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Abstract—In this paper we study the problem of storing is preserved. The redundancy can be obtained by replicating
reliably an archive of versioned data. Specifically, we focs the data, or by emp|0ying erasure Coding techniqueS' whiieh a
on systems where the differenc_es (deltas) between _subseQUe known (see e.g. [2], [9]) to achieve better fault toleraniz v
versions rather than the whole objects are stored - a typicanodel . L
for storing versioned data. For reliability, we propose erasure g-ws sto_rage OYefhead- This in turn has also !ed to a renewed
encoding techniques that exploit the sparsity of informaton in  interest in designing new erasure codes, aimed to address
the deltas while storing them reliably in a distributed back-end peculiarities of distributed storage systems [6]. Exiptivorks
storage system, resulting in improved 1/O read performanceto  are however predominantly geared towards storing immetabl
retrieve the whole versioned archive. Along with the basiceéch-  ~;hient unlike the case of versioned data. The recent works
nigues, we propose a few optimization heuristics, and evasie the . : .
techniques’ efficacy analytically and with numerical simuhtions. Wh_'c_h do focu; on mutable content do so in the context of

efficiently carrying out an update [7], [3], [5], [1], and thu
focuses only on the storage of the latest version of the data.
. INTRODUCTION In contrast to these existing works, we address the question

Using deltas is a well known technique to store a sequenak efficient storage of versioned data and design a novel
of versions of a data object, where the differences betweerasure coding framework - Sparsity Exploiting Coding ($EC
consecutive versions, rather than complete object inetane where the version differences are erasure encoded, thstea
themselves are maintained. It is used for a variety of appbf encoding each version individually, and the sparsity of
cations, e.g.: (1) consider a user working on a local comyformation across versions is opportunistically exm@ditto
of his data, who explicitly saves/commits versions using @ptimize the system’s (disk) I/O performance during retile
tool like the popular version management system, Subversiof the versioned archive. We evaluate the efficacies of the
a.k.a. SVN [8]. Then SVN is keeping the differences (‘déjtaspresented framework using static resiliency analysis,cansbo
across consecutive versions, instead of all versions. (2) b4 studying both systematic and non-systematic maximum dis
very different kind of application is Wikipedia, which likése tance separable (MDS) codes (see Sedtion Il for a definition o
keeps track of the differences between article contentdiato MDS and systematic), and for different redundancy placemen
it is easy to track/revert changes, or identify vandalisB). (strategies. Our analysis demonstrates that the numbe©Oof I/
Deltas are also exploited by cloud based back-up servicascesses required is significantly reduced when retrigtviag
to reduce the network usage when uploading/downloadimuiltiple versioned data archive. Due to a lack of consensus
(synching) data, to give users old file versions from presiown proper workloads to study such systems (see e.g. [10]),
back-ups. we experimented with a few example scenarios, where 1/O

As illustrated by the previous examples, the notion atduction of up to 20% were observed to retrieve a data object
differences (deltas) is particularly suited to the storage with 5 versions, while reductions between 4-13% were ob-
multiple versions of the same data objects. served for even just two versions, in randomized experigent

In this paper, we are interested in looking at the backvhere probability distributions on the sparsity of diffeces
end storage systems to store the versioned data reliably. There chosen to study scenarios ranging from unfavorable to
reliability in the back-end system is derived by applyingtwfavorable to the proposed framework.
mechanisms, (i) distribution - i.e., deployment of mukigtor-
age devices, so that even if some of the devices falil, there ar
other storage devices which can still serve the data, Gijrsg We start by providing a formal framework that describes
the data redundantly over this distributed storage netwawk erasure coding. Lef, denote the finite field witly elements,
that despite the loss of individual storage devices, enouglhereq is a prime power, typically a power of 2 here. We will
information is retained in the system such that the origilaéd denote byx € IF’; a data object to be stored over a storage

II. SYSTEM MODEL & PRELIMINARIES
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1: procedure ENCODE(X, G)
FORO<j<L-1
IFj=0
returnc; = Gxq;
ELSE (This part summarizes Step+ 1 in tex)

network, that is, the data object is seen as a vectaérldbcks _
taking value in the alphabét,. We assume a fixed sized data 2:
object, and in particular that the modifications of this abje 3_
do not change its length, which does not readily translate té:
application level objects such as files or directories. Thnes °

implicitly assume that the application level objects arlé spd Gf gompuiezﬁa :Stxj+l X
transformed into fixed sized objects (arguably with neagssa " ompute an 0rej+1;
: returncjy; = Gzjq1;

zero padding), which is then used as the input IF’; for the _ END IF
encoding process. The nuances of this transformation, #s we"
as the subsequent reassembly of the whole files to be usdd END FOR
by the applications is beyond the scope of this work, and at end procedure
our subsequent discussions will instead be centered artbend Fig. 1.
abstract data objects representedxby IF’;
We consider the scenario of an erasure coding based dis-

tributed storage system, where fault tolerance is achiesed) if one could only usey 1/O reads, since the other — ~
linear erasure codes. Recall that to archive an objeetF?, positions contain zeroes, without having to look for the -non
we first encode it using afn, k) linear code, that is< is  zero positions. We will show in next section, by proposing an
mapped to the codeword explicit coding strategy, that it is possible to reduce theber

_ n of 1/0 reads fromk to 2+ I/O reads, which thus becomes

c=Gxely, (1) b " & . :
eneficial wheny < 7. The ideal case ofy I/0 reads is not

for G ann x k matrix with coefficients ir¥, calledgenerator achieved, since in practice we do not know the positions of
matrix or sometimes coding matrix. The ratig/n is called the zeroes.
therate of the code. We use the teraystematido refer to a

Encoding Procedure for SEC

n >k,

codewordc whosek first components arg, that isc; = z;, lll. SPARSITY EXPLOITING CODING (SEC)
i =1,...,k. Once a codeword of length is obtained, all  Let {x; € ]F’;, 1 < j < L} be the sequence of versions of
the n coefficientsc;, i = 1,...,n are stored across distinct a data object to be stored in the network, whefes the jth

nodes of the network. We say that &n, k) linear code is version (or version at thg-th instant of time). The number
MDS (which stands for Maximum Distance Separable) whesf components modified from; to x;, is reflected in the
any patterns of, — k failures can be tolerated. vectorz;1 = x;11 —x; in @) which is theny,,-sparse (see
Let x; € F¥ be the first version of a data object to beefinition[]) for somel < ;1 < k. We propose an encoding
stored. The data owner may at any time decide to modify #trategy using ar{n, k) linear erasure code (sefel (1)) which
giving rise to a new version of this data object, denoted taxploits the sparsity of the differences across updatess th
Xy € IF’; More generally, a new versior;,; is obtained referred to asparsity exploiting coding (SECNote that the
from x;, and over time, we obtain a sequerog € IF’;, J = valuev;;41 may a priori vary across updates of the same object
1,2,...,L < oo} of different versions of a data object, toand across different objects, and that sparsity is expilgta
be stored in the network. The bit level-wise modificationsnly when~y,41 < %
between two successive versions are modelled by ) _
A. Object Encoding
The basic SEC methodto encode thejth versionx;q,
wherez; | € F keeps track of the changes in tfi¢h update. j < L — 1, using deltas is formally given by:
From a user point of view, the difference between two Stepj+ 1. To encode th€; + 1)-th version, the difference
consecutive versions is determined by the application semaector
tics. From a back-end storage system view however, we are Zji1 = Xjp1 — X
interested in sequencds; € F¥, j = 1,2,...,L < oo . .
of data objects ?n theﬁ l;it Ievél r]epresentation, and egz:ploand th_e correspondlng sparsity _Iewng are computed. Then
opportunistically the fact that ofter;; andx; may have the objectz;; is encoded as either
little differences at the bit level or said differently; in
(@) is sparse (formally defined in Definitigth 1). As motivated
in the introduction, version management systems like SVifithe coding matrixGs € F3*" is in systematic form, or
[8] store differences (deltas) across versions, and angralat
candidates to benefit from the proposed coding strategy.
Definition 1: For some integet < v < k, a vectorz € IF’; if Gy € F;X’“ is not in systematic form.
is said to bey-sparse if it contains at mostnon-zero entries.  The sparsity exploiting coding (SEC) procedure is summa-
Oncez;; € IF’; is y-sparse, it suggests that it should beized algorithmically in Figur&ll. The input and the outpfit o
possible to access it more efficiently (with less I/O readt)e algorithm aret¥ = {x;;, € IF’;, 0<j<L-1}and
than a normal data object. Indeed, the ideal case would g1, 0 < j < L — 1}, respectively.

Xjt1 = Xj + Zjy1, 2

Cjt1 = Gszji,

Cjt1 = GNZjt1,



The above description emphasizes the differential nathire\We need to make sure that such a submatrix always exists,
the proposed SEC, where the first version is encoded in futhich gives us a first design criterion:
while the subsequent versions are encoded via their suesequ
differences. This leads to a recursive encoding of the objec
for [ > 1, whose overall storage pattern{ig;,zs,...,zy}.
There are two main missing ingredients to complete the The retrieval procedure fofz;,2 < j < I} depends on
description of the proposed SEC: (1) explicit constructifor the corresponding sparsity levels;, 2 < j < I}. If v; > &,
the coding matrice&G s and Gy that facilitate the recovery thenz; 'kS recovered using the same procedure as that, of
of z;,1 with fewer thank 1/O reads whem, ., < &, and If 7; < 5, choose a subset @fy; nodes from\; to obtain
(2) how the data placement of the objedts,, zo, ...,z }
should be done across the sets of nofl&§, Nz, ..., N}, y = Gy, 2y,
where the setV;,; of nodes is used to store the components
of ¢, 1. Both issues are equally important, and thus deserereG,; € F>7** is a submatrix ofG. This gives us our
a (sub)section of their own (see Subsecfion llI-B for theecogecond code design criterion, which follows from [11]:
design, and Sectidn ]V for the data allocation). Proposition 1: If any 2y columns of the2y x k& matrix ®
We conclude this subsection with some remarks, includirge linearly independent, then it is possible to uniquetpver
two possible variations of the above SEC. These variatioms #he y-sparse vectoz from &z.
not mutually exclusive and can be used in conjunction. Proof: Since2v < k, we can viewd as the parity check
Optimized Step j + 1. A first variant of Step j + 1 is matrix of a (k,k — 2v) linear codeC in IF’; For the matrix
obtained by encoding a whole object if the sparsity level i, if any 2y columns of® are linearly independent, then the
too high, namely: Store; 1 = Gsz;11 (0rc;+1 = Gyzj+1)  minimum Hamming distance @fis at leasRy+1. Thus, from

o Criterion 1. There is at least onkex k& submatrix ofG y
that is full rank (to retrieve{xy,z; | v; > £}).

only when~;;1 < % and storec; 1 = Ggsxj+1 (Or cj41 = the properties of a linear codé,can correct all error patterns
Gnzj11), otherwise. of weight less than or equal tg, which in turn implies that
The 1/O advantages of th@®ptimized Step j + 1 will be it is possible to uniquely recoverasparse vectok. ]

discussed with an example in Subsecfion 111-D.

Reversed SEC.For applications where the latest archived
versions of the object are frequently accessed, a variant
of the proposed SEC method could be employed where
the order of storing the difference vectors is reversed aslt is clear that a minimum of: 1/O reads are needed to
{22,2s,...,21,%x1}, SO as to favor the latest version accesgetrievex;. However, to recovez; for 2 < j <[, the number

Finally, note that the SEC stores only the deltas, yet treeredf /O reads is mi2y;, k). Overall, the total number of /O
an implicit assumption that; is known, in order to compute reads to retrievey; in the differential set up is
its difference withx;,1, j = 1,...,L — 1. A practical way
to satisfy this requirement is to cache a full copy of the .
latest versionx;, until a new versionk;;, arrives. Keeping n(x) =k+ Z min(23;, k), (3)
a cache of the latest version also helps in improving the =t
response time and overheads of data read operations imj}enWhere r

. . = 1 for the basic encoding metho® i+ 1,
Alternatively, the second variation above, Reversed SE@, . g tep j +

; N < L —1). For the optimized methodptimized Stepj+1,
b(_e apphed, where the Iatest_versmn is encoded fully, anrng L—1),1' < corresponds to the most recent version such
with differences of older versions.

thaty; > % Finally, since the decoding method is differential,
B. Object Retrieval with Non-Systematic SEC the procedure to read the firtversions is the same as that
'];or readingx; for both the basic and the optimized method.
Hence, the total number of 1/0O reads to retrieve the first

« Criterion 2. For everyy; < %, there is at least one
2v; x k submatrix ofG x for which any2v; columns are
linearly independent (to retrievez; | ~; < £}.)

l

Suppose that thd. versions of a data object have bee
archived, and the user needs to retrieyefor somel <

I < L. We discuss the procedure to retriexe, z»,...,2 VErsions Is

from N7, Na, ..., N;. The recovery procedure depends on the .

structure of the SEC generator matrix, and hence, we explain n(x1,Xg,...,x;) =k + Z min(2v;, k). (4)
the procedure considering two separate cases where thegcodi =2

matrix is (i) Gy (non-systematic) and (iifzs (systematic).

We start with the non-systematic case. When there are node failures, different contendergGoy,

To retrievex;, choose a subset éfnodes fromV; to obtain  and G, give us the option to retrieve the objects before the

node repair process. Hence, it is beneficial for the overall

system performance to relax the condition aif least one

whereG,,, € ]F’;X’c is a submatrix ofG ; which is invertible, submatrixto several submatrice# the criteria 1 and 2.

then recoveix; as Example 1:Consider ann, k) maximum distance separa-
X1 = G;ulby. ble (MDS) code whose generator matky is given by the

y = Gsubxl7



Cauchy matrix The total number of 1/0O reads to retrieve the fitstersions

is also
911 912 --- 91k l
92,1 92,2 o g?,k . = .
G’N _ ' ' ' ' ’ (5) n(xlaXQa axl) k—i_J:ZQnJ
9n1 Gn2 --- Gnk Example 2:Similarly to ExampldL, afn — k) x k& Cauchy

F,,1 < j <k} such thath;, — f; # 0 ¥ 4, j. Since any square MDS code.
submatrix of a Cauchy matrix is full rank over a finite field,[4]
any 2, x k submatrix of G satisfies Propositiof] 1. Thus,
MDS codes from Cauchy matrices are readily applicable in Consider a differential storage system that stofes= 5

the proposed differential set up. versions of an object of size = 10 using a(20, 10) erasure

. . . . code that satisfies the desired design criteria. Let thesgpar
C. Object Retrieval with Systematic SEC levels of subsequent versions e, | 2 < j < L} =

We next consider the case where theversions of a data {3,8,3,6}. We also assume that, itself is not sparse. We

object are archived using a systematic code, and the usés negsmpute the numbey(x;) of I/O reads needed to retrieve the
to retrievex, for somel < [ < L. The generator matrix of jth versionx;. Since the employed code has rd;ge: %

whereg;; = —+ for {h; € F,,1 < i < n} and{f; € matrix can be used to construct the maf8x resulting in an

D. 1/0 Benefits: An lllustrative Example

the systematic code is of the form the below given 1/0 read numbers are applicable for both
I, systematic and non-systematic cases.
Gs = { B } ; Basic encoding (Steg+1, j < L—1). In this technique, the

stored objects argxy, zs, z3, 24, 25 . The number of /0O reads

wherel,, is thek x k identity matrix andB € Fy~*** gener- 1o retrieve xy, 22, z3, 21,25 are 10,6, 10,6, 10, respectively.
ates then —k parity symbols. Since the code is systematic, thenys, {(x;),1 < I < 5} is {10,16,26,32,42}. The total
objectsx; and{z;, ¥y; > &} can be retrieved by downloading|/o reads to recover all the versions is 42 (instead of 50 for
the contents from thé systematic nodes. if; < %, then the non-differential method). Thus, there is a reductiothia
choose a subset afy; nodes from\; to obtain number of 1/0 reads to retrieve all the versions.

Optimized encoding (Optimized Stepj + 1, j < L — 1).
In this method, the stored objects af&;,zo,x3,24, X5}
where G, € F?7** is a submatrix ofGs. If G, satisfies The number of I/O reads to retrieve;,z», x3, 24, x5 are
Proposition[1L, therz; can be recovered. Note that the subt(, 6,10, 6,10, respectively. Thus{n(x;),1 < I < 5} is
matrix satisfyingCriterion 2 is most likely to come from {10,16,10,16,10}. However, the number of 1/O reads to
B. Indeed, suppose that any row bf is taken, then since its recover all the5 versions is same as the basic encoding
lengthk satisfiesk > 2+, any pattern of consecuti zeroes method. Note that the number of 1/O reads to retrieve indi-

results in a2+ x 2y submatrix which is not full rank, which is vidual versions is lower than the basic encoding method.
likely to happen whenevery << k. Restricting to the matrix

B which has onlyn — k rows leads to the constraint tha- IV. STATIC RESILIENCE ANALYSIS
sparse updates can be recovered With /0 reads only for
2v; < n—k, thatisy; < 5% The number of I/O reads to
retrievez; with a systematic code whose matix satisfies
Criterion 2 is

y = Gy, 25,

We next compute the static resilience (the amount of faglure
that the system tolerates based on the initial redundainey, i
further remedial actions are taken) of the proposed SEChgodi
_ - strategies that exploit the sparsity across subsequesionst
" :{ 275, 1f ; S_T We suppose thatl, versions of a data object are stored,

' k, otherwise namely the pattern of stored data {%i,22,23,27,-1,21},

; ; o E o a n—k and encoded pieces for any of these versions are stored in
%mce we are interested i; < 7, either we have"5~ <

E o 1 i~k imnli ; .1 nodes. The static resilience is computed for two practi-
> <= 5 > 5 whichimplies that systematic erasure COdmgal redundancy placement choiceS'cﬁspzrsed IacemerP)t
can only recover less the{rﬁ—} — 1 sparse levels with reduced h giff yp 4 first e I st P 4 in difie
ok k k - where differences and first version are all stored in difiere
I/O, or, if 5= > 5 <+= I < % and it can recover up X . s
to [£] — 1 sparse levels (which is the same as that of nohodes, involving a total ok L distinct nodes, and a¢located
placemen), when all the versions’ encoded pieces are stored
in a common set ofi nodes.

systématic encoding). The total number of I/O reads toawtri
x; in the differential set up is . . .
We use the non-differential strategy where each version
! is coded and stored individually as a baseline, and demon-
n(x) =k + Z "5 strate that for both placements, both the systematic and non
J=lrHL systematic SEC schemes achieve the same resiliency as non-
where!’ = 1 for basic encoding. For the optimized methoddifferential coding for a given overall storage overhead. (i
" <l corresponds to the most recent version suchhat % there is no resiliency compromise), even though both new



coding technique results in a reduction in access I/O wherere the inequality holds when;, < % and equality
retrieving all the previous versions of the data. otherwise.

When comparing systematic and non-systematic strategiesDispersed placementiIn a dispersed placement, the prob-
a key difference is that the number of submatrices@§ ability of retaining all theL versions of the object are

satisfying Criterion 2 is fewer compared to that @fy (as L
explained in Sectiof 1I-C). We will demonstrate that this Py(x1,Xa,...,XL) = H(l — Prol(&))). (11)
reduction in the number of options results in a poorer r@side =1

of individual version differences for the systematic SEC, ysing the inequality of[{0) in[{11), it is clear that non-
compared to its non-systematic counterpart. However, @€ bsystematic SEC provides at least same level of resilience as
resilience, taking into account all the versions of the datghat of systematic codes if dispersed placement is employed
is realized, for each of the two coding strategies, when theColocated placement:n a colocated placement, the prob-

encoded pieces for each of the versions (or differences) aillity of retaining all theL versions of the object are
stored in the same set of nodes - which ultimately leads to the

_ L
same net resilience for all the coding strategies. Pe(x1, %2, ,xp) = 1-ProlUL, &),  (12)
In the following, we assume that individual nodes fail with For colocated placement, all tHeobjects{x,z2,--- ,z.}
a probabilityp and the failure events are independent. can be recovered with probability one if arly nodes are

A. SEC Analysis alive. Although some objectéz; | v, < £} can be retrieved
' . . ) __even with the loss of» — 2v; > n — k nodes, such failure
~We start by computing the probability of losing one indipaiterns nevertheless result in the losscof thereby making
vidual version amongx , zy, z3, 2.1, 21 }. We assume SEC {he recovery of all thel versions impossible. Hence, the
are MDS, since Cauchy matrices based SEC are MDS.  existence of anyk live nodes guarantees the recovery of
For a MDS SEC, whether it is systematic or not, @nyodes (1,72, 7} and this argument is applicable for both

storing the encoded pieces &f are sufficient to retrieve it. systematic and non-systematic SEC. With that, the proibabil

Thusx, is lost if the event of retaining all theL versions is same for both systematic and
& = {n—k+1 or more nodes fajl non-systematic SEC and is given by
occurs. The probability of losing; is then given by Pe(x1,%2,---,x) = 1—Prols(&). (13)

k—1 Note that if any2v; nodes are sufficient to recover the sparse
Proby (&) = Probs(&;) = Z Cg_jp”*jg — p)j_ (6) updates for the the non-systematic erasure codes, onlifispec

=0 patterns of2+; nodes are applicable for the systematic codes.
More discussion on the effects of different possible ogtitm
recover sparse updates are discussed in Sdclion V.

Finally, comparing [(1I8) and_(11), we conclude that colo-
cated placement yields higher resilience for both systiemat
and non-systematic erasure codes than the dispersed place-
ment. Henceforth, the resilience values calculated inczukd
& = {n—wv +1 or more nodes fajl placement are used as the resilience of the systematic and no
systematic SEC methods.

For any other arbitrary versioh (2 < [ < L) in the non-
systematic casewhere only the difference with its previous
versionz; is stored, anyu; = min(2v;, k) nodes suffice to
retrievez,; since anyy; x k submatrix ofG y satisfies Criterion
2. As a result, the objed; is lost if the event

occurs. The probability of losing; is given by
-1 B. Non-differential Coding (Baseline)
Proby (&) = Z Cr_ip" (1 —p). (7) Any k nodes of then nodes where encoded pieces of a
=0 versionx; for 1 <[ < L are stored, is adequate to retrieve
that version, i.e., Prabp(£1) = Proly (&1) in (6).
Thus, for dispersed placement, probability of retaining
{X17X27 s 7XL} is
Probs(&) = Probs(&y). (8) Pa(x1, X2, x1) = (1 = Probyp(€1))", (14)
Howeve_r, forz, V\_/ith < % not all combinations_otm nodes For i > 2, we have ProRp(&,) > Proby (&)
can retrievez;, since only few2~, x k& submatrices oiG y
satisfies Criterior2. As a result, the probability of losing;
is strictly lower bounded as

Similarly, in the systematic casgfor z; with ~; > % we
have

, where the
inequality holds wheny, < % and equality otherwise. Using
the above inequality in({14), it is clear that non-diffeiaht
erasure codes provide at most as much resilience as that of

2y—1 _ _ differential non-systematic SEC in dispersed placement.
Proks (&) > Z Ch_p" (1 —p). 9) For the case of collocated placement while using non-
j=0 differential coding,
Thus, we have Pu(x1,%2,...,x1) = (1—Probyp(&)). (15)

Probs (£;) > Proby (&) for 1 <1< L, (20)

Y

Py(x1,X2,...,X1,) (16)



e Similarly, the probability of losingz, is given by

107 Proby (&) = p°+ Csp°(1—p), (18)
<O < Proby(&).
N
2 j The proposed non-systematic SEC opportunistically etgploi
:Z 0° L ~&- Systematic SEC sparsity inzs to provide higher resilience for the objegtthan
Zuel 'Q'N"”'Sysjtemat'c SHC the objectx;. However, in colocated placement, the resilience
‘2;104 for both the objectx; andx, is dominated by that foxk;.
£ Hence, we have
10° |
ol P(x1,%2) = 1—(p°+C5p°(1—p)+ Cip*(1—p)?).
el c) The systematic casé&low let us pick &6, 3) system-
0 002 004 006 008 01 012 014 016 018 0.2 . . . .
p (probability of a node failure) atic erasure code whose generator matrix is given by
Fig. 2. Probability of losing thé-sparse difference objeet in example of T 63
Subsectiof IV-C: Prob(&2) in 20) and Proly (&2 ) in {@8) for the systematic Gs=[I3 B']" € qu

and non-systematic SEC respectively. ] ) ]
where B € F2*3 is a Cauchy matrix. We encode the first

versionx; € F, as

Therefore, non-differential erasure codes have sameeamesd _ _ X1 6
. . . c1 = Ggx; = S Fq.
as that of the differential SEC codes, when encoded infor- Bx;

mation about all the versions are colocated. Similar to thghe storage overhead for the first versionfis= 2. Subse-
SEC methods, colocated placement is also optimal for the njuently, z, is encoded usings to obtain the codeword
differential encoding method.

_ _ Z2 6
co = Ggzo = |: Bz, :| GFq.
C. Example

For this scheme too, the number of I/0 reads needed to retriev
We revisit the calculations above with a concrete exampl§e first2 versions is.

with specific parameter choices. This helps us to obtaingjnce the code is MDS, probability of losing is given by
specific values and compare the static resilience of thereifit

schemes explicitly. Probs(€1) = p®+C5p°(1 —p) + Cip*(1 - p)*. (19)
a) Set-up: Consider a system that stor@sversions of The difference object, is lost if 5 or more nodes fail. In
a data object. Let the original data object be a binary filgdition, since not alt x 3 submatrices o6, satisfy Criterion
of size 3KB. We represent this object as3dength vector 2, there are some specific 4 node failure patterns that lead to

x; over the finite field of sizelKB, i.e., letx;, € F where the loss of the object. Considering all possibilities, weeha
g = 1024. Further, let the second version of the object be

such that only the firsttKB of the binary file has been €2 = {5 or more nodes fajlu {specific 4 nodes failue
modified. It is important to note that_ the quantum a_md Iocratiq.,ence, the probability of losings is given by

of changes are not known a priori, and the coding scheme, . 6 s . )
decided in advance, has to work irrespective of the spetafci Probs(&2) = p°+C5p°(1—p)+12p°(1—p)7, (20)
of the update. In the finite field level, the second version is < Proby(&y).

represented as, = x; + z2, Wherez, is 1-sparse given by In Fig. [0, we compare Profié,) (for systematic SEC)

X and Proby (&;) (for non-systematic SEC) for different values
zo=| 0 | ¢ Fg’ of p. The plots show that systematic SEC, while exploiting
0 the sparsity to reduce the 1/O reads, does not provide higher
protection for the difference objeet when compared to the
where X denotes a non-zero elementlf. non-systematic SEC. Nevertheless, in colocated placeent

b) The non-systematic cas&or the system parametergesilience for both the objects; andx is dominated by that
of our set-up, we pick g6,3) non-systematic MDS code for x;. Hence, we have
whose generator matrig y € F5*3 is carved from a Cauchy 4 (6 6,501 _ 6,471 \2
matrix. Subsequently;. is encoded usingx v to obtain the Pelxi,xa) = 1= (P + C5p°(1—p) + Cip*(1 - p)%).
codewordes, = Gyzo € IFS It is clear that the number of From the point of view of failure events fak, there are a total
I/0O reads needed to retrieve the figstersions is5. Since the of 63 possible failure patterns of nodes. Among them, both
code is MDS, the probability of losing; is given by non-systematic and systematic methods can recover from 41
patterns due to the inherent MDS property, wherein, sparsit
Proby (&) = p°+ C8p°(1 —p) + CSp*(1 — p)?.(17) is not exploited andz, is retrieved with 3 1/O reads. In



TABLE |
DIFFERENTIAL VS. NON-DIFFERENTIAL ERASURE CODING(NUMBERS ARE BASED ONEXAMPLE OF SUBSECTIONIV-C)

Version Parameter Differential Differential Non-differential
Non-systematic Systematic Systematic
1st Encoding c1 = Gnyx1 cp = GSX1 cp = Gle
Encoding Complexity| matrix multiplication | matrix multiplication | matrix multiplication
for parity only for parity only
Nr. of nodes 6 6 6
Decoding Complexity| inverse operation low low
1/0 reads 3 3 3
2nd Encoding co = GnNzo co = Ggzo cy = Gsxo

Encoding Complexity| matrix multiplication | matrix multiplication | matrix multiplication

for parity only for parity only
Nr. of nodes 6 6 6
Decoding Complexity| sparse reconstruction sparse reconstruction low
I/O reads 2 2 3

D. Resilience analysis summary

~

o Coocaed ~ AT - A comprehensive summary of the resilience of the three
—E—D;sgfsz o Non—rse)/esf:mZ?CEZEE) schemes is provu-tled in TaFI]]e I. The h|ghl|ghts are as follows
—o-Dispersed — Systematic SEC (1) For any given choice of coding scheme, colocated
—* Dispersed - Non-differential | | placement of encoded pieces of multiple versions of a data
object results in higher resilience than the dispersecdeptant

of these encoded pieces. However, going into more subtlety,
there is one advantage of using non-differential codindwit
dispersed storage, namely, some random versions (but not
the whole versioned archive) will survive with a greater
probability than the probability of survival of the wholechive

for the colocated case. In contrast, since the basic SE€sstor
differences, this is not the case. The optimized SEC however
0 00z 004 006 008 01 012 014 016 018 02 benefits from this serendipity as well, but less often than fo

p (probability of a node failure) A :
Fig. 3. Resilience of colocated and distributed placeméategies for the the non-differential case.

example of Subsectidn IVIC. On theaxis, the probability of joint availability ~ (2) For colocated placement, the non-systematic SEC pro-
of x; andx in 9s format is shown, defined adog, 4 (1 —pa(x1,x2)) resp.  yides the same resilience to retrieve the whole archive ats th
as—10g;(1 = pe(xa,x2)) for dispersed, resp. colocated placement. ot wq oy stematic SEC. However, larger number of options to
recover the sparse updates for the former method results in
higher resilience for storing the individual differencejeatis
than the latter method. In addition, whene\/jler> %, non-
systematic SEC works for a larger range of sparseness levels

=)
T

o
T

N
T

w
T

Probability that both versions available in 9s

-

addition to these failures, the non-systematic code caistre

. - ; SUESNith reduced 1/0 than the systematic SEC.
15 more failure patterns arising from failure of all possill .

L .(3) For colocated placement, the non-systematic SEC pro-
node combinations. However, for such a case, the systemati

vides the same resilience as that of the non-differenti&hote

SEC can resist only in additional 3 cases. Therefore, no&-jt with the advantage of requiring fewer 1/0 reads than the
systematic SEC can handle a total of 56 failure patterr,gtter when retrieving the whole versioned archive.

while systematic can handle only 44 patterns. Thus, non—F_ I hat for th ic SEC. th

systematic SEC can opportunistically improve the resiiéen . nafly, we .note that for t € non-sy_stemgt]c S the

for the difference object, compared to systematic SEC. individual version deltas have higher static resiliencig ),
however, there is no advantage in this, given that the actual

In Fig.[3 we show the probability of availability of all theretrievability is bottlenecked by the facts that (i) coltioa is
versions (i.e., botk; andx, in Example of Subsectidn IVIC) best strategy, and (2) the availability of the first versishére
of the data objects for both dispersed (inl(11)) and colatatthe whole object is coded) thus dominates and determines
placements (iM{12)) for a range of values for the probahilit retrievability of the whole archive. This suggests that the
failure p of individual storage nodes. For colocated placemeradditional resilience of individual deltas in the non-gysttic
all the three schemes have the same resilience to stpre SEC is wasteful in terms of storage resources, and that there
andx,. However, for dispersed placement non-systematic SEE potential room to reduce storage overhead while storing
provides higher resilience than the other two schemes.  with non-systematic SEC. Study of storage optimization for
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is 1-sparse an@-sparse, respectively.
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Fig. 4. Average I/O readg~ given in [21) fory = 1 to retrieve thel-

fhp:r;:r:n:’jeet‘;‘:; f:(’fﬁd;frf]%rzni %f?ﬁuggcgg‘?%hese results are obtained fpgtrieving z with just 27 I/O reads by checking Criterion 2
on the submatrices corresponding to live nodes. Accorgingl
we retrieve the entire object with jugt I/O reads, otherwise,
it is recovered using: reads. Provided that a failure pattern

the non-systematic SEC will be part of our future work.  |eavesk or more live nodes, we compute the percentage of
cases when onl@y, reads are sufficient (denoted py,) and

V. VERSIONEDARCHIVE RETRIEVAL I/O that of whenk I/O reads are needed (denoted ). Then
In the previous section, we studied the static resilience fthe average number of /O reads is computed as

the various schemes - and demonstrated that, for a given

storage overhead, all the strategies achieve the sameiwdfec

fault-tolerance for the colocated placement scenariockvis

the best case, and hence practical. We next focus on the disk . .

I/Os involved while retrieving a versioned archive. Theuatt For the parameters in Sectibn IV-C, we havie= 2p, + 3ps.

savings when using SEC depend on the actual sparsity of {R7i9. [, we ploty, for different values ofp from 0.01 to

differences across versions, and hence we obtain thesisresii2- The plot shows that whep is small, systematic SEC
numerically for different example workloads. recoversz; with just 2 I/O reads. However, gsincreases, a
non-negligible number of error patterns occurs for which no

A. Non-systematic and Systematic SEC subset of live nodes with cardinality 2 can recowgr The

We consider the object from SectiBiI¥-C where we chodWo other schemes are also shown: (i) the lower one (with
a specific case of, being1-sparse. However, in general, theconstant reads of 2) corresponds to the non-systematic SEC

sparsity level ofz, is a random variable over the supporfS EVEry pattern ot or more live nodes has a subset of size 2
{1,2,3). Sincek = 3, the sparsity can be exploited On|ythat can recovet., and (ii) the top one (with constant reads
when~, = 1. Henceforth, we denote, by ~. We now discuss of 3) corresponds to non-differential encoding where spars

the number of options for the systematic and non-systema‘?ﬁnnOt be exploited.
codes to retrieve the-sparse object with just 2 I/O reads. For A similar experiment is repeated with parameters=
the non-systematic code, since ahy 3 submatrix of Gy 10,k =5 andL = 2. The first versiorx; is fully encoded and
satisfies the Criterion 2, there are a total of 15 such matricéhe second version is encoded with the SEC schemes. Since
However, for the systematic code, orflysubmatrices ofcg & = 5, we apply the average I/O reads studyjte- 1 and2.
satisfy Criterion 2. Provided that failure patterns are such thatr more nodes are
We next discuss the implications of having reduced numb@ive, the average number of 1/O reads (given in [21)) to
of submatrices satisfying Criterion 2 on the (average) 6© fretrievez, are provided in Fid.5 for (i)y = 1 and (i) v = 2.
retrieving the~y-sparse object,. The following approach is The plots show that fory = 1, systematic SEC retrieves
needed only for systematic SEC, since for the non-systematping2 1/O reads almost always for values pftill p = 0.2.
SEC, every pattern df or more live nodes has a subset of sizElowever, fory = 2, there is marginal increase in the values
2+ that can recovez,, and hence~ 1/O reads are guaranteed Of 1, for higher values op till p = 0.2.
We randomly generate a large ensemble of failure patterns ofn conclusion (i) both variants of SEC outperform the naive
nodes by assuming that each node fails independently wablution of encoding individual versions, and (ii) whilermo
probability p. We traverse through every failure pattern teystematic SEC consistently performs better than systemat
identify if at leastk live nodes remain, in order to recover theSEC, the differences are marginal for practical settingsefe
object. If ¥ or more nodes are alive, we find the possibility op) is not very high.

Hy = P2~ 27 + pik. (21)
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Fig. 6. Truncated exponential PMFs (with parametgrand Poisson PMFs Fig. 7. Average percentage reduction in the I/O reads tosacee and

(with parameten\) onT for k = 3. The x-axis represents the suppftt 2,3} x5 for PMFs in Fig.[6. Heren and \ are the parameters of the truncated

of . Exponential PMF and truncated Poisson PMF{1d (22) (2Spectively.
The results are fon = 6 andk = 3.

B. Expected I/O savings with two versions

. . ) two versions are given by
Previously, we saw in Sectidnllll that for the example from

Section[IV-C, SEC reduces the I/O reads for joint retrieval k
of x; andx, from 6 to 5 whenz, is 1-sparse. We further E[n) =k + Z Pr(y)min(2~, k).
studied settings with fixedy values in Sectiofi_V-A above. =1

However, in general, the sparsity level 25 can take any ) .
value over{1,2,3}. We now present numerical results on th& FIgurel, we plot the average percentage reductuzn[lnr]\/@le !
expected number of 1/0 reads whenis random (denoted by "€2ds when compared to the non-differential setupfag ™ x
the random variablé). 100 where 2k is the total number of 1/0O reads for the non-

For the SEC schemes. the number of I/O reads to aCc(g;‘ii.]‘gerential scheme. The plots show a significant reduciion
both the versions are 6 ar’1d6 whenz, is 1-, 2- and3-sparse the I/O reads when the distribution is skewed towards smalle
respectively. Since the :’:\verage numberof’I/O reads demm,ds% However, as expected, the reduction is marginal otherwise
the underlying probability mass function (PMF) on the simars  Aveérage I/O reads to retrieve x, alone. The average
level, we study the advantages of the proposed method w'nber_ of I/0 reads to retrieve the 2nd_ version alone using
testing different PMFs that reflect different differenceusgity the basic SEC i€ (x2)] = E[n(x1,x2)] since the delta has
behaviors, in the absence of standard workloads (see €}y. [1° applied over the first version. However, Lor the optimized
. Henceforth, we usé to denote the random variable and Method, the average 1/0 r(:adleI{yy(xQ)] =2 PF(V)t(_V)
~ to denote its realization,. The PMF onl is denoted by Wheret(y) =k wheny > 5, andt(y) = k + 2v, otherwise.

Pr(v) for v € {1,2,3}. _Compare(_j to non-differential coding3 the average pergenta
PMFs on sparsity. We apply the finite support versions ofNcréase in the I/O reads fpr_fetchlng the 2_nd version for
the exponential distribution in parameter> 0 given by both th_e basic ano! the optimized methods is computeq as

ElmGe2)]=k 3 100. In Fig.[8 we present the results corresponding
Pr(y) =ce®, for y =1,2,3, (22) tothe PMFsin Fig:16. It shows that the optimized SEC reduces

the excess number of 1/0 reads for the 2nd version. Though
where the constant is chosen such thaz,’j:1 Pr(y) = 1, the optimized SEC reduces the excess /O, this additio@al I/
and referred to asruncated exponentiaPMF. Likewise, a reads forx, is due to differential encoding that reduces the

truncated Poissof?MF with parameten, given by I/O for accessing botk; andx,. One possible direction to
\ reduce the I/O for the latest version is to employ reverse SEC
Ne~ i i i
Pr(7) = ¢ e' fory—1.2.3, (23) (as pointed in Section 1ITFA).
y!

are also considered, whereis such thatz,’j:1 Pr(v) = 1. C. An example system with > 2 versions

These PMFs are specifically picked to study the reduction inTo study the trade-offs of using SEC when multiple versions

I/0 reads for two extreme scenarios: (i) the family of exponeare involved, we revisit the example in Sectlon 1I-D.= 5

tial PMFs provides thick concentration towards smalleueal versions with sparsity levels of subsequent versipps| 2 <

of I', whereas (ii) the family of Poisson PMFs provides thick < L} = {3,8,3,6} of an object of sizek = 10 is stored

concentration towards larger value bf Thus they facilitate using a(20,10) SEC. We plot the I/O numbers for the basic

the study of both the best-case and worst-case scenariosdiot the optimized SEC in Fif] 9. The numbers are presented

SEC. In Figured16, we plot the PMFs i {22) arid](23}o retrieve both the individual versiongth version forl <

respectively for different parameters. 1 < 5) as well as all the first versions. The plot shows 20%
Average 1/O reads to retrieve x; and x,. For a given saving in total I/O reads with respect to the non-differainti

Pr(v), the average number of I/O reads for accessing the fisstheme, for only slightly higher 1/0 for the optimized DEC.
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Fig.[d. Results for both basic and optimized SEC methods rmsepted. Here
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for different methods.
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VI. CONCLUSIONS

In this paper we propose a framework - Sparsity Exploiting
Coding (SEC) - for archiving versioned data using storage
efficient erasure coding, where the individual versions are
not coded in isolation, but instead the differences across
subsequent versions are coded. The sparsity in the delta
information is exploited for better 1/0 performance whee th
archive of versioned data is read back. We identify Cauchy
matrix based MDS codes as one candidate which satisfies
the requirements laid out in our framework to be able to
opportunistically exploit the sparsity, and discuss twoasas,

a systematic and a non-systematic one. We demonstrate that,
in doing so, for a given choice of storage overhead, and for
a practical redundancy placement strategy (where encoded
pieces pertaining to all the versions are colocated) there
is no compromise in the system’s resilience. Analysis and
numerical/simulation experiments confirm the effectivenef
SEC.

Our study shows that the non-systematic SEC provides
better resilience for deltas corresponding to individueaéi-
mediate versions, even though the whole archive’s resiliés
constricted by the resilience of the first (or last) versibthe
data, which is coded as it is. This suggests room for reducing
the storage overhead of the intermediate versions in the non

systematic SEC, possibly using puncturing techniqueschvhi
we will pursue in immediate future.
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