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Abstract—Taxi services and product delivery services are
instrumental for our modern society. Thanks to the emergence of
sharing economy, ride-sharing services such as Uber, Didi, Lyft
and Google’s Waze Rider are becoming more ubiquitous and
grow into an integral part of our everyday lives. However, the
efficiency of these services are severely limited by the sub-optimal
and imbalanced matching between the supply and demand.
We need a generalized framework and corresponding efficient
algorithms to address the efficient matching, and hence optimize
the performance of these markets. Existing studies for taxi and
delivery services are only applicable in scenarios of the one-sided
market. In contrast, this work investigates a highly generalized
model for the taxi and delivery services in the market economy
(abbreviated as“taxi and delivery market”) that can be widely
used in two-sided markets. Further, we present efficient online
and offline algorithms for different applications. We verify our
algorithm with theoretical analysis and trace-driven simulations
under realistic settings.

I. INTRODUCTION

Recent years witness the rapid development of the on-
line ride-sharing applications (such as Uber, Didi, Lyft and
Google’s Waze Rider), online e-commerce shopping and the
corresponding product delivery services (such as Google Ex-
press and Amazon Prime Now). For these services to be practi-
cal, efficient task-scheduling algorithms design has become an
ever-more important research area. This new area of research
is important for the emergence of the sharing economy and has
attracted wide attentions from researchers in the networking
community, design and scheduling community, as well as
researchers from operational research and economics. These
services exist in the form of two-sided market, also known
as the matching market [1]. In a two-sided market, there are
two distinct user groups, the workers and the customers. The
services need to provide each group of users with benefits.
For example, in the ride-sharing market, the services (such as
Uber) aim to reduce ride cost for the customers (i.e. riders)
and at the same time, generate sizable income for the workers
(i.e. drivers).

Let us take a closer look at the online ride-sharing applica-
tions. There are a large number of drivers and riders (a.k.a
passengers) in the market. Each task (i.e. dispatching) can
be described as a matching between the willing driver and
the rider that takes the rider from one place (i.e. source)
to another place (i.e. destination) during a specific period.
When a rider places an order in the application (e.g. the Uber
App), the system must notify the drivers and give instant

response to the rider. The response includes whether the order
can be served, and if so, the platform chooses a willing
driver to serve the task (i.e. order), or the order fails. An
efficient application should benefit both the drivers and the
riders. For on-demand product delivery services, customers
place orders online, and the service providers deliver the
products/goods to the customers within the promised time
frame, e.g. overnight, 2-day or 7-day. The platform needs to
efficiently match the demand from customers and the supply
from workers (drivers). It also needs to provide the drivers
with determined travel/delivery plans to fulfill the orders in
time.

In the above example scenarios, we see that it is crucial
to schedule the tasks to the workers efficiently based on the
supply and demand information in these two-sided markets.
In this work, we first discuss that these two-sided markets
can be formulated as a generalized mathematical model. We
propose a theoretical two-sided market model that has two
dynamic user groups: workers (drivers) and customers. Each
order from customers has a source and destination, and has
corresponding start time and end time; each worker has her
working schedule with her start time and finish time every
day; the platform calculates the cost and payoff of each order.
Further in our model, we also consider the specific surge
pricing model similar to that used by Uber [2]. In our model,
we consider two objectives: One is maximizing the total profits
of the drivers, and the other is maximizing the social welfare.
The total profits of the drivers are the producer surplus without
considering the utility to the customers, which is the total
benefits achieved by the drivers. The social welfare is the sum
of the producer surplus and the consumer surplus (i.e. the
total utility to the customers), which is the metrics of the total
benefits achieved by the two groups of users in the market.

Solving the optimization problems for such dynamic two-
sided markets is not easy. There are two fundamental chal-
lenges to overcome. First, the algorithms need to be efficient
enough to deal with a large number of workers and customers
in the market. The ride-sharing market is huge, and it is
essential that we can partition the problem. Therefore the
algorithms have to be distributed. In real scenarios, we can
partition the map in city’s scale, and then design algorithms
to deal with the tasks in each city. However, for some big cities
such as NYC, London, and Beijing, there are often millions
of passengers and tens of thousands of drivers available every
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day. In practice, it is not practical to further partition the
problem into smaller divisions (i.e. districts). This is because
the riders and drivers generally travel across the city. Hence
the service should cover the entire city. Second, although
offline algorithms can work for traditional e-commerce and
product delivery services. Ride-sharing services and instant
product delivery services need the platform to give instant
responses (i.e. real-time responses) to the customers, making
online algorithms necessary.

Existing efforts for taxi and delivery markets mostly focus
on the models from the Vehicle Routing Problems (VRP).
However, most of the work can only deal with specific offline
scenarios and cannot scale to larger models with a large
amount of data in a distributed way. Further, most of these
models are too detailed and thus limited to specific one-sided
market. In contrast, this work investigates a more generalized
model for the two-sided market. The model applies in both
offline and online cases. The contributions of this paper are
summarized as follows.

First, we establish a generalized model for the Internet
taxi and delivery markets. The model can efficiently address
the inefficient matching between the supply and demand in
these two-sided markets even with surge pricing mechanism.
Our model can be used in both centralized and distributed
scenarios. We construct the task map to clearly show the
relationship between the workers and the customers in the
markets, and formulate the optimization problem with overall
social welfare as the objective function.

Second, we propose an approximation algorithm to solve
the above problem in an offline setting (i.e. we have all the
travel plans in advance). We transfer the offline problem to the
multiple disjoint paths (MDP) problem [3], and the goal is to
find a set of node-disjoint paths in a directed acyclic graph with
maximum total values. We carefully design a greedy algorithm
and prove that the algorithm has a tight approximation ratio
which applies to the ride-sharing market very well.

Third, we propose two heuristic algorithms that can be
used for both offline and online settings. We show that our
algorithms have good performance ratio by comparing our
algorithms with the theoretical upper bound using real-trace
simulations. We also show the effectiveness to apply our
algorithms into real markets from the simulation results.

The rest of the paper is organized as follows. We discuss
related work in Section II and present the problem model
in Section III. The deterministic approximate algorithm for
offline cases is given in Section IV and the online algorithms
are given in Section V. We present trace-driven evaluation
results in Section VI and conclude the paper in Section VII.

II. RELATED WORK

Research interests on online “sharing” and “gig” economy
platforms have increased significantly these years. [4] provides
a broad discussion of sharing economics and two-sided mar-
kets. The world’s largest ride-sharing company, Uber, has the
mechanism that dynamically prices trips using a system known
as “surge pricing”. [2] gives a detailed measure of how the

dynamic pricing of tasks influences the supply of labor in the
market. [5] observes the Uber’s surge pricing mechanism by
the datasets generated from the Uber mobile app to tackle the
questions about fairness and transparency of the system. Based
on the surge pricing mechanism, [6] shows that ride-sharing
services not only dramatically increase the usage of drivers
and their cars, but also cut costs to the riders. [7] develops a
modeling framework for studying a decentralized equilibrium
based market study, and optimizes the fleet size and pricing
policy for a given urban area.

To the best of our knowledge, our work is the first to
study the sharing economics of taxi and delivery markets
with both online and offline models and their corresponding
solutions. Existing efforts focus on the one-sided market under
the settings of Vehicle Routing Problem (VRP). The VRP with
time windows [8] has some similarities with our model in
terms that each node has a deadline and a release-time. The
goal is to visit as many nodes as possible within the “time-
windows”. [9] gives a deterministic algorithm with O(log2N)
approximation for the VRP with time-windows where N
is the number of nodes in the graph. People have studied
various heuristics [10] [11] [12] such as local search, simulated
annealing and genetic algorithms, as well as branch and bound
methods [13] [14] to solve this kind of VRP as well.

Our deterministic algorithm follows the formulation of the
MDP problem. The maximum edge-disjoint paths problem in
directed graphs is formulated in [15] and [3]. [15] gives a
greedy algorithm with O(

√
m) approximation ratio using a

multi-commodity-flow-based LP relaxation. In our approxi-
mation algorithm solution, we will use another approximation
ratio instead of O(

√
m). We show why our approximation

ratio is better suited for the ride-sharing market and prove our
bound is tight in Section IV.

III. PROBLEM MODEL

In this section, we propose the model of the two-sided mar-
ket. There are two groups of users. We use the taxi and delivery
markets (referred to as “the market”) as examples throughout
the paper. We use drivers to represent the users who provide
taxi or delivery services, and customers to represent the users
who receive the services. Tasks represent the taxi and delivery
services ordered by the customers.

A. Market Configuration

There are total N drivers available in the market. We
consider the generalized model that each driver reveals her
travel plan with a given source and a destination everyday
before she starts working (e.g. they can be the driver’s home
address). For each driver n ∈ [N ], she starts her travel plan
from the source location sn at time t−n to her destination
location dn at time t+n that t−n < t+n . We depict the geo-
location information of driver n’s source and destination using
two tuples sn = (u−n , v

−
n ) and dn = (u+n , v

+
n ) where un

and vn are the latitude and the longitude respectively. We
use [X] = {1, 2, . . . , X} to denote the set of X elements



throughout the paper, e.g., [N ] = {1, 2, · · · , N} is the set of
drivers.

There are a total of M tasks submitted by the customers
in the market during a certain time period. Each task has a
publishing time t̄m that the customer submits the task to the
market. Being the same as the setting of the drivers, each task
also has its source and destination locations such that task
m ∈ [M ] starts at source s̄m = (ū−m, v̄

−
m) at time t̄−m and

ends at its destination d̄m = (ū+m, v̄
+
m) at time t̄+m. Note that

t̄m < t̄−m < t̄+m,∀m ∈ [M ], since task m should be submitted
before it starts. In the online scenarios, as we do not know the
accurate start time and end time of each task in advance, we
can use t̄−m as the deadline of the start time of task m, and
t̄+m as the deadline of the end time of task m. Task m may
start earlier than t̄−m and finish earlier than t̄+m. We use bm to
denote the customer’s valuation for task m, which is her WTP
(i.e. willingness to pay) for task m. The customer will only
admit to publish the task when her WTP is higher than the
price of the task. Otherwise, she will gain negative utility and
hence refuse to publish her task.

Each task m ∈ [M ] also has a certain price pm calculated
by the platform as the payoff to the driver. Note that the task
will only be published when pm ≤ bm. Unlike traditional taxi
services, platforms like Uber dynamically adjust their prices
using a surge pricing mechanism [2]. The price rate, also
named as the Surge Multiplier (SM), increases when demand is
higher than supply for a given geographic area. Customers are
informed of the higher fare before requesting the service. Uber
drivers are also aware of the surge pricing when the orders
are published. However, no matter what pricing mechanism
the platform adopts, the system calculates the price of the
task and publishes to both its customers and drivers, therefore
price pm can be treated as a constant attribute of a given task
in the market setting.

B. Task Map Construction

To demonstrate the relationship between the drivers and
tasks in the market, we construct the task map for each driver.
We model the task map with a directed acyclic graph (DAG)
to illustrate whether driver n ∈ [N ] can take task m′ ∈ [M ]
in time after finishing task m ∈ [M ]. Each task is a node
in the graph, an arc (directed edge) in the graph implies the
availability for the driver to take another task after finishing
her previous one. For each driver’s task map, there are two
special nodes: the source and the destination, which are labeled
by number 0 and −1 respectively. Therefore the node set of
driver’s task map is [M̂ ] = {−1, 0} ∪ [M ]. The task map is
dynamic in the online scenarios, and we initialize the finish
time of task m by using t̄+m. When the task m finishes before
t̄+m, we use the real finish time. We show how to deal with the
real finish time for the online scenarios in Section V

To estimate the travel time from one place to another in
the graph, we first estimate the travel distances. We need to
consider two types of distances, one is the travel distance from
the destination of one task to the source of the next one,
and the other is the travel distance from the source to the

destination of the same task. We denote the estimation of the
travel distance for driver n to travel from the destination of
task m to the source of the next task m′ (i.e. driving empty)
as dn,m,m′ , and the estimation of the travel distance for driver
n to travel from the source to the destination of the same task
m (i.e. driving the customer) is d̂n,m.

Now we can estimate the travel time from one node to
another using an estimated driving speed of the driver. Let
ln,m,m′ be the estimated travel time from the destination of
task m to the source of task m′ for driver n (i.e. driving
empty), and let l̂n,m be the estimated travel time for driver n
to travel from the source to the destination of the same task
m (i.e. driving customers). Let cn,m,m′ be the estimated travel
cost from the destination of task m to the source of the next
task m′ for driver n, and ĉn,m be the travel cost for driver n
to travel from the source to the destination of the same task
m.

To construct the task map, We use indicator hn,m,m′ ∈
{0, 1},∀n ∈ [N ],m,m′ ∈ [M̂ ] to denote whether there is an
arc from node m to m′ in driver n’s task map. Figure 1 shows
an example task map of driver n ∈ [N ]. The source of driver n
is labeled by number 0, the destination of driver n is labeled by
−1 and the tasks are labeled by integers {1, 2, · · · ,M}. The
prerequisite of driver n to take task m is that he has enough
time to travel from the source to the destination of task m.
Let indicator variable ĥn,m denotes whether driver n can take
task m, with ĥn,m = 1 indicating a “yes” as follows:

ĥn,m = 1⇔ (l̂n,m ≤ t̄+m − t−m), ∀n ∈ [N ],m ∈ [M ]. (1)

For the arcs from the source (labeled 0) to any task m,

hn,0,m = 1⇔ ĥn,m ∧ (ln,0,m ≤ t̄−m − t−n )

∧ (ln,m,−1 ≤ t+n − t̄+m), ∀n ∈ [N ],m ∈ [M ].
(2)

As (2) shows, if there is an arc from the source of driver
n to task m, we need driver n to have enough time to travel
from her source location to the source of task m, and also
have enough time to travel from the destination of task m to
driver n’s destination. If hn,0,m = 1, we also set hn,m,−1 = 1,
and then draw one arc from node 0 to m, as well as another
arc from node m to −1 on driver n’s task map.

For the arc from one node of task m to the next task m′,
driver n should have enough time to travel from the destination
of task m to the source of task m′.

hn,m,m′ = 1⇔ ĥn,m ∧ ĥn,m′ ∧ (ln,m′,−1 ≤ t+n − t̄+m′)
∧ (ln,m,m′ ≤ t̄−m′ − t̄+m),∀n ∈ [N ],m ∈ [M ],m′ ∈ [M ].

(3)

If hn,m,m′ = 1 then also set hn,m′,−1 = 1, there is an arc
from m to m′ and another arc from m′ to −1.

It will take (M2 +2M) iterations to calculate all the values
of hn,m,m′ for driver n. Therefore the time complexity to
construct the task map of all the N drivers is O(NM2).

To clearly show the tasks for each driver, we investigate
the task list of driver n during her work using graph theory.



Fig. 1. shows a simple example task map of driver n. The driver can take
one task among task 1, task 2 and task 3. She can also take two tasks, and
that is to take task 3 after finishing task 2.

Driver n takes a sequence of tasks, that can be illustrated as
a path in driver n’s task map, from her source node 0, then
to the task nodes in her task list one by one, and finally to
her destination node −1. Therefore the path is a flow from the
source to the destination, such that in/out degrees of each task
node are both 1 or both 0 (if the task is not taken), the source
node has out-degree 1 and in-degree 0, and the destination
node has out-degree 0 and in-degree 1. Then we can clearly
formulate our optimization problem by applying the network
flow model.

We summarize the key notations throughout this paper in
TABLE I as follows.

TABLE I
KEY NOTATIONS

[N ] set of drivers {1, 2, · · · , I} N # of drivers
[M ] set of tasks {1, 2, · · · ,M} M # of tasks

ˆ[M ] nodes {−1, 0, 1, 2, · · · ,M} in task map
t−n , t+n start / end time of driver n
sn, dn source / destination of driver n
t̄−m, t̄+m estimated start / end time of task m

s̄m, d̄m source / destination of task m

pm payoff for task m

bm customer’s WTP for task m

cn,m,m′
travel cost from destination of m to
source of m′ for driver n

ĉn,m
travel cost from source of m to
destination of m for driver n

hn,m,m′
indicator of whether there is an arc from node
m to node m′ in driver n’s task map

xn,m whether task m is assigned to driver n

yn,m,m′
whether driver n continues to take task m′

after finishing task m

Now we formulate our optimization problem. We have two
objectives; we will first give a drivers’ profit maximization
formulation, and then give a social welfare maximization
formulation.

C. Drivers’ Profit Maximization

We first propose a drivers’ profit maximization framework to
address the inefficient matching of the drivers and customers in
the taxi and delivery markets, with the constraints to guarantee

the feasibility to arrange a sequence of tasks to a certain driver
by applying the network flow model. The decision variable
xn,m indicates whether task m is assigned to driver n in the
market. We also involve decision variable yn,m,m′ at a micro
level, denoting whether driver n takes task m′ after finishing
task m. In the network flow model, variable yn,m,m′ is the
actual flow among the nodes in the network graph. The drivers’
profit maximization framework is formulated as follows:

Z :maximize
∑

n∈[N ]

∑

m∈[M ]

xn,mpm −
( ∑

n∈[N ]

∑

m∈[M ]

xn,mĉn,m

+
∑

n∈[N ]

∑

m∈[M̂ ]

∑

m′∈[M̂ ]

yn,m,m′hn,m,m′cn,m,m′ −
∑

n∈[N ]

cn,0,−1

)
.

(4)
s.t. ∑

n∈[N ]

xn,m ≤ 1, ∀m ∈ [M ]; (5a)

∑

m∈[M ]

xn,mpm ≥
∑

m∈[M̂ ]

∑

m′∈[M̂ ]

yn,m,m′hn,m,m′cn,m,m′

+
∑

m∈[M ]

xn,m − cn,0,−1, ∀n ∈ [N ];
(5b)

∑

m′∈[M̂ ]

hn,0,m′yn,0,m′ = 1, ∀n ∈ [N ]; (5c)

∑

m∈[M̂ ]

hn,m,−1yn,m,−1 = 1, ∀n ∈ [N ]; (5d)

∑

m∈[M̂ ]

hn,m,m′yn,m,m′ = xn,m′ ,∀n ∈ [N ],m′ ∈ [M ]; (5e)

∑

m′∈[M̂ ]

hn,m,m′yn,m,m′ = xn,m, ∀n ∈ [N ],m ∈ [M ]; (5f)

xn,m ∈ {0, 1}, ∀n ∈ [N ],m ∈ [M ]; (5g)

yn,m,m′ ∈ {0, 1}, ∀n ∈ [N ],m ∈ [M̂ ],m′ ∈ [M̂ ]. (5h)

The objective function (4) is the total revenue of all the
tasks assigned to the drivers in the market subtracts the excess
cost (not the total cost) of all the drivers to complete these
tasks. The first term is the total revenue in the market. The
second term is the total travel cost for the drivers to finish the
tasks from the source to the destination of the same task. The
third term is the total travel cost of all the drivers from the
current task destination to the source of the next task, as well
as the cost from the driver’s source to the first task and the
cost from the last task to the driver’s destination. The forth
term is the original travel cost for the drivers from source to
destination without taking any tasks.Therefore the formula in
the parentheses is the excess cost for all the drivers to complete
their tasks.

For the constrains of the optimization problem, (5a) means
that each task is assigned to at most one driver. (5b) is the
individual rationality constraint that for each driver, whose
total revenue must be no less than the excess cost to finish her
tasks. (5c)-(5f) are flow conservation constrains in the network
flow model. (5c) means the out-degree for the source of each



driver is 1, (5d) means the in-degree for the destination of
each driver is 1. (5e) and (5f) together show that if task m
is assigned to driver n, the in/out degrees of task node m are
1, and otherwise, the in/out degrees of task node m are 0.
(5g) and (5h) show that all the decision variables of xn,m and
yn,m,m′ are binary variables in {0, 1}.
D. Social Welfare Maximization

We now propose a social welfare maximization formulation
by taking the utility to the customers into consideration. The
social welfare is the sum of the drivers’ total profits and the
utility to the customers, and the goal is to benefit both the
drivers and the customers in the market.

We formulate the objective function of social welfare maxi-
mization in (6). Note that the only difference between (6) and
(4) is switching pm into bm, since the price is offset when
considering the utility to the customers. For the constraints, we
add (7a) since the customers will never gain negative utility
by individual rationality. Actually, if bm < pm for some m,
the task may not even be published, such that we can ignore
constraint (7a) in real scenarios.

Ẑ :maximize
∑

n∈[N ]

∑

m∈[M ]

xn,mbm −
( ∑

n∈[N ]

∑

m∈[M ]

xn,mĉn,m

+
∑

n∈[N ]

∑

m∈[M̂ ]

∑

m′∈[M̂ ]

yn,m,m′hn,m,m′cn,m,m′ −
∑

n∈[N ]

cn,0,−1

)
.

(6)
s.t.

(5a)− (5h);

∑

n∈[N ]

xn,m(bm−pm) ≥ 0,∀m ∈ [M ]. (7a)

E. Problem-solving ideas

In the real markets, it is hard to formulate the social
welfare, since it is always hard to accurately estimate a certain
customer’s WTP for a ride. Actually, optimizing the drivers’
total profits is enough to improve the efficiency of the ride-
sharing markets. Therefore in the following sections, we will
focus on solving the optimization problem of the drivers’ total
profits. We also declare that we can use the same algorithms
given in Section IV and Section V to solve the social welfare
maximization problem.

Our problem (4) can be reformulated to a special case of the
MDP problem in Section IV, which is shown to be NP-hard
in [16]. However, solving the relaxed problem can be done in
polynomial time [17]. The relaxed problem is formulated as
follows:

Zf : maximize (4).

s.t.

(5a)− (5f);

xn,m ∈ {0, 1}, ∀n ∈ [N ],m ∈ [M ]; (8a)

yn,m,m′ ∈ {0, 1}, ∀n ∈ [N ],m ∈ [M̂ ],m′ ∈ [M̂ ]. (8b)

Let Z∗ denote the best integral solution of Z in (4), and let
notation Z∗f denote the best fractional solution of the relaxed
problem. We have Z∗f ≥ Z∗ = OPT , such that Z∗f provides
an upper bound of the optimization solution Z∗.

IV. A DETERMINISTIC OFFLINE SOLUTION

In this section, we propose a greedy algorithm to solve the
optimization problem Z in (4) by adjusting our problem to the
MDP (i.e. maximum node-disjoint paths) model, then give the
theoretical analysis of the algorithm. We further illustrate why
our approximation ratio is better suited for the ride-sharing
market.

A. Transfer to the MDP problem

From graph theory, our problem can be categorized to the
family of MDP problems. People have proposed algorithms to
find a set of edge-disjoint paths (EDP) in a DAG to maximize
the total value of the paths. [3] gives the formulation and an
approximation algorithm solution of the EDP problems. Our
problem is similar to the EDP, the difference is that we aim
to find weighted node-disjoint paths (instead of edge-disjoint
paths) with max total value. In the configurations discussed in
the previous section, we give a multi-commodity-flow network
using a DAG with a set of source-destination pairs representing
the drivers. We model a driver’s task list by a path from her
source node to her destination node. Our objective is to find
the set of paths with max total value in the network such that
no two paths intersect at the same node, since each task can
only be served by at most one driver. To sum up, each source-
destination pair represents a driver and each path in the DAG
is a possible task list for a driver.

Here we give another integer programming formulation of
our problem by using the node-disjoint paths model. We use an
exponential-sized paths formulation for a better demonstration
of the problem nature, while in practice we do not need the
exhaustion of all the possible paths in our solution. The two
formulations of (4) and (9) are equivalent. We merge all the
task maps of the N drivers into a big graph G, and therefore G
is a DAG that contains all the source nodes, destination nodes,
and task nodes. Let Pi denote all the paths in the graph G
from si to di for driver i. For each path π in ∪iPi, we have a
variable rπ for the profit of the path and a binary variable fπ of
whether path π is selected in the solution. rπ can be calculated
by the summation of the total value of the tasks subtracting
the excess cost (defined in Eq. (4)) of the path. For each driver
i, we use binary variable xi to indicate whether each driver
has 0 (if no task for the driver) or 1 task list.

Z : maximize
∑

π∈∪iPi

fπrπ. (9)

s.t. ∑

π∈Pi

fπ = xi, ∀i ∈ [N ]; (10a)



Algorithm 1: Gready Algorithm - GA

1 Initialization: Let S = ∅, Π = ∅, X = {1, 2, · · · , N},
G′ = G

2 while there exists driver i ∈ X and path π ∈ ∪iPi from
si to di with strictly positive profit rπ > 0 do

3 (a) Find the path π∗ = argmaxπ∈∪iPi
rπ , such that

π∗ has the maximum profit in the current graph G′.
Let π∗ be the task list for driver i∗;

4 (b) Remove the source and destination nodes
(si∗ , di∗) of driver i∗ and all the task nodes in π∗

from the current graph G′;
5 (c) S = S ∪ i∗, Π = Π ∪ π∗, X = X/i∗;
6 end
7 Output the drivers in set S and the selected paths (i.e.

task lists) in Π.

N∑

i=1

∑

π∈Pi:m∈π
fπ ≤ 1, ∀m ∈ [M ]; (10b)

xi ∈ {0, 1} ∀i ∈ [N ]; (10c)

fπ ∈ {0, 1}, ∀π ∈ ∪iPi. (10d)

Eq. (9) has the same interpretation as (4), as both calculate
the drivers’ total profits; (10a) means that each driver may
choose 1 or 0 task list; (10b) means all the path chosen are
node-disjoint that they do not intersect at any node.

B. The Greedy Algorithm

To solve this problem, we first give an intuitive greedy
algorithm, and then analyze the performance of the algorithm.
Suppose all the paths chosen in the optimal solution have
strictly positive profit as the paths with zero profit have no
contribution to the drivers’ total profits and therefore we will
not chose them. In our greedy algorithm, we guarantee that
the paths chosen also have strictly positive profit.

Note that for the step (a) in the iterations of Algorithm 1, we
can find a path with highest-profit polynomially, since we can
find the path with the highest value (or longest path) in a DAG
within O(N2) if the values of the edges are all non-negative
[18], where N is the number of nodes in the DAG.

Theorem 1. Algorithm 1 (i.e. GA) gives a feasible solution
with ( 1

D+1 )-approximation ratio in polynomial time, where D
is the maximum number of nodes in a path (i.e. the diameter
of the graph G). The ratio is tight.

To prove Theorem 1, we first prove GA (i.e. Algorithm 1)
can be finished in polynomial time. Then prove GA guarantee
( 1
D+1 )-approximation ratio, followed by an example which

shows the tightness of this bound.

Lemma 1. GA achieves a feasible solution of (4) within time
complexity O(N2M2).

Proof. To guarantee the feasibility, each driver has at most one
task list. We can see that all the paths selected by GA have
different source-destination pair. At the same time, each task

node belongs to at most one selected path, and each selected
path has strictly positive profit. To sum up, GA gives a feasible
solution of (4).

GA terminates within at most N iterations. Within each
iteration, it costs O(M2) to find the highest-profit path for one
driver by dynamic programming. Therefore it costs O(NM2)
to find the highest-profit path in G′. So the total time com-
plexity is no greater than O(N2M2).

Lemma 2. GA guarantees an approximation ratio of ( 1
D+1 ).

Proof. Suppose B is the set of paths selected by GA and O
is the paths selected by the optimal solution (i.e. OPT ). All
the paths selected in B and O has strictly positive profit. We
need to prove the following inequality that:

∑

π∈O
rπ ≤ (D + 1) ·

∑

π∈B
rπ (11)

Suppose GA terminates in K iterations,
{
πk
}
k=1,2,··· ,K is

the path selected by GA during the k-th iteration. We also
define Gk−1B as the updated graph just before the k-th iteration
of GA (i.e. just after the (k−1)-th iteration of GA). Particularly,
we have G0

B = G.
In the following proof, we use “intersect” to express the

relationship that two paths of either share the same node or
share same the source-destination pair (i.e. belong to the same
driver).

Proposition 1. Every path in O must intersect with at least
one path in B.

To prove this, if there exist a path π′ in O with positive
profit, and π′ does not intersect with any paths in B. Before
GA terminates, π′ must be chosen by GA, otherwise we can
insert an iteration of choosing π′ into GA. Therefore GA may
have one more iteration and get a better result (i.e. by adding
one more path with positive profit). Hence we can see that a
contradiction is made here, such that Proposition 1 holds.

Proposition 2. Every path in B intersects with at most (D+1)
paths in O.

Each path π in B has at most D (internal) nodes, intersect
with at most 1 path in O at each node. So there are at most
D paths in O intersect with π at its nodes. We can also see
that at most 1 path share the same source-destination pair with
π. Thus there are totally no more than (D + 1) paths in O
intersect with π, so Proposition 2 holds.

To further illustrate the relationship between the paths in
B and O. We use Ok to denote the set of paths in O that
intersect with πk. We also use notation Ōk to denote the set
of paths in O \ ∪ki=1Ok, and use GkO to denote the updated
graph after removing the nodes in ∪ki=1Ok from G. Start with
O0 = ∅, Ō0 = O and G0

O = G . We apply a K-iteration
process to construct Ok, Ōk and GkO, the process is shown in
Algorithm 2.

Proposition 3.
O = ∪Kk=1Ok (12)



Algorithm 2: Construction of Ok, Ōk and GkO
1 Initialization: Let O0 = ∅, Ō0 = O and G0

O = G;
2 for k = 1 to K do
3 (a) Choose all the paths in Ōk−1 which intersect with

πk, put these paths into Ok;
4 (b) Ōk = Ōk−1 \ Ok;
5 (c) Remove all the nodes and source-destination pairs

in πk and Ok from Gk−1O to get the graph GkO;
6 (d) Output Ok, Ōk and GkO;
7 end

Easy to find that Ok do not share any common nodes (i.e.
task nodes or source/destination nodes) by the definition of
Ok. Using Proposition 1, we have ŌK = ∅, otherwise the
path in ŌK do not intersect with any paths in B which makes
a contradiction with Proposition 1. Hence Proposition 3 holds.

Proposition 4.
∑

π∈Ok

rπ ≤ (D + 1) · rπk
, ∀k = 1, 2, · · · ,K (13)

By the definition of GkO in Algorithm 2 we have GkO ⊆ GkB
GkO ⊆ GkB, ∀k = 0, 1, 2, · · · ,K

Note that during the k-th iteration of GA, πk is the highest-
profit path in Gk−1B , the profit of πk is greater than or equal
to any paths in Gk−1O . Therefore

rπk
≥ rπ,∀π ∈ Ok,∀k = 1, 2, · · · ,K

By Proposition 2, |Ok| ≤ D+1, hence Proposition 4 holds.
Finally, By Proposition 1 - Proposition 4, we have:

∑

π∈O
rπ =

K∑

k=1

∑

π∈Ok

rπ ≤
K∑

k=1

(D + 1) · rπk = (D + 1) ·
∑

π∈B
rπ

Hence inequality (11) holds, the proof of Lemma 2 is done.
Therefore ( 1

D+1 ) is an lower bound of the approximation ratio
of GA.

Lemma 3. ( 1
D+1 ) is also the upper bound to the approxima-

tion ratio of GA.

Proof. We construct an example, and the graph is shown in
Figure 2. In the graph, we can see that there are totally D +
1 tasks (i.e. the red nodes) and D + 1 drivers with source-
destination pairs (s1, d1), (s2, d2), · · · , (sD+1, dD+1). Taking
each task on the black path will gain 1

D profit for driver 1, but
will gain 1 − ε profit for other drivers (i.e. the drivers in the
set {2, 3, · · · , D+ 1}). The graph has diameter exactly equals
to D with driver 1’s longest path (i.e. the black path with D
tasks). From the construction in Algorithm 1, GA will only
choose the longest path of driver 1 (i.e. the black path) with
profit 1, and other drivers have no tasks to take. Therefore
the drivers’ total profits from GA is 1. On the other hand,

Fig. 2. is an example shows that GA performs no better than ( 1
D+1

)
theoretically.

the optimal solution will choose (D+ 1) paths for the D+ 1
drivers, and each driver will take only one task and gain profit
1−ε. Therefore the optimal solution of the drivers’ total profits
is (D+1)(1− ε), and the approximation ratio in this example

1
(D+1)(1−ε) . Since ε can be infinitely small, the approximation
ratio can be as bad as ( 1

1+D ).
Therefore GA performs no better than ( 1

D+1 ) theoretically,
which shows ( 1

D+1 ) is also the upper bound to the approxi-
mation ratio of GA.

Finally, by the proof of Lemma 1 to Lemma 3, we success-
fully prove Theorem 1.

C. Discussion on our Approximation Algorithm

As an important problem in combinatorial optimization
and graph theory, MDP problems attract substantial efforts
on approximation algorithm design. Existing efforts on MDP
problems most focus on the EDP (i.e. edge-disjoint paths)
model, whereas our problem uses a specific weighted node-
disjoint paths model. To the best of our knowledge, the state-
of-the-art theoretical approximation ratio of EDP is given in
[3] . The approximation ratio is O

(
min(n2/3,

√
m)
)

for undi-

rected graphs and O
(
min(n4/5,

√
m)
)

for directed graph.
In the two-sided ride-sharing markets, we will not use the

bounds in the existing work. Since both n and m are very
large numbers in the ride-sharing markets: The value of n
is greater than the number of drivers, and the value of m is
greater than the number of tasks. Therefore we use specific
approximation ratio of ( 1

D+1 ) for the ride-sharing markets.
In our problem settings, D (i.e. the diameter of the graph)
represents the maximum number of possible tasks taken by a
single driver during one working period. In the ride-sharing
market, the value of D is small, so Algorithm 1 can have
fairly good performance. For instance, in the Uber market, a
driver can only deal with a limited number of tasks during
one working period [2] (i.e. 4 hours per working period
on average). Furthermore, our algorithm works better for
the Google’s Waze Rider market, since Google is limiting



drivers to two tasks a day, to and from work, and makes the
price cheap, restricting drivers from making a living on the
application [19]. Therefore in this market, we have D = 1 for
one source-destination pair (i.e. from home to work or from
work to home) of each driver, and our algorithm guarantees a
1
2 approximation ratio for Google’s Waze Rider market.

V. ONLINE HEURISTIC SOLUTIONS

In some cases, especially for the Uber market, the tasks
from the customers arrive in real-time. The platform and the
drivers do not know the time or any other detailed information
about a task in advance. Furthermore, the platform must give
fast responses based on the real-time snapshots of the drivers
and the tasks with very short response time.

The online problem is more challenging to solve. Our offline
approximate algorithm is not applicable to the online scenarios
since we do not have the information of all tasks in advance.
Now we propose two heuristic algorithms that are applicable
to both online or offline scenarios.

A. Nearest drivers Heuristic
Once a task appears in the market, one of the most intuitive

ways is to arrange this task to the driver who arrives at the
source of the task first. From this point of view, the platform is
prone to choose one of the drivers who may arrive at the source
of the task as fast as possible. We estimate the fastest potential
arrival time of each driver using the estimated distance divided
by the average speed of the driver. We show the detailed
algorithm in Algorithm 3. In Algorithm 3, the platform deals
with the tasks in terms of their arrival time one by one, our
algorithm keeps updating the status and location of the drivers.
We can see from Algorithm 3 that if a driver finishes the task
m before the estimated finish time t̄+m, she can drive to the
source of her next task if the platform assigns a new task for
her.

B. Maximum Marginal Value Heuristic
Another heuristic algorithm is based on the marginal value

added to the driver when a new task arrives and the driver
takes it. This algorithm is similar to Algorithm 3. Each time
a new task arrives, we choose an available candidate driver
from the candidate set. The difference is the criterion of how to
select the candidate from the set. To illustrate the criterion, we
introduce a variable δn,m, which is the marginal value added
to the driver n of task m, suppose the last task of driver n is
m′, and m′ = 0 means n has not taken any tasks yet.

δn,m = pm − (cn,m,−1 + ĉn,m + cn,m′,m − cn,m′,−1). (14)

Each time we choose a driver from the candidate with
maximum δn,m. We show the algorithm in Algorithm 4. The
structure of Algorithm 4 is the same as that of Algorithm 3.

Note that the maximum marginal value heuristic may also
have another offline version that we can first sort the values
of all the tasks if we know the entire data of all the task in
advance with an offline setting. It will be more efficient to
deal with the tasks which have higher values firstly.

Algorithm 3: Nearest Driver Heuristic - Nearest

1 Initialization: Unlock all the drivers, set their last tasks to
0, and let the candidate set be empty.

2 while task m arrives at time t̄m do
3 (a) Add the unlocked driver who can travel from

their location to s̄m during time t̄m to t̄−m into the
candidate set. Add the locked drivers who can travel
from their current destination d̄m′ to s̄m during time
t̄+m′ to t̄−m into the candidate set.

4 (b) Choose the candidate driver n∗ in the candidate
set who will arrive fastest to s̄m, if multiple, choose
a random one. If the candidate set is empty, reject
task m.

5 (c) Set n∗ to lock status, set the last task of n∗ to m,
update the location of driver n∗, reset candidate set
to empty.

6 (d) Task m is done, the platform sends response to
the customer and deals with the next task.

7 end

Algorithm 4: Maximum Marginal Value Heuristic - max-
Margin

1 Initialization: Unlock all the drivers, set their last task to
0, and let the candidate set be empty.

2 while task m arrives at time t̄m do
3 (a) Add the unlocked drivers who can travel from its

last destination to s̄m during time t̄m to t̄−m into the
candidate set. Add the locked drivers who can travel
from their last destination d̄m′ to s̄m during time
t̄+m′ to t̄−m into the candidate set.

4 (b) Choose the candidate driver n∗ in the candidate
set such that n∗ = argmax(δn,m).If the candidate
set is empty, reject task m.

5 (c) Set n∗ to lock status, set the last task of n∗ to m,
update the location of driver n∗, reset candidate set
to empty.

6 (d) Task m is done, the platform sends response to
the customer and deals with the next task.

7 end

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our offline
and online algorithms through real-trace simulations.

A. Experiment setup

We use the dataset from ECML/PKDD 15 [20] including
a complete year (from 01/07/2013 to 30/06/2014) of the
trajectories for all the 442 taxis running in the city of Porto,
Portugal. In the dataset, there are more than one million trip
records with detailed information, including the timestamp of
starting time and finishing time for each trip, polyline of the
trip trajectory, and the driver ID. For the driver data, we can
get the working time of each driver from her driver ID and the
timestamps of her trips. We generate the source and destination



Fig. 3. Travel Time Distribution Fig. 4. Travel Distance Distribu-
tion

of each driver using Monte Carlo method [21]. A special
case that the driver has the same source and destination is
meaningful, and it means that a driver leaves from a fixed place
(may be her home) and returns after her daily work. This is
referred to as the “home-work-home” model (i.e. the working
model for full-time drivers on Uber) in the following results.
There are also cases when the driver has different source and
destination (e.g. the working model for part-time drivers on
Google’s Waze Rider), and we refer this working model as
the “hitchhiking” model.

We clean the large dataset use the Pandas framework in
Python [22]. For the trip data records, the traveling time
distribution is shown in Fig 3 and the traveling distance
distribution is shown in Fig. 4. We can find that the traveling
time and traveling distance of the trips both exhibits the shape
following the power law distribution [23].

The cost of each trip can be estimated by multiplying the
total distance of the trip polyline and the unit price of gasoline
(used as a constant). For the payoff of each trip to the driver,
we use a simplified surge pricing model, that the payoff of
task m ∈ [M ] is a linear equation of the travel distance
and travel time multiplied by the surge multiplier αm, where
αm is dynamic changed based on real market scenarios. The
simplified surge pricing is calculated by Eq. (15), in which β1
and β2 are both global constants.

pm = αm · (β1 · dis(s̄m, d̄m) + β2 · (t̄+m − t̄−m)). (15)

B. Performance Ratio of Online/ Offline Algorithms

We use the drivers’ total profits as the objective function
of our algorithm. We use the offline relaxation results from
Z∗f (defined in Section III) as the theoretical upper bound for
our online and offline optimization problems. The performance
ratio is Z∗f divided by the drivers’ total profits achieved by
the algorithms we design. For the evaluation of small-scale
problems (e.g. for n ≤ 50 and m ≤ 100), we can use the
integer programming solvers of CPLEX [24] or MOSEK [25]
Optimizer to calculate the exact value of the best integer
solution Z∗, and then use Z∗ as the upper bound for our
optimization problems.

We select 1000 records during one day in the dataset. By
gradually increasing the number of drivers available in the
market from 20 to 300, we calculate the performance ratio of
our algorithms. The results are shown in Fig. 5. We can find

Fig. 5. The left figure shows the performance ratio of the “hitchhiking” model
and the right figure shows the performance ratio of the “home-work-home”
model. The four curves Greedy, maxMargin, and Nearest correspond to the
deterministic offline algorithms, online maximum marginal value algorithm
and online nearest worker algorithm accordingly.

that our offline deterministic algorithm (Algorithm 1) has the
best performance.s. For our online algorithms, the maxMargin
algorithm (Algorithm 4) shows better result than that of the
Nearest algorithm (Algorithm 3). Therefore the maxMargin
algorithm is a good candidate for the online cases.

Revisit the results in Fig. 5, we can see that almost all our al-
gorithms achieve better performance ratio in the “hitchhiking”
model than that of the “home-task-home” model. This implies
that the “hitchhiking” model has better economic efficiency
in real-life scenarios, it is more efficient to match riders and
drivers already headed in the same direction (i.e. the working
model of Google’s Waze Rider).

C. More Insights on the Ride-sharing Markets

We further discuss more simulation results which show the
effectiveness of our algorithms applied in the real market.
We will analyze the performance with different metrics for
Algorithm 1 (the red line), Algorithm 4 (the blue line) and
Algorithm 3 (the orange line). We use the same the simulation
data as before and only consider the case of the general
“hitchhiking” model that the drivers have random sources and
destinations.

One interesting result is that when more drivers come into
the market, the market becomes denser. Therefore more tasks
will be served and more revenue will be generated. Fig. 6
shows that as the number of drivers increases, the total revenue
generated in the market increases. Fig. 7 shows that as the
number of drivers increases, the probability of a pending order
to be served also increases. On the other hand, as the market
become denser, it will lead to more competition and therefore
the market congestion problem arises. Fig. 8 shows that as the
number of drivers increases, the average payoff received by
each driver declines. Fig. 9 shows similar results, as the as
the number of drivers increases, the average tasks served by
each driver also decreases.



Fig. 6. Total revenue in the market Fig. 7. Rate of served task

Fig. 8. Average revenue per
worker

Fig. 9. Average tasks per worker

From the results above, we know that an effective matching
market designer should make the market dense enough to
ensure a high service rate, since a sparse market can not be
efficient for most cases in the matching market. At the same
time, the market designer should control the congestion level
at a reasonable level, such that each participant in the market
will be better off in the market. As we know, the Uber’s surge
pricing mechanism and the policy of Google’s Waze Rider
(i.e. limiting drivers and riders to two rides a day) are both
promising ways to control the congestion in practice.

VII. CONCLUDING REMARKS

Taxi and delivery markets are dynamic two-side markets that
are highly associated with our daily life. Efficient algorithms
are required to address the inefficient matching of the drivers
and customers. To this end, we first propose a general frame-
work to model the problem, and then provide a deterministic
algorithm to solve the offline problem. This algorithm has
a tight theoretical bound. For the online scenarios, we give
two heuristic online algorithms. By real-trace simulations, we
demonstrate the effectiveness to apply our algorithms in real
markets. In the future, we hope to solve the online problem
with non-heuristic algorithms and applied our algorithms in
more models of two-sided markets.
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