
The LevelArray: A Fast, Practical Long-Lived Renaming
Algorithm

Dan Alistarh∗

Microsoft Research Cambridge

Justin Kopinsky
MIT

Alexander Matveev
MIT

Nir Shavit
MIT and Tel-Aviv University

Abstract
The long-lived renaming problem appears in shared-memory systems where a set of threads need to register and

deregister frequently from the computation, while concurrent operations scan the set of currently registered threads.
Instances of this problem show up in concurrent implementations of transactional memory, flat combining, thread
barriers, and memory reclamation schemes for lock-free data structures.

In this paper, we analyze a randomized solution for long-lived renaming. The algorithmic technique we consider,
called the LevelArray, has previously been used for hashing and one-shot (single-use) renaming. Our main contribu-
tion is to prove that, in long-lived executions, where processes may register and deregister polynomially many times,
the technique guarantees constant steps on average and O(log log n) steps with high probability for registering, unit
cost for deregistering, and O(n) steps for collect queries, where n is an upper bound on the number of processes that
may be active at any point in time. We also show that the algorithm has the surprising property that it is self-healing:
under reasonable assumptions on the schedule, operations running while the data structure is in a degraded state
implicitly help the data structure re-balance itself. This subtle mechanism obviates the need for expensive periodic
rebuilding procedures.

Our benchmarks validate this approach, showing that, for typical use parameters, the average number of steps a
process takes to register is less than two and the worst-case number of steps is bounded by six, even in executions
with billions of operations. We contrast this with other randomized implementations, whose worst-case behavior we
show to be unreliable, and with deterministic implementations, whose cost is linear in n.

1 Introduction
Several shared-memory coordination problems can be reduced to the following task: a set of threads dynamically
register and deregister from the computation, while other threads periodically query the set of registered threads. A
standard example is memory management for lock-free data structures, e.g. [17]: threads accessing the data structure
need to register their operations, to ensure that a memory location which they are accessing does not get freed while
still being addressed. Worker threads must register and deregister efficiently, while the “garbage collector” thread
queries the set of registered processes periodically to see which memory locations can be freed. Similar mechanisms
are employed in software transactional memory (STM), e.g. [3, 16], to detect conflicts between reader and writer
threads, in flat combining [20] to determine which threads have work to be performed, and in shared-memory barrier
algorithms [22]. In most applications, the time to complete registration directly affects the performance of the method
calls that use it.

Variants of the problem are known under different names: in a theoretical setting, it has been formalized as long-
lived renaming, e.g. [11, 14, 25]; in a practical setting, it is known as dynamic collect [17]. Regardless of the name,
requirements are similar: for good performance, processes should register and deregister quickly, since these opera-
tions are very frequent. Furthermore, the data structure should be space-efficient, and its performance should depend
on the contention level.

∗Part of this work was performed while the author was a Postdoctoral Fellow at MIT CSAIL.

1

ar
X

iv
:1

40
5.

54
61

v1
 [

cs
.D

C
]

 2
1

M
ay

 2
01

4

Many known solutions for this problem, e.g. [17,25], are based on an approach we call the activity array. Processes
share a set of memory locations, whose size is in the order of the number of threads n. A thread registers by acquiring a
location through a test-and-set or compare-and-swap operation, and deregisters by re-setting the location to its initial
state. A collect query simply scans the array to determine which processes are currently registered.1 The activity array
has the advantage of relative simplicity and good performance in practice [17], due to the array’s good cache behavior
during collects.

One key difference between its various implementations is the way the register operation is implemented. A simple
strategy is to scan the array from left to right, until the first free location is found [17], incurring linear complexity on
average. A more complex procedure is to probe locations chosen at random or based on a hash function [2, 8], or to
proceed by probing linearly from a randomly chosen location. The expected step complexity of this second approach
should be constant on average, and at least logarithmic in the worst case. One disadvantage of known randomized
approaches, which we also illustrate in our experiments, is that their worst-case performance is not stable over long
executions: while most operations will be fast, there always exist operations which take a long time. Also, in the
case of linear probing, the performance of the data structure is known to degrade over time, a phenomenon known as
primary clustering [23].

It is therefore natural to ask if there exist solutions which combine the good average performance of randomized
techniques with the of stable worst-case bounds of deterministic algorithms.

In this paper, we show that such efficient solutions exist, by proposing a long-lived activity array with sub-
logaritmic worst-case time for registering, and stable worst-case behavior in practice. The algorithm, called LevelAr-
ray, guarantees constant average complexity and O(log log n) step complexity with high probability for registering,
unit step complexity for deregistering, and linear step complexity for collect queries. Crucially, our analysis shows
that these properties are guaranteed over long-lived executions, where processes may register, deregister, and collect
polynomially many times against an oblivious adversarial scheduler.

The above properties should be sufficient for good performance in long-lived executions. Indeed, even if the
performance of the data structure were to degrade over time, as is the case with hashing techniques, e.g. [23], we could
rebuild the data structure periodically, preserving the bounds in an amortized sense. However, our analysis shows
that this explicit rebuilding mechanism is not necessary since the data structure is “self-healing.” Under reasonable
assumptions on the schedule, even if the data structure ends up in extremely unbalanced state (possible during an
infinite execution), the deregister and register operations running from this state automatically re-balance the data
structure with high probability. The self-healing property removes the need for explicit rebuilding.

The basic idea behind the algorithm is simple, and has been used previously for efficient hashing [13] and one-
shot2 randomized renaming [6]. We consider an array of size 2n, where n is an upper bound on contention. We split
the locations into O(log n) levels: the first (indexed by 0) contains the first 3n/2 locations, the second contains the
next n/4 and so on, with the ith level containing n/2i locations, for i ≥ 1. To register, each process performs a
constant number of test-and-set probes at each level, stopping the first time when it acquires a location. Deregistering
is performed by simply resetting the location, while collecting is done by scanning the 2n locations.

This algorithm clearly solves the problem, the only question is its complexity. The intuitive reason why this
procedure runs in O(log log n) time in a one-shot execution is that, as processes proceed towards higher levels, the
number of processes competing in a level i is O(n/22

i

), while the space available is Θ(n/2i). By level Θ(log logn),
there are virtually no more processes competing. This intuition was formally captured and proven in [13]. However, it
was not clear if anything close to this efficient behavior holds true in the long-lived case where threads continuously
register and deregister.

The main technical contribution of our paper is showing that this procedure does indeed work in long-lived
polynomial-length executions, and, perhaps more surprisingly, requires no re-building over infinite executions, given
an oblivious adversarial scheduler. The main challenge is in bounding the correlations between the processes’ oper-
ations, and in analyzing the properties of the resulting probability distribution over the data structure’s state. More
precisely, we identify a “balanced” family of probability distributions over the level occupancy under which most op-
erations are fast. We then analyze sequences of operations of increasing length, and prove that they are likely to keep

1The trivial solution where a thread simply uses its identifier as the index of a unique array location is inefficient, since the complexity of the
collect would depend on the size of the id space, instead of the maximal contention n.

2One-shot renaming [10] is the variant of the problem where processes only register once, and deregistration is not possible.

2

the data structure balanced, despite the fact that the scheduling and the process input may be correlated in arbitrary
ways (see Proposition 3). One further difficulty comes from the fact that we allow the adversary to insert arbitrary
sequences of operations between a thread’s register and the corresponding deregister (see Lemma 2), as is the case in
a real execution.

The previous argument does not preclude the data structure from entering an unbalanced state over an infinite
execution. (Since it has non-zero probability, such an event will eventually occur.) This motivates us to analyze such
executions as well. We show that, assuming the system schedules polynomially many steps between the time a process
starts a register operation and the time it deregisters,3 the data structure will rebalance itself from an arbitrary initial
state, with high probability.

Specifically, in a bad state, the array may be arbitrarily shifted away from this good distribution. We prove that,
as more and more operations release slots and occupy new ones, the data structure gradually shifts back to a good
distribution, which is reached with high probability after polynomially many system steps are taken. Since this shift
must occur from any unbalanced state, it follows that, in fact, every state is well balanced with high probability.
Finally, this implies that every operation verifies the O(log log n) complexity upper bound with high probability.

From a theoretical perspective, the LevelArray algorithm solves non-adaptive long-lived renaming in O(log log n)
steps with high probability, against an oblivious adversary in polynomial-length executions. The same guarantees
are provided in infinite executions under scheduler assumptions. We note that our analysis can also be extended to
provide worst-case bounds on the long-lived performance of the Broder-Karlin hashing algorithm [13]. (Their analysis
is one-shot, which is standard for hashing.)

The algorithm is wait-free. The logarithmic lower bound of Alistarh et al. [7] on the complexity of one-shot
randomized adaptive renaming is circumvented since the algorithm is not namespace-adaptive. The algorithm is time-
optimal for one-shot renaming when linear space and test-and-set operations are used [6].

We validate this approach through several benchmarks. Broadly, the tests show that, for common use parameters,
the data structure guarantees fast registration—less than two probes on average for an array of size 2n—and that the
performance is surprisingly stable when dealing with contention and long executions. To illustrate, in a benchmark
with approximately one billion register and unregister operations with 80 concurrent threads, the maximum number
of probes performed by any operation was six, while the average number of probes for registering was around 1.75.

The data structure compares favorably to other randomized and deterministic techniques. In particular, the worst-
case number of steps performed is at least an order of magnitude lower than that of any other implementation. We also
tested the “healing” property by initializing the data structure in a bad state and running a typical schedule from that
state. The data structure does indeed converge to a balanced distribution (see Figure 3); interestingly, the convergence
speed towards the good state is higher than predicted by the analysis.
Roadmap. Section 2 presents the system model and problem statement. Section 3 gives an overview of related work.
We present the algorithm in Section 4. Section 5.1 gives the analysis of polynomial-length executions, while Sec-
tion 5.2 considers infinite executions. We present the implementation results in Section 6, and conclude in Section 7.

2 System Model and Problem Statement
We assume the standard asynchronous shared memory model with N processes (or threads) p1, . . . , pN , out of which
at most n ≤ N participate in any execution. (Therefore, n can be seen as an upper bound on the contention in an
execution.) To simplify the exposition, in the analysis, we will denote the n participants by p1, p2, . . . , pn, although
the identifier i is unknown to process pi in the actual execution.

Processes communicate by performing operations on shared registers, specifically read, write, test-and-set or
compare-and-swap. Our algorithm only employs test-and-set operations. (Test-and-set operations can be simulated
either using reads and writes with randomization [1], or atomic compare-and-swap. Alternatively, we can use the
adaptive test-and-set construction of Giakkoupis and Woelfel [18] to implement our algorithm using only reads and
writes with an extra multiplicative O(log∗ n) factor in the running time.) We say that a process wins a test-and-set
operation if it manages to change the value of the location from 0 to 1. Otherwise, it loses the operation. The winner

3This assumption prevents unrealistic schedules in which the adversary brings the data structure in an unbalanced state, and then schedules
a small set of threads to register and unregister infinitely many times, keeping the data structure in roughly the same state while inducing high
expected cost on the threads.

3

may later reset the location by setting it back to 0. We assume that each process has a local random number generator,
accessible through the call random(1, v), which returns a uniformly random integer between 1 and v.

The processes’ input and their scheduling are controlled by an oblivious adversary. The adversary knows the
algorithm and the distributions from which processes draw coins, but does not see the results of the local coin flips or
of other operations performed during the execution. Equivalently, the adversary must decide on the complete schedule
and input before the algorithm’s execution.

An activity array data structure exports three operations. The Get() operation returns a unique index to the process;
Free() releases the index returned by the most recent Get(), while Collect() returns a set of indices, such that any index
held by a process throughout the Collect() call must be returned. The adversary may also require processes to take
steps running arbitrary algorithms between activity array operations. We model this by allowing the adversary to
introduce a Call() operation, which completes in exactly one step and does not read or write to the activity array. The
adversary can simulate longer algorithms by inputting consecutive Call() operations.

The input for each process is well-formed, in that Get and Free operations alternate, starting with a Get. Collect
and Call operations may be interspersed arbitrarily. Both Get and Free are required to be linearizable. We say a process
holds an index i between the linearization points of the Get operation that returned i and that of the corresponding
Free operation. The key correctness property of the implementation is that no two processes hold the same index at
the same point in time. Collect must return a set of indices with the following validity property: any index returned by
Collect must have been held by some process during the execution of the operation. (This operation is not an atomic
snapshot of the array.)

From a theoretical perspective, an activity array implements the long-lived renaming problem [25], where the
Get and Free operations correspond to GetName and ReleaseName, respectively. However, the Collect operation
additionally imposes the requirement that the names should be enumerable efficiently. The namespace upper bound
usually required for renaming can be translated as an upper bound on the step complexity of Collect and on the space
complexity of the overall implementation.

We focus on the step complexity metric, i.e. the number of steps that a process performs while executing an
operation. We say that an event occurs with high probability (w.h.p.) if its probability is at least 1 − 1/nγ , for γ ≥ 1
constant.

3 Related Work
The long-lived renaming problem was introduced by Moir and Anderson [25]. (A similar variant of renaming [10]
had been previously considered by Burns and Peterson [15].) Moir and Anderson presented several deterministic
algorithms, assuming various shared-memory primitives. In particular, they introduced an array-based algorithm where
each process probes n locations linearly using test-and-set. A similar algorithm was considered in the context of k-
exclusion [9]. A considerable amount of subsequent research, e.g. [4, 12, 14, 24] studied faster deterministic solutions
for long-lived renaming. To the best of our knowledge, all these algorithms either have linear or super-linear step
complexity [4, 12, 14], or employ strong primitives such as set-first-zero [25], which are not available in general.
Linear time complexity is known to be inherent for deterministic renaming algorithms which employ read, write,
test-and-set and compare-and-swap operations [7]. For a complete overview of known approaches for deterministic
long-lived renaming we direct the reader to reference [14]. Despite progress on the use of randomization for fast
one-shot renaming, e.g. [5], no randomized algorithms for long-lived renaming were known prior to our work.

The idea of splitting the space into levels to minimize the number of collisions was first used by Broder and
Karlin [13] in the context of hashing. Recently, [6] used a similar idea to obtain a one-shot randomized loose renaming
algorithm against a strong adversary. Both references [6, 13] obtain expected worst-case complexity O(log log n) in
one-shot executions, consisting of exactly one Get per thread and do not consider long-lived executions. In particular,
our work can be seen as an extension of [6] for the long-lived case, against an oblivious adversary. Our analysis will
imply the upper bounds of [6, 13] in one-shot executions, as it is not significantly affected by the strong adversary in
the one-shot case. However, our focus in this paper is analyzing long-lived polynomial and infinite executions, and
showing that the technique is viable in practice.

A more applied line of research [17, 21] employed data structures similar to activity arrays in the context of
memory reclamation for lock-free data structures. One important difference from our approach is that the solutions

4

Figure 1: An illustration of the algorithm’s execution. A process probes locations in batches of increasing index, until successful.

considered are deterministic, and have Ω(n) complexity for registering since processes perform probes linearly. The
dynamic collect problem defined in [17] has similar semantics to those of the activity array, and adds operations that
are specific to memory management.

4 The Algorithm
The algorithm is based on a shared array of size linear in n, where the array locations are associated to consecutive
indices. A process registers at a location by performing a successful test-and-set operation on that location, and
releases the location by re-setting the location to its initial value. A process performing a Collect simply reads the
whole array in sequence. The challenge is to choose the locations at which the Get operation attempts to register so as
to minimize contention and find a free location quickly.

Specifically, consider an array of size 2n.4 The locations in the arrays are all initially set to 0. The array is split into
log n batches B0, B1, . . . , Blogn−1 such that B0 consists of the first b3n/2c memory locations, and each subsequent
batch Bi with i ≥ 1 consists of the first bn/2i+1c entries after the end of batch i − 1. Clearly, this array is of size at
most 2n. (For simplicity, we omit the floor notation in the following, assuming that n is a power of two.)

Get is implemented as follows: the calling process accesses each batch Bi in increasing order by index. In each
batch Bi, the process sequentially attempts ci test-and-set operations on locations chosen uniformly at random from
among all locations in Bi, where ci is a constant. For the analysis, it would suffice to consider ci = κ for all i, where
the constant κ is a uniform lower bound of the ci. We refrain from doing so in order to demonstrate which batches
theoretically require higher values of ci. In particular, larger values of ci will be required to obtain high concentration
bounds in later batches. In the implementation, we simply take ci = 1 for all i.

A process stops once it wins a test-and-set operation, and stores the index of the corresponding memory location
locally. When calling Free, the process resets this location back to 0. If, hypothetically, a process reaches the last batch
in the main array without stopping, losing all test-and-set attempts, it will proceed to probe sequentially all locations
in a second backup array, of size exactly n. In this case, the process would return 2n plus the index obtained from the
second array as its value. Our analysis will show that the backup is essentially never called.

5 Analysis
Preliminaries. We fix an arbitrary execution, and define the linearization order for the Get and Free operations in
the execution as follows. The linearization point for a Get operation is given by the time at which the successful
test-and-set operation occurs, while the linearization point for the Free procedure is given by the time at which the
reset operation occurs. (Notice that, since we assume a hardware test-and-set implementation, the issues concerning
linearizability in the context of randomization brought up in [19] are circumvented.)
Inputs and Executions. We assume that the input to each process is composed of four types of operations: Get, Free,
Collect and Call, each as defined in Section 2. The schedule is given by a string of process IDs, where the process ID
appearing at the ith location in the schedule indicates which process takes a step at the ith time step of the execution.
An execution is characterized by the schedule together with the inputs to each process.

4The algorithm works with small modifications for an array of size (1 + ε)n, for ε > 0 constant. This yields a more complicated exposition
without adding insight, therefore we exclusively consider the case ε = 1.

5

Running Time. The correctness of the algorithm is straightforward. Therefore, for the rest of this section, we focus
on the running time analysis. We are interested in two parameters: the worst-case running time i.e. the maximum
number of probes that a process performs in order to register, and the average running time, given by the expected
number of probes performed by an operation. We will look at these parameters first in polynomial-length executions,
and then in infinite-length executions.

Notice that the algorithm’s execution is entirely specified by the schedule σ (a series of process identifiers, given by
the adversary), and by the processes’ coin flips, unknown to the adversary when deciding the schedule. The schedule
is composed of low-level steps (shared-memory operations), which can be grouped into method calls. We say that an
event occurs at time t in the execution if it occurs between steps t and t+1 in the schedule σ. Let σt be the t-th process
identifier in the schedule. Further, the processes’ random choices define a probability space, in which the algorithm’s
complexity is a random variable.

Our analysis will focus on the first log log n batches, as processes access later batches extremely rarely. Fix the
constant c = maxk ck to be the maximum number of trials in a batch. We say that a Get operation reaches batch Bj
if it probes at least one location in the batch. For each batch index j ∈ {0, . . . , log log n − 1}, we define πj to be 1

for j = 0 and 1/22
j+5 for j ≥ 1, and nj to be n if j = 0 and n/22

j+5 for j ≥ 1, i.e., nj = πjn. We now define
properties of the probability distribution over batches, and of the array density.

Definition 1 (Regular Operations). We say that a Get operation is regular up to batch 0 ≤ j ≤ log log n − 1, if, for
any batch index 0 ≤ k ≤ j, the probability that the operation reaches batch k is at most πk. An operation is fully
regular if it is regular up to batch log log n− 1.

Definition 2 (Overcrowded Batches and Balanced Arrays). We say that a batch j is overcrowded at some time t if at
least 16nj = n/22

j+1 distinct slots are occupied in batch j at time t. We say that the array is balanced up to batch j
at time t if none of the batches 0, . . . , j are overcrowded at time t. We say that the array is fully balanced at time t if
it is balanced up to batch log log n− 1.

In the following, we will consider both polynomial-length executions and infinite executions. We will prove that
in the first case, the array is fully balanced throughout the execution with high probability, which will imply the
complexity upper bounds. In the second case, we show that the data structure quickly returns to a fully balanced state
even after becoming arbitrarily degraded, which implies low complexity for most operations.

5.1 Analysis of Polynomial-Length Executions
We consider the complexity of the algorithm in executions consisting of O(nα) Get and Free operations, where α ≥ 1
is a constant. A thread may have arbitrarily many Call steps throughout its input. Our main claim is the following.

Theorem 1. For α > 1, given an arbitrary execution containing O(nα) Get and Free operations, the expected
complexity of a Get operation is constant, while its worst-case complexity is O(log log n), with probability at least
1− 1/nγ , with γ > 0 constant.

We now state a generalized version of the Chernoff bound that we will be using in the rest of this section.

Lemma 1 (Generalized Chernoff Bound [26]). For m ≥ 1, let X1, . . . Xm be boolean random variables (not
necessarily independent) with Pr[Xi = 1] ≤ p, for all i. If, for any subset S of {1, 2, . . . ,m}, we have that
Pr (∧i∈SXi) ≤ p|S|, then we have that, for any δ > 0,

Pr

(
n∑
i=1

Xi ≥ (1 + δ)np

)
≤
(

eδ

(1 + δ)1+δ

)np
.

Returning to the proof, notice that the running time of a Get operation is influenced by the probability of success
of each of its test-and-set operations. In turn, this probability is influenced by the density of the current batch, which
is related to the number of previous successful Get operations that stopped in the batch. Our strategy is to show that
the probability that a Get operation op reaches a batch Bj decreases doubly exponentially with the batch index j. We
prove this by induction on the linearization time of the operation. Without loss of generality, assume that the execution

6

contains exactly nα Get operations, and let t1, t2, . . . , tnα be the times in the execution when these Get operations are
linearized. We first prove that Get operations are fast while the array is in balanced state.

Proposition 1. Consider a Get operation op and a batch index 0 ≤ j ≤ log log n − 2. If at every time t when op
performs a random choice the Activity Array is balanced up to batch j, then, for any 1 ≤ k ≤ j + 1, the probability
that op reaches batch k is at most πk. This implies that the operation is regular up to j + 1.

Proof. For k = 1, we upper bound the probability that the operation does not stop in batch B0, i.e. fails all its trials
in batch B0. Consider the points in the execution when the process performs its trials in the batch B0. At every such
point, at most n − 1 locations in batch B0 are occupied by other processes, and at least n/2 locations are always
free. Therefore, the process always has probability at least 1/3 of choosing an unoccupied slot in B0 in each trial
(recall that, since the adversary is oblivious, the scheduling is independent of the random choices). Conversely, the
probability that the process fails all its c0 trials in this batch is less than (2/3)c0 ≤ 1/27, for c0 ≥ 16, which implies
the claim for k = 1.

For batches k ≥ 2, we consider the probability that the process fails all its trials in batch k − 1. Since, by
assumption, batch Bk−1 is not overcrowded, there are at most n/22

k−1+1 slots occupied in Bk−1 while the process
is performing random choices in this batch. On the other hand, Bk−1 has n/2k slots, by construction. Therefore, the
probability that all of p’s trials fail given that the batch is not overcrowded is at most(

n/22
k−1+1

n/2k

)ck
=

(
1

2

)ck(2k−1−k+1)

.

The claim follows since (1/2)ck(2
k−1−k+1) ≤ (1/2)2

k+4 ≤ πk for ck ≥ 16 and k ≥ 2.

We can use the fact that the adversary is oblivious to argue that the adversary cannot significantly increase the
probability that a process holds a slot in a given batch. Due to space limitations, the full proof of the following lemma
has been deferred to the Appendix.

Lemma 2. Suppose the array is fully balanced at all times t < T . Let B(q, t) be a random variable whose value is
equal to the batch in which process q holds a slot at time t. Define B(q, t) = −1 if q holds no slot at time t. Then for
all q, j, t < T , Pr[B(q, t) = j] ≤ cjπj .

Proof. We note that read operations cannot affect the value Pr[B(q, t) = j]. For the purposes of this lemma, since the
Collect operation always performs exactly n read operations and no others, we can assume without loss of generality
that no Collect operations appear in the input. This assumption is justified by replacing each Collect operation with n
Call operations before conducting the analysis.

We now introduce some notation. Let tq[i] be the index of q’s ith step in σ, and let Gk be the kth Get operation
performed by q. Let R(G) be the batch containing the name returned by operation G. Let S(G, t) be the event that
the first step executed during Get operation G occurs at time t. Similarly, let C(G, t) be the event that the last step
executed during G occurs at time t. Intuitively S(G, t) and C(G, t) respectively correspond to the events that G starts
at time t or completes at time t.

Because the schedule is fixed in advance, we have that, for any value x and any index t satisfying σt 6= q,
Pr(B(q, t) = x) = Pr(B(q, t − 1) = x) holds. Therefore, it suffices to consider only the time steps at which q acts.
Hence we fix a time t ≤ T such that σt = q, and define τ such that t = tq[τ].

Note that, when executing some Get Gk, each process performs exactly cb memory operations in batch b before
moving on to the next batch. We write ĉj =

∑
b<j cb which represents the maximum number of memory operations

which can be performed in batches less than j. In particular, if S(Gk, tq[i]) holds, then, assuming Gk is still running
at these times, the operations performed at times tq[i+ ĉj] until tq[i+ ĉj + cj − 1] are performed on locations in Bj .
Indeed, if Gk returns a name in Bj , then C(Gk, tq[i+ ĉj +m]) must hold for some 0 ≤ m < cj .

Now, consider the event B(q, t) = j. This event implies that there exists some Get operation Gk for which
R(Gk) = j and C(Gk, tq[i]) holds where i ≤ τ and Gk is followed by at least τ − i Call steps in the input of q. These
conditions characterize the last Get performed by q before time t.

7

For convenience, we will let the set Gx be the set of Get operations which are followed by at least x Call steps in
the input. Note that, because the last Get performed by q before time t is unique, the events C(Gk, tq[`]) are mutually
exclusive for all possible k, ` with Gk ∈ Gτ−`. With this in mind, we can write

Pr(B(q, t) = j) =∑
`≤τ

∑
G∈Gτ−`

Pr(C(G, tq[`]) ∩R(G) = j).

For convenience, we write α(`) = `− (ĉj + cj). By our earlier observation, we know that if Gk completed at time
` and R(G) = j, it must be that G started somewhere in the interval [tq[α(`)], tq[α(`) + cj − 1]]. Thus, we can further
rewrite

Pr(B(q, t) = j) =
cj∑
m=1

∑
`≤τ

∑
G∈Gτ−`

Pr(S(G, tq[α(`) +m− 1]) ∩ C(G, tq[`])).

By the law of total probability, this expression is then equivalent to

Pr(B(q, t) = j) =
cj∑
m=1

∑
`≤τ

∑
G∈Gτ−`

Pr(S(G, tq[α(`) +m− 1])) ·

·Pr(C(G, tq[`])|S(G, tq[α(`) +m− 1])).

Given S(G, tq[α(`) + m − 1) for 1 ≤ m ≤ cj , it must be that C(G, tq[`]) implies R(G) = j, since the last trial
performed by G necessarily occurred in batch j. Applying this observation together with Proposition 1, we have

Pr(C(G, tq[`])|S(G, tq[α(`) +m− 1])) ≤ πj .

We are left with

Pr(B(q, t) = j) ≤ πj
cj∑
m=1

∑
`≤τ

∑
G∈Gτ−`

Pr(S(G, tq[α(`) +m− 1])). (1)

We claim that these events, {S(G, tq[α(`) + m − 1])}G,` are mutually exclusive for fixed m. Specifically, we
claim that (for fixedm) there cannot be an execution in which there are two pairs (G, `) 6= (G′, `′) for which `, `′ ≤ τ ,
G ∈ Gτ−`, G′ ∈ Gτ−`′ , and S(G, tq[α(`) +m− 1]), S(G′, tq[α(`′) +m− 1]) hold.

Suppose for the sake of contradiction that two such pairs do exist. Without loss of generality assume ` < `′. Then
G′ must appear after G in the input to q. Furthermore, by assumption G is followed by at least τ − ` Call operations
and at least one Free operation. Thus, the earliest time at which G′ could begin executing is if G completes in exactly
one step. In this case, G, the τ − ` Call operations, and the single Free operation together take at least τ − `+ 2 steps,
and so G′ cannot possibly start before time tq[(`− (ĉj + cj) +m− 1) + (τ − `+ 2)] = tq[τ − (ĉj + cj) +m+ 1]. By
assumption, τ ≥ `′, thus tq[τ − (ĉj + cj) +m+ 1] > tq[`

′ − (ĉj + cj) +m− 1] = tq[α(`′) +m− 1], contradicting
the assumed start time of G′.

Thus, {S(G, tq[α(`) + m − 1])} are mutually exclusive, as claimed. Applying this observation, we upper bound
the inner two summations of equation (1) by 1, and so equation (1) reduces to Pr(B(q, t) = j) ≤ πj

∑cj
m=1 1 = cjπj ,

which completes the proof.

Proof sketch. Fix a time t and a process q. We first argue that, since the adversary is oblivious, the schedule must be
fixed in advance and it suffices to consider only the times at which q takes steps, i.e. times t′ where σt′ = q. We
denote tq[i] to be the ith step taken by q in σ and fix τ to be the index for which t = tq[τ].

For Get operation G and time t, we define a random variable S(G, t) to be the indicator variable for the event that
the first step performed during G occurs at time t. We also define the set Gx to be the set of all Get operations which

8

are followed by at least x Call steps in the input to q. Finally, we define a value α(`) such that tq[α(`)] is the earliest
time t at which S(G, t) may hold given that G finishes executing at time tq[`] and returns a name in batch j. An exact
expression for α(`) is given in the full proof.

Intuitively, in order for process q to hold a name in batch j at time t, there must exist a Get operation, G and a time
` ≤ τ such that G completed at time tq[`] and G is in the set Gτ−`, implying that the name returned by G is not freed
before time t. Using this idea, we prove that the probability of this occurring can be bounded above by the quantity:

πj

cj∑
m=1

∑
`≤τ

∑
G∈Gτ−`

Pr(S(G, tq[α(`) +m− 1])).

Finally, we proved that the events {S(G, tq[α(`) +m− 1])}`,G are mutually exclusive for fixed m, which reduces
the above inequality to

Pr(B(q, t) = j) ≤ πj
cj∑
m=1

1 = πjcj ,

completing the proof.

We can now use the fact that operations performed on balanced arrays are regular to show that balanced arrays are
unlikely to become unbalanced. In brief, we use Lemmas 1 and 2 to obtain concentration bounds for the number of
processes that may occupy slots in a batch j. This will show that any batch is unlikely to be overcrowded.

Proposition 2. Let Q be the set of all processes. If, for all q ∈ Q and some time T , the array was fully balanced at all
times t < T , then for each 0 ≤ j ≤ log log n−2, batch j is overcrowded at time T with probability at most (1/2)β

√
n,

where β < 1 is a constant.

Proof. Let Prqt (j) be the probability that process q holds a slot in Bj at some time t. Applying Lemma 2, we have
PrqT (j) ≤ cjπj for every q ∈ Q. For each q ∈ Q, let Xq

j be the binary random variable with value 1 if q is in batch j

at time T , and 0 otherwise. The expectation of Xq
j is at most cjπj = cj/2

2j+5. Let the random variable Xj count the
number of processes in batch j at T . Clearly Xj =

∑
qX

q
j . By linearity of expectation, the expected value of Xj is

at most cjnj = cjn/2
2j+5. Next, we obtain a concentration bound for Xj using Lemma 1.

It is important to note that the variables Xq
j are not independent, and may be positively correlated in general. For

example, the fact that some process has reached a late batch (an improbable event), could imply that the array is in a
state that allows such an event, and therefore such an event may be more likely to happen again in that state.

To circumvent this issue, we notice that, given the assumption that the array is fully balanced, and therefore
balanced up to j, the probability that any particular process holds a slot in j must still be bounded above by cjπj , by
Proposition 2. This holds given any values of the random variables {Xq

j } which are consistent with the array being
balanced up to j. Formally, for any R ⊆ Q with q /∈ R, Pr

(
Xq
j+1| ∧r∈R Xr

j+1

)
≤ cjπj+1.

In particular, for any S = {s1, . . . , sk} ⊆ Q we have that

Pr
(
∧i∈SXi

j+1

)
= Pr

(
Xs1
j+1

)
· Pr

(
Xs2
j+1|X

s1
j+1

)
· . . .

·Pr
(
Xsk
j+1|X

s1
j+1, . . . , X

sk−1

j+1

)
≤ (cjπj+1)|S|.

We can therefore apply Lemma 1 to obtain that Pr
(
Xj+1 ≥ n/22

j+1+1
)
≤ (1/2)

β
√
n
, for β < 1/(45 · 25), where

we have used that j ≤ log log n− 1 for the last inequality. This is the desired bound.

Next, we bound the probability that the array ever becomes unbalanced during the polynomial-length execution.

Proposition 3. Let ti be the time step at which the ith Get operation is linearized. For any x ∈ N, the array is fully
balanced at every time t in the interval [0, tx] with probability at least 1 − O(x log log n/2β

√
n), where β < 1 is a

constant.

9

Proof. Notice that it is enough to consider times ti with i = 1 . . . x, since Free or Collect operations do not influence
the claim. We proceed by induction on the index i of the Get operation in the linearization order. We prove that, for
every i = 1 . . . x, the probability that there exists t ≤ ti for which the array is not fully balanced is at most i/2β

√
n.

For i = 0, the claim is straightforward, since the first operation gets a slot in batchB0, so the array is fully balanced
at t1 with probability 1. For i ≥ 1, let Ei be the event that, for some τ ≤ ti, the array is not fully balanced at time τ .
From the law of total probability we have that: Pr(Ei) ≤ Pr(Ei−1) + Pr(Ei|¬Ei−1).

By the induction step, we have that Pr(Ei−1) ≤ (i − 1) log log n/2β
√
n. We therefore need to upper bound the

term Pr(Ei|¬Ei−1), i.e. the probability that the data structure is not fully balanced at time ti given that it was balanced
at all times up to and including ti−1. Proposition 2 bounds the probability that a single batch is overcrowded at time
ti by (1/2)β

√
n. Applying the union bound over the log log n batches gives Pr(Ei|¬Ei−1) ≤ log log n/2β

√
n. Thus,

by induction Pr(Ei) ≤ Pr(Ei−1) + Pr(Ei|¬Ei−1) ≤ i log logn
2β
√
n , which proves Proposition 3.

Proposition 3 has the following corollary for polynomial executions.

Corollary 1. The array is balanced for the entirety of any execution of length nα with probability at least 1 −
O(nα log log n/2β

√
n).

The Stopping Argument. The previous claim shows that, during a polynomial-length execution, we can practically
assume that no batch is overcrowded. On the other hand, Proposition 1 gives an upper bound on the distribution over
batches during such an execution, given that no batch is overcrowded.

To finish the proof of Theorem 1, we combine the previous claims to lower bound the probability that every
operation in an execution of length nα takes O(log log n) steps by 1 − 1/nγ , with γ ≥ 1 constant. Consider an
arbitrary operation op by process p in such an execution prefix. In order to take ω(log log n) steps, the operation must
necessarily move past batch log log n− 1 (since each process performs c operations in each batch). We first bound the
probability that this event occurs assuming that no batch is overcrowded during the execution.

Let ` = log log n − 1. By the assumption that no batch is overcrowded, we have in particular that there are at
most 16n` = n/22

`+1 =
√
n/2 processes currently holding names in B`. Given that there are less than

√
n names

occupied in batch B` at every time when p makes a choice, the probability that p makes c` unsuccessful probes in B`
is at most

(√
n

n/2`+1

)c`
=
(

logn√
n

)c`
.

Therefore, by the union bound together with the law of total probability, the probability that any one of the nα

operations in the execution takes ω(log log n) steps is at most nα
((

logn√
n

)c`
+ log logn

2β
√
n

)
≤ 1

nγ , for c` ≥ 2(α + γ +

1), β < 1 constant, and large n. (Note that the number of probes c` is large enough to meet the requirements of
Proposition 1.) This concludes the proof of the high probability claim. The expected step complexity claim follows
from Proposition 1.
Notes on the Argument. Notice that we can re-state the proof of Theorem 1 in terms of the step complexity of a
single Get operation performing trials at times at which the array is fully balanced.

Corollary 2. Consider a Get operation with the property that, for any 0 ≤ j ≤ log log n−1, the array is balanced up
to j at all times when the operation performs trials in batch j. Then the step complexity of the operation isO(log log n)
with probability at least 1−O(1/nγ) with γ ≥ 1 constant, and its expected step complexity is constant.

This raises an interesting question: at what point in the execution might Get operations start taking ω(log log n)
steps with probability ω(1/n)? Although we will provide a more satisfying answer to this question in the following
section, the arguments up to this point grant some preliminary insight. Examining the proof, notice that a necessary
condition for operations to exceed O(log log n) worst case complexity is that the array becomes unbalanced. By
Proposition 3 the probability that the array becomes unbalanced at or before time T is bounded by O(T/2

√
n) (up to

logarithmic terms). Therefore operations cannot have ω(log log n) with non-negligible probability until T = Ω(2
√
n).

5.2 Infinite Executions
In the previous section, we have shown that the data structure ensures low step complexity in polynomial-length
executions. However, this argument does not prevent the data structure from reaching a bad state over infinite-length

10

executions. In fact, the adversary could in theory run the data structure until batches B1, B2, . . . are overcrowded,
and then ask a single process to Free and Get from this state infinitely many times. The expected step complexity of
operations from this state is still constant, however the expected worst-case complexity would be logarithmic. This
line of reasoning motivates us to analyze the complexity of the data structure in infinite executions. Our analysis makes
the assumption that a thread releases a slot within polynomially many steps from the time when it acquired it.

Definition 3. Given an infinite asynchronous schedule σ, we say that σ is compact if there exists a constant B ≥ 0
such that, for every time t in σ at which some process initiates a Get method call, that process executes a Free method
call at some time t′ < t+ nB .

Our main claim is the following.

Theorem 2. Given a compact schedule, every Get operation on the LevelArray will complete in O(log log n) steps
with high probability.

Proof Strategy. We first prove that, from an arbitrary starting state, in particular from an unbalanced one, the
LevelArray enters and remains in a fully balanced state after at most polynomially many steps, with high proba-
bility (see Lemma 3). This implies that the array is fully balanced at any given time with high probability. The claim
then follows by Corollary 2.

Lemma 3. Given a compact schedule with bound B and a LevelArray in arbitrary initial state, the LevelArray will
be fully balanced after nB log log n total system steps with probability at least 1 − O(nB(log log n)2/2β

√
n), where

β < 1 is a constant.

Proof. We proceed by induction on the batch index j ≥ 0. Let Tj be the interval [jnB , (j + 1)nB − 1] of length
nB in the schedule. Let Yj be an indicator variable for the event that, for every i ≤ j, the LevelArray is balanced
up to i throughout the interval Ti. Let β < 1 be the constant from Proposition 2. For convenience, we write µ =
nB log log n/2β

√
n.

We will show that at least one additional batch in the LevelArray becomes balanced over each interval Tj . In
particular, we claim, by induction, that Pr(¬Yj) ≤ jµ. In particular, the probability that the array fails to be balanced
up to j after interval Tj is small. Our goal is to show that the LevelArray is fully balanced with probability 1 −
O(µ log log n), which corresponds exactly to the inductive claim for j = log log n.

For j = 0, the LevelArray is always trivially balanced up to batch 0 with probability 1. For the induction step,
we assume Pr(¬Yj) ≤ jµ, and we show that the probability that the array is not balanced up to batch j + 1 over the
interval Tj+1 is at most (j + 1)µ. By the law of total probability, Pr(¬Yj+1) ≤ Pr(¬Yj) + Pr(¬Yj+1|Yj).
In particular, there are two reasons why Yj+1 may fail to hold. Firstly, the LevelArray may not be balanced up to j
over the interval Tj , an event which is subsumed by ¬Yj . Secondly, the LevelArray may become unbalanced in the
interval Tj+1, despite having been balanced up to j over Tj . By the inductive hypothesis, Pr(¬Yj) ≤ jµ. We will
bound Pr(¬Yj+1|Yj) by applying the following claim to intervals T = Tj and T ′ = Tj+1:

Claim 1. Suppose the LevelArray is balanced up to batch j ≤ log log n − 2 throughout some interval T of length
nB . Let T ′ be the interval of length nB that follows T . Then the probability that LevelArray fails to be balanced up to
batch j + 1 throughout T ′ is at most µ.

Proof. Let O be the set of Get operations whose returned names are still held at the start of interval T ′ (equivalently
at the end of T). Since the schedule is compact, each Get in O must have been initiated during the last nB steps, i.e.,
within T . This holds because the parent process of any Get initiated before T would have been required to call Free
before the end of T . Therefore, all decision points of every Get in O must have occurred in T . Thus, by the initial
assumption, the precondition of Proposition 2 is satisfied, and we have, for each i ≤ j + 1, t ∈ T ′, the probability that
batch i is overcrowded is at most (1/2)β

√
n.

By the union bound, the probability that any batch i ≤ j + 1 becomes overcrowded at any time t ∈ T ′ is thus at
most (j + 1)|T ′|/2β

√
n ≤ µ, proving the claim.

Returning to the proof of Lemma 3, we have Pr(¬Yj) + Pr(¬Yj+1|Yj) ≤ jµ+ µ = (j + 1)µ, as desired.

11

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 50 60 70 80

To
ta
l O

pe
ra
tio

ns

number of threads

LevelArray Random LinearProbing

Throughput

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 50 60 70 80

Av
er
ag
e

number of threads

LevelArray Random LinearProbing

Average Number of Trials

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 50 60 70 80

St
an
da
rd
 D
ev
ia
tio

n

number of threads

LevelArray Random LinearProbing

Standard Deviation

0

20

40

60

80

100

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 50 60 70 80

W
or
st
 C
as
e

number of threads

LevelArray Random Linear

Worst Case Number of Trials

Figure 2: Comparing the performance of LevelArray with Random and LinearProbing. Throughput and average complexity are
similar, while the LevelArray is significantly more stable in terms of standard deviation and worst-case complexity.

Lemma 3 naturally leads to the following corollary, whose proof can be found in the Appendix.

Corollary 3. For any time t ≥ 0 in the schedule, the probability that the array is not fully balanced at time t is at
most µ.

Proof. Pick an arbitrary time t ≥ 0 in the schedule. If t ≤ nB log log n, then the claim follows from Proposition 3.
Otherwise, fix Sinit to be the initial state at time t − nB log log n, and apply Lemma 3 at this state, to obtain that the
array is fully balanced with probability at least 1− µ at t, as desired.

To complete the proof of Theorem 2, fix an arbitrary compact schedule σ, and an arbitrary Get operation op in
the schedule. We upper bound the probability that op takes ω(log log n) steps. We know that, in the worst case, the
operation performs O(n) total steps (including steps in the backup). Let t0, t1, . . . , tk be the times in the execution
when the operation performs random probes. By the structure of the algorithm, k = O(log n). Our goal is to prove
that k = O(log log n), with high probability.

First, by Corollary 3 and the union bound, the probability that the array is not fully balanced at any one of the times
{ti}i=1...k is at most kµ. Assuming that the array is fully balanced at all times ti, the probability that the process takes
ω(log log n) steps is at most 1/nc, for c ≥ 1, by Corollary 2. Recall that µ is exponentially small in n. Then by the
law of total probability, the probability that the operation takes ω(log log n) steps is at most kµ + 1/nc = O(1/nγ),
for γ = c ≥ 1. Inversely, an arbitrary operation takes O(log log n) steps in a compact schedule with high probability,
as claimed. The expectation bound follows similarly.

6 Implementation Results
Methodology. The machine we use for testing is a Fujitsu PRIMERGY RX600 S6 server with four Intel Xeon E7-
4870 (Westmere EX) processors. Each processor has 10 2.40 GHz cores, each of which multiplexes two hardware
threads, so in total our system supports 80 hardware threads. Each core has private write-back L1 and L2 caches; an
inclusive L3 cache is shared by all cores.

We examine specific behaviors by adjusting the following benchmark parameters. The parameter n is the number
of hardware threads spawned, while N is the maximum number of array locations that may be registered at the same

12

time. For N > n, we emulate concurrency by requiring each thread to register N/n times before deregistering. The
parameter L is the number of slots in the array. In our tests, we consider values of L between 2N and 4N .

The benchmark first allocates a global array of length L, split as described in Section 4, and then spawns n threads
which repeatedly register and deregister from the array. In the implementation, threads perform exactly one trial in
each batch, i.e. c` = 1, for all batches ` = 1, . . . , logN . (We tested the algorithm with values c` > 1 and found the
general behavior to be similar; its performance is slightly lower given the extra calls in each batch. The relatively high
values of c` in the analysis are justified since our objective was to obtain high concentration bounds.) Threads use
compare-and-swap to acquire a location. We used the Marsaglia and Park-Miller (Lehmer) random number generators,
alternatively, and found no difference between the results.

The pre-fill percentage defines the percentage of array slots that are occupied during the execution we examine.
For example, 90% pre-fill percentage causes every thread to perform 90% of its registers before executing the main
loop, without deregistering. Then, every thread’s main-loop performs the remaining 10% of the register and deregister
operations, which execute on an array that is 90% loaded at every point.

In general, we considered regular-use parameter values; we considered somewhat exaggerated contention levels
(e.g. 90% pre-fill percentage) since we are interested in the worst-case behavior of the algorithm.
Algorithms. We compared the performance of LevelArray to three other common algorithms used for fast registration.
The first alternative, called Random, performs trials at random in an array of the same size as our algorithm, until
successful. The second, called LinearProbing, picks a random location in an array and probes locations linearly to the
right from that location, until successful. We also tested the deterministic implementation that starts at the first index
in the array and probes linearly to the right. Its average performance is at least two orders of magnitude worse than all
other implementations for all measures considered, therefore it is not shown on the graphs.
Performance. Our first set of tests is designed to determine the throughput of the algorithm, i.e. the total number of
Get and Free operations that can be performed during a fixed time interval. We analyzed the throughput for values of n
between 1 and 80, requiring the threads to register a total number ofN emulated threads on an array of size L between
2N and 4N . We also considered the way in which the throughput is affected by the different pre-fill percentages.

Figure 2 presents the results for n between 1 and 80, N = 1000n simulated operations, L = 2N , and a pre-fill
percentage of 50%. We ran the experiment for 10 seconds, during which time the algorithm performed between 200
million and 2 billion operations. The first graph gives the total number of successful operations as a function of the
number of threads. As expected, this number grows linearly with the number of threads. (The variation at 20 is because
this is the point where a new processor is used—we start to pay for the expensive inter-processor communication.
Also, notice that the X axis is not linear.) The fact that the throughput of LevelArray is lower than that of Random and
LinearProbing is to be expected, since the average number of trials for a thread probing randomly is lower than for
our algorithm (since Random and LinearProbing use more space for the first trial, they are more likely to succeed in
one operation; LinearProbing also takes advantage of better cache performance.) This fact is illustrated in the second
graph, which plots the average number of trials per operation. For all algorithms, the average number of trials per Get
operation is between 1.5 and 1.9.

The lower two graphs illustrate the main weakness of the simple randomized approaches, and the key property
of LevelArray. In Random and LinearProbing, even though processes perform very few trials on average, there are
always some processes that have to perform a large number of probes before getting a location. Consequently, the
standard deviation is high, as is the worst-case number of steps that an operation may have to take. (To decrease the
impact of outlier executions, the worst-case shown is averaged over all processes, and over several repetitions.) On
the other hand, the LevelArray algorithm has predictable low cost even in extremely long executions. In this case, the
maximum number of steps an operation must take before registering is at most 6, taken over 200 million to 2 billion
operations. The results are similar for pre-fill percentages between 0% and 90%, and for different array sizes. These
bounds are also maintained in executions with more than 10 billion operations.
The Healing Property. The stable worst-case performance of LevelArray is given by the properties of the distribution
of probes over batches. However, over long executions, this distribution might get skewed, affecting the performance of
the data structure. The analysis in Section 5.2 suggests that the batch distribution returns to normal after polynomially
many operations. We test this argument in the next experiment, whose results are given in Figure 3.

The figure depicts the distribution of threads in batches at different points in the execution. Initially, the first batch
is a quarter full, while the second batch is half full, therefore overcrowded. As we schedule operations, we see that the

13

State 0
State 1

State 2
State 3

State 4
State 5

State 6
State 7

0

0.1

0.2

0.3

0.4

0.5

1
2

3
4

5
6

7

Pe
rc
en

ta
ge
 Fu

ll

Batch Number

Self Healing ‐ Batches Distribution over Time

Figure 3: The healing property of the algorithm. The array starts in unbalanced state (batch two is overcrowded), and smoothly
transitions towards a balanced state as more operations execute. Snapshots are taken every 4000 operations.

distribution returns to normal. After approximately 32000 arbitrarily chosen operations are scheduled, the distribution
is in a stable state. (Snapshots are taken every 4000 operations.) The speed of convergence is higher than predicted by
the analysis. We obtained the same results for variations of the parameters.

7 Conclusions and Future Work
In general, an obstacle to the adoption of randomized algorithms in a concurrent setting is the fact that, while their
performance may be good on average, it can have high variance for individual threads in long-lived executions. Thus,
randomized algorithms are seen as unpredictable. In this paper, we exhibit a randomized algorithm which combines the
best of both worlds, guaranteeing good performance on average and in the worst case, over long finite or even infinite
executions (under reasonable schedule assumptions). One direction of future work would be investigating randomized
solutions with the same strong guarantees for other practical concurrent problems, such as elimination [27] or rendez-
vous [2].

References
[1] Yehuda Afek, Eli Gafni, John Tromp, and Paul M. B. Vitányi. Wait-free test-and-set (extended abstract). In

Proceedings of the 6th International Workshop on Distributed Algorithms, WDAG ’92, pages 85–94, London,
UK, UK, 1992. Springer-Verlag.

[2] Yehuda Afek, Michael Hakimi, and Adam Morrison. Fast and scalable rendezvousing. In Proceedings of the 25th
international conference on Distributed computing, DISC’11, pages 16–31, Berlin, Heidelberg, 2011. Springer-
Verlag.

[3] Yehuda Afek, Alexander Matveev, and Nir Shavit. Pessimistic software lock-elision. In Proceedings of the
26th international conference on Distributed Computing, DISC’12, pages 297–311, Berlin, Heidelberg, 2012.
Springer-Verlag.

[4] Yehuda Afek, Gideon Stupp, and Dan Touitou. Long lived adaptive splitter and applications. Distributed Com-
puting, 15(2):67–86, 2002.

[5] Dan Alistarh, James Aspnes, Keren Censor-Hillel, Seth Gilbert, and Morteza Zadimoghaddam. Optimal-time
adaptive strong renaming, with applications to counting. In Proceedings of the 30th annual ACM SIGACT-
SIGOPS symposium on Principles of distributed computing, PODC ’11, pages 239–248, New York, NY, USA,
2011. ACM.

14

[6] Dan Alistarh, James Aspnes, George Giakkoupis, and Philipp Woelfel. Randomized loose renaming in O(log log
n) time. In Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, PODC ’13, pages
200–209, New York, NY, USA, 2013. ACM.

[7] Dan Alistarh, James Aspnes, Seth Gilbert, and Rachid Guerraoui. The complexity of renaming. In Proceedings
of the 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA,
October 22-25, pages 718–727, 2011.

[8] Dan Alistarh, Hagit Attiya, Seth Gilbert, Andrei Giurgiu, and Rachid Guerraoui. Fast randomized test-and-
set and renaming. In Proc. 24th International Conference on Distributed Computing (DISC), pages 94–108.
Springer-Verlag, 2010.

[9] James H. Anderson and Mark Moir. Using local-spin k-exclusion algorithms to improve wait-free object imple-
mentations. Distributed Computing, 11(1):1–20, 1997.

[10] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Ruediger Reischuk. Renaming in an asynchronous
environment. Journal of the ACM, 37(3):524–548, 1990.

[11] Hagit Attiya and Arie Fouren. Adaptive and efficient algorithms for lattice agreement and renaming. SIAM J.
Comput., 31(2):642–664, 2001.

[12] Hagit Attiya and Arie Fouren. Algorithms adapting to point contention. J. ACM, 50(4):444–468, 2003.

[13] Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hashing. In Proceedings of the first annual ACM-
SIAM symposium on Discrete algorithms, SODA ’90, pages 43–53, Philadelphia, PA, USA, 1990. Society for
Industrial and Applied Mathematics.

[14] Alex Brodsky, Faith Ellen, and Philipp Woelfel. Fully-adaptive algorithms for long-lived renaming. Distributed
Computing, 24(2):119–134, 2011.

[15] James E. Burns and Gary L. Peterson. The ambiguity of choosing. In PODC ’89: Proceedings of the eighth
annual ACM Symposium on Principles of distributed computing, pages 145–157, New York, NY, USA, 1989.
ACM.

[16] David Dice, Alexander Matveev, and Nir Shavit. Implicit privatization using private transactions. In Electronic
Proceedings of the Transact 2010 Workshop, April 2010.

[17] Aleksandar Dragojević, Maurice Herlihy, Yossi Lev, and Mark Moir. On the power of hardware transactional
memory to simplify memory management. In Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium
on Principles of distributed computing, PODC ’11, pages 99–108, New York, NY, USA, 2011. ACM.

[18] George Giakkoupis and Philipp Woelfel. On the time and space complexity of randomized test-and-set. In
Proceedings of the 2012 ACM Symposium on Principles of Distributed Computing, PODC ’12, pages 19–28,
New York, NY, USA, 2012. ACM.

[19] Wojciech Golab, Lisa Higham, and Philipp Woelfel. Linearizable implementations do not suffice for randomized
distributed computation. In Proceedings of the 43rd annual ACM symposium on Theory of computing, STOC
’11, pages 373–382, New York, NY, USA, 2011. ACM.

[20] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the synchronization-parallelism
tradeoff. In Proceedings of the 22nd ACM symposium on Parallelism in algorithms and architectures, SPAA ’10,
pages 355–364, New York, NY, USA, 2010. ACM.

[21] Maurice Herlihy, Victor Luchangco, and Mark Moir. The repeat offender problem: A mechanism for supporting
dynamic-sized, lock-free data structures. In Proceedings of the 16th International Conference on Distributed
Computing, DISC ’02, pages 339–353, London, UK, UK, 2002. Springer-Verlag.

15

[22] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kaufmann, 2008.

[23] W. McAllister. Data Structures and Algorithms Using Java. Jones & Bartlett Learning, 2008.

[24] Mark Moir. Fast, long-lived renaming improved and simplified. Sci. Comput. Program., 30(3):287–308, 1998.

[25] Mark Moir and James H. Anderson. Wait-free algorithms for fast, long-lived renaming. Sci. Comput. Program.,
25(1):1–39, October 1995.

[26] Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via an extension of the
chernoff–hoeffding bounds. SIAM J. Comput., 26(2):350–368, April 1997.

[27] Nir Shavit and Dan Touitou. Elimination trees and the construction of pools and stacks. Theory Comput. Syst.,
30(6):645–670, 1997.

16

	1 Introduction
	2 System Model and Problem Statement
	3 Related Work
	4 The Algorithm
	5 Analysis
	5.1 Analysis of Polynomial-Length Executions
	5.2 Infinite Executions

	6 Implementation Results
	7 Conclusions and Future Work

