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Abstract—In this paper we consider a wide class of discrete
diffusion load balancing algorithms. The problem is defined as
follows. We are given an interconnection network and a number
of load items, which are arbitrarily distributed among the nodes
of the network. The goal is to redistribute the load in iterative
discrete steps such that at the end each node has (almost) the
same number of items. In diffusion load balancing nodes are only
allowed to balance their load with their direct neighbors.

We show three main results. Firstly, we present a general
framework for randomly rounding the flow generated by con-
tinuous diffusion schemes over the edges of a graph in order to
obtain corresponding discrete schemes. Compared to the results
of Rabani, Sinclair, and Wanka, FOCS’98, which are only valid
w.r.t. the class of homogeneous first order schemes, our frame-
work can be used to analyze a larger class of diffusion algorithms,
such as algorithms for heterogeneous networks and second order
schemes. Secondly, we bound the deviation between randomized
second order schemes and their continuous counterparts. Finally,
we provide a bound for the minimum initial load in a network
that is sufficient to prevent the occurrence of negative load at a
node during the execution of second order diffusion schemes.

Our theoretical results are complemented with extensive
simulations on different graph classes. We show empirically that
second order schemes, which are usually much faster than first
order schemes, will not balance the load completely on a number
of networks within reasonable time. However, the maximum load
difference at the end seems to be bounded by a constant value,
which can be further decreased if first order scheme is applied
once this value is achieved by second order scheme.

I. INTRODUCTION

Load balancing is a fundamental task in many parallel and
distributed applications. Often there are significant differences
in the amount of work load generated on the processors of
a parallel machine, which have to be balanced in order to
obtain a substantial benefit w.r.t. the runtime of a parallel
computation. One of the most prominent examples are so-
called finite element simulations [14].

In the load balancing problem we are given an inter-
connection network and a number of load items which are
arbitrarily distributed over the nodes of the network. The goal
is to redistribute the items such that at the end each node
has (almost) the same load. To achieve this goal, nodes are
only allowed to communicate with their direct neighbors. We
assume that each node has access to a global clock, and the
algorithm works in synchronous rounds.

A prominent class of load balancing algorithms are so-
called diffusion schemes [8]. In these algorithms, the nodes

are allowed to balance their load with all their neighbors
simultaneously in a round. We distinguish between continuous
and discrete settings. In the continuous case it is assumed that
the load can be split into arbitrarily small pieces. Although
often not realistic, this assumption is very helpful for analyzing
these algorithms [8]. Discrete load balancing algorithms, on
the other hand, assume that tasks are atomic units of load,
called tokens. Hence, two adjacent nodes cannot balance their
load any way they want; only integral amounts of load can be
transferred. As a consequence, discrete diffusion algorithms
are usually not able to balance the load completely [2], [12].

Two fundamental diffusion type algorithms are the first
order scheme (FOS) and the second order scheme (SOS) [19].
In the first order scheme the amount of load that nodes send
to their neighbors in a step only depends on their current load
difference. In SOS the flow over an edge is a function of the
current load difference between its incident nodes and the load
that was sent in the previous round. Note that SOS can lead to
negative load at some nodes if the loads of the nodes are not
sufficient to fulfill the calculated demand of all edges. There
are tight bounds on the worst-case convergence time of both,
FOS and SOS, in the continuous case [8]. In general, for the
optimal choice of parameters SOS converges much faster than
FOS.

The common approach for analyzing discrete diffusion
algorithms is to consider a closely related continuous version
of the algorithm and to bound the load deviation between load
vectors of the two processes ([20]). To explain the approach
we need a couple of definitions first. We assume that the
network is modeled by an undirected graph G = (V,E), where
V = {1, . . . , n} represents the set of processors and the edges
in E describe the connections between them. A total of m
identical load items are distributed over the nodes. We use
a vector x = (x1, . . . , xn) to indicate the amount of load
assigned to every node. In the heterogeneous network model
the nodes may have different speeds (s1, . . . , sn). The aim of a
load balancing algorithms is to distribute the load proportional
to the processors’ speeds. Hence, the ideal load of a node i
is x̄i = msi/s, where s =

∑n
i=1 si. The deviation of a load

vector x from another load vector x′ is maxi≤n |xi − x′i|.

In the case of the common approach mentioned above
the continuous process would forward a fractional amount of
load `e over some edge e, the discrete algorithm rounds `e to
an integer `′e. The rounding can be done deterministically or
randomized, whereas randomized rounding often outperforms
deterministic rounding (for example, the always round down
approach [21]). The difference between `e and `′e is called the
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rounding error. The propagation of the rounding errors causes
the two processes to deviate from each other.

In this paper we show three main results. Firstly, we
present a general framework for randomly rounding continuous
diffusion schemes to discrete schemes. Compared to the results
of [20], which are only valid w.r.t. the class of homogeneous
first order schemes, our framework can be used to analyze
a larger class of diffusion algorithms, such as algorithms for
heterogeneous networks and second order schemes. Secondly,
we bound the deviation between randomized second order
schemes and their continuous counterparts. Finally, we provide
a bound for the minimum initial load in a network that is
sufficient to prevent the occurrence of negative load at a node
during the execution of second order diffusion schemes. Our
results are supported by extensive simulations on various graph
classes, comparing the performance of FOS and SOS and
giving an empiric insight into the behavior of diffusion based
load balancing processes.

II. MODELS AND RESULTS

a) First Order Diffusion: FOS in the homogeneous
network model is defined as follows. Let N(i) be the set
of neighbors of node i and di be its degree. We define
x(t) = (x1(t), . . . , xn(t)) as the load vector at the begin-
ning of round t ≥ 0, where xi(t) is the load of node i.
The amount of load transferred from node i to node j in
round t is denoted by yi,j(t). Then FOS is characterized by
the following equations, where αi,j is a parameter, usually
αi,j = 1/ (max(di, dj) + 1).

yi,j(t) = αi,j ·
(
xi(t)− xj(t)

)
(1)

xi(t+ 1) = xi(t)−
∑

j∈N(i)

αi,j
(
xi(t)− xj(t)

)
The process can be expressed with a diffusion matrix M , where
Mi,i = 1 −

∑
j αi,j and Mi,j = αi,j for j ∈ N(i). All other

entries of M are zero. Then

x(t+ 1) = M · x(t) , (2)

where M is a symmetric doubly stochastic n×n matrix. Let
K denote the difference between the maximum and minimum
load at the beginning of the process. Let λ denote the second-
largest eigenvalue (in magnitude) of M . Then [19], [20] show
that FOS converges in O (log(Kn)/(1− λ)) rounds. In [20]
the authors introduce a framework to analyze a wide class of
discrete FOS processes. This framework served as a foundation
for analyzing several discrete FOS algorithms. Many of these
publications consider uniform processors [5], [6], [10], [13],
[15], [16], [17], [19], [20], [21], while a few others incorporate
processor speeds into the model [1], [12]. The authors of
[15] consider a discrete process where the continuous flow is
rounded randomly. This algorithm achieves a deviation bound
of O((d log log n)/(1 − λ)). The drawback of this method is
that rounding up on too many edges might result in negative
load. The process of [5] avoids negative load. A node first
rounds down all the flows on the adjacent edges, which
leaves some surplus tokens which are randomly distributed
among the neighbors. This algorithm achieves a deviation
bound of O(d

√
log n+

√
(d log n log d)/(1− λ)). In [21] the

authors study two natural discrete diffusion-based protocols

and their discrepancy bounds depend only polynomially on
the maximum degree of the graph and logarithmically on n.

The balancing process of [2] simulates a continuous pro-
cess using a corresponding discrete process. In every round
the discrete flow on each edge is determined such that it stays
as close as possible to the total continuous flow that is sent
over the edge. This process results in a deviation of O(d)
(for a more detailed description see next section). In [13] the
authors consider an approach that is based on random walks
where tokens of overloaded nodes use a random walk to reach
underloaded nodes. While this approach leads to a situation at
the end, in which no node has more than a constant number
of tokens above average [13], it needs to keep track of the
load traffic the continuous scheme would produce. Moreover,
the corresponding random walks of the tokens result in a huge
amount of load transmissions between the nodes, which is not
the case in diffusion based schemes [8].

b) Second Order Diffusion (SOS): Muthukrishnan
et al. [19] introduce the continuous second order scheme which
is based on a numerical iterative method called successive
over-relaxation [18] and is one of the fastest diffusion load
balancing algorithms. In SOS, the amount of load transmitted
over each edge depends on the current load as well as the load
transferred in the previous round. The only exception is the
very first round in which FOS is applied. Subsequent rounds
follow the equations below.

yi,j(t) = (β − 1) yi,j(t− 1) + βαi,j
(
xi(t)− xj(t)

)
(3)

xi(t+ 1) = β ·

xi(t)− ∑
j∈N(i)

αi,j
(
xi(t)− xj(t)

)
+ (1− β) · xi(t− 1)

Here, β is independent of the iteration number t. From the
above equations we get

x(t+ 1) =

{
M x(t) if t = 0

β ·M x(t) + (1− β) · x(t− 1) if t > 0
(4)

For the process to converge, β must be in the interval
(0, 2). For the optimal choice of βopt = 2/(1+

√
1− λ2) SOS

converges in O(log(Kn)/
√

1− λ) rounds [19] which is in
general faster than FOS; for graphs with some eigenvalue gap
(1−λ)−1 = logω(1) n, the convergence time of SOS is almost
quadratically faster than FOS. Unfortunately, it can happen that
the total outgoing flow from a node exceeds its current load,
which results in so-called negative load.

c) Heterogeneous Networks: Continuous FOS and SOS
processes in the heterogeneous network model were first stud-
ied in [11]. In heterogeneous networks, processors have dif-
ferent speeds and the aim is to distribute the load proportional
to their speeds. The minimum speed is 1, the maximum speed
is smax, and s = s1 + · · · + sn. Let the diagonal matrix S
be defined by Si,i = si. Then the heterogeneous FOS/SOS
processes are defined as before (see (2) and (4)), except the
diffusion matrix is now M = I − LS−1 where L is the nor-
malized Laplacian matrix of the graph [11]. In [1], the authors
analyze a discrete FOS for homogeneous networks. In [11] the
authors show that continuous FOS/SOS processes converge
in O(log(Knsmax)/(1− λ)) and O(log(Knsmax)/

√
1− λ)



rounds, respectively. In [12], the authors consider a discrete
version of SOS too. They show that the euclidean distance
between the discrete and continuous load vectors in the discrete
version is O(d · √n · smax/(1− λ)).

A. New Results

Result I. We present a general framework for rounding
continuous diffusion schemes to discrete schemes. Our ap-
proach described in Section III estimates the error between a
continuous diffusion scheme and the rounded discrete version
first, similar to [20]. Then we combine that error term with
martingales techniques (similar to the ones used in [5]) to
bound the deviation between the continuous scheme and a
discrete scheme based on randomized rounding. Note that the
results in [20] are only valid for a class of homogeneous first
order schemes and [5] analyzes a fixed first order diffusion
scheme with a specific transition matrix. In this paper we
introduce an error estimation that allows us to show results
for a larger class of diffusion algorithms (see Definition 2) in
heterogeneous networks, including SOS.

In the homogeneous case our bounds are the same as the
best results for FOS. Our bound is worse than the O(d) bound
of [2]. In the current paper we bound the deviation of a class
of very natural and stateless algorithms. That is, the amount
of load that is forwarded over an edge in step t only depends
on the load at the beginning of step t and the amount that was
sent in step t − 1. The approach of [2] is not stateless as it
simulates the continuous process. The flow that is sent over
the edges in step t takes into account the difference of the
cumulative load that was sent by the continuous process up to
step t and the cumulative load that was sent by the discrete
process so far.

Result II. We show that randomized SOS has a de-
viation (after the balancing time of continuous SOS) of
O
(
d · log smax ·

√
log n/(1− λ)3/4

)
, where λ is the second

largest eigenvalue of M and smax is the maximum speed. Note
that the runtime of SOS is in most cases much better than the
runtime of FOS, i.e., O(log(Kn)/

√
1− λ) (assuming optimal

β) compared to O (log(Kn)/(1− λ)) in the case of FOS.

Result III. We show that the continuous second order
scheme with optimal β will not generate negative load if
at time t = 0 the minimum load of every node is at least
O
(√
n ·∆(0)/

√
1− λ

)
. Here ∆(0) is the difference between

the maximum load and the average load at time t = 0. For
discrete SOS and graphs with proper eigenvalue gap we show
a bound of O

(
(
√
n ·∆(0) + d2)/

√
1− λ

)
. To the best of our

knowledge these are the first results specifying a sufficient
amount of minimum load w.r.t. SOS to avoid negative load.

Simulations. We implemented a network and simulated both,
FOS and SOS load balancing processes. Especially in tori,
our results show a clear advantage of SOS over FOS w.r.t. the
number of steps required to balance the loads. We also empir-
ically analyze the remaining imbalance that arises in discrete
load balancing schemes once the system has converged such
that no node has more than a constant number of additional
load tokens. We propose to switch from SOS to FOS once
this threshold is reached, and our simulations show that this
change of the scheme leads to a further drop of the remaining
load imbalance.

III. GENERAL FRAMEWORK FOR FOS SCHEMES

In this section we first generalize the framework of Rabani
et al. [20] to a wider class of processes (see Section III-A)
and obtain an equation estimating the deviation of the discrete
process from its continuous version. The estimation is valid
as long as the continuous process is linear (Definition 2). In
[20] the deviation is expressed in terms of the diffusion matrix.
Here, we present an analysis from a different perspective which
allows us to obtain essentially the same deviation formula
for a larger class of processes. Our analysis can be applied
to the second order processes and heterogeneous models. In
Section III-B we present the framework that transforms a
continuous load balancing process C into a discrete process
R(C) using randomized rounding.

For simplicity we consider in this section only first order
processes. In the next section we generalize the framework to
SOS.

A. Deviation between Continuous and Discrete FOS

For a load balancing process A, we use xAi (t) to denote
the load of a node i at the beginning of the round t, and
xA(t) = (xA1 (t), . . . , xAn (t)). For j ∈ N(i), we define yAi,j(t)
as the amount of load sent from i to j in round t (this value is
negative if load items are transferred from j to i), where N(i)
represents the set of neighbors of i. Then yA(t) is the matrix
with yAi,j(t) as its entry in row i and column j. Note that each
balancing process A can be regarded as a function that, given
the current state of the network, determines for every edge e
and round t the amount of load that has to be transferred over
e in t. Hence, we can regard yA(t) as the result of applying
a function A, i.e., yA(t) = A(xA(t)). Using this we formally
define discrete processes as follows.

Definition 1. Let C be a continuous process. A process D is
said to be a discrete version of C with rounding scheme RD if
for every vector x, we have D(x) = RD(C(x)) where RD is
a function that rounds each entry of the matrix to an integer.

Note that for a load balancing process load conservation
over each edge must hold. Although it may not be a necessary
condition, our analyses in this section requires the process to
exhibit a linearity property in the following sense.

Definition 2 (Linearity). A diffusion process A is said to be
linear if for all x,x′ ∈ Rn and a, b ∈ R we have A(ax+bx′) =
a ·A(x) + b ·A(x′).

Lemma 1. Both FOS and SOS as defined in Section II are
linear.

Proof: Let M be the diffusion matrix and 0 ≤ β ≤ 2.
Observe that both FOS and SOS can be described by the
following general equation (see equations (1) and (3)).

yi,j(t) = (β − 1) · yi,j(t− 1) + β ·Mi,j · xi(t) for t ≥ 1,

Thus the algorithm A – where based on the choice of parameter
β, A can represent either FOS and SOS – is defined by

A(x,y) = (β − 1)y + βMx



Let x,x′ ∈ Rn,y,y′ ∈ Rn×n and a, b ∈ R. Then we have

A(ax + bx′, ay + by′)

= (β − 1) (ay + by′) + βM(ax + bx′)

= a((β − 1)y + βMx) + b((β − 1)y′ + βMx′)

= aA(x,y) + bA(x′,y′)

which shows that A is linear.

Let C be a continuous process and D its discrete version.
Let Ŷ (t) represent C(xD(t)). Then we can say that D always
attempts to set yDi,j(t) to Ŷi,j(t). Hence, we call Ŷ (t) the
continuous scheduled load. We define the rounding error as
ei,j(t) = Ŷi,j(t)− yDi,j(t); note that ei,j(t) = −ej,i(t).

In the next definition î denotes the unit vector of length n
with 1 as its i’th entry.

Definition 3 (Contributions). Let x and x’ be the load vectors
obtained from applying C for t rounds on î and ĵ, respectively.
For two fixed nodes i and k and j ∈ N(i) the contribution of
edge (i, j) on node k after t rounds is defined as

CCk,i→j(t) = xk − x′k .

The next theorem provides a general form of the FOS
deviation formula of [20] which has served as a basis for
analyzing several discrete FOS processes.

Lemma 2. Consider a linear diffusion process C and its
discrete version D with an arbitrary rounding scheme. Then,
for an arbitrary node k and round t we have

xDk (t)− xCk (t) =

t∑
s=1

∑
{i,j}∈E

ei,j(t− s) CCk,i→j(s)

Proof: Fix a node k and round t. Suppose we sequentialize
the load balancing actions of the process by imposing an
arbitrary ordering on the edges. Then, t rounds in the parallel
view is equivalent to |E| · t steps in the sequentialized view.
In the following, let τ = |E| · t. With a slight abuse of
notation we let C∞ ◦ D` denote a hybrid process in which
the load balancing actions are determined by D in steps 1
to ` and by C afterwards, where 0 ≤ ` ≤ τ . Observe that
xC
∞◦Dτ

k (t) = xDk (t) and xC
∞◦D0

k (t) = xCk (t). Thus we can
write xDk (t) − xCk (t) in the form of a telescoping sum as
follows.

xDk (t)− xCk (t) = xC
∞◦Dτ

k (t)− xC
∞◦D0

k (t)

=

τ∑
`=1

(
xC
∞◦D`

k (t)− xC
∞◦D`−1

k (t)
)

(5)

Fix an arbitrary step ` and let {i, j} and s be the edge
and the round corresponding to the step `. Both C∞ ◦ D`−1

and C∞ ◦ D` start their round s + 1 with load vectors that
are the same except maybe in i and j. This happens because
C∞ ◦D`−1 forwards Ŷi,j(s) over {i, j} while in C∞ ◦D` this
amount is Ŷi,j(s)−ei,j(s). Thus, by the definition of CCk,i→j(t)
and using the linearity property of the process we get

xC
∞◦D`

k (t)− xC
∞◦D`−1

k (t) = ei,j(s) CCk,i→j(t− s) .

Plugging the above into (5) and translating the summation
index we get

xDk (t)− xCk (t) =

t−1∑
s=0

∑
{i,j}∈E

ei,j(s) CCk,i→j(t− s)

=

t∑
s=1

∑
{i,j}∈E

ei,j(t− s) CCk,i→j(s) .

B. Framework for Randomized FOS

In this section we use Lemma 2 to analyze a randomized
rounding scheme for a general class of continuous load bal-
ancing algorithms. Our technique is based on the results in
[5] where the authors analyzed a fixed discrete FOS process
for homogeneous d-regular graphs using randomized rounding.
Their algorithm is based on a continuous process in which
every node sends a 1/(d + 1)-fraction of its load to each
neighbor. Initially, the discrete algorithm rounds xi/(d + 1)
down if it is not an integer. This leaves (d+ 1) · bxi/(d+ 1)c
surplus tokens on node i, which they call excess tokens. The
excess tokens are then distributed by sending the tokens to
neighbors which are uniformly sampled without replacement.

Here we apply the technique in a much more general
way, using Lemma 2 to express the deviation between the
randomized and deterministic algorithm. We introduce a ran-
domized framework that converts a general class of continuous
processes to their discrete versions using randomized rounding.
For a ∈ R we use {a} to denote a− bac.

The Randomized Rounding Algorithm. Fix a node i. Let
Ŷ (t) represent C(xD(t)). For each edge e = {i, j} let the
corresponding Ŷi,j(t) be the load that would be sent over e
by the continuous process C. The rounding scheme works as
follows. First, it rounds Ŷi,j(t) down for all the edges. This
leaves r =

∑
j:Ŷi,j(t)≥0{Ŷi,j(t)} excess load on node i. Then

it takes dre additional tokens and sends each of them out with a
probability of r/dre. With the remaining probability the excess
tokens remain on node i. The tokens which do not remain on
i are sent to a neighbor j with a probability of {Ŷi,j(t)}/r.
Let Zi,j(t) be a counting random variable denoting the number
of excess tokens that i sends to j in round t. Then we have

Y Ri,j(t) =

{
bŶi,j(t)c+ Zi,j(t) if Ŷi,j(t) ≥ 0

−Y Rj,i(t) otherwise.

The deviation bound is expressed based on the refined local
divergence ΥC(G) defined below, which is a function of both
the algorithm and the graph:

ΥC(G) = max
k∈V

( ∞∑
s=0

n∑
i=1

max
j∈N(i)

(
CCk,i→j(s)

)2)1/2

ΥC(G) is a generalization of the refined local divergence
Υ(G) introduced in [5]. Then we have the following result.

Theorem 3. Let C be a continuous FOS and let R = R(C) be
a discrete FOS using our randomized rounding transformation.



In an arbitrary round t we have w.h.p.1∣∣XR
k (t)− xCk (t)

∣∣ = O
(

ΥC(G) ·
√
d log n

)
.

The proof of Theorem 3 relies on the fact that FOS is
a linear process and hence the estimation of Lemma 2 can
be used as a basis for the randomized analysis. The proof
is similar to the proof of [5], the difference is that we use
CCk,i→j(t)’s instead of the diffusion matrix. We begin the proof
of Theorem 3 with a simple observation.

Observation 1. The following statements are true (Recall that
{a} denotes a− bac).

1) If Ŷi,j(t) ≥ 0 then Ei,j(t) = {Ŷi,j(t)} − Zi,j(t);
2) E [Ei,j(t)] = 0.

The first statement of Observation 1 holds by definition,
since Ei,j(t) = Ŷi,j(t) − Y Ri,j(t) while Y Ri,j(t) =

⌊
Ŷi,j(t)

⌋
+

Zi,j(t). For the second statement, first suppose that Ŷi,j(t) ≥
0. note that Zi,j(t) can be expressed as a sum of dre identi-
cally distributed Bernoulli random variables each of which is
one with probability (r/dre) ·

(
{Ŷi,j(t)}/r

)
. Thus we have

E [Zi,j(t)] = {Ŷi,j(t)} and from there (2) follows from (1).
In the case Ŷi,j(t) < 0, we have Ŷj,i(t) = −Ŷi,j(t) > 0.
Thus by the first case we have E [Ej,i(t)] = 0 and therefore
E [Ei,j(t)] = −E [Ej,i(t)] = 0.

Let fk denote the difference in the load of k in round t of
R and C. In the following, we first observe that fk is zero in
expectation, and then show that it is well concentrated around
its average.

Observation 2. E [fk] = 0

Proof: The statement follows from Lemma 2 and Obser-
vation 1.(2) by the linearity of expectation.

Proof of Theorem 3: As in [5], we are going to use the
method of averaged bounded differences to obtain concentra-
tion results for the random variable fk. For a fixed initial load
vector X(0) the function fk depends only on the randomly
chosen destinations of the excess tokens. There are t rounds,
n nodes, and at most d excess tokens per node per round.
Similar to [5] we describe these random choices by a sequence
of tnd random variables, Y1, Y2, . . . , Ytnd. For any ` with
1 ≤ ` ≤ tnd, let (s, i, b) be such that ` = snd+ (i− 1) d+ b
(note that (s, i, b) is the `-th largest element in the sequence).
Then Y` refers to the destination of the b-th excess token of
vertex i in round s (if there is one). More precisely,

Y` =


j if the b-th excess token of the vertex i in

round s is sent to j, and
0 otherwise.

Let Yi denote Yi, . . . , Y1. To apply the method of averaged
bounded differences, we need to bound the difference sequence
below.

|E [fk | Y`]− E [fk | Y`−1]| . (6)

1Throughout this paper, w.h.p. means with probability at least 1−n−α for
some constant α > 0.

As in [5], we consider a fixed ` that corresponds to (s1, i1, b1)
in the lexicographic ordering.

To bound (6), we write

c` =
∣∣E [fk | Y`]− E [fk | Y`−1]

∣∣
≤

t∑
s=0

∑
{i,j}∈E

|E [Ei,j(s) | Y`]− E [Ei,j(s) | Y`−1]|

·
∣∣CCk,i→j(t− s)∣∣

As in [5] we split the sum over s into the three parts 1 ≤ s <
s1, s = s1, and s1 < s ≤ t. In the following we show that
the sums over s < s1 and s > s1 are both zero while the part
s = s1 is upper bounded by 2 ·maxj∈N(i1)

∣∣∣CCk,i→j(t− s)∣∣∣.
Case s < s1: For every {i, j} ∈ E, Ei,j(s) is already
determined by Y`−1. Hence,

s1−1∑
s=1

∑
{i,j}∈E

∣∣E [Ei,j(s) | Y`]− E [Ei,j(s) | Y`−1]
∣∣ (7)

·
∣∣CCk,i→j(t− s)∣∣ = 0 .

Case s = s1: In this case, Y`−1 determines Ŷi,j(t) and Ei,j(s)
is only affected by Zi,j(s)’s (see Observation 1).∑
{i,j}∈E

∣∣E [Ei,j(s) ∣∣Y`

]
− E [Ei,j(s) | Y`−1]

∣∣
·
∣∣CCk,i→j(t− s)∣∣

=

n∑
i=1

∑
j:Ŷi,j(t)≥0

(∣∣∣E [{Ŷi,j(t)} − Zi,j(t) | Y`

]
− E

[
{Ŷi,j(t)} − Zi,j(t) | Y`−1

] ∣∣∣) · ∣∣CCk,i→j(t− s)∣∣
=

∑
{i,j}∈E

∣∣∣E [Z(s)
i,j | Y`

]
− E

[
Z

(s)
i,j | Y`−1

] ∣∣∣
·
∣∣CCk,i→j(t− s)∣∣

=
∑
{i,j}∈E

∣∣Λ(s)
i,j

∣∣ · ∣∣CCk,i→j(t− s)∣∣
≤

n∑
i=1

(
max
j∈N(i)

∣∣CCk,i→j(t− s)∣∣) · ∑
j∈N(i)

∣∣Λ(s)
i,j

∣∣ , (8)

where we used

Λ
(s)
i,j = E

[
Z

(s)
i,j | Y`

]
− E

[
Z

(s)
i,j | Y`−1

]
to simplify the notation.

As in [5], to bound (8) we consider
∑
{i,j}∈E

∣∣Λ(s)
i,j

∣∣ for
i = i1 and i 6= i1 separately.

Case 1: Let i = i1. For each j ∈ N(i1), define indicator
Bernoulli random variables Iu,j , 1 ≤ u ≤ d, where Iu,j
is one if the u’th excess token of i1 in round s1 goes to
j and zero otherwise. Note that Z(s1)

i1,j
=
∑

1≤u≤d Iu,j . Let

r =
∑
j∈N(i1)

{
Ŷi1,j(s1)

}
so that dre ≥ b1 be the number of

excess tokens of i1 in round s1. Clearly, r and the destinations
of the excess tokens considered in the previous rounds, are



already determined by Y1, . . . , Y`−1. The remaining receivers
Y`+1, . . . , Y`+r−b1 are chosen independently from N(i1) ∪
{i1}. Hence, the choice of Y` does not affect the distribution
of Iu,j except for u = b1, and we have

E [Zi1,j(s1) | Y`]− E [Zi1,j(s1) | Y`−1]

= E
[
I1,j + · · ·+ Idre,j | Y`

]
− E

[
I1,j + · · ·+ Idre,j | Y`−1

]
= E [Ib1,j | Y`]− E [Ib1,j | Y`−1]

Let w ∈ N(i1)∪{i1} be the destination of the b1-th excess
token of i1 in round s1, that is, Y` = w and hence,

Λ
(s1)
i1,w

= 1− {Ŷi1,w(t)}/r .

For any j ∈ N(i1) \ {w} we have

Λ
(s1)
i1,w

= −{Ŷi1,j(t)}/r .

Hence, ∑
j∈N(i1)

∣∣Λ(s1)
i1,j

∣∣ ≤ 1− {Ŷi1,w(t)}/dre (9)

+
∑

j∈N(i1)\{w}

{Ŷi1,j(t)}/dre

≤ 1 +
∑

j∈N(i1)

{Ŷi1,j(t)}/dre

≤ 2, (10)

where the last inequality holds since∑
j∈N(i1)

{Ŷi1,j(t)} = r ≤ dre .

Case 2: i 6= i1. As ` corresponds to (s1, i1, b1), the random
variable Zi,j(s1) is independent of Y` when conditioned on
Y`−1. Hence, similar to [5], we have∑
{i,j}∈E

∣∣Λ(s1)
i,j

∣∣ =
∑

j:{i,j}∈E

∣∣∣E [Z(s)
i,j | Y`

]
− E

[
Z

(s)
i,j | Y`−1

]∣∣∣
= 0 .

Combining Case 1 and Case 2 we obtain(
max
j∈N(i1)

∣∣CCk,i→j(t− s)∣∣) ∑
j:{i1,j}∈E

∣∣Λ(s)
i1,j

∣∣
+

∑
i∈V,i6=i1

(
max
j∈N(i)

∣∣CCk,i→j(t− s)∣∣) ∑
{i,j}∈E

∣∣Λ(s)
i,j

∣∣
≤ max

j∈N(i1)

∣∣CCk,i→j(t− s)∣∣ · 2 + 0 . (11)

Case s > s1: Let ˜̀ be the largest integer that corresponds
to round s − 1. Since s > s1, we have s − 1 ≥ s1 and
therefore ˜̀≥ `. By the choice of ˜̀, Y˜̀, . . . , Y1 determine the
load vector at the end of round s1, X(s1). By Observation 1,
we obtain E

[
Ei,j(s) | Y˜̀, . . . , Y1] = 0, and by the law of

total expectation,

E [Ei,j(s) | Y`]

= E
[
E
[
Ei,j(s) | Y˜̀, . . . , Y1] | Y`, Y`−1, . . . , Y1]

= E [0 | Y`, Y`−1, . . . , Y1] = 0 .

With the same arguments, E [Ei,j(s) | Y`−1] = 0, and thus
t∑

s=s1+1

∑
{i,j}∈E

∣∣E [Ei,j(s) | Y`]− E [Ei,j(s) | Y`−1]
∣∣

·
∣∣CCk,i→j(t− s)∣∣ = 0 . (12)

This finishes the case distinction. Combining equations (7),
(11), and (12) for the three cases s < s1, s = s1, and s > s1,
similar to [5] we obtain that for every fixed 1 ≤ ` ≤ tnd,

c` = |E [fk | Y`]− E [fk | Y`−1]|

≤
t∑

s=0

∑
{i,j}∈E

|E [Ei,j(s) | Y`]− E [Ei,j(s) | Y`−1]|

·
∣∣CCk,i1→j(t− s1)

∣∣
= 0 + max

j∈N(i1)

∣∣CCk,i1→j(t− s1)
∣∣ · 2 + 0

= 2 · max
j∈N(i1)

∣∣CCk,i1→j(t− s1)
∣∣.

Now we consider the sum of the error terms.
(t+1)nd∑
`=1

(c`)
2 ≤

t∑
s=0

n∑
i=1

d∑
b=1

(
2 max
j∈N(i)

∣∣CCk,i→j(t− s)∣∣)2
= 4d

t∑
s=0

n∑
i=1

max
j∈N(i)

(
CCk,i→j(s)

)2
≤ 4d max

k∈V

( ∞∑
s=0

n∑
i=1

max
j∈N(i)

(
CCk,i→j(s)

)2)
= 8d

(
ΥC(G)

)2
. (13)

So by Azuma’s inequality [9, p. 68] we have for any δ ≥ 0,

Pr [|fk| > δ] ≤ 2 exp
(
− δ2

/(
2

tnd∑
`=1

(c`)
2
))

.

Hence by choosing δ = ΥC(G)
√

32d lnn, the probability
above gets smaller than 2n−2. Applying the union bound we
obtain

Pr [∃k ∈ V : |fk| > δ] ≤ 2n−1 .

This implies

Pr

[
max
i,j∈[n]

∣∣XR
i (t)− xCi (t)

∣∣ ≤ δ] ≥ 1− 2n−1 ,

which finishes the proof.

Using Theorem 3 we can also obtain concrete results for
randomized FOS processes as stated in the following theorems.
The first result holds for the homogeneous case and a special
class of algorithms where αi,j = 1/(γd) only. Recall that d
is the maximum degree. The same result was already shown
in [21].

Observation 3. Assume s1 = s2 = . . . = sn and αi,j = 1
γd .

Let C be a continuous FOS process and let R = R(C) be a
discrete FOS process based on the rounding algorithm applied
on C. Then

(1) ΥC(G) = O
(√

γd/(2− 2/γ)
)
.



(2) For any round t we have w.h.p.∣∣xRk (t)− xCk (t)
∣∣ = O

(√
γd

2− 2/γ
·
√
d log n

)
.

In [21] the authors applied a potential function in order to
estimate ΥC(G). This proof relies heavily on the fact that the
transition probabilities are uniform for all edges, which is not
the case for the heterogeneous model or the case where the
αi,j depend on di and dj only. The next result is more general
and applies to both of these cases as well.

Theorem 4. Let C be a continuous FOS process and let
R = R(C) be a discrete FOS process based on the rounding
algorithm applied on C. Then

(1) ΥC(G) = O
(√

d · log smax/(1− λ)
)
.

(2) For any round t we have w.h.p.∣∣xRk (t)− xCk (t)
∣∣ = O

(
d ·
√

log n · log smax

1− λ

)
.

To show Theorem 4 we first show the following lemma.

Lemma 5. For an arbitrary 1 ≤ k ≤ n, let the vector a be
such that ai = M t

k,i −
sk
s . Then we have

‖a‖22 ≤ 2 smax λ
2t

Proof: Let â = k̂ − sk
s · 1n. Note that a = âM t.

Let v1, . . . ,vn be the eigenvectors of M t with eigenvalues
λt1, . . . , λ

t
n, and λt be the second largest eigenvalue. Using

the fact that M = I−LS−1, it is not hard to see that S−1M t

is symmetric. Hence, for each right eigenvector vi of M t there
is a left eigenvector ui = S−1vi with the same eigenvalue λti
as proved in the following.

(M t)Tui = (M t)TS−1Sui = (S−1M t)Tvi

= S−1M tvi = λtiS
−1vi = λtiui

Also, note that S−1M tSui = S−1M tvi = λtiS
−1vi = λtiui.

As a result, ui’s are eigenvectors of S−1M tS, which is
symmetric because it is the product of symmetric matrices
S−1M t and S. Therefore, u1, . . . ,un form an orthonormal
basis; so we can write â =

∑n
i=1 ciui. Now we write

a = âM t =

n∑
i=1

ciuiM
t =

n∑
i=1

λticiui

Therefore,

‖a‖22 =

n∑
i=1

λ2ti c
2
i ‖ui‖22 ≤ λ2t

n∑
i=1

c2i ‖ui‖22 = λ2t‖â‖22 (14)

where the inequality uses the fact that â ⊥ (s1, . . . , sn) which
is the eigenvector corresponding to the largest eigenvalue.
Also, the last equality follows from the fact that ui’s form
an orthonormal basis. On the other hand,

‖â‖22 ≤ n ·
s2k
s2

+ 1 ≤ n s2k
(n− 1 + sk)2

+ 1

≤ n s2k
2(n− 1)sk

+ 1 ≤ sk + 1 ≤ 2smax

Together with (14), this yields

‖a‖22 ≤ 2 smaxλ
2t ,

as required.

Proof of Theorem 4: We have(
ΥFOS(G)

)2
=

∞∑
t=0

n∑
i=1

max
j∈N(i)

(
M t
k,i −M t

k,j

)2
≤
∞∑
t=0

n∑
i=1

∑
j∈N(i)

(
M t
k,i −M t

k,j

)2
=

t1−1∑
t=0

n∑
i=1

∑
j∈N(i)

(
M t
k,i −M t

k,j

)2
+

∞∑
t=t1

n∑
i=1

∑
j∈N(i)

(
M t
k,i −M t

k,j

)2
(15)

In the following, we use σ = β − 1 for brevity. Note that
0 < σ < 1.

t1−1∑
t=0

n∑
i=1

∑
j∈N(i)

(
M t
k,i −M t

k,j

)2
≤

t1∑
t=0

n∑
i=1

∑
j∈N(i)

2
(
(M t

k,i)
2 + (M t

k,j)
2
)

≤ 4 · d ·
t1−1∑
t=0

n∑
i=1

(M t
k,i)

2

≤ 4 · d ·
t1−1∑
t=0

‖M t k̂‖22

= 4 · d ·
t1−1∑
t=0

(
‖k̂‖2 ·max

i
λti

)2
= 4 · d ·

t1−1∑
t=0

1 ≤ 4 · d · t1 (16)

Let t1 = (log smax)/(2 − 2λ). Note that λ1/(1−λ) ≤ 1/e.
Then we have
∞∑
t=t1

n∑
i=1

∑
j∈N(i)

(
M t
k,i −M t

k,j

)2
≤
∞∑
t=t1

n∑
i=1

∑
j∈N(i)

2

((
M t
k,i −

sk
s

)2
+
(
M t
k,j −

sk
s

)2)

= 4 · d ·
∞∑
t=t1

n∑
i=1

(
M t
k,i −

sk
s

)2
≤ 8 · d · smax ·

∞∑
t=t1

λ2t (17)

≤ 8 · d · smax · λ2t1 ·
1

1− λ
≤ 8 d

1− λ
(18)

where (17) follows from Lemma 5. Combining equations (15),
(18), and (16) we get(

ΥFOS(G)
)2

= O

(
d · log smax

1− λ

)
, (19)



which proves the first statement. The bound in the second state-
ment follows immediately from statement (1) and Theorem 3.

IV. SECOND ORDER DIFFUSION PROCESSES

In this section we show that after some slight adjustments
the framework of Section III can be applied to second order
processes on heterogeneous networks. All we have to do is to
state definitions 2 and 3 in a more general way that captures
the dependence of SOS on the load transfer of the previous
round. It is easy to see that Lemma 2 and Theorem 3 still hold
assuming the new definitions. (Note that SOS is linear). If C
is a second order process, then yC(t) is determined based on
xC(t) and yC(t−1). More formally, yC(t) = C(xC(t), yC(t−
1)). Thus, the new definitions also incorporate yC(t− 1). We
again use î to denote the unit vector with 1 as its i’th entry.

Definition 4 (Linearity). A process A is said to be linear if for
all x,x′ ∈ Rn,y,y′ ∈ Rn×n and a, b ∈ R we have A(ax +
bx′, ay + by′) = aA(x,y) + bA(x′,y′).

Definition 5 (Contributions). Let x(0) = x′(0) = î, y(0) =
0n×n and let y′(0) be also all zero except y′i,j(0) = 1, so that
x(1) = î, x′(1) = ĵ. Let x(t + 1) and x′(t + 1) be the load
vectors obtained from applying C for t rounds on (x(1),y(0))
and (x′(1),y′(0)), respectively. Then the contribution of the
edge (i, j) on a node k after t rounds is defined as CCk,i→j(t) =
xk(t)− x′k(t).

To prove bounds of the deviation of theorems 8 and 9
we apply Observation 4 which follows from Lemma 2 and
Theorem 3. This gives us an upper bound in terms of the
CCk,i→j(t)’s. Hence to obtain a more concrete bound we have
to estimate CCk,i→j(t) which is done in Lemma 6 and upper
bounded in Lemma 7. The contributions are expressed based
on a sequence of matrices Q(t) defined below, whose role in
error propagation is similar to that of the diffusion matrix in
FOS.

Q(t) =


I if t = 0

β ·M if t = 1

β ·M Q(t− 1) + (1− β) ·Q(t− 2) if t ≥ 2
(20)

Lemma 6. For t > 0, we have

CSOS
k,i→j(t) = Qk,i(t− 1)−Qk,j(t− 1) .

Proof: Let x(0) = x′(0) = î, y(0) = 0n×n and let y′(0)
be also all zero except y′i,j(0) = 1, so that x(1) = î, x′(1) = ĵ.
Let x(t+ 1) and x′(t+ 1) be the load vectors obtained from
applying SOS for t rounds on (x(1),y(0)) and (x′(1),y′(0)),
respectively. Let CSOS

i→j (t) be a vector that has CSOS
k,i→j(t) as its

k’th entry, for 1 ≤ k ≤ n. Let w = î− ĵ. Then we have

CSOS
i→j (t) = x(t)−x′(t) =


0 if t = 0

w if t = 1

β ·M CSOS
i→j (t− 1)

+(1− β) · CSOS
i→j (t− 2) if t ≥ 2

where the third equation holds because for all t ≥ 2, both x(t)
and x′(t) follow the same equation x(t) = β ·Mx(t − 1) +

(1 − β) · x(t − 2). Now, it can be proved by induction that
CSOS
i→j (t) = Q(t − 1)w. Recall that all entries of w are zero

except wi = 1 and wj = −1. Therefore, for t > 0 we get
CSOS
k,i→j(t) = Qk,i(t− 1)−Qk,j(t− 1).

The following lemma provides a bound for the second norm
of Q(t), which is later used in the proofs of theorems 8 and
9.

Lemma 7. Let β = βopt = 2/(1 +
√

1− λ2). The following
statements are true.

1) Eigenvectors of Q(t) form a basis for Rn.

2) Let γ =
(√
β − 1

)t
(t + 1). Then γ is an upper bound

on the eigenvalues of Q(t) except the eigenvalue corre-
sponding to the eigenvector (s1, · · · , sn).

3) Q(t) has equal column sums.

4) Define q(t) =
∑

1≤j≤nQi,j(t) for an arbitrary 1 ≤ i ≤ n
(note that by the statement (3), this is a valid definition).
Fix a 1 ≤ k ≤ n, and let the vector a be such that
ai = Qk,i(t) − sk/s · q(t). Then we have ‖a‖22 ≤
2 smax(β − 1)t(t+ 1)2.

Proof:

a) Proof of (1): First we observe that the eigenvectors
of Q(t) are the same as the eigenvectors of M . This can be
proved by an induction using the recurrence of (20) as follows.

Suppose v is an eigenvector of M with eigenvalue α. Then
v is also an eigenvector of Q(t) and Q(t−1) by the induction
hypothesis. Let µ1 and µ2 be the corresponding eigenvalues.
We have

Q(t+ 1)v = β ·M Q(t)v + (1− β) ·Q(t− 1)v

= βµ1 ·M v + (1− β)µ2 v

= βµ1αv + (1− β)µ2v

= (βµ1α+ (1− β)µ2)v,

which shows that v is also an eigenvector of Q(t+ 1). Also,
note that M = I−LS−1 where L is the Laplacian matrix of the
graph and S is the diagonal matrix of speeds. The eigenvectors
of M are the same as those of LS−1. By [11, proof of Lemma
1] the eigenvectors of LS−1 form a basis for Rn. Therefore
the eigenvectors of M and the eigenvectors of Q(t) form a
basis for Rn.

b) Proof of (2): From the induction in the proof of
statement (1) one can see that corresponding to each eigenvalue
λj of M an eigenvalue γj(t) of Q(t) can be obtained according
to the following recursion.

γj(t) =


1 if t = 0

βλj if t = 1

βλj · γj(t− 1) + (1− β) · γj(t− 2) if t ≥ 2

Solving the above recursion we get

γj(t) =


1−(β−1)t+1

2−β if λj = 1(√
β − 1

)t
(t+ 1) if |λj | = λ

rt
(

cos(θt) + sin(θt) · λj√
λ2−λ2

j

)
if |λj | < λ



where r =
√
β − 1, and 0 < θ < π is such that sin θ =√

λ2 − λ2j/λ, and cos θ = λj/λ. Note that the eigenvalue cor-
responding to λj = 1 belongs to the eigenvector (s1, · · · , sn).
Hence, it suffices to prove that in (IV-0b) the case |λj | < λ
does not produce eigenvalues bigger than those obtained in the
case |λj | = λ. Note that

γj(t) = rt

cos(θt) + sin(θt) · λj√
λ2 − λ2j


≤
(√

β − 1
)t
· sin((t+ 1)θ)

sin θ
(21)

≤
(√

β − 1
)t
· (t+ 1),

where in (21) we use sin(nx) ≤ n sinx for 0 < x < π and
n ∈ N.

c) Proof of (3): The statement follows from a simple
induction using (20). The case Q(0) = I is trivial. Q(1) =
βM also has equal column sums, since the entries in each
column of M sum to one (this is necessay to guarantee load
conservation). Suppose for all t1 ≤ t, Q(t1) has equal column
sums. Let us denote this value by q(t1).

1nQ(t+ 1) = β · 1nM Q(t) + (1− β) · 1nQ(t− 1)

= β · 1nQ(t) + (1− β) · q(t− 1) · 1n
= β · q(t) · 1n + (1− β) · q(t− 1) · 1n
= (β · q(t) + (1− β) · q(t− 1)) · 1n

which shows that all column sums of Q(t + 1) are equal to
β · q(t) + (1− β) · q(t− 1).

d) Proof of (4): Let â = k̂ − sk
s · 1n. Note that

a = âQ(t). Let v1, . . . ,vn be the eigenvectors of Q(t) with
eigenvalues γ1, . . . , γn, and γ be defined as in the statement
(2) of the lemma. Using the fact that M = I − LS−1, it can
be proved by induction that S−1Q(t) is symmetric. Hence, for
each right eigenvector vi of Q(t) there is a left eigenvector
ui = S−1vi with the same eigenvalue γi as proved in the
following.

(Q(t))Tui = (Q(t))TS−1Sui = (S−1Q(t))Tvi

= S−1Q(t)vi = γiS
−1vi = γiui

Also, note that S−1Q(t)Sui = S−1Q(t)vi = γiS
−1vi =

γiui. As a result, ui’s are eigenvectors of S−1Q(t)S, which
is symmetric because it is the product of symmetric matrices
S−1Q(t) and S. Therefore, u1, . . . ,un form an orthonormal
basis; so we can write â =

∑n
i=1 ciui. Now we write

a = âQ(t) =

n∑
i=1

ciuiQ(t) =

n∑
i=1

γiciui .

Therefore,

‖a‖22 =

n∑
i=1

γ2i c
2
i ‖ui‖22 ≤ γ2

n∑
i=1

c2i ‖ui‖22 = γ2‖â‖22 (22)

where the inequality uses the fact that â ⊥ (s1, . . . , sn) and
part (2) of the lemma, and the last equality follows from the

fact that ui’s form an orthonormal basis. Also,

‖â‖22 ≤ n ·
s2k
s2

+ 1

≤ n s2k
(n− 1 + sk)2

+ 1

≤ n s2k
2(n− 1)sk

+ 1

≤ sk + 1

≤ 2smax .

Together with (22), this yields ‖a‖22 ≤ 2 smax(β−1)t(t+ 1)2.

A. Deviation between Continuous and Discrete SOS

In this section we show a bound on the deviation between
a continuous SOS and its rounded version. The authors of
[12] show a similar bound on the deviation using the second
norm, i.e., they show a bound of ||xD(SOS)(t)− xSOS(t)||2 =
O
(
d
√
nsmax/(1− λ)

)
. Note that the bound on the deviation

for FOS, which is O(d
√
smax log n/(1− λ)), is smaller.

Theorem 8. Consider a discrete SOS process D = D(SOS)
with optimal β and a rounding scheme that rounds a fractional
value to either its floor or its ceiling. Then for arbitrary t ≥ 0
we have

∣∣xDk (t)− xSOS
k (t)

∣∣ = O
(
d
√
nsmax/(1− λ)

)
.

Proof: We use Lemma 2 to obtain a deviation bound for
the general case. We have∣∣∣xD(SOS)

k (t+ 1)− xSOS
k (t+ 1)

∣∣∣
=

∣∣∣∣∣∣
t∑

s=0

∑
{i,j}∈E

(Qk,i(s)−Qk,j(s)) · ei,j(t− s)

∣∣∣∣∣∣
≤

t∑
s=0

∑
{i,j}∈E

|Qk,i(s)−Qk,j(s)|

≤
t∑

s=0

∑
{i,j}∈E

(∣∣∣Qk,i(s)− sk
s
· q(s)

∣∣∣
+
∣∣∣Qk,j(s)− sk

s
· q(s)

∣∣∣)
= d ·

t∑
s=0

n∑
i=1

∣∣∣Qk,i(s)− sk
s
· q(s)

∣∣∣
≤ d ·

√
n ·

t∑
s=0

(
n∑
i=1

(
Qk,i(s)−

sk
s
· q(s)

)2)1/2

(23)

≤ 4 · d ·
√
n ·
√

2smax ·
∞∑
s=0

(√
β − 1

)s
(s+ 1) (24)

≤ 4 · d ·
√

2nsmax ·
1(

1−
√
β − 1

)2
≤ 16 · d ·

√
2nsmax ·

1

1− λ
where Equation 23 follows from the Cauchy-Schwarz inequal-
ity and Equation 24 follows from Lemma 7.(4).



B. Framework for Randomized SOS

In the next theorem we bound the deviation between contin-
uous and discrete SOS using the randomized rounding scheme
from Section III-B. As mentioned earlier in this section, is easy
to see that the proof of Theorem 3 holds for the more general
definitions of linearity and contribution of this section. Hence,
we can state the following observation and show similar to
Section III the next theorem.

Observation 4. In the setting of Section IV for an arbitrary
round t we have w.h.p.∣∣XR

k (t)− xCk (t)
∣∣ = O

(
ΥC(G) ·

√
d log n

)
Similar to Section III, we can use Observation 4 to show

the next theorem.

Theorem 9. Let R = R(SOS) be a randomized-rounding
discrete SOS process with optimal β obtained using our
randomized rounding scheme. Then

(1) ΥSOS(G) = O
(√

d · log smax/(1− λ)
3/4
)

.

(2) The deviation of R from the continuous SOS in an
arbitrary round t is w.h.p.∣∣xRk (t)− xSOS

k (t)
∣∣ = O

(d · log smax ·
√

log n

(1− λ)3/4

)
.

Proof: The bound on the refined local divergence is
obtained using the formulation of Lemma 6 and the bound in
Lemma 7. This bound together with the parametric deviation
bound of Theorem 3 yield the second statement of the theorem.

We write(
ΥSOS(G)

)2
=

∞∑
t=0

n∑
i=1

max
j∈N(i)

(
Qk,i(t)−Qk,j(t)

)2
≤
∞∑
t=0

n∑
i=1

∑
j∈N(i)

(Qk,i(t)−Qk,j(t))2

=

t1−1∑
t=0

n∑
i=1

∑
j∈N(i)

(Qk,i(t)−Qk,j(t))2

+

∞∑
t=t1

n∑
i=1

∑
j∈N(i)

(Qk,i(t)−Qk,j(t))2

In the following, we use σ = β − 1 for brevity. Note that
we have 0 < σ < 1.
t1−1∑
t=0

n∑
i=1

∑
j∈N(i)

(Qk,i(t)−Qk,j(t))2

≤
t1∑
t=0

n∑
i=1

∑
j∈N(i)

2
(
(Qk,i(t))

2 + (Qk,j(t))
2
)

≤ 4 · d ·
t1−1∑
t=0

n∑
i=1

(Qk,i(t))
2 ≤ 4 · d ·

t1−1∑
t=0

‖Q(t) k̂‖22

= 4 · d ·
t1−1∑
t=0

(
‖k̂‖2 ·max

i
γi(t)

)2

= 4 · d ·
t1−1∑
t=0

(
1− σt+1

1− σ

)2

≤ 4 · d · t1 ·
(

1− σt1
1− σ

)2

≤ 4 · d · t1 · (1− σ)
−2 (25)

We also get
∞∑
t=t1

n∑
i=1

∑
j∈N(i)

(Qk,i(t)−Qk,j(t))2

≤
∞∑
t=t1

n∑
i=1

∑
j∈N(i)

2
(
Qk,i(t)−

sk
s
· q(t)

)2
+ 2

(
Qk,j(t)−

sk
s
· q(t)

)2
= 4 · d ·

∞∑
t=t1

n∑
i=1

(
Qk,i(t)−

sk
s
· q(t)

)2
(26)

≤ 8 · d · smax ·
∞∑
t=t1

(
σt (t+ 1)2

)
(27)

where the last inequality follows from part (4) of Lemma 7.
The above summation can be bounded as follows.
∞∑
t=t1

(
σt (t+ 1)2

)
=

d

dσ

(
σ
d

dσ

(
σt1+1

1− σ

))

≤ 2σt1+2

(1− σ)
3 +

(2t1 + 3) ·σt1+1

(1− σ)
2 +

(t1 + 1)
2·σt1

1− σ
(28)

Let t1 = (log smax)/(1 − σ). Note that σ1/(1−σ) ≤ 1/e.
Then (28) yields

∞∑
t=t1

(
σt (t+ 1)2

)
= O

(
log2 smax

smax · (1− σ)3

)
. (29)

Combining equations (29) and (27) and then (25) we get

(
ΥSOS(G)

)2
= O

(
d · log smax

(1− σ)
3

)
+O

(
d · log2 smax

(1− σ)
3

)

= O

(
d · log2 smax

(1− σ)
3

)
.

Observe that

1− σ = (1−
√
σ)(1 +

√
σ) ≥ (1−

√
σ) = 1−

√
β − 1 ,

where we have

1−
√
β − 1 = 1− λ

1 +
√

1− λ2

=
1− λ+

√
1− λ2

1 +
√

1− λ2

≥ 1

2
·
(

1− λ+
√

1− λ2
)

≥ 1

2
·
√

1− λ ·
(√

1− λ+
√

1 + λ
)

≥ 1

2
·
√

1− λ .



Therefore,

ΥSOS(G) = O

(√
d · log smax

(1− λ)
3/4

)
.

This finishes the proof of the first statement. The bound in the
second statement follows immediately from statement (1) and
Theorem 3.

V. NEGATIVE LOAD FOR SOS

In second order diffusion nodes might not have enough load
to satisfy all their neighbors’ demand. This situation, which we
refer to as negative load, motivates studying by how much a
node’s load may become negative. Here we study the minimum
amount of load that nodes need in order to prevent this event.
In the following we calculate a bound on the minimum load
of every node that holds during the whole balancing process.
Note that, if every processor has such a minimum load at the
beginning of the balancing process, there will be no processor
with negative load. Hence, these bounds can also be regarded
as bounds on the minimum load of every processor in order
to avoid negative load.

Let x̄ = (x̄1, . . . , x̄n) be the balanced load vector. Define
∆(t) = ‖x(t) − x̄‖∞, and Φ(t) = ‖x(t) − x̄‖2, where ‖.‖ is
the norm operator. Then the following observation estimates
the load at the end of every step.

Observation 5. In continuous SOS with β = βopt we have

x(t) ≥ −
√
n ·∆(0) .

Proof: We first note that

∆(t) ≤ Φ(t)
(∗)
≤ λt · Φ(0) ≤ λt ·

√
n ·∆(0) , (30)

where (∗) follows from a result by Mutukrishnan et al. [19].
They show that x(t) = M(t)x(0) for an n × n matrix M(t)
defined recursively. They also show that Φ(t) ≤ γ(t) · Φ(0)
where γ(t) is the second largest eigenvalue in magnitude of
M(t) and γ(t) ≤ λt [19, Proof of Theorem 2]. Though
they only consider homogeneous networks, their argument also
applies to the heterogeneous case. The proof now follows by
considering the facts −x(t) ≤ ∆(t) and λt < 1.

It should be noted that the load during a single balancing
step can be lower than the bound given in in Observation 5
since Observation 5 considers only snapshots of the network at
the end of each round. It might be possible that a node has to
send more load items to some of its neighbors than it has at the
beginning of round t, but still its load remains positive at the
end of round t. This can happen if it also receives many load
items from other neighbors in round t. To study the negative
load issue it is helpful to divide every round in two distinct
steps, where in the first step all nodes send out their outgoing
flows. In the second step, they receive incoming flows sent by
their neighbors in the first step. At the end of the first step all
the outgoing flows are sent out but no incoming flow is yet
received. To prevent negative load the load of every node has to
be non-negative at this point. We call this state the transient
state and use x̆i(t) to denote the load in the transient state.
Note that we always have x̆i(t) ≤ xi(t) and x̆i(t) ≤ xi(t+ 1).
The following theorem provides a lower bound on x̆i(t).

Theorem 10. In a continuous SOS process with β = βopt we
have x̆i(t) ≥ −O

(√
n ·∆(0)/

√
1− λ

)
.

Proof: Observe that for t > 1 and an arbitrary node i

yi,j(t) = (β−1)·yi,j(t− 1)+β ·αi,j ·
(
xi(t)

si
−
xj(t)

sj

)
(31)

and since x̄i/si = x̄j/sj we have∑
j∈N(i)

|yi,j(t)|

≤ (β − 1) ·
∑

j∈N(i)

|yi,j(t− 1)|

+ β ·
∑

j∈N(i)

αi,j ·
∣∣∣∣xi(t)si

−
xj(t)

sj

∣∣∣∣
≤ (β − 1) ·

∑
j∈N(i)

|yi,j(t− 1)|

+ β ·
∑

j∈N(i)

αi,j ·
(∣∣∣∣xi(t)si

− x̄i
si

∣∣∣∣+

∣∣∣∣xj(t)sj
− x̄j
sj

∣∣∣∣) .

Let g(t) =
∑
j∈N(i) |yi,j(t)|. Recall that β < 2, and for

all i, si ≥ 1 and
∑
j∈N(i)∪{i} αi,j = 1. So we get

g(t+ 1)

≤ (β − 1) · g(t)

+ 2
∑

j∈N(i)

αi,j
(
|xi(t+ 1)− x̄i|+

∣∣xj(t+ 1)− x̄j
∣∣)

≤ (β − 1) · g(t) + 4 ·∆(t+ 1) ·
∑

j∈N(i)

αi,j

≤ (β − 1) · g(t) + 4 ·∆(t+ 1)

and by (30)

≤ (β − 1) · g(t) + 4 · λt+1 ·
√
n ·∆(0) . (32)

Note that g(0) < ∆(0). From the recurrence of (32) we obtain

g(t+ 1) ≤ 4

t∑
i=0

(β − 1)t−i · λi ·
√
n ·∆(0)

= 4
√
n ·∆(0) · λ

t+1 − (β − 1)t+1

λ− (β − 1)

≤ 4
√
n ·∆(0) · λ

λ− (β − 1)
(33)

where the last inequality holds because λ < 1. On the other
hand, we have

λ− (β − 1) =
(1 + λ)

√
1− λ2 − (1− λ)

1 +
√

1− λ2

>

√
1− λ · (

√
(1 + λ)3 −

√
1− λ)

2

>

√
1− λ · (1−

√
1− λ)

2

>

√
1− λ · λ

4
.



Therefore, we can apply the above to (33) to get the bound
g(t) = O

(√
n ·∆(0)/

√
1− λ

)
.

To complete the proof, we note that x̆i(t) ≥ xi(t)− g(t),
while by Observation 5 we have xi(t) ≥ −

√
n · ∆(0). This

yields the lower bound of −O
(√
n ·∆(0)/

√
1− λ

)
.

The next result shows that the asymptotic lower bound ob-
tained in Observation 5 also holds for the randomized discrete
second-order process R = R(SOS) in many cases, for instance,
when smax is polynomial in n and d/(1−λ)3/4 = O(n0.5−ε)
for some ε > 0. This is true, e.g., for tori with four or more
dimensions, hypercubes, and expanders. Then we can apply a
similar argument as in the proof of Theorem 10 to get a lower
bound for R.

Theorem 11. In a discrete SOS process R = R(SOS) with
β = βopt, smax polynomial in n, and d/(1 − λ)3/4 =
O(n0.5−ε) for some ε > 0, we have

x̆Ri (t) ≥ −O
(√

n ·∆(0) + d2√
1− λ

)
.

Proof: To show this result we first rewrite (3) as follows.

yi,j(t) ≤ (β − 1) · yi,j(t− 1)

+ β · αi,j ·
(
xi(t)

si
−
xj(t)

sj

)
+ d ,

resulting in

g(t+ 1) ≤ (β − 1) · g(t) + 4 · λt+1 ·
√
n ·∆(0) + d2 .

Then we rewrite (31) in the proof of Theorem 10 as follows.

yi,j(t) ≤ (β−1) · yi,j(t−1) + β · αi,j ·
(
xi(t)

si
−
xj(t)

sj

)
+ d

which gives us

g(t+ 1) ≤ (β − 1) · g(t) + 4 · λt+1 ·
√
n ·∆(0) + d2 .

Proceeding with similar steps as in the proof of Theorem 10
we get the following bound for D.

x̆Di (t) ≥ −O
(√

n ·∆(0) + d2√
1− λ

)
.

VI. SIMULATION RESULTS

In this section we present some simulation results for
several balancing algorithms. We simulated discrete versions
of both, first order and second order balancing schemes where
we use randomized rounding as described in Section III-B
for the discretization. Our main goal is to see under which
circumstances SOS outperforms FOS.

We consider different networks which are based on various
graph classes. A complete list of all graph types and parameters
used for the simulation can be obtained from Table I. Our
simulation tool is highly modularized and supports various
load balancing schemes and rounding procedures. It can be
used to simulate the load balancing process using multiple
threads on a shared-memory machine. To fully utilize the
capability of modern CPUs we used OpenMP to generate code

that performs suitable instructions in parallel. The simulation
was implemented using the C++ programming language. Our
tests were conducted on an Intel Core i7 machine with 4 cores
and 8 GB system memory.

If not stated otherwise we initialize our system by assigning
a load of 1000 · n to a fixed node v0, where n is the number
of nodes of the network, and the load of all other nodes is set
to zero. Our data plotted in Figure 2, however, indicate that
the amount of initial load does only have limited impact on
the behavior of the simulation, especially once the system has
converged.

We investigate the following metrics measuring the quality
of the load distribution.

1) Maximal local load difference. This is the maximum load
difference between the nodes connected by an edge. That is,
the maximum local load difference for given load vectors
x(t) in a round t is defined as

φlocal (x(t)) = max
{u,v}∈E

{|xu(t)− xv(t)|} .

2) Maximum load. This is the maximum load of any node
minus the average load x.

φglobal (x(t)) = ∆(t) = max
v∈V
{xv(t)} − x

3) Potential based on 2-norm. We compute the value of the
potential function φt proposed by Muthukrishnan et al. [19]
which is defined as

φt = φ(x(t)) =
∑
v∈V

(xv(t)− x)
2

In our plots we divided this potential by n.
4) Impact of eigenvectors on load. We initially compute

the eigenvectors of the diffusion matrix and solve in each
round t the the linear system V · a = x(t), which is
defined over the orthonormal matrix of n eigenvectors V
and the load vector x(t). We then identify the leading
eigenvector, i.e., the eigenvector with the largest |ai|. The
coefficients ai for i = 2, . . . , n describe together with the
eigenvectors the load imbalance completely [18]. Observe
that the coefficient ai in round t multiplied with the
corresponding eigenvalue µi yields the coefficient in the
following round t + 1. Therefore, the largest coefficient
governs the convergence rate in that step.

5) Remaining imbalance. This is the remaining imbalance
of the converged system (see [13]), i.e., the number of
tokens above average once this number starts to fluctuate
and does not visibly improve any more. This imbalance
does not occur in continuous systems and is due to the
applied rounding in discrete systems.

In this first section we focus on the torus. For results w.r.t.
other graph classes see Section VI-B.

A. Results for the Torus

Our main results are shown in Figure 1, where we plotted
the simulation results using the second order scheme with
randomized rounding in a two-dimensional torus consisting
of 1000× 1000 nodes and an average load of 1000. As in all
following plots, the x-axis represents the number of rounds.



Table I. GRAPH TYPES AND PARAMETERS USED IN SIMULATION

Graph Size Parameter β
Two-Dimensional Torus n = 1000× 1000 1.9920836447
Two-Dimensional Torus n = 100× 100 1.9235874877
Random Graph (CM) n = 106, d = blog2 nc 1.0651965147
Random Geometric Graph n = 104, r = 4

√
logn 1.9554636334

Hypercube n = 220 1.4026054847
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Figure 1. The maximum load minus the average load is plotted in blue, the
maximum local load difference in red and the potential function φt in yellow,
using SOS on a two-dimensional torus size 1000× 1000. As a comparison,
the green line shows the maximum load minus the average load using FOS.

The plot shows the maximum load minus the average load, the
maximum local load difference, and the potential function φt
on the y-axis. As a comparison, a simulation run using only
first order scheme is shown as well.

It is known that the second order scheme is faster than
the first order scheme w.r.t. the convergence time of the
load balancing system in graphs with a suitable eigenvalue
gap. However, our simulations indicate that for SOS the
remaining maximal load difference does not drop below a
certain threshold. Therefore, we implemented the following
approach to decrease the load differences even further. First
we perform a number of steps using the fast second order

100
101
102
103
104
105
106
107
108
109

 0  1000  2000  3000  4000  5000
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Figure 2. The plot shows the maximum load minus the average load on a
two-dimensional torus of size 1000×1000. Three different initial loads were
used with average loads of 10, 100, and 1000, colored from light to dark.
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Figure 3. A comparison of the maximum load minus the average load using
SOS (blue) and FOS (green) on a two-dimensional torus of size 1000×1000.
The first plot shows discrete loads and randomized rounding, the second plot
shows an idealized scheme.

scheme. Then, every node synchronously switches to first order
scheme. We considered two different scenarios. In the first
case we switched to FOS early after 2500 SOS steps. This
number of steps corresponds roughly to the end of a phase
of exponential decay in the potential function. In the second
case we switched to FOS rather late at 3000 steps, allowing
the system to run for a few hundred additional steps using the
second order scheme. In both cases we observed a significant
drop in both, the local and the global load differences. That
is, the values for the load differences do not drop below 10
when using SOS. Once the simulation is switched to FOS, the
maximum local load difference converges to a value of 4 and
the maximum load minus the average load drops to 7. This is
shown in Figure 4; a direct comparison is shown in Figure 5.

In the left plot in Figure 4 we furthermore observe that
the load differences continue to diminish for about 200 steps
(during steps 2500 to 2700) when we switch to FOS after
2500 steps. When we switch to FOS after 3000 steps (right
plot in Figure 4) a drop can still be observed, however, the
resulting load differences remain at a low level. To explain
this behavior of the load balancing procedure we analyzed the
impact of the eigenvectors of the diffusion matrix on the load
balancing process. Recall that the diffusion matrix M = (Mij)
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Figure 4. The plots show the maximal local difference in red, the maximal load minus the average load in blue, and the potential function φt in yellow. The
simulation switches from second order scheme to first order scheme in the left and the right plot after 2500 and 3000 rounds, respectively.
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Figure 5. The plots show a direct comparison of the same data presented in Figure 4. The blue data points show the maximal load minus the average load
using only a SOS approach while the green data points show the maximal load minus the average load when switching to FOS. Again, the switch has been
conducted after 2500 steps in the left and 3000 steps in the right plot.
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Figure 6. A comparison of the idealized second order scheme in green with a SOS using randomized rounding in blue. The idealized version is based on
IEEE754 double precision floating point values as loads. The data points show the maximum load of the system minus the average load. The right plot shows
the absolute value of the total load in the system at round t minus the initial total load, i.e., the absolute error.



10-2

10-1

100

101

102

103

104

105

106

 0  200  400  600  800  1000

a4
-a4

max |ai|

0

n

 0  200  400  600  800  1000

Figure 7. The left plot shows the impact of eigenvectors on the load on a two-dimensional torus of size 100 × 100. The maximum over all coefficients,
maxi {|ai|}, is shown along with a4. In the right plot the currently leading coefficient is shown, i.e., a black point indicates that in the given round (x-axis)
the corresponding eigenvector (y-axis) has maximal impact.

is defined as

Mij =

{
αij if i 6= j

1−
∑
i 6=j αij if i = j

with αij = 1/ (max {deg(i),deg(j)}+ 1) if node i is adjacent
to node j and 0 otherwise.

We used the Lapack library [4] to compute the eigenvalues
and corresponding eigenvectors of M . The same library was
then used to solve the set of linear systems

V · a = W

for a matrix of coefficients a, where V denotes a matrix of
eigenvectors of M and W = (x(t)) consists of row vectors
x(t) as defined in Section II containing the loads of the system
at every round t. The resulting coefficients in a give the impact
of the corresponding eigenvectors in each round on the load.
The results are shown for the torus of size 100 × 100 in the
two plots of Figure 7. The first plot shows the maximum of
these coefficients. In the simulation run corresponding to this
plot we observed that starting roughly after 100 rounds this
leading eigenvector corresponds to a4 up until roughly round
700. After that time there is no clear leading eigenvector. This
can be observed from the right plot in the same figure, where
the currently leading coefficient is plotted for each round.

It seems reasonable to switch from SOS to FOS once the
impact of the leading eigenvector drops below some threshold.
This information, however, requires a global view on the load
balancing network and therefore cannot be used in a distributed
approach. In real-world applications also the trade-off between
a remaining imbalance and the time required to balance the
loads must be considered. We therefore investigate the effect
of the time step when switching from SOS to FOS.

In Figure 8 we plotted the maximum load minus the
average load for second order scheme and for an adaptive
approach where we switched to FOS after a number of SOS
rounds. The impact of the leading eigenvector (and the loss
thereof) explains the data shown in Figure 8. Our data indicate,
that once the impact of the leading eigenvector drops below
a certain threshold in a round R, there is no difference in

the behavior of the system when switching to FOS in some
consecutive round r ≥ R. Independently of the round R,
however, we observe a significant drop in the maximum load.

Note that the maximum local load difference seems to be
a good indicator for switching from SOS to FOS. Furthermore
this local property is also available in a distributed system with
only limited global knowledge.

In Figure 1 we also observe strong discontinuities of
the local and global maximum load differences which occur
approximately every 1200 to 1300 steps. To explain these
discontinuities we visualized the load balancing process on
the two-dimensional torus in Figure 9 as follows. We rendered
a raster graphic of size 1000 × 1000 pixels per round. In the
graphic each pixel represents a node of the torus such that
neighboring pixels are connected in the network and border-
pixels are connected in a periodic manner. We now set the
pixels’ colors to correspond to the nodes’ loads, i.e., a pixel is
shaded bright if its load is close to the average load and dark
otherwise. In the visualization shown in Figure 9 the initial
load is placed at the node with ID 0, which corresponds to
the top-left pixel. Since the border-pixels wrap around, the
loads spread in circles from all four corners, forming the
wavefronts in the graphic. Our visualizations now indicate
that the discontinuities in the local load differences and the
maximum load occur whenever these wavefronts collapse at
the center of the graphic, i.e., when the center node gets
load for the first time. This is a consequence of the second
order scheme since nodes continue to push loads towards the
center pixel, even though this pixel may already have a load
above average. Note that these discontinuities also occur in
the idealized scheme and for smaller tori, see Figures 6 and
8, respectively.

We furthermore rendered a video of the load balancing
process (available online, see [3]) which shows the behavior
of the system in an intuitive way and thus helps understanding
these discontinuities. Further visualizations in Figure 11 show
the impact of the first order scheme. That is, after applying
FOS steps the rendered image becomes more smooth, in
contrast to the SOS steps where our visualization shows a
significant amount of noise.
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Figure 8. A plot showing the effect of switching from SOS to FOS on a two-dimensional torus of size 100 × 100. The left plot shows the maximum load
minus the average load in blue and the maximal local load difference in red. After 500 SOS rounds the process switches to a FOS approach. In the right plot
various time steps to switch from SOS to SOS are used. All data points show the current maximum load minus the average load.

Figure 9. A visualization of the load balancing network (a two-dimensional
torus of size 1000 × 1000) after 1100 steps. Each pixel corresponds to one
node which has edges to its 4-neighborhood and is shaded such that a light
pixel has a load close to the average load and a dark pixel a load close to
either the maximum or minimum load of the system. Further time steps are
rendered in Figure 10

To gain further insights we also implemented a simulation
of the idealized load balancing procedure where loads can be
split up in arbitrary small portions and any real fraction of
load can be transmitted. This simulation is based on double
precision floating point variables that represent the current
load at a node. Therefore, a quantification takes place which
introduces an error. However, we observed that in our setup
the total error over all loads is small and thus can be neglected.
A comparison of the idealized and discrete processes can be
found in Figure 6.

B. Other Networks

For random regular graphs constructed using the config-
uration model [22] and the hypercube we observe only a
limited improvement of SOS compared to FOS, see Figures 12

and 13, respectively. That is, the number of steps required to
balance the loads up to some additive constant is only slightly
larger when using FOS instead of SOS. For random graphs the
remaining imbalance is the same for both FOS and SOS. For
the hypercube our results indicate that the remaining imbalance
using FOS is by one smaller than in the case of the SOS
process. Hence, our data only show a negligible difference
between FOS and SOS in these graphs. This can be related to
the second largest eigenvalue of the diffusion matrix, which
is (2 + o(1))/

√
d for random graphs and 1 − 2/(log n + 1)

for hypercubes (compared to approximately 1− π2/n for the
torus) [7]. Note that the spectral gap is also reflected in the
corresponding values for β in Table I.

The random geometric graphs were generated by assigning
each node a coordinate pair in the range [0,

√
n]2 uniformly

at random and connecting nodes vi and vj if and only if
d(vi, vj) ≤ 4

√
log n, where d denotes the euclidean distance.

Remaining small isolated components were connected to the
closest neighbor in the largest component of the graph. Even
though we observe a less pronounced potential drop in random
geometric graphs, the behavior of FOS and SOS in these
graphs is very similar to the behavior in the torus graphs, see
Figures 14 and 15.

VII. CONCLUSION

In this paper we analyzed a broad class of discrete diffu-
sion type algorithms by comparing them to their continuous
counterparts. Furthermore, we studied the problem of negative
load in second order schemes and presented a bound for the
initial minimum load in the network in order to avoid negative
load during the execution of the algorithm.

Our analyses seem to provide bounds for the negative load
and for the arbitrary rounding of SOS which leave room for
improvement. However, in order to tighten these results, one
needs some different analytic techniques. Therefore, we think
that any improvement would be an interesting contribution to
the field of second order diffusion schemes in particular and
load balancing algorithms in general.



Figure 10. The figure shows the same visualization as Figure 9, rendered after 500, 1000, 1200, and 1400 steps. The network is modeled as a two-dimensional
torus. Each pixel corresponds to one node which has edges to its 4-neighborhood. All pixels are shaded in an adaptive way, i.e., a light gray or white pixel
indicates a load close to the average load and a dark gray or black pixel indicates a load close to either the maximum or minimum load of the system.

Figure 11. Above figures show the same load balancing network as Figure 9. A pixel colored white indicates a node with optimal load, a pixel colored black
corresponds to a load that is more than 10 units away from the optimal value. Observe that in none of the above images such a load (which exceeds the average
load by more than 10 tokens) occurs. In the center region of the left image there are several pixels which have load at least 9, whereas in the right image the
maximum load exceeds the average load by at most 7. The first visualization has been rendered after 3000 SOS steps. The second image and the third image
show the same network after additional 100 and 1000 FOS steps, respectively.
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Figure 12. Load balancing simulation on a random graph in the configuration model of size 106 nodes with d = 19.
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Figure 13. Load balancing simulation on a hypercube with n = 220 nodes. The green data points show the effect of switching to FOS after 32 steps.
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Figure 14. Load balancing simulation on a random geometric graph with 10.000 nodes in [0,
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Figure 15. Load balancing simulation on a two-dimensional torus of size 100 × 100. The purple line shows the maximum coefficient max{|αi|} for the
impact of the eigenvectors on the load. This coefficient is −α4, starting approximately in round 100 and up to approximately round 700. The black dots also
shown in this plot in the range [103, 104] represent the leading coefficient, where α1 is plotted with a value of 103 and αn is plotted with a value of 104, with
a linear scale between them. Observe that after approximately 700 rounds no single eigenvector can be identified that has a leading impact on the load.
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