, 80, 192.168.1.10, 5430,TCP), data tuple: (5, 421, 1375690290, 1375699650, SIN+ACK, 0)
nfr3 key: (192.168.1.10, 5430, 173.124.18.52, 80,TCP), data tuple: (12, 1815, 1375690690, 1375699703, SIN+ACK+RST, 0)
nfr4 key: (192.168.1.10, 2345, 64.12.121.12, 443,UDP), data tuple: (1, 196, 1375690600, 1375699705, SIN+ACK, 0)
nfr5 key: (64.12.121.12, 443, 192.168.1.10, 2345,UDP), data tuple: (1, 12, 1375690590, 1375699596, FIN, 0)

Fl
ow

s f1 {nfr1, nfr3}
f2 {nfr2}
f3 {nfr4}
f4 {nfr5}

O
B

Fs OBF1 (nfr1, nfr2, nfr3)
OBF2 (nfr5, nfr4)

Problem 2: Given a model λ and a sequence O of observ-
ables o1, o2, ..., ot, find the sequence Q of states q1, q2, ..., qs
that maximizes the probability P(O—λ).
Problem 3: Given N the number of states, the initial state
probability distribution π, a sequence O of observables
o1, o2, ..., oi, and (if known) the corresponding sequence Q
of states q1, q2, ..., qi that emitted them, find the model λ
that maximizes P(O—λ).

To solve the third problem, an iterative procedure is used,
that learns the model adjusting its parameters and optimally
adapting them to the observed training data. The training
process is able to create the best model for the observed
phenomenon. The learning is said supervised when the model
can be trained with the knowledge of both the emitting states
and the observables, otherwise it is said unsupervised.

Hidden Markov Models (HMMs) are widely used in se-
quences analysis since there exist efficient algorithms to solve
the three problems defined above [9], [13], [18]. In this paper,
HMMs are employed to model and recognize user traffic. In
this case, the observables are the NetFlow raw records: as
described in Section III-A, each nfr is represented by a data
tuple of t values, corresponding to its t attributes (number of
packets, start timestamps, etc.). In particular, we consider that
the observables are t dimensional vectors distributed according
to N multivariate Gaussian distributions, one for each state:
we will adopt one N × t matrix, containing the means, and N
covariance matrices, to define the t-dimensional multivariate
Gaussian distributions. In other words, for each state of the
model, we have t Gaussian densities, one for each of the t
vector elements and, to represents such densities, we have to
specify their means and their covariances.

To realize our framework, we will make use of HMMs
to learn the network traffic profile of a target user. The
training phase will be carried out by solving an instance of the
Problem 3 above, via an unsupervised approach. Then, in the
classification phase (when users are subsequently recognized),
trained HMMs will essentially solve instances of the Problem
1 above.

IV. THE FINGERPRINTING FRAMEWORK

Our proposed fingerprinting framework has two main com-
ponents: the Training Component, and the User Detector. The

first component operates as follows: (1) It takes as input
NetFlow raw records of the target user, (2) trains a set of
HMMs to recognize its OBFs, and (3) selects the HMMs that
achieve the best performance. The User Detector operates as
follows: (1) It uses the selected HMMs to classify unknown
traffic, (2) aggregates the results into a new dataset that
describes time intervals, and (3) applies a final classification
to the aggregated dataset. At the end of this process, the user
detector will determine whether, during a time interval, the
network traffic contains anything from the target user. More
details on these two components are provided next.

A. Training Component

This component is tasked with creating a set of HMMs,
collectively able to recognize the traffic of the target user. We
adopted an approach to exploit multiple learners, called mix-
ture of experts (ME) [38]. Unlike typical ensemble methods
(where individual learners are trained for the same problem),
a mixture of experts works in a divide-and-conqueror strategy,
where a complex task is broken up into several simpler and
smaller subtasks on which individual learners (the experts) are
trained.

In our case, we use a natural task repartition since the ex-
perts are several specialized HMMs, each dedicated to recog-
nize user traffic towards a single network service. Figure 1(b)
graphically describes the process of realizing trained HMMs
in our framework. The entire process is divided into five
sub-phases: Partitioning, Elaboration and Enrichment, HMMs
Training, Binarization, HMM Selection.

e) Partitioning phase: We start with a collection of
NetFlow raw records nfrs that are generated by user U . In
the partitioning phase, these nfrs are divided and organized
in subsets. Each subset is related to a service or to a set
of services accessed by U . As in [24], we assume that
the IP addresses contacted by the user U , along with the
corresponding ports, are implicit identifiers of the accessed
services. However, we must take into account that IP addresses
may vary at each service request. For example, it is very
likely to contact two distinct IP addresses when accessing
www.youtube.com twice even in a short time interval. To
overcome this problem, we use the whois lookup protocol [7]
to map each IP address to a netrange that identifies the IP block
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Fig. 1. Our Fingerprinting Framework.

of addresses that the service provider controls. In particular, we
select the smallest IP address range returned by querying five
Regional Internet Registries, namely arin, ripe, apnic, iana and
lacnic. Combining the retrieved netrange with the contacted
port, we obtained a pair 〈netrange, port〉, that constitutes the
key used to partition the collection of the NetFlow raw records
of the target user. The last step is the organization of the
〈netrange, port〉 subsets in OBF sets. This task is carried out
by the OBFs builder that combines and sorts the nfr’s with
the same 〈netrange, port〉. This results in several sets of OBFs
organized by 〈netrange, port〉. Each element of a set represents
a sample of the connections between the target user U and the
related service. It will become an observation sequence given
as input to an HMM.

f) Elaboration and Enrichment phase: In this phase, the
OBF elements of the above partitioning are transformed into
the observables that will ultimately be used by the HMMs. In
particular, the features of each single nfr of a OBF become
the elements of a feature vector. Therefore, each single OBF
becomes a sequence of feature vector sequences, namely the
observation sequences of the HMMs. The feature vectors are
composed of a combination of the following OBF features:

Gap: counts the milliseconds elapsed between a nfr and
the previous one in the OBF. It is set to 0 for the first nfr.
Packets: is the number of packets reported by a nfr.
Bytes: is the number of bytes reported by a nfr.
Direction: is the direction of a nfr. This value is equal to
1 if the related connection was outgoing (originated from
the target user), 0 if it is ingoing (originated from the other
end-point).

g) HMMs Training: The sequences of feature vectors are
used to train multiple HMMs in parallel. For each subset of
OBFs, we use 80% of observation vectors to train the HMMs,

while we save the remaining 20% for subsequent phases. Sev-
eral HMMs are trained by varying the number of states and the
subset of features of the observation vectors. In particular, we
used two, three and four states with 14 different combinations
of features, namely: {Pkts}, {Bytes}, {Gap}, {Direction},
{Pkts, Bytes}, {Pkts, Gap}, {Gap, Bytes}, {Direction, Bytes},
{Direction, Pkts}, {Direction, Gap}, {Gap, Bytes, Pkts},
{Direction, Bytes, Pkts}, {Direction, Gap, Pkts}, {Direction,
Bytes, Gap}. These 14 combinations are all the possible
subsets of cardinality at most 3, that can be achieved starting
from the set that contains the 4 features: {Pkts}, {Bytes},
{Gap}, {Direction}. We set the initial parameters of each
HMM via the K-Means algorithm [14]. The outcome of this
phase consists of 42 uniquely trained HMMs for each OBF
subset created in the previous phases.

h) Binarization phase: Each trained HMM is able to
evaluate a sequence of feature vectors and to give the prob-
ability that such a new observation was obtained capturing
the traffic of the target user with a given service. This is
the behavior of a probabilistic classifier. The next step is to
set a probability threshold to achieve a binary classifier that
recognizes only two classes: if the observed sequence has a
probability lower than t, it will be classified as 0, otherwise
it will be classified as 1. The threshold t is chosen for each
HMM by testing the 20% of observation vectors set aside
during the training phase, mixed with other observation vectors
not belonging to the target user U . In particular, the threshold
is set as the value that maximizes the accuracy in terms of
balanced F-measure F1, namely

F1 =
2PR

P +R

where P is the precision and R is the recall: precision is the
ratio between the positively-and-correctly classified samples



and the positively classified samples, whereas the recall is the
ratio between the positively-and-correctly classified samples
and all the positive samples considered in the test [2].

i) HMM Selection: During this last phase, the HMM
with the best accuracy is selected. Namely, the HMM that
maximizes the F-measure is chosen among all 42 possible
HMMs available. The corresponding accuracy (in terms of F-
measure) will be subsequently used to assign a weight to the
HMM, during the user detection process.

B. User Detector

The goal of the Training Component (described previously)
is to release a series of trained HMMs, each of them spe-
cialized in recognizing the traffic of the target user related to
a unique network service. The User Detector employs these
HMMs to analyze some collected traffic and to determine
whether there is anything from the target user. It aggregates
the results by time intervals, and applies a final classification
to the aggregated dataset.

j) HMM Classification: The User Detector component
starts with a collection of NetFlow raw records. The OBFs
Builder is used to combine the nfrs in OBFs. Given a new
OBFs, the corresponding HMM is selected, the required fea-
tures are extracted, and the result of the classification is stored
for further computations. If there is no specialized HMM for
a new OBF, then it can be discarded as soon as it arrives. This
is because there is no way, in this case, to determine whether
it was generated by U . Classification results are stored to be
later retrieved and aggregated with the ones from the same
time interval. In particular, for each single OBF, we store the
predicted class (i.e., 1 or 0) and the index of the HMM used
for the classification.

k) Time Interval Aggregation: Once all the OBFs of the
time interval have been classified, we use an aggregation func-
tion to summarize the results. The aggregation will generate a
concise record whose length depends on the number of HMMs
trained for the target user U . The record will represent the
weighted number of OBFs that each HMM has attributed to
the user U during the time interval. Therefore, a record will
be of the form:

〈weight(HMM1)×OBF1(U); . . . ;weight(HMMn)×OBFn(U)〉

where weight(HMMi) is the weight assigned to the ith

HMM (that is its accuracy), OBFi(U) is the number of OBFs
recognized by HMMi as belonging to the user U during that
interval, and n is the number of trained HMM.

l) Final Classification: The User Detector has to finally
associate a binary label to the record generated after the Time
Interval Aggregation: 1 indicates that the user was connected
to the network during that time period, 0 otherwise. A naive
solution would be to sum all the values composing a single
record, and fix a threshold to convert the sum into a binary
result. However, better results can be attained by using stan-
dard classification algorithms applied on records from several
time intervals. In the experiments section, we will compare
the performance of several classification algorithms, such as

Support Vector Machine, Random Forest, JRip, Multilayer
Perceptron and Naive Bayes. In the end, this approach turns
out to be very effective, providing a very high precision and
recall.

V. EXPERIMENTS AND DISCUSSION

In this section we briefly describe the implementation of the
proposed fingerprinting framework and how the experiment
environments were set up. Then, we discuss and report on the
results we attained.

A. Framework implementation

To prove the effectiveness of our proposal, we realized a
working prototype of our fingerprinting framework, as de-
signed in Figure 1(a). The core system has been coded within
a Java environment. In particular, both the training component
and the user detector component have been implemented in
Java, and a Java/R Interface called JRI2 has been used to
run R from the Java application. Basically, HMMs have been
implemented in R, with the support of the package mhsmm3.
This package provides parameter estimation and prediction
for HMMs for data with multiple observation sequences, and
supports Multivariate Gaussian distributions. The Final Clas-
sification phase has been realized by using the Weka library,
that provides a large suite of machine learning algorithms. In
the following, the experiment environments and the attained
results are discussed in details.

B. Experiment environments

The typical hardware configuration to keep track of NetFlow
generated by user traffic is composed of one or more routers
and switches with NetFlow capabilities (the probes) and a
NetFlow collector. During its normal duty, each NetFlow-
enabled device (router or switch) creates and elaborates Net-
Flow records for every single packet. Then, it transmits batches
of collected records to the collector that stores them for further
analysis. We set up two different environments where we
collected NetFlow traces from real users, to realize both a
small scale and a large scale experiment.

For the small scale experiment, we configured a NetFlow-
enabled router and a single wireless access point to create a
WiFi network within our premises. The router was the default
gateway for the network and was configured to send NetFlow
data to a local collector. We profiled a total of 26 different
users accessing the Internet with their mobile devices during
one month of monitoring, collecting 4.8 GB of traffic and
more than 500,000 NetFlow raw records.

For the large scale experiment, we had access to the
NetFlow traffic of a metropolitan network that provides pub-
lic WiFi connectivity to a large region with 200,000 regis-
tered users, covering 144 towns in an area spanning nearly
15,000 km2, and counting about 1,300 wireless access points
(Figure 2 outlines the network configuration). A NetFlow
probe was placed inside the ISP that provides connectivity

2http://www.rforge.net/JRI/
3http://cran.r-project.org/web/packages/mhsmm/index.html

http://www.rforge.net/JRI/
http://cran.r-project.org/web/packages/mhsmm/index.html


Fig. 2. Large Scale Experiment Network
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Fig. 3. Ordered Bi-directional Flows classification. Average accuracy by port
number

services for the public WiFi network. The public WiFi network
is NAT’d and uses only 2 public IP addresses with an average
of 250 GB of daily traffic, thus producing nearly 20 millions
NetFlow raw records per day.

C. Small Scale Experiment

We monitored the Internet connection of 26 different users
for one month, collecting their traffic when they were con-
nected to our access point. The first week’s NetFlow data was
used for the Training Component, the rest to train and test
the entire framework through cross-fold validation. During the
training week, the smartphones of the 26 target users contacted
a total of 74 different services (composed of netrange,port
pairs). Figure 3 reports the average accuracy, in terms of F-
measure, of the HMMs trained to recognize the traffic toward
these services aggregated by port. It can be seen that HMMs
devoted to recognize the traffic toward port 80 have an average
accuracy of 0.76, while those devoted to recognize the traffic
toward port 443 (which is encrypted) have an accuracy of
0.49. It may seem that the encryption reduces the accuracy.
However, this is not completely accurate. Indeed, the features
that we use to train our classifiers (like the gap or the packets
transmitted) are not significantly influenced by the encryption.
This is also confirmed from the results achieved analyzing the
encrypted traffic flowing on port 993 (IMAP over TLS/SSL).
Indeed, the HMMs on this port have accuracy equal to 0.80 in
average. On the other hand, port 7275 has very low accuracy.
This port is related to the Open Mobile Appliance User Plane
Location protocol that is used by mobile devices to receive

TABLE III
SMALL SCALE EXPERIMENT—TIME INTERVAL CLASSIFICATION.

COMPARISON OF FIVE DIFFERENT CLASSIFICATION ALGORITHMS USED IN
THE FINAL CLASSIFICATION PHASE. AVERAGE VALUES ARE REPORTED.

Algorithm TPR FPR Prec Recall F-measure
Rand. Forest 0.95 0.07 0.95 0.93 0.94
Naive Bayes 0.55 0.08 0.55 0.87 0.67
MLP 0.86 0.14 0.86 0.88 0.87
SVM 0.69 0.09 0.69 0.88 0.76
JRip 0.94 0.12 0.94 0.89 0.91

GPS info quickly. Thus, the traffic to this port is somehow
automatic and this explains the low accuracy we measured. In
general, certain services are well suited for identifying users
while others are more “impersonal”. This is confirmed also
by Figure 4. It details the accuracy of all HMMs employed
by the User Detector to recognize the traffic of a specific
user (we selected the worst performing). Notice that services
hosted by Google, and accessed through ports different than
80, have a fairly low accuracy. On the other hand, the Amazon
Elastic Compute Cloud (Amazon EC2), a service used by
many application developers, reaches very high accuracy.

Services that have a higher accuracy are the ones that should
be used to fingerprint individuals. This is why, in the time
interval aggregation, the accuracy is represented by a weight.
Note also that several services are very popular while others
are used by very few users (who are then easier to profile).
For instance, the service DNSINC-3 in the figure is related to
an Android application called DynDNS client from Dynamic
Network Services, Inc., and that application counts less than
50,000 downloads worldwide.

Other than the accuracy of the OBFs classification, we
must also measure the overall performance of the frame-
work to determine when the target user is connected. For
this, we tested several classification algorithms for the final
classification phase. Table III sums up the results that we
achieved by using five different algorithms: Random Forest,
Naive Bayes, Multilayer Perceptron (MLP), Support Vector
Machine (SVM) and JRip (we used the Weka implementation
of these algorithms). Random Forest behaved better than the
rest in all the evaluation metrics that we considered. It reaches
95% of true positive rate, and only 7% of false positive rate.
Precision, Recall and F-measure (i.e., the harmonic mean of
precision and recall) are equal to 0.95, 0.93, 0.94, respectively.

The area under the ROC (Receiver Operating Characteristic)
is a convenient way of comparing classifiers. A random
classifier has an area of 0.5, the ideal one has an area of 1.
Under this metric, we confirmed that Random Forest performs
better than other algorithms within our framework (SVM was
the worst) [10]. Indeed, Table IV reports the average ROC
Area related to 6 different users selected among the 24 that
we profiled (individual values are also reported). It shows that,
for all users, Random Forest reaches a ROC area close to 1
(from 0.95 to 0.97) and has a low variance as well. The latter
reveals that Random Forest is appropriate for classifications
involving distinct users, with only a small variation over the



Fig. 4. Ordered Bi-directional Flows classification. Accuracy per service for a specific user

TABLE IV
SMALL SCALE EXPERIMENT—TIME INTERVAL CLASSIFICATION. ROC AREA IS REPORTED FOR SIX TARGETED USERS AND FIVE ALGORITHMS USED IN

THE FINAL CLASSIFICATION PHASE.

Classification Algorithm User 1 User 2 User 3 User 4 User 5 User 6 ROC
Mean

ROC
Variance

JRip 0.93 0.94 0.88 0.9 0.90 0.90 0.91 4.97× 10−4

SVM 0.92 0.92 0.8 0.66 0.86 0.63 0.80 161.77× 10−4

MLP 0.85 0.95 0.91 0.89 0.93 0.86 0.90 15.36× 10−4

Naive Bayes 0.79 0.92 0.86 0.86 0.93 0.76 0.85 46.26× 10−4

Random Forest 0.96 0.96 0.95 0.97 0.96 0.95 0.96 0.56× 10−4

final performance.

D. Large Scale Experiment

For the large scale experiment, we used the large WiFi
network described in Section V-B. Consider a scenario in
which an intelligence agency intents to monitor and trace
a group of, say, five suspects. The agency, with no wiretap
warrant or direct access to the large WiFi network, can only
export all the NetFlow data produced by the main ISP router
providing connectivity to the large WiFi network (see Figure
2). For the sake of the experiment, we enrolled five volunteers
that used their own mobile phone, without installing new
applications or changing their usual behavior. Two of them
had a pristine phone with no third-party applications (a worst-
case scenario for our profiling framework), but with certain
services correctly configured, such as (1) Gmail, (2) Twitter,
(3) Facebook, (4) Skype, in addition to (5) the backup of
the phone camera (via Dropbox). All five volunteers were
previously profiled for a period of 8 hours by inducing them to
connect to an access point directly controlled by us (acting as
the intelligence agency). The average training traffic collected
per user was of 12.64 MBytes.

During the test phase, an average of around 1,100 users
were connected to the WiFi network simultaneously, and all
of them were NAT’d behind only two IP addresses. During

the experiment, we attempted to detect the presence of each
one of the suspects by mining the NetFlow data. The suspects
used the WiFi network only during specific hours, from 10AM
to 10PM. Approximately 100 million NetFlow raw records
were analyzed during the test phase that lasted 24 hours. This
roughly corresponds to 96 GB of traffic, with an average
of 9 Mb per second (Mbs). About 700.000 unique netranges
were contacted by the 1,100 users. Only the 0.02% of these
netranges were contacted during the training phase by the
suspects.

Table V shows the results achieved. Note that we report
only on the results achieved with the Random Forest classifier
since it is the best performer in the final classification step. In
all cases, the true positive rate is higher than 0.9, while the
false positive rate is lower than 0.08. Furthermore, precision
and recall are higher than 0.9 in all cases. Suspect 1 was
successfully detected, while Suspect 2 and Suspect 4 produced
one false positive and one false negative only. Suspect 3 and
Suspect 5 were misclassified for two hours but these were the
users with pristine phones running only applications installed
by the phone manufacturer.

Figure 5 shows the ROC curves achieved when fingerprint-
ing the five target suspects. It can be noticed that in all cases
the area under the ROC curves is greater than 0.95.



TABLE V
LARGE SCALE EXPERIMENT: PERFORMANCE OF OUR FINGERPRINTING FRAMEWORK.

User TPRate FPRate Precision Recall F-measure Correctly
Classified Hours

Incorrectly
Classified Hours

Suspect 1 1 0 1 1 1 24 0
Suspect 2 1 0.07 0.91 1 0.94 23 1
Suspect 3 0.92 0.08 0.92 0.92 0.92 22 2
Suspect 4 0.9 0 1 0.9 0.95 23 1
Suspect 5 0.9 0 0.96 0.96 0.96 22 2

(a) Suspect 1. ROC Area: 1 (b) Suspect 2. ROC Area: 0.99 (c) Suspect 3. ROC Area: 0.98 (d) Suspect 4. ROC Area: 0.99 (e) Suspect 5. ROC Area: 0.95

Fig. 5. ROC curves for each suspected user.

VI. CONCLUDING REMARKS

We showed that it is possible to fingerprint NAT’d indi-
viduals when only NetFlow records are available. This is a
very realistic scenario since most networks are NAT’d and
ISPs generally deal only with NetFlow data. We implemented
and tested our framework on an existing metropolitan WiFi
network with thousands of real users. Our solution uses a
series of properly trained HMMs and cleverly combines them
to maximize the success rate. Along the way, we also devised
new tools and refined existing ones that could be generalized
and applied to other contexts related to NetFlow analysis.

We are currently working on improving the performance of
our fingerprinting framework by leveraging inter-dependencies
of distinct network services. Furthermore, we are refining our
implementation to be deployed as a real-time user localization
prototype. Finally, we are also investigating possible counter-
measures. It seems solutions such as TOR or VPN tunneling
may degrade the performance of our approach, but it is not
yet clear whether they can preclude it completely.
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