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Abstract—Although TLS is used on a daily basis by many
critical applications, the public-key infrastructure that it relies on
still lacks an adequate revocation mechanism. An ideal revocation
mechanism should be inexpensive, efficient, secure, and privacy-
preserving. Moreover, rising trends in pervasive encryption pose
new scalability challenges that a modern revocation system
should address. In this paper, we investigate how network nodes
can deliver certificate-validity information to clients. We present
RITM, a framework in which middleboxes (as opposed to clients,
servers, or certification authorities) store revocation-related data.
RITM provides a secure revocation-checking mechanism that
preserves user privacy. We also propose to take advantage of
content-delivery networks (CDNs) and argue that they would
constitute a fast and cost-effective way to disseminate revocations.
Additionally, RITM keeps certification authorities accountable
for the revocations that they have issued, and it minimizes
overhead at clients and servers, as they have to neither store nor
download any messages. We also describe feasible deployment
models and present an evaluation of RITM to demonstrate its
feasibility and benefits in a real-world deployment.

I. INTRODUCTION

Checking the revocation status of a certificate is a funda-
mental process for the security of any connection established
via a public-key infrastructure (PKI). Certificate revocation
occurs when a non-expired certificate must be invalidated. In
order to revoke a certificate, the certification authority (CA)
that issued the certificate adds its serial number1 to a blacklist.
Then, the CA tries to publish or disseminate the most recent
version of that list. This process is sometimes referred to as the
Grand Challenge of PKIs [22], for several reasons: 1) To keep
connections secure, revocations must be accessible and the
dissemination should be fast, so that every interested party is
able to deny an illegitimate connection (that relies on a revoked
certificate) as soon as possible. 2) The revocation system
should be robust and resilient to server misconfiguration and
blocking attacks. 3) The revocation status should be authentic
(i.e., all clients can verify that any given revocation was created
by an authorized CA). 4) The system should preserve user
privacy (i.e., no third party, such as a CA, should be able to
learn about the servers that clients tried to contact).

Several revocation schemes have been proposed and de-
ployed over the last few years, but the current situation is still
unsatisfactory in many aspects. For instance, CRLs and OCSP
violate user privacy and are inefficient, while the deployment
of OCSP stapling requires server reconfiguration. Due to these
drawbacks, browser vendors recently decided to push special
revocation lists to clients using software update mechanisms.

1The serial number is a positive integer value (represented at most by 20
bytes), assigned uniquely to every CA-issued certificate [15].

We consider that such a scheme is not future-proof, as even
now the revocation lists issued by these vendors are limited to
a small fraction of all certificates (for efficiency reasons), and
the number of certificates/revocations is expected to grow.

Revocation systems will face new scalability challenges
in the near future, due to the increasing security awareness
of website owners and hosting providers, and new initia-
tives that aim to make TLS ubiquitous. For instance, the
Let’s Encrypt [8] project provides a free certificate to any
website administrator who requests it, as well as a conve-
nient certificate-management software. The project, during few
months of operation, issued more than one million certificates
which protect approximately 2.4 million domains [8]. The
Universal SSL project [32] initiated by CloudFlare constitutes
another prominent example of mass TLS adoption. It provides
over 2 million clients with free TLS certificates. Furthermore,
hardware-limited/mobile devices and paradigms such as the
Internet of Things (IoT) may rapidly increase the number of
TLS clients. As a consequence, we may expect that the number
of TLS connections will increase by orders of magnitude,
in the near future. Unfortunately, mass TLS adoption poses
scalability problems for current revocation systems, as per-
vasive TLS deployment would result in an increased number
of revocations. As reported by Liu et al. [27], even today,
due to efficiency reasons, all mobile browsers have disabled
revocation checks.

Catastrophic events, such as the disclosure of the infamous
Heartbleed vulnerability [46], [19], may again result in a
huge number of revocations. In the current setting, revocation
propagation, besides operational issues, reportedly induces
significant financial costs for CAs [31]. This might lead to
a situation in which mass-revocation decisions are strongly
influenced by financial concerns.

In this paper, we present RITM, the first scheme to incor-
porate revocation functionalities into middleboxes. The main
intuition behind our solution is that clients do not have to
store any revocation lists nor need to establish any new con-
nection (to check revocation status) if all of their TLS traffic
goes through a middlebox that can provide them with the
correct revocation status. RITM consists of two mechanisms:
a dissemination network that provides revocation messages to
middleboxes, and a protocol that allows middleboxes on a TLS
client-server path to deliver revocation status to clients.

RITM minimizes overhead at clients and servers, and can
be easily implemented with low operational costs as part of
an efficient and profitable deployment model. The system is
resilient against a range of well-known attacks against the
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current revocation schemes (like blocking or server reconfigu-
ration). Moreover, following the transparency trend of the PKI
ecosystem, RITM keeps CAs accountable for the revocations
they issue, and it minimizes the probability of a successful
attack in which a CA would maliciously alter a revocation. We
evaluate RITM by showing its performance, overhead, cost-
effectiveness, and feasibility in a real-world deployment. We
also demonstrate that RITM can disseminate a new revocation
within seconds to all supported parties across the Internet.

II. BACKGROUND AND RELATED WORK

Hash Chains and Hash Trees. We denote a cryptographic
hash function as H(.). A hash chain of length m is the
successive application of a hash function H(x) (m times) to an
input x. The m-th value of a hash chain is denoted as Hm(x),
for example H3(x) = H(H(H(x))) and H0(x) = x. Using hash
chains it is possible to compute Hm(x) from any H i(x) if
i < m, but it is infeasible to compute Hm(x) from any value
H j(x) where j > m. In a hash tree every non-leaf node is
a hash of its child nodes. This structure allows to efficiently
(logarithmically in the number of leaves) prove that a given
node is an element of the tree. When the leaves are sorted in
a predefined order, it is also possible to efficiently prove that
a given element is absent.
Content-Delivery Network. A CDN is a distributed in-
frastructure dedicated to efficiently deliver content to clients.
CDNs are mostly driven by web content, and their main goal
is to reduce latency and the load exerted on distribution points.
To operate efficiently, a CDN consists of many edge servers,
geographically distributed in the proximity of large collections
of clients. Edge servers replicate the original content by obtain-
ing it from a distribution point. The dominant communication
paradigm used in CDNs is data pulling, i.e., clients pull the
content from edge servers, which similarly pull it from the
distribution points. To work efficiently, edge servers cache the
content for a specific time to live (TTL), which usually is set
by the origin. From the client’s perspective, the CDN is an
abstraction, as routes to edge servers are not made explicit.
Desired Properties. The revocation system must be able to
handle near-instantaneous revocations, i.e., revocation infor-
mation should be accessible by the interested parties within
seconds. This property is crucial to minimize the attack
window, which, with the current revocation systems, varies
from hours to days. A revocation system must have the ability
to meet this requirement in order to support applications such
as e-banking, online trading, or transaction processing from
point-of-sale terminals. We stress that this property implies
that a client should also be notified about a revocation in
the middle of established connections. Otherwise, a race
condition is possible when the client establishes a connection
just before the corresponding certificate is revoked. This is
especially important for applications that establish long-lived
TLS connections, like VPNs, TLS tunnels, remote filesystems,
secure messaging, or environments like IoT (where devices are
reluctant to conduct costly TLS handshakes).

The revocation process must not require server reconfig-
uration/update, or availability of an additional third party.
Ideally, whenever a CA has initiated the dissemination of
a revocation message, and a server is accessible, then the
clients that connect to this server should be able to access the
message. Whenever the effectiveness of a scheme depends on
the configuration of the server, an adversary who compromised
the server can decrease the effectiveness of the scheme by
tuning configuration parameters.

Revocation information must be authentic. Only the legit-
imate party (i.e., a CA that issued a certificate) can create a
fresh revocation message, and everyone must be able to verify
that message. Moreover, certificate revocation status should
be obtained without sacrificing privacy. Especially, it should
not be required that clients contact a third party, as it reveals
which domains they contacted.

The system must be efficient in terms of transmission, com-
putation, and storage. It should not introduce any significant
latency to a client-server connection. The solution must scale
with an increasing number of revocations, certificates, servers,
CAs, and clients. The revocation system must also provide or
fit into feasible and profitable deployment models.

Following current trends in the field of PKIs, CA actions
related to revocation issuance must be transparent and ac-
countable. Anyone must be able to verify that the appropriate
CA issued a given revocation, and the system must provide
means to ensure that everyone has the same view of revoca-
tions. This guarantees that a whole range of potential attacks
conducted by a malicious CA will be detected.
Related Work and its Drawbacks. The first attempt to
address the revocation problem, proposed to distribute the
information through Certificate Revocation Lists (CRLs) [15],
published by CAs at CRL distribution points (specified in the
certificate). To verify a certificate’s validity, a client downloads
a CRL and checks whether the certificate is listed in the CRL.
Unfortunately, this approach is inefficient as an entire CRL
must be downloaded to verify a single certificate, and some
CRLs are currently large (a few megabytes). As this download
is performed during a TLS handshake, it significantly increases
the latency of the entire process. Delta CRLs can reduce
this large overhead by allowing clients to only fetch new
revocations when required, but they still suffer from other
drawbacks of regular CRLs. In particular, a CA can violate
user privacy by creating a dedicated distribution point for a
targeted certificate, and simply determine which client contacts
a targeted domain. Furthermore, Gruschka et al. report that
during a 3-month period, only 86.1% of the CRL distribution
points were available [21].

The Online Certificate Status Protocol (OCSP) [38] was
proposed to address the inefficiency of CRLs. With OCSP, a
client can contact a CA to obtain the current revocation status
of a single, given certificate. This solution, however, is still
inefficient because the CA may be under heavy load, and an
extra connection during the TLS handshake is still required.
Furthermore, OCSP has a serious privacy issue, as the CA
learns which server the client connects to.



To solve these problems OCSP Stapling was proposed [30].
With this solution, the server periodically fetches an authen-
ticated OCSP response from the CA, and then sends the
response stapled along with the certificate in subsequent TLS
connections. Unfortunately, this solution requires servers to
update their software. Although a study suggests that some of
the major domains (i.e., 22.5% of domains that are sampled
from the Alexa’s list of most popular sites) have deployed
OCSP stapling [41], the overall deployment rate is still
marginal—a study showed that only 3% of all certificates are
served by servers that adopted OCSP stapling [27]. Moreover,
the age of the stapled response can be customized by a
configuration parameter; therefore, a long attack window can
be introduced by an adversary or a misconfiguration [42].

Short-Lived Certificates (SLCs) [36], [45] solve problems
associated with CRLs and OCSP by eliminating revocation
completely. SLCs are designed to be valid for a few days,
which leaves a long attack window as SLCs are irrevocable
for that time period. In addition, their deployment depends on
software update and configuration on the server side, as every
server must be set up to contact a CA periodically.

Recently, browser vendors decided to disseminate special
CRLs (CRLSet [25], OneCRL [5]) through software updates
and major browsers use these lists as the main revocation
mechanism. Such an approach does not require any server
update or reconfiguration; however, a long attack window still
exists, as software updates are infrequent and as clients apply
them at irregular points in time (with a heavy-tail distribution).
This technique also faces scalability issues. Every client must
store a complete list, which may be infeasible or undesired
for hardware-limited devices [27]. As the dissemination is
done through unicast communication, scalability in the face
of an increasing number of clients is challenging. Finally,
with an increasing number of revocations, CRLSets may
become too large to be delivered to all clients. To address this
issue, CRLSets include only a marginal number of revocations
(0.35%, as reported [27]). Such a policy restricts the method’s
scalability and effectiveness. For this reason, the CLRSet
approach has been criticized [7], [27].

RevCast [39] is another recent approach, which improves
revocation dissemination through unique properties of radio
broadcast. RevCast proposes an architecture in which CAs
broadcast revocation messages, and clients with radio receivers
can receive and collect them immediately. RevCast is still
a CRL-like approach where clients must possess the entire
CRL. To satisfy this requirement, an additional infrastructure
must be created (e.g., a device must obtain and store new
CRL entries when clients are not listening to the broadcast
transmission). RevCast also requires that users purchase and
install radio receivers. Another downside of RevCast is that
it requires to significantly change CA operations, and the
maximum bandwidth is 421.8 bit/s, which prevents handling
high revocation rates rapidly.

Log-based approaches [26], [24], [11], [43] make the re-
vocation issuance process transparent and accountable, as
CAs are obligated to submit revocations to public and veri-

fiable logs. Unfortunately, the deployment of these schemes
is mainly server-driven (i.e., servers have to be configured
to fetch and serve fresh revocation status) or client-driven
(i.e., clients contact logs, which compromises their privacy).
Moreover, the attack window is large, as logs are designed to
update their internal state every few hours.
System Model. We investigate the revocation problem for a
TLS communication in which only the server is authenticated
to the client. Such a setting is typical on today’s Internet. We
use TLS as our default environment, but we stress that our
scheme can be combined with any protocol that exchanges
certificate(s) in plaintext.2 We assume that 1) CAs can reach a
dedicated dissemination network at regular intervals (denoted
∆)3, 2) TLS and the cryptographic primitives that we use
are secure, and 3) the different parties are loosely time
synchronized. Time is expressed in Unix seconds and the
time() function returns the current time. We denote a message
msg signed by X’s private key K−X as {msg}K−X

.
Adversary Model. We assume that an adversary can control
the network (can modify, block, and create any message) and
can compromise any of its elements. The adversary’s goal
is to convince non-compromised clients either that a revoked
certificate is still valid or that a valid certificate is revoked.

III. RITM
Lessons Learned and Insights. We summarize some of the
most important lessons learned from the deployment of previ-
ous revocation schemes (for more details see §II): 1) During
the connection establishment process a client cannot make any
dedicated connection to check whether a certificate is revoked.
Otherwise, an additional latency is introduced, privacy may be
violated, and the connection can be established only when the
third party is available. (See CRL and OCSP.) 2) Due to large
bandwidth and storage overheads, clients cannot be constantly
equipped with complete lists of revocations. Moreover, due to
the expected increase in the number of TLS clients and servers,
this might become even more problematic in the future. (See
CRL and CRLSet.) 3) It is very unlikely that a significant
fraction of all servers be rapidly updated to use a new security
enhancement. (See OCSP Stapling and log-based approaches.)

Our first observation is that, as clients and servers cannot
be updated with fresh revocations and clients should avoid ob-
taining revocation status via a dedicated connection, the only
remaining possibility to provide revocation status to clients is
to implement a network functionality that will support it.

The second observation is that an efficient, robust, and
fast dissemination network is a necessary component of a
satisfactory revocation system in the current TLS ecosystem,
and CDN infrastructures fulfill all these requirements.

Finally, the current formats of revocation lists do not allow
to efficiently monitor the revocations issued by CAs. For

2Protocols that encrypt handshakes (like the draft version of TLS 1.3 [34]),
would need to expose a server’s certificate or its identifier in plaintext.

3The value of ∆ is a trade-off between the size of the attack window and
efficiency. Throughout the paper we analyze values from 10 seconds to 1 day.
For the sake of simplicity, we assume that ∆ is a global parameter, but this
assumption can be easily relaxed—see §VIII.



instance, it is challenging to detect a misbehavior when a CA
shows different CRLs (or OCSP messages) to different clients
(for instance to hide the fact that a given certificate is revoked).
High-level Design. Taking into consideration the lessons
learned and our observations, the high-level idea is to 1) prop-
agate revocations through a CDN, 2) piggyback revocation
status to standard TLS communications, and 3) enhance the
format of revocation lists to enable a more efficient monitoring
of CAs. In this setting, every revocation is distributed through
a dissemination network, and for every TLS connection, a
dedicated middlebox (that is connected to the dissemination
network) on the path between the client and the server will
put fresh, authentic, and accountable revocation status along
with the native TLS message towards the client.
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Fig. 1: High-level architecture of RITM.

RITM’s high-level architecture is depicted in Fig. 1. The
essential element of RITM is a network middlebox called the
Revocation Agent (RA). RAs are designed to fulfill several
purposes. First, they connect to the dissemination network
used to propagate revocations. As opposed to client machines,
middleboxes are usually always turned on, which allows them
to constantly receive and collect new revocations from the
dissemination network (steps 1, 2, 3). Then, for every TLS
connection, an RA provides fresh revocation status to the
RITM-supported clients (step 4). For non-supported clients
and for non-TLS traffic, RAs act as transparent middleboxes.
Finally, RAs are able to keep CAs accountable, as they monitor
the revocations they issue, compare their views of revocations
with other parties of the system, and report any detected
misbehavior in a provable manner (step 5).
Revocation Lists. One challenge is to find a format of
revocation list that meets our requirements. Ideally, it should
be realized in a way that allows to keep CAs accountable
and that supports efficient, authentic, and fresh proofs of
certificate status. To achieve this, RITM extends the concept
of authenticated dictionary [29]. This structure allows a non-
trusted prover to prove to a verifier that the queried object is
(or is not) an element of a given dictionary created by a trusted
third party. In our scenario, the RA is a prover, the client
acts as a verifier, and the CA is a trusted third party. Every
CA maintains a dictionary of its own revocations, while every
RA stores copies of all the dictionaries. These dictionaries
are constantly updated (by the CAs through the dissemination

insert (executed by a CA that revokes a certificate with serial number sx):
n : size of the dictionary with sx appended, m : parameter chosen by CA

1) Insert sx,n into the tree and rebuild it.
2) For random value v compute Hm(v).
3) Return signed root: {root,n,Hm(v), time()}K−CA

(1)

update (executed by an RA on input sx,{root,n,Hm(v), t}K−CA
):

1) Verify the signature and timestamp t.
2) Insert sx,n into the tree and rebuild it.
3) Accept the applied changes only if the newly-built root equals root and

n is a number of leaves in the new tree.
refresh (executed by a CA at least every ∆ if there is no new revocation):

t : timestamp of the latest signed root
1) p = b(time()− t)/∆c.
2) If p < m return freshness statement: Hm−p(v). (2)
3) If p≥ m create a new signed root (see Eq. (1)) and go to step 1.

prove (executed by an RA on input sx):
1) Produce presence/absence proof for sx.
2) Return revocation status: proof,{root,n,Hm(v), t}K−CA

,Hm−p(v), (3)
where Hm−p(v) is the latest (current) freshness statement.

Fig. 2: Interactions with an authenticated dictionary. Operations
insert and update can be performed in batch (to add multiple
revocations to the tree simultaneously).

network) with new revocations and metadata, which ensures
that a given dictionary is fresh and consistent. Dictionaries are
append-only (§VIII discusses this property and optimizations),
and the proof generated by a prover: 1) can efficiently ex-
press presence/absence of a given revocation in/from a given
dictionary, 2) is authentic, i.e., the verifier is sure that the
statement was produced by the CA, and 3) is timestamped, so
that a verifier can reject a stale proof. Moreover, authenticated
dictionaries allow to keep CAs accountable, as they help to
maintain a consistent view across the system. For instance,
entities with a short proof can check whether their dictionary
views are consistent. Consequently, all inconsistencies can be
eventually detected and proven.

RITM implements authenticated dictionaries with hash trees
(see §II). Every leaf of a tree is a serial number of the revoked
certificate concatenated with the number of that revocation.
For each dictionary, revocations are numbered consecutively,
starting from 1. The numbering ensures that revocations are
inserted into the tree in the correct order, which helps to main-
tain a consistent copy of the dictionary and detect attacks (such
as revocation reordering). Leaves are sorted in lexicographical
order (using their serial numbers), which allows to prove that
a given leaf is or is not an element of the tree. We define the
message names and the dictionary’s interface in Fig. 2.
Dissemination. RITM can employ an existing CDN infrastruc-
ture as a dissemination network, and such a deployment brings
many benefits. CDNs are efficient and robust in large-scale
deployments [10], and we show that they provide an excellent
environment for dissemination of revocation messages. As our
study shows, a CDN-based deployment is also cost-effective
(see §VII-C).

Whenever a CA wishes to revoke some certificate(s), it
updates its local dictionary through the insert operation
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Fig. 3: An example of RITM-supported TLS connection.

(see Fig. 2). Then, the CA contacts the network’s distribution
point with the revocation issuance message, i.e., the revoked
serial number(s) with a new signed root (e.g., at times t0 and
t0 +3∆ in Tab. I). The distribution point verifies this message
and initiates the dissemination process by sending the message
to edge servers. Eventually, all RAs obtain the message from
the corresponding edge server and update their local copy of
the CA’s dictionary through the update operation (see §III).

When no new revocations are issued during a time period
∆, CAs are still obliged to keep their dictionaries fresh. In
order to achieve this, every CA creates and disseminates a
freshness statement (Eq. 2) periodically (e.g., at times t0 +∆

and t0 + 2∆ in Tab. I). Therefore, to keep dictionaries fresh
when there is no new revocation within a time period ∆

(which is a common case), CAs disseminate only a freshness
statement that in practice is significantly shorter than a signed
message. Moreover, due to hash chain properties (see §II), the
message is authentic, as only a CA can create a valid freshness
statement for a given time period. The dissemination process
of a freshness statement is the same as before, and RAs, after
verification, replace the freshness statement with the new one.

RITM provides a simple synchronization protocol to keep
the dictionary copies of RAs correctly updated. As every
revocation issuance message contains a value n that denotes
the number of revocations that the CA has issued, an RA can
easily detect whether his local copy is desynchronized from
CA’s original copy based on n. Whenever a desynchronization
is detected, the RA contacts an edge server specifying the
number of valid consecutive revocations it has observed.

Time Revoked serial number Disseminated message

t = t0 sa, sb, sc sa, sb, sc, {root,n,Hm(v), t}K−CA
t = t0 +∆ none Hm−1(v)

t = t0 +2∆ none Hm−2(v)

t = t0 +3∆ sd sd , {root′,n+1,Hm(v′), t}K−CA

TABLE I: Example of messages disseminated over time.

The signed root with a timestamp (Eq. (1)) also guarantees
integrity, as it is impossible to alter a dictionary without
changing the root.
Validation. Our technique relies on the fact that the nego-
tiation phase of TLS is performed in plaintext. Thus, RAs
can detect new TLS connections and the corresponding server
certificates that must be validated. A RITM-supported TLS
connection is presented in Fig. 3, and we describe below the
different steps in detail.
1) The TLS connection is initiated by a ClientHello

message. The client sends it with a dedicated TLS exten-
sion [17], to inform potential RAs on the path that this
TLS connection should be protected by RITM.

2) An RA on the path observes the traffic for TLS messages.
Whenever it receives a ClientHello message with the
RITM extension, it creates the following state:

sIP=IPc, dIP=IPs, sPort=portc, dPort=ports,

lastStatus=0, stage=ClientHello, CA= /0, SN= /0,
(4)

sIP, dIP, sPort, dPort denote source/destination
IP addresses and ports; lastStatus is the latest time at
which a revocation status was sent to the client; stage
describes the current stage of the TLS connection; CA
allows the RA to identify the correct dictionary; and SN is
the certificate’s serial number. The RA identifies supported
TLS connections using this state information.
When the state is created, the ClientHello message is
passed to the next hop on the path towards the server.

3) The server responds with a ServerHello message fol-
lowed by the server’s certificate. (The server ignores the
RITM’s ClientHello extension.)

4) When an RA receives a ServerHello message that
matches the previously-created state, it inspects the content
of the message to obtain the server’s certificate and to
determine the CA that issued the certificate. Then, the RA
executes the prove procedure (see Fig. 2) over the CA’s
dictionary. A revocation status (i.e., proof, signed root, and
a freshness statement as in Eq. (3)) is appended to the
ServerHello message and passed to the client. The RA
updates the state from Eq. (??) by setting lastStatus
to the current time, stage to ServerHello, CA to the
CA identifier, and SN to the serial number of the server’s
certificate.

5) When the client receives a ServerHello message with a
revocation status (Eq. (3)), he removes the status from the
message (to not influence the TLS protocol), and a standard
certificate-validation procedure is executed. Additionally,
the client verifies the revocation status sent by the RA.
The server’s certificate is accepted when:

a) it passes the standard validation,
b) the revocation status contains a valid revocation absence

proof (validated against a signed root), and
c) the freshness statement is no older than 2∆ (see
§V), i.e., for received revocation status as in Eq. (3),
H p′(Hm−p(v)) or H p′+1(Hm−p(v)) equals Hm(v), where
p′ = b(time()− t)/∆c.



6) Finally, when the TLS connection is accepted (i.e., when
the server sends a Finished message), the RA updates
the stage field to established. From this moment on,
the client and the server communicate securely. Whenever
the RA detects that ∆ time has passed since it has received a
revocation status for a supported connection (i.e., time()−
lastStatus≥∆), the RA uses the first TLS packet from
the server to the client to piggyback a fresh revocation
status (similarly as in step 4). After the fresh status is sent,
the RA updates lastStatus to time().

7) Whenever the client receives the packet with a revocation
status, he checks the status, similarly as in step 5.

Steps 6 and 7 are conducted periodically, at least every
∆, and the connection is interrupted by the client, when a
fresh absence proof is not provided. Whenever a supported
connection is finished or timed out, the RA removes the
corresponding state.

RITM supports two mechanisms of TLS resumption,
namely session identifiers [17], and session tickets [37]. Al-
though the TLS handshake for these modes is abbreviated, the
presented mechanism is similar. We present RITM in a setting
where the revocation status is provided to the client piggy-
backed on standard TLS traffic. However, in §VIII we discuss
other implementation choices to achieve this functionality.
Consistency Checking. RITM enables RAs and clients to
monitor CA actions related to certificate revocations. Through
the construction of trusted dictionaries and validation logic,
a CA has to provide freshness statements, which are short,
unique, and unforgeable pieces of information about a dictio-
nary’s content. This message can be used directly by RAs to
monitor the consistency of dictionaries. The goal is to ensure
that a given party of the system has the same view of the
dictionaries as the rest of the system. In order to achieve
this property, an RA can periodically request a random edge
server for its copy of the signed root. Only by comparing
local and downloaded values, the RA can confirm that a copy
stored by the edge server is identical to the RA’s copy. Simply
exchanging the latest signed root is enough to keep CAs
accountable, as dictionaries are append-only, and as a violation
from the append-only property is easily detectable.

Due to nature of the CDN environment an RA can detect
and contact only a limited number of edge servers (usually,
a list of the closest edge servers can be obtained via a
DNS query). This limitation may decrease the effectiveness of
the consistency checking procedure. To address this problem,
a map server can be introduced. That server would store
addresses of RAs (and optionally edge servers), so that they
can communicate directly to exchange their current freshness
statements. An alternative way is to deploy a gossip proto-
col (for example, as proposed by Chuat et al. [13]), where
clients would exchange signed roots obtained during TLS
connections, or to deploy dedicated parties to monitor CAs
as proposed in log-based approaches [24].

Such procedures can protect from various possible attacks
launched by a malicious CA (for details see §V). Moreover,

any detected misbehavior can be cryptographically proved and
reported, for example to the software vendors.

IV. DEPLOYMENT MODELS

Incremental deployment is a challenging process for almost
all new security technologies. The main challenges, associated
with the deployment of RITM, are the following: 1) How
can the RITM-supported clients be protected from downgrade
attacks (in which the attacker convinces the client that there
is no RA on a path towards the server)? 2) How can the
new system be deployed in a backward-compatible manner?
3) How can RITM be efficiently deployed, i.e., so that a small
number of RAs support all TLS traffic?

We present two deployment models for RITM, which we
believe are feasible with current networks and that address the
above-mentioned problems. The intuition behind the presented
models is that RITM can work effectively when RAs are
placed close to clients or servers, as it is easier to mitigate
downgrade attacks and ensure that all TLS traffic passes
through the RA. In §VIII we discuss other deployment strate-
gies and aspects.
Close to the servers. Our first deployment model assumes
that RAs are placed close to the servers, e.g., at the ingress
point of a data center or a server farm. Typically, a load-
balancer that distributes workload across multiple servers by
inspecting the content of the packet is placed at the ingress
point of a data center. For encrypted traffic (via TLS), the load-
balancer additionally functions as a TLS terminator, which
establishes and maintains TLS connections on behalf of the
servers [16], to terminate TLS connections and inspect the
decrypted traffic. RA functionality can be augmented to TLS
terminators so that every TLS connection between a data
center and its clients could benefit RITM. In this scenario,
the augmented TLS terminators put an indication that the
server side supports RITM within an extensions of TLS’
ServerHello. This approach eliminates downgrade attacks
on TLS connections since an adversary cannot undetectably
alter the TLS handshake messages.
Close to the clients. Alternatively, RAs can be placed close
to the clients, e.g., close to the gateways of clients’ access
networks. In fact, an RA can even be combined with the
gateway, minimizing setup and deployment costs for the
network operator that operates clients’ access network. This
approach provides two benefits: it protects client’s connections
to any TLS server regardless of deployment at the servers, and
the network operator can place RAs in his network in such a
way that all traffic in the network will traverse through a RA,
hence, offering protection to the entire network. To this end,
RAs can be either placed at the choke points of the network,
or SDN-based solutions can be used [33].

However, the client-side deployment comes with a security
vulnerability: it is susceptible to downgrade attack by an
adversary that is within the client’s access network and tunnels
client’s traffic to an external network so that the traffic by-
passes a RA in the network. To avoid such downgrade attack,
a network operator must provide clients with an authentic



information that his network supports RITM. This can be
realized by secure network management protocols [18].

V. SECURITY ANALYSIS

Short Attack Window. Through a fast and robust dissemina-
tion and with an appropriate certificate-acceptance policy (i.e.,
clients may accept a certificate only with its fresh revocation
status), RITM reduces the long attack windows associated to
many revocation schemes. Effectively, the attack window is
2∆. Although CAs publish and RAs download updates every
∆, they do not have to be synchronized. Due to the commu-
nication technique of CDNs (i.e., pull), a situation where an
RA downloads an update just before the CA publishes new
changes may occur. Hence, a tolerance parameter is required,
and ∆ is set as a value of this parameter.

The value of the ∆ parameter is a trade-off between security
and efficiency. However, as an RA is an online device con-
nected to the dissemination network, we may expect even low
values (tens of seconds) as feasible for a production setting
(see §VII-B). Revocation checking in RITM is independent
from server configuration, hence it is impossible to introduce a
long attack window through a server-configuration parameter.
Race Condition. For an established TLS connection, client
and RA perform periodic revocation checks. Such a design
protects from a race condition in which a long-lived TLS
connection with a server is established just before the corre-
sponding certificate is revoked. In such a case, the client would
unintentionally communicate with a non-trusted party until the
connection is terminated. To the best of our knowledge, RITM
is the first revocation system that protects from such an attack.
MITM and Blocking Attack. A MITM adversary, without
the ability to bypass an RA cannot get any advantage. As it
is assumed that the adversary cannot break the TLS protocol,
he cannot undetectably modify the ClientHello message
which carries RITM’s extension. This message informs the RA
on the path that the connection should be supported by RITM.
Such an adversary can drop or delay status messages carried
on TLS traffic but, according to RITM’s validation policy (see
§III), this would lead to a connection interruption.
Downgrade Attack. An adversary able to tunnel TLS traffic,
in order to avoid an on-path RA, can try to launch a down-
grading attack (as outlined in §IV), convincing a client that
there is no RA on the path towards the server. This attack is
generic and powerful against the majority of security protocols
that are partially deployed.

To eliminate such an attack, the client must be provided with
authentic information that the given connection is supported by
an RA. Protection from this attack depends on the deployment
scenario and we provide two feasible solutions. In the first
deployment scenario RITM is deployed by TLS terminators
(see §IV). In this case, the client would receive a deployment
confirmation from a TLS terminator, within a ServerHello
message. This message is itself protected by the TLS protocol,
thus the adversary cannot forge it. As a consequence, the
adversary is not able to launch a successful downgrade attack
against RITM. Second, RITM is deployed in a network, which

can provide clients authentic information about RITM support.
For instance, this information can be delivered through a se-
cure equivalent of the DHCP protocol. After the bootstrapping,
the client would expect a RITM protection for every TLS
connection, so that even an adversary able to tunnel the traffic
cannot bypass the scheme.

We do not discuss downgrade attacks against the TLS
protocol itself, such as HTTPS stripping attacks [28], as this
goes beyond the scope of this paper. However, we stress
that this problem has been investigated in the past and some
effective countermeasures are currently deployed [23], [20].
RA and Dissemination Network Compromise. Another
advantage of RITM is that it requires a small trust base
(i.e., only CAs are trusted). RITM is thus resilient to RA
compromises. As the construction of authenticated dictionaries
allows RA and CDN to be untrusted, an adversary that
compromises an RA and CDN cannot get any benefit. Trusted
dictionaries are created by CAs and, to forge a revocation
status (see Fig. 2), the adversary would need to forge a digital
signature, or break the hash function. Both conditions lead to
the contradiction, as it is assumed that cryptographic primitives
are secure. Moreover, an adversary with control over RAs
cannot suppress any revocation message, as clients expect to
see fresh revocation status messages periodically.
Misbehaving CA. Furthermore, RITM makes detectable a
whole range of attacks that may be conducted by a misbe-
having CA. The dictionaries are append-only, authenticated
structures, and a signed root (Eq. 1) uniquely corresponds to
a particular version of the dictionary. Therefore, it is possible
to detect that a CA is misbehaving, for instance if the CA
shows one version of the dictionary to part of the system,
and another version to the rest. To prove that, it is enough to
find two different signed roots with the same dictionary size.
This can be realized in many ways (see §III). For example,
RAs can randomly contact CDN edge servers or other RAs
and compare their locally-stored statements with the newly-
downloaded ones. It is sufficient to compare only the latest
signed roots (with the same dictionary size), as dictionaries are
append-only; therefore, whenever a misbehaving CA creates
two versions of a dictionary, then the CA must constantly
maintain these two different dictionaries (to satisfy update
procedure from §III). Such a procedure guarantees that the
system has a consistent view of all issued revocations. The
append-only property and consecutive revocation numbers
also protect from attacks such as revocation reordering, or
revocation deletion. This substantially limits the possibilities
of a misbehaving CA.

RITM can be also extended to the scenario where a com-
promised CA wishes to revoke its own certificate without
introducing a collateral damage (i.e., without revoking certifi-
cates issued before the compromise). To handle such a case, a
method presented by Szalachowski et al. [43] can be adopted.
More powerful adversaries. The attacks in which an ad-
versary can capture a CA and another element of the system
are especially dangerous. For instance, when an RA and a
CA are compromised at the same time, then the adversary



can create a fake version of the CA’s dictionary (e.g., without
a given revocation), and provide a proof to any client, using
this fake dictionary. Although this scenario is unlikely, RITM
can be extended to make even such an attack visible. As
clients receive proofs accompanied with signed roots, they
could contact edge servers, other RAs, or even other RITM-
supported clients, to ensure that their view of the dictionary
is consistent. The exact details of such a detection mechanism
go beyond the scope of our current work, but our system can
be for instance enhanced by gossip protocols [13].
Privacy. RITM preserves user privacy. Clients do not need
to establish any extra connection for checking the status of a
certificate and only the entities on the path towards the server
know which clients contact which servers. In particular, CAs
and the CDN network are not able to obtain this information.

VI. IMPLEMENTATION

To prove feasibility of RITM’s deployment we implemented
it and the implementation includes 1) authenticated dictionar-
ies, 2) an RA communication module (to contact the dissem-
ination network and update dictionaries), 3) a deep packet
inspection (DPI) module for RAs to analyze packets, identify
new TLS connections, and keep track of the connection state,
and 4) an RITM-supported client. RITM is implemented in
Python (2.7.6), and we used Scapy with the Scapy-SSL/TLS
module to realize DPI of TLS connections. We used the SHA-
256 hash function, but we truncated its output to the first
20 bytes. Also, to optimize the bandwidth and computational
overhead, we used the Ed25519 [12] signature scheme, which
allows to obtain a digital signature of 64 bytes.

RAs are implemented as userspace daemons. All network
traffic goes through an RA that verifies whether a packet
belongs to the TLS handshake protocol or a previously es-
tablished (and active) RITM-enabled connection. Then, the
RA follows the different steps described in §III. For every
TLS connection (after receiving a ServerHello message)
RITM-supported TLS client expects a revocation status from
the corresponding CA (delivered by an RA), which states that
the certificate is not revoked. After this check passes, the client
continues the standard TLS validation. For the communication
between an RA and the CDN, we built a simple HTTP(S)-
based API. Every ∆, each RA contacts an edge server via
an HTTP GET request to pull new revocations and freshness
statements. Our implementation of RAs can be adapted to
operate with any CDN infrastructure.

VII. EVALUATION

A. Dataset used

We use a dataset collected by the Internet Storm Center [9],
which contains the most complete list of CRLs (to the best of
our knowledge), namely, 254 separate revocation lists. From
these lists, we identify 1,381,992 unique revocations and an
average of 5,440 revocations per CRL. Moreover, we identify
that 3 bytes are used most frequently (32% of all revocations)
as the size of serial numbers. Thus, we use 3-byte serials
numbers throughout this analysis.
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Fig. 4: Number of revocations issued between January 2014 and June
2015 with a focus on the Heartbleed peak.

To show how RITM reacts to extremely high revocation
rates, we investigate revocations issued in April 2014. This
time period is especially interesting because it includes the dis-
closure of the infamous Heartbleed [3] OpenSSL vulnerability.
This bug allowed remote attackers to read protected server
memory, including private keys associated with certificates.
Consequently, thousands of certificates were revoked over a
few days. The detailed analysis of this event is presented by
Durumeric et al. [19] and Zhang et al. [46]. Fig. 4 (top graph)
represents the number of revocations observed from January
2014. The Heartbleed event is visible as a sudden peak in
the middle of April 2014. The highest revocation rate was
observed on 16–17 April 2014 (bottom graph).

B. Speed of Dissemination

RITM strives to make revocations as readily accessible as
possible, and one key criteria towards this goal is to minimize
the time needed by RAs to download revocation messages. Us-
ing Amazon CloudFront [1] as an example CDN, we measure
the time required for an RA to download revocation messages.
Amongst many different CDN networks, we chose Amazon
CloudFront because it allows to turn off content caching at
the edge servers (by setting the caching interval to zero, i.e.,
TTL=0). This feature allows us to measure the worst-case
scenario performance (in terms of latency), since the content
needs to be fetched from the origin server for every request.
Furthermore, since RAs in different geographical areas may
experience different download latency, we take measurements
from various locations. To this end, we use the Planetlab [14].

For measurements, we create revocation messages of dif-
ferent sizes, and upload them to Amazon CloudFront. More
specifically, we test for five different revocation messages: only
a freshness statement (without revocations), and revocation
messages with 15K, 30K, 45K, and 60K revoked certificates.
Then, from 80 Planetlab nodes from different geographical
areas, we download the revocation messages and measure
the time it took to download the messages. We repeat this
experiment 10 times from each of the Planetlab nodes and for
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Fig. 5: CDF of download times for five different revocation messages.

each of the five revocation messages. The measured download
times are shown as CDFs in Fig. 5.

Our measurements show that even for a large number
of revocation messages (e.g., the purple line with diamond
markers) and even for the worst-case scenario (i.e., revocations
are not cached), 90% of the Planetlab nodes took less than one
second to download the revocations.

C. Cost of Dissemination

CDN operators charge content providers based on the
amount of traffic that travels in and out of their network. In our
case, a CA is a content provider that uploads the revocations
and freshness statements and pays the CDN network for the
traffic that RAs generate to download the data. In this section,
using Amazon CloudFront as an example of CDN, we evaluate
the price that a CA would need to pay to the CDN operator.

For this evaluation, we need a time series of the number of
certificates revoked by a CA and the number and distribution
of RAs deployed around the world. The distribution of RAs is
necessary because Amazon CloudFront has different pricing
rates for different locations [1].

For the former information, we use the largest CRL file that
we could find (in terms of number of distinct revocations) [2].
It contains 339,557 revocation entries (almost 25% of all the
revocations we gathered) with a total size of 7.5 MB. This case
is extreme, as we determine the average number of revocations
to be 5,440 per CRL.

There is no easy way to determine the number of RAs and
their geographical distribution. One possible approach is to
estimate the number of RAs with the number of IP addresses
assigned to different parts of the world. However, such an
estimation may be inaccurate since NATs are widely deployed.
Instead, we use city population statistics; i.e., we estimate that
the number of RAs is proportional to the population size and
consider geographical locality at the granularity of cities. For
the city population data, we use the MaxMind [4] dataset,
which reports the population size as well as the latitude and
longitude coordinates of the cities. The dataset has information
for 2.3 billion people from 47,980 cities. Then, we determine
the location of the edge servers that would serve the RAs in
each city. Since we do not have access to computers in each
of the city, we use the closest Planetlab node from each city
to determine an edge server that would server an RA.
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Fig. 6: Monthly bills for a CA using a CDN for disseminating
revocation lists (where there are 10 clients per RA).

Clients per RA ∆ =10 sec ∆ =1 min ∆ =1 h ∆ =1 day

30 18.574 3.450 0.647 0.108
250 2.229 0.414 0.078 0.013

1,000 0.557 0.103 0.019 0.003

TABLE II: Average cost (in thousands of USD) in function of ∆ and
the number of clients per RA.

Our cost estimates are conservative: 1) we use the standard
Amazon pricing, but when a CA negotiate with Amazon, the
pricing should be much lower, 2) we assume that every RA
serves only ten clients (thus there are 230 million RAs in
total), 3) we analyze small values of ∆, and 4) the revocation
list considered is the largest found. In reality, the monthly
operating cost for the CA should be lower than our simulation,
making CDN-based deployment even more attractive.

Fig. 6 shows the monthly bill that the CA would have to
pay from 1 January 2014 to 1 August 2015, if they were to use
RITM to distribute revocations. The simulation period includes
the Heartbleed incident that occurred in April 2014 to account
for any catastrophic event that results in a large number of
revocations, and we show the results for four different values
of ∆. We also estimate the average cost for the same CA,
depending on how many clients a single RA handles and the
results are presented in Tab. II. The values are given for small
network (30 clients), large network (250 clients), and a middle-
size corporate network (1,000 clients).

D. Overheads

Storage. Distribution points, RAs, and CAs are the only
parties that store revocations in RITM. Neither clients nor
servers need to store any revocation messages. This property
makes RITM an ideal solution for hardware-limited clients
(e.g., in the Internet of Things) that are not able to store all
complete and synchronized revocation lists. Moreover, through
RITM’s design, the number of RAs should be substantially
smaller than the number of TLS clients and servers.

With the above-mentioned dataset and setting, we estimate
the storage overhead required by RAs to store the revocations.
Conservatively, we assumed that all revocations (even for
expired certificates) are held by an RA. We also assumed that
dictionaries are implemented as described in §III. In such a
setting, the storage overhead is slightly above 4 MB and the
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Fig. 7: Communication overhead depending on a revocation rate and
the ∆ parameter. Note that the top y-axis is in logarithmic scale.

memory required to build and keep all dictionaries is 36 MB
(for instance, for 10 million revocations this overhead is 30
MB and 260 MB accordingly).
Communication. RITM introduces a negligible communi-
cation overhead to the TLS connection. The only additional
information sent during the TLS handshake is a proof of a
revocation status. The size of this proof is logarithmically
proportional to the number of revocations in a given dictionary,
but it also depends on the cryptographic primitives (in our case
hashes are 20 bytes long). In our setting, a revocation status
(Eq. 3) for an entry corresponding to the largest CRL that we
observed would be 500-900 bytes. This short message is sent
only during the connection establishment and then every ∆.

Communication overhead within the dissemination network
is determined by 1) the revocation rate (as RAs have to receive
every revocation), 2) the number of CAs (more precisely, the
number of dictionaries), and 3) the ∆ parameter. To estimate
the required bandwidth, we analyze revocations issued during
the week in which the Heartbleed vulnerability was disclosed.
This period includes standard and extremely high revocation
rates. Conservatively, we assume the number of dictionaries to
be 254 (the number of CRLs we found), and we show results
for ∆ equals 10 seconds, 1 minute, 5 minutes, 1 hour, and 1
day. The obtained results are presented in Fig. 7, that depicts
how much data a single RA must download every ∆.

As depicted, for a standard revocation rate, the required
bandwidth is about 4 KB/∆. This overhead is mainly deter-
mined by the size of the freshness statements and number
of dictionaries (as every dictionary has to be refreshed every
∆). For the highest peak observed, the dissemination requires
below 5 KB/∆ (for small ∆s), around 25 KB for ∆ equals 1
hour, and about 230 KB when the RA is updated every day.
Computation. Using our implementation we evaluate the
computational overhead introduced by RITM. Each test was
executed 500 times on a machine with an Intel i7-4790
(3.60GHz) CPU, 16 GB of RAM, and running a 64-bit Linux.

Entity Operation Max. Min. Avg.

RA TLS detection (DPI) 14.07 1.90 2.93
RA Certificates parsing (DPI) 57.94 15.97 19.95
RA Proof construction 156.16 31.00 67.17
Client Proof validation 101.09 46.01 54.51
Client Sig. and freshness valid. 380.04 159.03 197.27

TABLE III: Detailed processing time (in µs).

First, we determine the time required to perform a dictionary
update (which is periodically conducted by CAs and RAs). For
instance, to insert (see Fig. 2) 1,000 new revocations, a CA
needs to perform computations, which take 3.88, 2.75, and
2.93 ms, on maximum, minimum, and average, respectively.
Similarly, for an RA to update a dictionary (see Fig. 2) with
1,000 new revocations and then verify the consistency of the
dictionary and the authenticity of revocation issuance message,
it takes 5.87, 2.62, and 2.84 ms.

We also analyze the latency introduced to the TLS connec-
tion. This latency is caused by computations executed by RAs
and clients, and it is one of the most important metrics for
connection establishment, as it has a direct influence on user
reactions. The only additional latency in RITM is introduced
by DPI (RA), proof construction (RA), and proof validation
(client). We determine the computational time required for
these operations. The detailed results are presented in Tab. III.

The RA needs to check whether each packet belongs to
a TLS communication. With our implementation, this ver-
ification takes on average 2.93 µs. RA must parse every
ServerHello message to obtain the server’s certificate. The
computation time depends on the number of certificates in
the chain (see §VIII), their length, used extensions, etc... For
three certificates in the chain (the most common number [35]),
such parsing takes on average 19.95 µs. With the obtained
certificate, the RA checks its revocation status, and returns
the corresponding proof. This operation takes 67.17 µs on
average. Then, the revocation status obtained by the client
must be verified. First, the client verifies whether the proof
matches the obtained certificate and root (from the revocation
status message). Then, the client verifies the signature of
the signed root and corresponding freshness statement. These
operations take on average 54.51 and 197.27 µs, respectively.
The overall overhead introduced on the client side is about 250
µs. In a contrast to these results, a study showed that even an
optimized TLS handshake takes about 30 ms (with network
latency) [42]. Therefore, the overhead introduced by RITM to
TLS connection establishment is less than 1%.

As the result, an RA can process more than 340,000
non-TLS packets per second and more than 50,000 RITM-
supported TLS handshakes per second, on average. Clients
can validate almost 4,000 revocation statuses per second. Thus,
the overhead introduced by RITM should not be noticed by
clients.

E. Comparison

We compare RITM with competing schemes (see §II) and
present the results in Tab. IV. We consider the storage over-



head, the number of connections required by the scheme, and
the achieved properties. For this comparison, we assume that
the given revocation scheme is fully deployed. Then, we show
the storage and the number of connections required to achieve
a state in which an arbitrary client is able to establish a secure
connection with an arbitrary server (i.e., the client must learn
about the revocation status of the server’s certificate). Log-
based approaches are presented in their two deployment mod-
els (see §II). Global values show how the complete revocation
list is replicated, and how many connections are required in
total. Per-client values show how many entries a client must
store, and how many messages it must obtain. The comparison
demonstrates the scalability of RITM. Clients and servers
neither store nor request for any messages. OCSP Stapling and
log-based approaches (with server-driven deployment) have
good performance results, but their deployment depends on the
server’s configuration, and they lack other desired properties.

F. Deployability

RITM has many advantages from a deployability point of
view. An RA must provide a set of simple functionalities and
can be cheaply implemented as a stand-alone device or as a
part of another network device. Through the different deploy-
ment models that we present in §IV, we show that RITM’s
deployment can combine both, efficiency and security, and that
RITM can be incrementally deployed. One RA can protect
all TLS connections from/to a whole network. Therefore, a
mass deployment is possible with a low operational effort. The
deployment can be driven by a set of individual parties such
as LAN operators, ISPs, or server farms operators. RITM is
also backward-compatible as RAs are completely non-invasive
for non-supported clients and protocols other than TLS.

VIII. DISCUSSION AND PRACTICAL CONSIDERATIONS

Bootstrapping CAs into RITM. Current CAs that wish to
start RITM deployment could publish a signed manifest at pre-
defined locations (e.g., /RITM.json). Such a manifest would
contain the CDN address of a dictionary. Then, every RA
would periodically check (e.g., once per week) whether a

Storage Storage Conn. Conn. Violated
Method (global) (client) (global) (client) properties

CRL nrev× (ncl +1) nrev ncl ×nca nca I, P, E, T
CRLSeta nrev× (ncl +1) nrev ncl 1 I, E, T
OCSP nrev 0 ncl ×ns ns I, P, E, T
OCSPb nrev +ns 0 ns 0 I, S, T
Logc nrev 0 ncl ×ns ns I, P, E
Logd nrev 0 ns 0 I, S
RevCaste nrev× (ncl +1) nrev ncl nrev E, T
RITM nrev× (nra +1) 0 nca 0 -

TABLE IV: Comparison of revocation mechanisms in terms of proper-
ties and overhead. ns,nca,nra,ncl ,nrev: number of servers, CAs, RAs,
clients, and revocations, respectively. nca� nra < ns� ncl .
I: near-instant revocation P: privacy E: efficiency and scalability
T: transparency and accountability S: server changes not required.
aCRLSets contain a limited number of revocations. bOCSP Stapling.
cClient-driven approaches. dServer-driven approaches. eRevCast uses
radio broadcast for dissemination.

CA started RITM deployment. Information about such a CA
should be provided to the clients as well, and this could be
realized through similar periodic checks or through software
update (as the manifest is short).
Local ∆ parameter. To simplify the presentation, we assumed
that the ∆ parameter was globally agreed on. However, to relax
this assumption, each CA could express its own ∆ parameter in
a dedicated field of its certificate (or in a manifest as proposed
above). Then, clients and RAs (who need CA certificates to
validate server certificates or/and revocation statuses anyway)
would know the correct ∆ value, and operate accordingly.
Ever-growing dictionaries. We also assumed that each CA
has a single append-only dictionary. Consequently, revocation
entries (even for expired certificates) cannot be removed.
However, this assumption can be relaxed as well. For instance,
a CA can split all revocations into a few dictionaries. A
similar practice is popular in maintaining CRLs (to reduce
bandwidth overhead), and although it is not necessary for
RITM, this can limit storage used on RAs. More precisely,
a CA could maintain a few dictionaries at the same time, and
every dictionary would be dedicated to all the certificates that
expire before a given time. As “certificates issued after 1 April
2015 must have a validity period no greater than 39 months”
(according to the CA/B Forum [6]), RAs could then regularly
delete the dictionaries that correspond to expired certificates.
Certificate chains. We presented RITM in a setting where
the validity proof is provided only for a server certificate.
In practice, a chain of certificates is used. Although many
revocation schemes ignore the revocation checking of CA
certificates, RITM can be extended to support this feature.
Instead of returning a single absence proof, an RA would
return a proof for each certificate of the chain. The introduced
overhead should not increase significantly, as certificate chains
are usually short [35], and as the proof construction is an
efficient operation (see §VII-D).
Multiple RAs. As RAs can be installed independently, it may
happen that a single RITM-supported connection traverses
multiple RAs. To maintain a constant overhead in such a
situation, we require that an RA adds a revocation status only
when it is missing, and replaces a revocation status only if its
own version of the dictionary is more recent. Whenever an RA
sees a revocation message sent by another RA, it can verify
whether their view of the dictionary is consistent, by simply
comparing the two versions of the signed roots.
RA-to-client communication. One challenge in implement-
ing RITM is to reliably transfer a revocation status from
an RA to a client along with a ServerHello message.
Fortunately, middleboxes have been studied for years, and we
can benefit from previous works and well-known techniques.
We distinguish three possible methods:
1) The status is piggybacked on the native TLS message.

Since, the payload of the TCP packet (i.e., the packet
that carries the altered TLS message) must be extended,
the RA must adjust the sequence numbers of the TCP
session. Then, the RA must also indicate (e.g., through a
dedicated TLS Content Type) that client should handle
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the TLS message differently. Otherwise TLS would refuse
the connection, as the TLS handshake was modified.

2) The client opens a dedicated port, to which RA sends
RITM messages. Though, such a design is easy to realize,
it does not allow to contact clients placed behind a NAT.

3) Instead of using a dedicated port, the port that the client
is using for the TLS communication is used to send the
revocation status. This approach solves the NAT problem,
and does not influence the TLS protocol directly, but RAs
still have to adjust the TCP state for supported sessions.

Future work. We will investigate the possible interactions
between RITM and novel PKI enhancements [44], [43]. We
will also analyze some aspects of the incremental deployment
of technologies such as RITM. Other topics of interest include
a study on ensuring the consistency between RAs and clients,
and applying novel deployment models [40], where RITM can
be implemented as a service.

IX. CONCLUSION

In this paper, we present RITM, a framework that aims
to address the revocation problem through distinctive prop-
erties of middleboxes and content delivery networks. RITM
takes advantage of an existing infrastructure to disseminate
revocation messages, and moves certificate revocation lists to
the middleboxes. Such a combination results in a scheme that
satisfies all the requirements we identified. In particular, we
believe that RITM is the first scheme that can provide near-
instantaneous revocation in a real-world deployment. Among
other advantages, RITM prepares us for future demands
originating from, e.g., pervasive encryption or the Internet
of Things, in which countless hardware-constrained devices
would need to communicate securely.
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