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Abstract— In this paper we study the problem of storing
reliably an archive of versioned data. Specifically, we focus
on systems where the differences (deltas) between subsequent
versions rather than the whole objects are stored - a typicalmodel
for storing versioned data. For reliability, we propose erasure
encoding techniques that exploit the sparsity of information in
the deltas while storing them reliably in a distributed back-end
storage system, resulting in improved I/O read performanceto
retrieve the whole versioned archive. Along with the basic tech-
niques, we propose a few optimization heuristics, and evaluate the
techniques’ efficacy analytically and with numerical simulations.

I. I NTRODUCTION

Using deltas is a well known technique to store a sequence
of versions of a data object, where the differences between
consecutive versions, rather than complete object instances
themselves are maintained. It is used for a variety of appli-
cations, e.g.: (1) consider a user working on a local copy
of his data, who explicitly saves/commits versions using a
tool like the popular version management system, Subversion,
a.k.a. SVN [8]. Then SVN is keeping the differences (‘deltas’)
across consecutive versions, instead of all versions. (2) A
very different kind of application is Wikipedia, which likewise
keeps track of the differences between article contents, sothat
it is easy to track/revert changes, or identify vandalism. (3)
Deltas are also exploited by cloud based back-up services,
to reduce the network usage when uploading/downloading
(synching) data, to give users old file versions from previous
back-ups.

As illustrated by the previous examples, the notion of
differences (deltas) is particularly suited to the storageof
multiple versions of the same data objects.

In this paper, we are interested in looking at the back-
end storage systems to store the versioned data reliably. This
reliability in the back-end system is derived by applying two
mechanisms, (i) distribution - i.e., deployment of multiple stor-
age devices, so that even if some of the devices fail, there are
other storage devices which can still serve the data, (ii) storing
the data redundantly over this distributed storage network, so
that despite the loss of individual storage devices, enough
information is retained in the system such that the originaldata

is preserved. The redundancy can be obtained by replicating
the data, or by employing erasure coding techniques, which are
known (see e.g. [2], [9]) to achieve better fault tolerance vis-
a-vis storage overhead. This in turn has also led to a renewed
interest in designing new erasure codes, aimed to address
peculiarities of distributed storage systems [6]. Existing works
are however predominantly geared towards storing immutable
content, unlike the case of versioned data. The recent works
which do focus on mutable content do so in the context of
efficiently carrying out an update [7], [3], [5], [1], and thus
focuses only on the storage of the latest version of the data.

In contrast to these existing works, we address the question
of efficient storage of versioned data and design a novel
erasure coding framework - Sparsity Exploiting Coding (SEC)
- where the version differences are erasure encoded, instead
of encoding each version individually, and the sparsity of
information across versions is opportunistically exploited to
optimize the system’s (disk) I/O performance during retrieval
of the versioned archive. We evaluate the efficacies of the
presented framework using static resiliency analysis, anddo so
by studying both systematic and non-systematic maximum dis-
tance separable (MDS) codes (see Section II for a definition of
MDS and systematic), and for different redundancy placement
strategies. Our analysis demonstrates that the number of I/O
accesses required is significantly reduced when retrievingthe
multiple versioned data archive. Due to a lack of consensus
on proper workloads to study such systems (see e.g. [10]),
we experimented with a few example scenarios, where I/O
reduction of up to 20% were observed to retrieve a data object
with 5 versions, while reductions between 4-13% were ob-
served for even just two versions, in randomized experiments
where probability distributions on the sparsity of differences
were chosen to study scenarios ranging from unfavorable to
favorable to the proposed framework.

II. SYSTEM MODEL & PRELIMINARIES

We start by providing a formal framework that describes
erasure coding. LetFq denote the finite field withq elements,
whereq is a prime power, typically a power of 2 here. We will
denote byx ∈ F

k
q a data object to be stored over a storage
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network, that is, the data object is seen as a vector ofk blocks
taking value in the alphabetFq. We assume a fixed sized data
object, and in particular that the modifications of this object
do not change its length, which does not readily translate to
application level objects such as files or directories. Thus, we
implicitly assume that the application level objects are split and
transformed into fixed sized objects (arguably with necessary
zero padding), which is then used as the inputx ∈ F

k
q for the

encoding process. The nuances of this transformation, as well
as the subsequent reassembly of the whole files to be used
by the applications is beyond the scope of this work, and all
our subsequent discussions will instead be centered aroundthe
abstract data objects represented byx ∈ F

k
q .

We consider the scenario of an erasure coding based dis-
tributed storage system, where fault tolerance is achievedusing
linear erasure codes. Recall that to archive an objectx ∈ F

k
q ,

we first encode it using an(n, k) linear code, that isx is
mapped to the codeword

c = Gx ∈ F
n
q , n > k, (1)

for G ann×k matrix with coefficients inFq calledgenerator
matrix or sometimes coding matrix. The ratiok/n is called
the rate of the code. We use the termsystematicto refer to a
codewordc whosek first components arex, that is ci = xi,
i = 1, . . . , k. Once a codeword of lengthn is obtained, all
then coefficientsci, i = 1, . . . , n are stored acrossn distinct
nodes of the network. We say that an(n, k) linear code is
MDS (which stands for Maximum Distance Separable) when
any patterns ofn− k failures can be tolerated.

Let x1 ∈ F
k
q be the first version of a data object to be

stored. The data owner may at any time decide to modify it,
giving rise to a new version of this data object, denoted by
x2 ∈ F

k
q . More generally, a new versionxj+1 is obtained

from xj , and over time, we obtain a sequence{xj ∈ F
k
q , j =

1, 2, . . . , L < ∞} of different versions of a data object, to
be stored in the network. The bit level-wise modifications
between two successive versions are modelled by

xj+1 = xj + zj+1, (2)

wherezj+1 ∈ F
k
q keeps track of the changes in thej-th update.

From a user point of view, the difference between two
consecutive versions is determined by the application seman-
tics. From a back-end storage system view however, we are
interested in sequences{xj ∈ F

k
q , j = 1, 2, . . . , L < ∞}

of data objects in their bit level representation, and exploit
opportunistically the fact that oftenxj+1 and xj may have
little differences at the bit level or said differentlyzj+1 in
(2) is sparse (formally defined in Definition 1). As motivated
in the introduction, version management systems like SVN
[8] store differences (deltas) across versions, and are natural
candidates to benefit from the proposed coding strategy.

Definition 1: For some integer1 ≤ γ < k, a vectorz ∈ F
k
q

is said to beγ-sparse if it contains at mostγ non-zero entries.
Oncezj+1 ∈ F

k
q is γ-sparse, it suggests that it should be

possible to access it more efficiently (with less I/O reads)
than a normal data object. Indeed, the ideal case would be

1: procedure ENCODE(X ,G)
2: FOR 0 ≤ j ≤ L− 1
3: IF j = 0
4: returnc1 = Gx1;
5: ELSE (This part summarizes Stepj + 1 in text)
6: Computezj+1 = xj+1 − xj ;
7: Compute and Storeγj+1;
8: returncj+1 = Gzj+1;
9: END IF

10: END FOR
11: end procedure

Fig. 1. Encoding Procedure for SEC

if one could only useγ I/O reads, since the otherk − γ
positions contain zeroes, without having to look for the non-
zero positions. We will show in next section, by proposing an
explicit coding strategy, that it is possible to reduce the number
of I/O reads fromk to 2γ I/O reads, which thus becomes
beneficial whenγ < k

2 . The ideal case ofγ I/O reads is not
achieved, since in practice we do not know the positions of
the zeroes.

III. SPARSITY EXPLOITING CODING (SEC)

Let {xj ∈ F
k
q , 1 ≤ j ≤ L} be the sequence of versions of

a data object to be stored in the network, wherexj is thejth
version (or version at thej-th instant of time). The number
of components modified fromxj to xj+1 is reflected in the
vectorzj+1 = xj+1−xj in (2) which is thenγj+1-sparse (see
Definition 1) for some1 ≤ γj+1 ≤ k. We propose an encoding
strategy using an(n, k) linear erasure code (see (1)) which
exploits the sparsity of the differences across updates, thus
referred to assparsity exploiting coding (SEC). Note that the
valueγj+1 may a priori vary across updates of the same object
and across different objects, and that sparsity is exploitable
only whenγj+1 < k

2 .

A. Object Encoding

The basic SEC methodto encode thejth versionxj+1,
j ≤ L− 1, using deltas is formally given by:

Step j+1. To encode the(j+1)-th version, the difference
vector

zj+1 = xj+1 − xj

and the corresponding sparsity levelγj+1 are computed. Then
the objectzj+1 is encoded as either

cj+1 = GSzj+1,

if the coding matrixGS ∈ Fn×k
2 is in systematic form, or

cj+1 = GNzj+1,

if GN ∈ Fn×k
2 is not in systematic form.

The sparsity exploiting coding (SEC) procedure is summa-
rized algorithmically in Figure 1. The input and the output of
the algorithm areX = {xj+1 ∈ F

k
q , 0 ≤ j ≤ L − 1} and

{cj+1, 0 ≤ j ≤ L− 1}, respectively.



The above description emphasizes the differential nature of
the proposed SEC, where the first version is encoded in full
while the subsequent versions are encoded via their subsequent
differences. This leads to a recursive encoding of the object xl

for l > 1, whose overall storage pattern is{x1, z2, . . . , zL}.
There are two main missing ingredients to complete the

description of the proposed SEC: (1) explicit constructions for
the coding matricesGS andGN that facilitate the recovery
of zj+1 with fewer thank I/O reads whenγj+1 < k

2 , and
(2) how the data placement of the objects{x1, z2, . . . , zL}
should be done across the sets of nodes{N1,N2, . . . ,NL},
where the setNj+1 of nodes is used to store the components
of cj+1. Both issues are equally important, and thus deserve
a (sub)section of their own (see Subsection III-B for the code
design, and Section IV for the data allocation).

We conclude this subsection with some remarks, including
two possible variations of the above SEC. These variations are
not mutually exclusive and can be used in conjunction.

Optimized Step j + 1. A first variant of Step j + 1 is
obtained by encoding a whole object if the sparsity level is
too high, namely: Storecj+1 = GSzj+1 (or cj+1 = GNzj+1)
only whenγj+1 < k

2 , and storecj+1 = GSxj+1 (or cj+1 =
GNzj+1), otherwise.

The I/O advantages of theOptimized Step j + 1 will be
discussed with an example in Subsection III-D.

Reversed SEC.For applications where the latest archived
versions of the object are frequently accessed, a variant
of the proposed SEC method could be employed where
the order of storing the difference vectors is reversed as
{z2, z3, . . . , zL,xL}, so as to favor the latest version access.

Finally, note that the SEC stores only the deltas, yet there is
an implicit assumption thatxj is known, in order to compute
its difference withxj+1, j = 1, . . . , L − 1. A practical way
to satisfy this requirement is to cache a full copy of the
latest versionxj , until a new versionxj+1 arrives. Keeping
a cache of the latest version also helps in improving the
response time and overheads of data read operations in general.
Alternatively, the second variation above, Reversed SEC, can
be applied, where the latest version is encoded fully, along
with differences of older versions.

B. Object Retrieval with Non-Systematic SEC

Suppose that theL versions of a data object have been
archived, and the user needs to retrievexl for some 1 <
l ≤ L. We discuss the procedure to retrievex1, z2, . . . , zl
from N1,N2, . . . ,Nl. The recovery procedure depends on the
structure of the SEC generator matrix, and hence, we explain
the procedure considering two separate cases where the coding
matrix is (i) GN (non-systematic) and (ii)GS (systematic).
We start with the non-systematic case.

To retrievex1, choose a subset ofk nodes fromN1 to obtain

y = Gsubx1,

whereGsub ∈ F
k×k
q is a submatrix ofGN which is invertible,

then recoverx1 as
x1 = G−1

suby.

We need to make sure that such a submatrix always exists,
which gives us a first design criterion:

• Criterion 1. There is at least onek×k submatrix ofGN

that is full rank (to retrieve{x1, zj | γj ≥
k
2}).

The retrieval procedure for{zj , 2 ≤ j ≤ l} depends on
the corresponding sparsity levels{γj, 2 ≤ j ≤ l}. If γj ≥ k

2 ,
thenzj is recovered using the same procedure as that ofx1.
If γj <

k
2 , choose a subset of2γj nodes fromNj to obtain

y = Gγj
zj ,

whereGγj
∈ F

2γ×k is a submatrix ofG. This gives us our
second code design criterion, which follows from [11]:

Proposition 1: If any 2γ columns of the2γ × k matrix Φ
are linearly independent, then it is possible to uniquely recover
the γ-sparse vectorz from Φz.

Proof: Since2γ < k, we can viewΦ as the parity check
matrix of a (k, k − 2γ) linear codeC in F

k
q . For the matrix

Φ, if any 2γ columns ofΦ are linearly independent, then the
minimum Hamming distance ofC is at least2γ+1. Thus, from
the properties of a linear code,C can correct all error patterns
of weight less than or equal toγ, which in turn implies that
it is possible to uniquely recover aγ-sparse vectorx.

• Criterion 2. For everyγj < k
2 , there is at least one

2γj×k submatrix ofGN for which any2γj columns are
linearly independent (to retrieve{zj | γj <

k
2}.)

It is clear that a minimum ofk I/O reads are needed to
retrievex1. However, to recoverzj for 2 ≤ j ≤ l, the number
of I/O reads is min(2γj , k). Overall, the total number of I/O
reads to retrievexl in the differential set up is

η(xl) = k +

l
∑

j=l′+1

min(2γj, k), (3)

where l′ = 1 for the basic encoding method (Step j + 1,
j ≤ L−1). For the optimized method (Optimized Step j+1,
j ≤ L−1), l′ ≤ l corresponds to the most recent version such
thatγl′ ≥ k

2 . Finally, since the decoding method is differential,
the procedure to read the firstl versions is the same as that
for readingxl for both the basic and the optimized method.
Hence, the total number of I/O reads to retrieve the firstl
versions is

η(x1,x2, . . . ,xl) = k +

l
∑

j=2

min(2γj , k). (4)

When there are node failures, different contenders forGsub

andGγj
give us the option to retrieve the objects before the

node repair process. Hence, it is beneficial for the overall
system performance to relax the condition ofat least one
submatrixto several submatricesin the criteria 1 and 2.

Example 1:Consider an(n, k) maximum distance separa-
ble (MDS) code whose generator matrixGN is given by the



Cauchy matrix

GN =











g1,1 g1,2 . . . g1,k
g2,1 g2,2 . . . g2,k

...
...

...
...

gn,1 gn,2 . . . gn,k











, (5)

where gi,j = 1
hi−fj

for {hi ∈ Fq, 1 ≤ i ≤ n} and {fj ∈

Fq, 1 ≤ j ≤ k} such thathi− fj 6= 0 ∀ i, j. Since any square
submatrix of a Cauchy matrix is full rank over a finite field [4],
any 2γj × k submatrix ofGN satisfies Proposition 1. Thus,
MDS codes from Cauchy matrices are readily applicable in
the proposed differential set up.

C. Object Retrieval with Systematic SEC

We next consider the case where theL versions of a data
object are archived using a systematic code, and the user needs
to retrievexl for some1 < l ≤ L. The generator matrix of
the systematic code is of the form

GS =

[

Ik
B

]

,

whereIk is thek×k identity matrix andB ∈ F
n−k×k
q gener-

ates then−k parity symbols. Since the code is systematic, the
objectsx1 and{zj , ∀γj ≥ k

2} can be retrieved by downloading
the contents from thek systematic nodes. Ifγj < k

2 , then
choose a subset of2γj nodes fromNj to obtain

y = Gγj
zj ,

whereGγj
∈ F

2γ×k is a submatrix ofGS . If Gγj
satisfies

Proposition 1, thenzj can be recovered. Note that the sub-
matrix satisfyingCriterion 2 is most likely to come from
B. Indeed, suppose that any row ofIk is taken, then since its
lengthk satisfiesk > 2γ, any pattern of consecutive2γ zeroes
results in a2γ×2γ submatrix which is not full rank, which is
likely to happen whenever2γ << k. Restricting to the matrix
B which has onlyn− k rows leads to the constraint thatγj-
sparse updates can be recovered with2γj I/O reads only for
2γj < n − k, that isγj < n−k

2 . The number of I/O reads to
retrievezj with a systematic code whose matrixB satisfies
Criterion 2 is

ηj =

{

2γj, if γj ≤
n−k
2

k, otherwise.

Since we are interested inγj < k
2 , either we haven−k

2 <
k
2 ⇐⇒ k

n
> 1

2 , which implies that systematic erasure coding
can only recover less than⌈k

2 ⌉− 1 sparse levels with reduced
I/O, or, if n−k

2 ≥ k
2 ⇐⇒ k

n
≤ 1

2 , and it can recover up
to ⌈k

2⌉ − 1 sparse levels (which is the same as that of non-
systematic encoding). The total number of I/O reads to retrieve
xl in the differential set up is

η(xl) = k +

l
∑

j=l′+1

ηj ,

where l′ = 1 for basic encoding. For the optimized method,
l′ ≤ l corresponds to the most recent version such thatγl′ ≥

k
2 .

The total number of I/O reads to retrieve the firstl versions
is also

η(x1,x2, . . . ,xl) = k +

l
∑

j=2

ηj .

Example 2:Similarly to Example 1, an(n−k)×k Cauchy
matrix can be used to construct the matrixB, resulting in an
MDS code.

D. I/O Benefits: An Illustrative Example

Consider a differential storage system that storesL = 5
versions of an object of sizek = 10 using a(20, 10) erasure
code that satisfies the desired design criteria. Let the sparsity
levels of subsequent versions be{γj | 2 ≤ j ≤ L} =
{3, 8, 3, 6}. We also assume thatx1 itself is not sparse. We
compute the numberη(xl) of I/O reads needed to retrieve the
lth versionxl. Since the employed code has ratek

n
= 1

2 ,
the below given I/O read numbers are applicable for both
systematic and non-systematic cases.

Basic encoding (Stepj+1, j ≤ L−1). In this technique, the
stored objects are{x1, z2, z3, z4, z5}. The number of I/O reads
to retrievex1, z2, z3, z4, z5 are 10, 6, 10, 6, 10, respectively.
Thus, {η(xl), 1 ≤ l ≤ 5} is {10, 16, 26, 32, 42}. The total
I/O reads to recover all the5 versions is 42 (instead of 50 for
the non-differential method). Thus, there is a reduction inthe
number of I/O reads to retrieve all the versions.

Optimized encoding (Optimized Stepj + 1, j ≤ L− 1).
In this method, the stored objects are{x1, z2,x3, z4,x5}.
The number of I/O reads to retrievex1, z2,x3, z4,x5 are
10, 6, 10, 6, 10, respectively. Thus,{η(xl), 1 ≤ l ≤ 5} is
{10, 16, 10, 16, 10}. However, the number of I/O reads to
recover all the5 versions is same as the basic encoding
method. Note that the number of I/O reads to retrieve indi-
vidual versions is lower than the basic encoding method.

IV. STATIC RESILIENCE ANALYSIS

We next compute the static resilience (the amount of failures
that the system tolerates based on the initial redundancy, if no
further remedial actions are taken) of the proposed SEC coding
strategies that exploit the sparsity across subsequent versions.
We suppose thatL versions of a data object are stored,
namely the pattern of stored data is{x1, z2, z3, zL−1, zL},
and encoded pieces for any of these versions are stored in
n nodes. The static resilience is computed for two practi-
cal redundancy placement choices: a (dispersed placement),
where differences and first version are all stored in different
nodes, involving a total ofnL distinct nodes, and a (colocated
placement), when all the versions’ encoded pieces are stored
in a common set ofn nodes.

We use the non-differential strategy where each version
is coded and stored individually as a baseline, and demon-
strate that for both placements, both the systematic and non-
systematic SEC schemes achieve the same resiliency as non-
differential coding for a given overall storage overhead (i.e.,
there is no resiliency compromise), even though both new



coding technique results in a reduction in access I/O when
retrieving all the previous versions of the data.

When comparing systematic and non-systematic strategies,
a key difference is that the number of submatrices ofGS

satisfying Criterion 2 is fewer compared to that ofGN (as
explained in Section III-C). We will demonstrate that this
reduction in the number of options results in a poorer resilience
of individual version differences for the systematic SEC,
compared to its non-systematic counterpart. However, the best
resilience, taking into account all the versions of the data,
is realized, for each of the two coding strategies, when the
encoded pieces for each of the versions (or differences) are
stored in the same set of nodes - which ultimately leads to the
same net resilience for all the coding strategies.

In the following, we assume that individual nodes fail with
a probabilityp and the failure events are independent.

A. SEC Analysis

We start by computing the probability of losing one indi-
vidual version among{x1, z2, z3, zL−1, zL}. We assume SEC
are MDS, since Cauchy matrices based SEC are MDS.

For a MDS SEC, whether it is systematic or not, anyk nodes
storing the encoded pieces ofx1 are sufficient to retrieve it.
Thusx1 is lost if the event

E1 = {n− k + 1 or more nodes fail}

occurs. The probability of losingx1 is then given by

ProbN (E1) = ProbS(E1) =
k−1
∑

j=0

Cn
n−jp

n−j(1− p)j . (6)

For any other arbitrary versionl (2 ≤ l ≤ L) in the non-
systematic case, where only the difference with its previous
version zl is stored, anyυl = min(2γl, k) nodes suffice to
retrievezl since anyυl×k submatrix ofGN satisfies Criterion
2. As a result, the objectzl is lost if the event

El = {n− υl + 1 or more nodes fail}

occurs. The probability of losingzl is given by

ProbN (El) =
υl−1
∑

j=0

Cn
n−jp

n−j(1− p)j . (7)

Similarly, in the systematic case, for zl with γl ≥
k
2 , we

have

ProbS(El) = ProbS(E1). (8)

However, forzl with l < k
2 , not all combinations of2γl nodes

can retrievezl since only few2γl × k submatrices ofGN

satisfies Criterion2. As a result, the probability of losingzl
is strictly lower bounded as

ProbS(El) >

2γl−1
∑

j=0

Cn
n−jp

n−j(1− p)j . (9)

Thus, we have

ProbS(El) ≥ ProbN (El) for 1 ≤ l ≤ L, (10)

where the inequality holds whenγl < k
2 , and equality

otherwise.
Dispersed placement:In a dispersed placement, the prob-

ability of retaining all theL versions of the object are

Pd(x1,x2, . . . ,xL) =
L
∏

l=1

(1− Prob(El)). (11)

Using the inequality of (10) in (11), it is clear that non-
systematic SEC provides at least same level of resilience as
that of systematic codes if dispersed placement is employed.

Colocated placement:In a colocated placement, the prob-
ability of retaining all theL versions of the object are

Pc(x1,x2, · · · ,xL) = 1− Prob(∪L
l=1El), (12)

For colocated placement, all theL objects{x1, z2, · · · , zL}
can be recovered with probability one if anyk nodes are
alive. Although some objects{zl | γl < k

2} can be retrieved
even with the loss ofn − 2γl > n − k nodes, such failure
patterns nevertheless result in the loss ofx1, thereby making
the recovery of all theL versions impossible. Hence, the
existence of anyk live nodes guarantees the recovery of
{x1, z2, · · · , zL} and this argument is applicable for both
systematic and non-systematic SEC. With that, the probability
of retaining all theL versions is same for both systematic and
non-systematic SEC and is given by

Pc(x1,x2, · · · ,xL) = 1− ProbS(E1). (13)

Note that if any2γl nodes are sufficient to recover the sparse
updates for the the non-systematic erasure codes, only specific
patterns of2γl nodes are applicable for the systematic codes.
More discussion on the effects of different possible options to
recover sparse updates are discussed in Section V.

Finally, comparing (13) and (11), we conclude that colo-
cated placement yields higher resilience for both systematic
and non-systematic erasure codes than the dispersed place-
ment. Henceforth, the resilience values calculated in colocated
placement are used as the resilience of the systematic and non-
systematic SEC methods.

B. Non-differential Coding (Baseline)

Any k nodes of then nodes where encoded pieces of a
versionxl for 1 ≤ l ≤ L are stored, is adequate to retrieve
that version, i.e., ProbND(E1) = ProbN (E1) in (6).

Thus, for dispersed placement, probability of retaining
{x1,x2, . . . ,xL} is

Pd(x1,x2, . . . ,xL) = (1− ProbND(E1))
L, (14)

For l ≥ 2, we have ProbND(E1) ≥ ProbN (El), where the
inequality holds whenγl < k

2 , and equality otherwise. Using
the above inequality in (14), it is clear that non-differential
erasure codes provide at most as much resilience as that of
differential non-systematic SEC in dispersed placement.

For the case of collocated placement while using non-
differential coding,

Pc(x1,x2, . . . ,xL) = (1− ProbND(E1)). (15)

≥ Pd(x1,x2, . . . ,xL) (16)
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Fig. 2. Probability of losing the1-sparse difference objectz2 in example of
Subsection IV-C: ProbS(E2) in (20) and ProbN (E2) in (18) for the systematic
and non-systematic SEC respectively.

Therefore, non-differential erasure codes have same resilience
as that of the differential SEC codes, when encoded infor-
mation about all the versions are colocated. Similar to the
SEC methods, colocated placement is also optimal for the non-
differential encoding method.

C. Example

We revisit the calculations above with a concrete example
with specific parameter choices. This helps us to obtain
specific values and compare the static resilience of the different
schemes explicitly.

a) Set-up: Consider a system that stores2 versions of
a data object. Let the original data object be a binary file
of size 3KB. We represent this object as a3-length vector
x1 over the finite field of size1KB, i.e., let x1 ∈ F

3
q where

q = 1024. Further, let the second version of the object be
such that only the first1KB of the binary file has been
modified. It is important to note that the quantum and location
of changes are not known a priori, and the coding scheme,
decided in advance, has to work irrespective of the specificities
of the update. In the finite field level, the second version is
represented asx2 = x1 + z2, wherez2 is 1-sparse given by

z2 =





X
0
0



 ∈ F
3
q,

whereX denotes a non-zero element ofFq.
b) The non-systematic case:For the system parameters

of our set-up, we pick a(6, 3) non-systematic MDS code
whose generator matrixGN ∈ F6×3

q is carved from a Cauchy
matrix. Subsequently,z2 is encoded usingGN to obtain the
codewordc2 = GNz2 ∈ F

6
q. It is clear that the number of

I/O reads needed to retrieve the first2 versions is5. Since the
code is MDS, the probability of losingx1 is given by

ProbN (E1) = p6 + C6
5p

5(1− p) + C6
4p

4(1 − p)2.(17)

Similarly, the probability of losingz2 is given by

ProbN (E2) = p6 + C6
5p

5(1− p), (18)

< ProbN (E1).

The proposed non-systematic SEC opportunistically exploits
sparsity inz2 to provide higher resilience for the objectz2 than
the objectx1. However, in colocated placement, the resilience
for both the objectsx1 andx2 is dominated by that forx1.
Hence, we have

Pc(x1,x2) = 1−
(

p6 + C6
5p

5(1− p) + C6
4p

4(1− p)2
)

.

c) The systematic case:Now let us pick a(6, 3) system-
atic erasure code whose generator matrix is given by

GS = [I3 BT ]T ∈ F6×3
q

whereB ∈ F3×3
q is a Cauchy matrix. We encode the first

versionx1 ∈ F
3
q as

c1 = GSx1 =

[

x1

Bx1

]

∈ F
6
q.

The storage overhead for the first version isn
k
= 2. Subse-

quently,z2 is encoded usingGS to obtain the codeword

c2 = GSz2 =

[

z2
Bz2

]

∈ F
6
q.

For this scheme too, the number of I/O reads needed to retrieve
the first2 versions is5.

Since the code is MDS, probability of losingx1 is given by

ProbS(E1) = p6 + C6
5p

5(1 − p) + C6
4p

4(1− p)2. (19)

The difference objectz2 is lost if 5 or more nodes fail. In
addition, since not all2×3 submatrices ofGs satisfy Criterion
2, there are some specific 4 node failure patterns that lead to
the loss of the object. Considering all possibilities, we have

E2 = {5 or more nodes fail} ∪ {specific 4 nodes failure}.

Hence, the probability of losingz2 is given by

ProbS(E2) = p6 + C6
5p

5(1 − p) + 12p4(1− p)2, (20)

< ProbS(E1).

In Fig. 2, we compare ProbS(E2) (for systematic SEC)
and ProbN (E2) (for non-systematic SEC) for different values
of p. The plots show that systematic SEC, while exploiting
the sparsity to reduce the I/O reads, does not provide higher
protection for the difference objectz2 when compared to the
non-systematic SEC. Nevertheless, in colocated placement, the
resilience for both the objectsx1 andx2 is dominated by that
for x1. Hence, we have

Pc(x1,x2) = 1−
(

p6 + C6
5p

5(1− p) + C6
4p

4(1− p)2
)

.

From the point of view of failure events forz2, there are a total
of 63 possible failure patterns of nodes. Among them, both
non-systematic and systematic methods can recover from 41
patterns due to the inherent MDS property, wherein, sparsity
is not exploited andz2 is retrieved with 3 I/O reads. In



TABLE I

DIFFERENTIAL VS. NON-DIFFERENTIAL ERASURE CODING(NUMBERS ARE BASED ONEXAMPLE OF SUBSECTIONIV-C)

Version Parameter Differential Differential Non-differential
Non-systematic Systematic Systematic

1st Encoding c1 = GNx1 c1 = GSx1 c1 = GSx1

Encoding Complexity matrix multiplication matrix multiplication matrix multiplication
for parity only for parity only

Nr. of nodes 6 6 6
Decoding Complexity inverse operation low low

I/O reads 3 3 3
2nd Encoding c2 = GNz2 c2 = GSz2 c2 = GSx2

Encoding Complexity matrix multiplication matrix multiplication matrix multiplication
for parity only for parity only

Nr. of nodes 6 6 6
Decoding Complexity sparse reconstruction sparse reconstruction low

I/O reads 2 2 3
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Fig. 3. Resilience of colocated and distributed placement strategies for the
example of Subsection IV-C. On they-axis, the probability of joint availability
of x1 andx2 in 9s format is shown, defined as−log

10
(1−pd(x1,x2)) resp.

as−log
10
(1 − pc(x1,x2)) for dispersed, resp. colocated placement.

addition to these failures, the non-systematic code can resist
15 more failure patterns arising from failure of all possible 4
node combinations. However, for such a case, the systematic
SEC can resist only in additional 3 cases. Therefore, non-
systematic SEC can handle a total of 56 failure patterns,
while systematic can handle only 44 patterns. Thus, non-
systematic SEC can opportunistically improve the resilience
for the difference objectz2 compared to systematic SEC.

In Fig. 3 we show the probability of availability of all the
versions (i.e., bothx1 andx2 in Example of Subsection IV-C)
of the data objects for both dispersed (in (11)) and colocated
placements (in (12)) for a range of values for the probability of
failure p of individual storage nodes. For colocated placement,
all the three schemes have the same resilience to storex1

andx2. However, for dispersed placement non-systematic SEC
provides higher resilience than the other two schemes.

D. Resilience analysis summary

A comprehensive summary of the resilience of the three
schemes is provided in Table I. The highlights are as follows:

(1) For any given choice of coding scheme, colocated
placement of encoded pieces of multiple versions of a data
object results in higher resilience than the dispersed placement
of these encoded pieces. However, going into more subtlety,
there is one advantage of using non-differential coding with
dispersed storage, namely, some random versions (but not
the whole versioned archive) will survive with a greater
probability than the probability of survival of the whole archive
for the colocated case. In contrast, since the basic SEC stores
differences, this is not the case. The optimized SEC however
benefits from this serendipity as well, but less often than for
the non-differential case.

(2) For colocated placement, the non-systematic SEC pro-
vides the same resilience to retrieve the whole archive as that
of the systematic SEC. However, larger number of options to
recover the sparse updates for the former method results in
higher resilience for storing the individual difference objects
than the latter method. In addition, wheneverk

n
> 1

2 , non-
systematic SEC works for a larger range of sparseness levels
with reduced I/O than the systematic SEC.

(3) For colocated placement, the non-systematic SEC pro-
vides the same resilience as that of the non-differential method,
but with the advantage of requiring fewer I/O reads than the
latter when retrieving the whole versioned archive.

Finally, we note that for the non-systematic SEC, the
individual version deltas have higher static resilience (Fig 2),
however, there is no advantage in this, given that the actual
retrievability is bottlenecked by the facts that (i) colocation is
best strategy, and (2) the availability of the first version (where
the whole object is coded) thus dominates and determines
retrievability of the whole archive. This suggests that the
additional resilience of individual deltas in the non-systematic
SEC is wasteful in terms of storage resources, and that there
is potential room to reduce storage overhead while storing
with non-systematic SEC. Study of storage optimization for
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Fig. 4. Average I/O readsµγ given in (21) forγ = 1 to retrieve the1-
sparse objectz2 for different erasure codes. These results are obtained for
the parametersn = 6 andk = 3 in Section IV-C.

the non-systematic SEC will be part of our future work.

V. V ERSIONEDARCHIVE RETRIEVAL I/O

In the previous section, we studied the static resilience for
the various schemes - and demonstrated that, for a given
storage overhead, all the strategies achieve the same effective
fault-tolerance for the colocated placement scenario, which is
the best case, and hence practical. We next focus on the disk
I/Os involved while retrieving a versioned archive. The actual
savings when using SEC depend on the actual sparsity of the
differences across versions, and hence we obtain these results
numerically for different example workloads.

A. Non-systematic and Systematic SEC

We consider the object from Section IV-C where we chose
a specific case ofz2 being1-sparse. However, in general, the
sparsity level ofz2 is a random variable over the support
{1, 2, 3}. Since k = 3, the sparsity can be exploited only
whenγ2 = 1. Henceforth, we denoteγ2 by γ. We now discuss
the number of options for the systematic and non-systematic
codes to retrieve the1-sparse object with just 2 I/O reads. For
the non-systematic code, since any2 × 3 submatrix ofGN

satisfies the Criterion 2, there are a total of 15 such matrices.
However, for the systematic code, only3 submatrices ofGS

satisfy Criterion 2.
We next discuss the implications of having reduced number

of submatrices satisfying Criterion 2 on the (average) I/O for
retrieving theγ-sparse objectz2. The following approach is
needed only for systematic SEC, since for the non-systematic
SEC, every pattern ofk or more live nodes has a subset of size
2γ that can recoverz2, and hence2γ I/O reads are guaranteed.
We randomly generate a large ensemble of failure patterns of
nodes by assuming that each node fails independently with
probability p. We traverse through every failure pattern to
identify if at leastk live nodes remain, in order to recover the
object. If k or more nodes are alive, we find the possibility of
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Fig. 5. Average I/O reads given in (21) to retrieve the sparseobjectz2 for
different erasure codes. The results are obtained for the parametersn = 10
andk = 5. The plots on the left and right correspond to retrievingz2 which
is 1-sparse and2-sparse, respectively.

retrievingz2 with just 2γ I/O reads by checking Criterion 2
on the submatrices corresponding to live nodes. Accordingly,
we retrieve the entire object with just2γ I/O reads, otherwise,
it is recovered usingk reads. Provided that a failure pattern
leavesk or more live nodes, we compute the percentage of
cases when only2γ2 reads are sufficient (denoted byp2γ) and
that of whenk I/O reads are needed (denoted bypk). Then
the average number of I/O reads is computed as

µγ = p2γ2γ + pkk. (21)

For the parameters in Section IV-C, we haveµ1 = 2p2+3p3.
In Fig. 4, we plotµ1 for different values ofp from 0.01 to
0.2. The plot shows that whenp is small, systematic SEC
recoversz2 with just 2 I/O reads. However, asp increases, a
non-negligible number of error patterns occurs for which no
subset of live nodes with cardinality 2 can recoverz2. The
two other schemes are also shown: (i) the lower one (with
constant reads of 2) corresponds to the non-systematic SEC
as every pattern ofk or more live nodes has a subset of size 2
that can recoverz2, and (ii) the top one (with constant reads
of 3) corresponds to non-differential encoding where sparsity
cannot be exploited.

A similar experiment is repeated with parametersn =
10, k = 5 andL = 2. The first versionx1 is fully encoded and
the second version is encoded with the SEC schemes. Since
k = 5, we apply the average I/O reads study toγ = 1 and2.
Provided that failure patterns are such thatk or more nodes are
alive, the average number of I/O readsµγ (given in (21)) to
retrievez2 are provided in Fig. 5 for (i)γ = 1 and (ii) γ = 2.
The plots show that forγ = 1, systematic SEC retrievesz2
using2 I/O reads almost always for values ofp till p = 0.2.
However, forγ = 2, there is marginal increase in the values
of µγ for higher values ofp till p = 0.2.

In conclusion (i) both variants of SEC outperform the naive
solution of encoding individual versions, and (ii) while non-
systematic SEC consistently performs better than systematic
SEC, the differences are marginal for practical settings (where
p) is not very high.
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Fig. 6. Truncated exponential PMFs (with parameterα) and Poisson PMFs
(with parameterλ) onΓ for k = 3. The x-axis represents the support{1, 2, 3}
of Γ.

B. Expected I/O savings with two versions

Previously, we saw in Section III that for the example from
Section IV-C, SEC reduces the I/O reads for joint retrieval
of x1 and x2 from 6 to 5 when z2 is 1-sparse. We further
studied settings with fixedγ values in Section V-A above.
However, in general, the sparsity level ofz2 can take any
value over{1, 2, 3}. We now present numerical results on the
expected number of I/O reads whenγ2 is random (denoted by
the random variableΓ2).

For the SEC schemes, the number of I/O reads to access
both the versions are5, 6, and6 whenz2 is 1-, 2- and3-sparse,
respectively. Since the average number of I/O reads dependson
the underlying probability mass function (PMF) on the sparsity
level, we study the advantages of the proposed method by
testing different PMFs that reflect different difference sparsity
behaviors, in the absence of standard workloads (see e.g. [10])
. Henceforth, we useΓ to denote the random variableΓ2 and
γ to denote its realizationγ2. The PMF onΓ is denoted by
PΓ(γ) for γ ∈ {1, 2, 3}.

PMFs on sparsity.We apply the finite support versions of
the exponential distribution in parameterα > 0 given by

PΓ(γ) = ce−αγ , for γ = 1, 2, 3, (22)

where the constantc is chosen such that
∑k

γ=1 PΓ(γ) = 1,
and referred to astruncated exponentialPMF. Likewise, a
truncated PoissonPMF with parameterλ, given by

PΓ(γ) = c
λγe−λ

γ!
, for γ = 1, 2, 3, (23)

are also considered, wherec is such that
∑k

γ=1 PΓ(γ) = 1.
These PMFs are specifically picked to study the reduction in
I/O reads for two extreme scenarios: (i) the family of exponen-
tial PMFs provides thick concentration towards smaller value
of Γ, whereas (ii) the family of Poisson PMFs provides thick
concentration towards larger value ofΓ. Thus they facilitate
the study of both the best-case and worst-case scenarios for
SEC. In Figures 6, we plot the PMFs in (22) and (23),
respectively for different parameters.

Average I/O reads to retrieve x1 and x2. For a given
PΓ(γ), the average number of I/O reads for accessing the first
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Fig. 7. Average percentage reduction in the I/O reads to access x1 and
x2 for PMFs in Fig. 6. Hereα and λ are the parameters of the truncated
Exponential PMF and truncated Poisson PMFs in (22) and (23),respectively.
The results are forn = 6 andk = 3.

two versions are given by

E[η] = k +

k
∑

γ=1

PΓ(γ)min(2γ, k).

In Figure 7, we plot the average percentage reduction in the I/O
reads when compared to the non-differential setup as2k−E[η]

2k ×
100 where2k is the total number of I/O reads for the non-
differential scheme. The plots show a significant reductionin
the I/O reads when the distribution is skewed towards smaller
γ. However, as expected, the reduction is marginal otherwise.

Average I/O reads to retrieve x2 alone. The average
number of I/O reads to retrieve the 2nd version alone using
the basic SEC isE[η(x2)] = E[η(x1,x2)] since the delta has
to applied over the first version. However, for the optimized
method, the average I/O reads isE[η(x2)] =

∑k
γ=1 PΓ(γ)t(γ)

wheret(γ) = k whenγ ≥ k
2 , andt(γ) = k + 2γ, otherwise.

Compared to non-differential coding, the average percentage
increase in the I/O reads for fetching the 2nd version for
both the basic and the optimized methods is computed as
E[η(x2)]−k

k
×100. In Fig. 8 we present the results corresponding

to the PMFs in Fig. 6. It shows that the optimized SEC reduces
the excess number of I/O reads for the 2nd version. Though
the optimized SEC reduces the excess I/O, this additional I/O
reads forx2 is due to differential encoding that reduces the
I/O for accessing bothx1 andx2. One possible direction to
reduce the I/O for the latest version is to employ reverse SEC
(as pointed in Section III-A).

C. An example system withL > 2 versions

To study the trade-offs of using SEC when multiple versions
are involved, we revisit the example in Section III-D.L = 5
versions with sparsity levels of subsequent versions{γj | 2 ≤
j ≤ L} = {3, 8, 3, 6} of an object of sizek = 10 is stored
using a(20, 10) SEC. We plot the I/O numbers for the basic
and the optimized SEC in Fig. 9. The numbers are presented
to retrieve both the individual versions (l-th version for1 ≤
l ≤ 5) as well as all the firstl versions. The plot shows 20%
saving in total I/O reads with respect to the non-differential
scheme, for only slightly higher I/O for the optimized DEC.
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Fig. 8. Average percentage increase in the I/O reads to accessx2 for PMFs in
Fig. 6. Results for both basic and optimized SEC methods are presented. Here
α andλ are the parameters of the truncated Exponential PMF and truncated
Poisson PMFs in (22) and (23), respectively.
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Fig. 9. Number of I/O reads for the example in Section III-D. The I/O reads
to retrieve thel-th version and the firstl-versions,1 ≤ l ≤ 5 are presented
for different methods.

VI. CONCLUSIONS

In this paper we propose a framework - Sparsity Exploiting
Coding (SEC) - for archiving versioned data using storage
efficient erasure coding, where the individual versions are
not coded in isolation, but instead the differences across
subsequent versions are coded. The sparsity in the delta
information is exploited for better I/O performance when the
archive of versioned data is read back. We identify Cauchy
matrix based MDS codes as one candidate which satisfies
the requirements laid out in our framework to be able to
opportunistically exploit the sparsity, and discuss two variants,
a systematic and a non-systematic one. We demonstrate that,
in doing so, for a given choice of storage overhead, and for
a practical redundancy placement strategy (where encoded
pieces pertaining to all the versions are colocated) there
is no compromise in the system’s resilience. Analysis and
numerical/simulation experiments confirm the effectiveness of
SEC.

Our study shows that the non-systematic SEC provides
better resilience for deltas corresponding to individual inter-
mediate versions, even though the whole archive’s resilience is
constricted by the resilience of the first (or last) version of the
data, which is coded as it is. This suggests room for reducing
the storage overhead of the intermediate versions in the non-

systematic SEC, possibly using puncturing techniques, which
we will pursue in immediate future.
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